scuffed-code/icu4c/source/i18n/unicode/translit.h
2000-01-19 19:02:10 +00:00

867 lines
34 KiB
C++

/*
* Copyright © {1999}, International Business Machines Corporation and others. All Rights Reserved.
**********************************************************************
* Date Name Description
* 11/17/99 aliu Creation.
**********************************************************************
*/
#ifndef TRANSLIT_H
#define TRANSLIT_H
#include "unicode/unistr.h"
class Replaceable;
class UnicodeFilter;
class TransliterationRuleData;
struct UHashtable;
class U_I18N_API UVector;
class CompoundTransliterator;
/**
* <code>Transliterator</code> is an abstract class that
* transliterates text from one format to another. The most common
* kind of transliterator is a script, or alphabet, transliterator.
* For example, a Russian to Latin transliterator changes Russian text
* written in Cyrillic characters to phonetically equivalent Latin
* characters. It does not <em>translate</em> Russian to English!
* Transliteration, unlike translation, operates on characters, without
* reference to the meanings of words and sentences.
*
* <p>Although script conversion is its most common use, a
* transliterator can actually perform a more general class of tasks.
* In fact, <code>Transliterator</code> defines a very general API
* which specifies only that a segment of the input text is replaced
* by new text. The particulars of this conversion are determined
* entirely by subclasses of <code>Transliterator</code>.
*
* <p><b>Transliterators are stateless</b>
*
* <p><code>Transliterator</code> objects are <em>stateless</em>; they
* retain no information between calls to
* <code>transliterate()</code>. (However, this does <em>not</em>
* mean that threads may share transliterators without synchronizing
* them. Transliterators are not immutable, so they must be
* synchronized when shared between threads.) This1 might seem to
* limit the complexity of the transliteration operation. In
* practice, subclasses perform complex transliterations by delaying
* the replacement of text until it is known that no other
* replacements are possible. In other words, although the
* <code>Transliterator</code> objects are stateless, the source text
* itself embodies all the needed information, and delayed operation
* allows arbitrary complexity.
*
* <p><b>Batch transliteration</b>
*
* <p>The simplest way to perform transliteration is all at once, on a
* string of existing text. This is referred to as <em>batch</em>
* transliteration. For example, given a string <code>input</code>
* and a transliterator <code>t</code>, the call
*
* <blockquote><code>String result = t.transliterate(input);
* </code></blockquote>
*
* will transliterate it and return the result. Other methods allow
* the client to specify a substring to be transliterated and to use
* {@link Replaceable} objects instead of strings, in order to
* preserve out-of-band information (such as text styles).
*
* <p><b>Keyboard transliteration</b>
*
* <p>Somewhat more involved is <em>keyboard</em>, or incremental
* transliteration. This is the transliteration of text that is
* arriving from some source (typically the user's keyboard) one
* character at a time, or in some other piecemeal fashion.
*
* <p>In keyboard transliteration, a <code>Replaceable</code> buffer
* stores the text. As text is inserted, as much as possible is
* transliterated on the fly. This means a GUI that displays the
* contents of the buffer may show text being modified as each new
* character arrives.
*
* <p>Consider the simple <code>RuleBasedTransliterator</code>:
*
* <blockquote><code>
* th&gt;{theta}<br>
* t&gt;{tau}
* </code></blockquote>
*
* When the user types 't', nothing will happen, since the
* transliterator is waiting to see if the next character is 'h'. To
* remedy this, we introduce the notion of a cursor, marked by a '|'
* in the output string:
*
* <blockquote><code>
* t&gt;|{tau}<br>
* {tau}h&gt;{theta}
* </code></blockquote>
*
* Now when the user types 't', tau appears, and if the next character
* is 'h', the tau changes to a theta. This is accomplished by
* maintaining a cursor position (independent of the insertion point,
* and invisible in the GUI) across calls to
* <code>transliterate()</code>. Typically, the cursor will
* be coincident with the insertion point, but in a case like the one
* above, it will precede the insertion point.
*
* <p>Keyboard transliteration methods maintain a set of three indices
* that are updated with each call to
* <code>transliterate()</code>, including the cursor, start,
* and limit. Since these indices are changed by the method, they are
* passed in an <code>int[]</code> array. The <code>START</code> index
* marks the beginning of the substring that the transliterator will
* look at. It is advanced as text becomes committed (but it is not
* the committed index; that's the <code>CURSOR</code>). The
* <code>CURSOR</code> index, described above, marks the point at
* which the transliterator last stopped, either because it reached
* the end, or because it required more characters to disambiguate
* between possible inputs. The <code>CURSOR</code> can also be
* explicitly set by rules in a <code>RuleBasedTransliterator</code>.
* Any characters before the <code>CURSOR</code> index are frozen;
* future keyboard transliteration calls within this input sequence
* will not change them. New text is inserted at the
* <code>LIMIT</code> index, which marks the end of the substring that
* the transliterator looks at.
*
* <p>Because keyboard transliteration assumes that more characters
* are to arrive, it is conservative in its operation. It only
* transliterates when it can do so unambiguously. Otherwise it waits
* for more characters to arrive. When the client code knows that no
* more characters are forthcoming, perhaps because the user has
* performed some input termination operation, then it should call
* <code>finishTransliteration()</code> to complete any
* pending transliterations.
*
* <p><b>Inverses</b>
*
* <p>Pairs of transliterators may be inverses of one another. For
* example, if transliterator <b>A</b> transliterates characters by
* incrementing their Unicode value (so "abc" -> "def"), and
* transliterator <b>B</b> decrements character values, then <b>A</b>
* is an inverse of <b>B</b> and vice versa. If we compose <b>A</b>
* with <b>B</b> in a compound transliterator, the result is the
* indentity transliterator, that is, a transliterator that does not
* change its input text.
*
* The <code>Transliterator</code> method <code>getInverse()</code>
* returns a transliterator's inverse, if one exists, or
* <code>null</code> otherwise. However, the result of
* <code>getInverse()</code> usually will <em>not</em> be a true
* mathematical inverse. This is because true inverse transliterators
* are difficult to formulate. For example, consider two
* transliterators: <b>AB</b>, which transliterates the character 'A'
* to 'B', and <b>BA</b>, which transliterates 'B' to 'A'. It might
* seem that these are exact inverses, since
*
* <blockquote>"A" x <b>AB</b> -> "B"<br>
* "B" x <b>BA</b> -> "A"</blockquote>
*
* where 'x' represents transliteration. However,
*
* <blockquote>"ABCD" x <b>AB</b> -> "BBCD"<br>
* "BBCD" x <b>BA</b> -> "AACD"</blockquote>
*
* so <b>AB</b> composed with <b>BA</b> is not the
* identity. Nonetheless, <b>BA</b> may be usefully considered to be
* <b>AB</b>'s inverse, and it is on this basis that
* <b>AB</b><code>.getInverse()</code> could legitimately return
* <b>BA</b>.
*
* <p><b>IDs and display names</b>
*
* <p>A transliterator is designated by a short identifier string or
* <em>ID</em>. IDs follow the format <em>source-destination</em>,
* where <em>source</em> describes the entity being replaced, and
* <em>destination</em> describes the entity replacing
* <em>source</em>. The entities may be the names of scripts,
* particular sequences of characters, or whatever else it is that the
* transliterator converts to or from. For example, a transliterator
* from Russian to Latin might be named "Russian-Latin". A
* transliterator from keyboard escape sequences to Latin-1 characters
* might be named "KeyboardEscape-Latin1". By convention, system
* entity names are in English, with the initial letters of words
* capitalized; user entity names may follow any format so long as
* they do not contain dashes.
*
* <p>In addition to programmatic IDs, transliterator objects have
* display names for presentation in user interfaces, returned by
* {@link #getDisplayName}.
*
* <p><b>Factory methods and registration</b>
*
* <p>In general, client code should use the factory method
* <code>getInstance()</code> to obtain an instance of a
* transliterator given its ID. Valid IDs may be enumerated using
* <code>getAvailableIDs()</code>. Since transliterators are mutable,
* multiple calls to <code>getInstance()</code> with the same ID will
* return distinct objects.
*
* <p>In addition to the system transliterators registered at startup,
* user transliterators may be registered by calling
* <code>registerInstance()</code> at run time. A registered instance
* acts a template; future calls to <tt>getInstance()</tt> with the ID
* of the registered object return clones of that object. Thus any
* object passed to <tt>registerInstance()</tt> must implement
* <tt>clone()</tt> propertly. To register a transliterator subclass
* without instantiating it (until it is needed), users may call
* <code>registerClass()</code>. In this case, the objects are
* instantiated by invoking the zero-argument public constructor of
* the class.
*
* <p><b>Subclassing</b>
*
* Subclasses must implement the abstract method
* <code>handleTransliterate()</code>. <p>Subclasses should override
* the <code>transliterate()</code> method taking a
* <code>Replaceable</code> and the <code>transliterate()</code>
* method taking a <code>String</code> and <code>StringBuffer</code>
* if the performance of these methods can be improved over the
* performance obtained by the default implementations in this class.
*
* @author Alan Liu
*/
class U_I18N_API Transliterator {
public:
/**
* Direction constant indicating the direction in a transliterator, e.g.,
* the forward or reverse rules of a RuleBasedTransliterator. An "A-B"
* transliterator transliterates A to B when operating in the forward
* direction, and B to A when operating in the reverse direction.
*/
enum Direction {
FORWARD,
REVERSE
};
class Position {
public:
/**
* In <code>transliterate()</code>, the beginning index, inclusive
*/
int32_t start;
/**
* In <code>transliterate()</code>, the ending index, exclusive
*/
int32_t limit;
/**
* In <code>transliterate()</code>, the next character to be
* considered for transliteration
*/
int32_t cursor;
};
private:
/**
* Programmatic name, e.g., "Latin-Arabic".
*/
UnicodeString ID;
/**
* This transliterator's filter. Any character for which
* <tt>filter.contains()</tt> returns <tt>false</tt> will not be
* altered by this transliterator. If <tt>filter</tt> is
* <tt>null</tt> then no filtering is applied.
*/
UnicodeFilter* filter;
int32_t maximumContextLength;
/**
* Dictionary of known transliterators. Keys are <code>String</code>
* names, values are one of the following:
*
* <ul><li><code>Transliterator</code> objects
*
* <li><code>Class</code> objects. Such objects must represent
* subclasses of <code>Transliterator</code>, and must satisfy the
* constraints described in <code>registerClass()</code>
*
* <li><code>RULE_BASED_PLACEHOLDER</code>, in which case the ID
* will have its first '-' removed and be appended to
* RB_RULE_BASED_PREFIX to form a resource bundle name from which
* the RB_RULE key is looked up to obtain the rule.
*
* <li><code>REVERSE_RULE_BASED_PLACEHOLDER</code>. Like
* <code>RULE_BASED_PLACEHOLDER</code>, except the entity names in
* the ID are reversed, and the argument
* RuleBasedTransliterator.REVERSE is pased to the
* RuleBasedTransliterator constructor.
* </ul>
*/
static UHashtable* cache;
/**
* The mutex controlling access to the cache.
*/
static UMTX cacheMutex;
/**
* When set to TRUE, the cache has been initialized. Any code must
* check this boolean before accessing the cache, and if the boolean
* is FALSE, it must call initializeCache(). We do this form of lazy
* evaluation for two reasons: (1) so we don't initialize if we don't
* have to (i.e., if no one is using Transliterator, but has included
* the code as part of a shared library, and (2) to avoid static
* intialization problems.
*/
static bool_t cacheInitialized;
/**
* In Java, the cache stores objects of different types and
* singleton objects as placeholders for rule-based
* transliterators to be built as needed. In C++ we use the
* following struct to achieve the same purpose. Instances of
* this struct can be placeholders, can represent prototype
* transliterators to be cloned, or can represent
* RuleBasedTransliterator::Data objects. We don't support
* storing classes in the cache because we don't have the rtti
* infrastructure for it. We could easily add this if there is a
* need for it in the future. The rbFile is the resource bundle
* file name for rule-based transliterators.
*/
struct CacheEntry {
enum Type {
RULE_BASED_PLACEHOLDER,
REVERSE_RULE_BASED_PLACEHOLDER,
PROTOTYPE,
RBT_DATA,
NONE // Only used for uninitialized entries
} entryType;
UnicodeString rbFile; // For *PLACEHOLDER
union {
Transliterator* prototype; // For PROTOTYPE
TransliterationRuleData* data; // For RBT_DATA
} u;
CacheEntry();
~CacheEntry();
void adoptPrototype(Transliterator* adopted);
};
/**
* Prefix for resource bundle key for the display name for a
* transliterator. The ID is appended to this to form the key.
* The resource bundle value should be a String.
*/
static const char* RB_DISPLAY_NAME_PREFIX;
/**
* Prefix for resource bundle key for the display name for a
* transliterator SCRIPT. The ID is appended to this to form the key.
* The resource bundle value should be a String.
*/
static const char* RB_SCRIPT_DISPLAY_NAME_PREFIX;
/**
* Resource bundle key for display name pattern.
* The resource bundle value should be a String forming a
* MessageFormat pattern, e.g.:
* "{0,choice,0#|1#{1} Transliterator|2#{1} to {2} Transliterator}".
*/
static const char* RB_DISPLAY_NAME_PATTERN;
/**
* Resource bundle key for the list of RuleBasedTransliterator IDs.
* The resource bundle value should be a String[] with each element
* being a valid ID. The ID will be appended to RB_RULE_BASED_PREFIX
* to obtain the class name in which the RB_RULE key will be sought.
*/
static const char* RB_RULE_BASED_IDS;
/**
* Resource bundle key for the RuleBasedTransliterator rule.
*/
static const char* RB_RULE;
protected:
/**
* Default constructor.
* @param ID the string identifier for this transliterator
* @param adoptedFilter the filter. Any character for which
* <tt>filter.contains()</tt> returns <tt>false</tt> will not be
* altered by this transliterator. If <tt>filter</tt> is
* <tt>null</tt> then no filtering is applied.
*/
Transliterator(const UnicodeString& ID, UnicodeFilter* adoptedFilter);
/**
* Copy constructor.
*/
Transliterator(const Transliterator&);
/**
* Assignment operator.
*/
Transliterator& operator=(const Transliterator&);
public:
/**
* Destructor.
*/
virtual ~Transliterator();
/**
* Implements Cloneable.
* All subclasses are encouraged to implement this method if it is
* possible and reasonable to do so. Subclasses that are to be
* registered with the system using <tt>registerInstance()<tt>
* are required to implement this method. If a subclass does not
* implement clone() properly and is registered with the system
* using registerInstance(), then the default clone() implementation
* will return null, and calls to createInstance() will fail.
*
* @see #registerInstance
*/
virtual Transliterator* clone() const { return 0; }
/**
* Transliterates a segment of a string, with optional filtering.
*
* @param text the string to be transliterated
* @param start the beginning index, inclusive; <code>0 <= start
* <= limit</code>.
* @param limit the ending index, exclusive; <code>start <= limit
* <= text.length()</code>.
* @param filter the filter. Any character for which
* <tt>filter.contains()</tt> returns <tt>false</tt> will not be
* altered by this transliterator. If <tt>filter</tt> is
* <tt>null</tt> then no filtering is applied.
* @return The new limit index. The text previously occupying <code>[start,
* limit)</code> has been transliterated, possibly to a string of a different
* length, at <code>[start, </code><em>new-limit</em><code>)</code>, where
* <em>new-limit</em> is the return value.
*/
virtual int32_t transliterate(Replaceable& text,
int32_t start, int32_t limit) const;
/**
* Transliterates an entire string in place. Convenience method.
* @param text the string to be transliterated
*/
virtual void transliterate(Replaceable& text) const;
/**
* Transliterates the portion of the text buffer that can be
* transliterated unambiguosly after new text has been inserted,
* typically as a result of a keyboard event. The new text in
* <code>insertion</code> will be inserted into <code>text</code>
* at <code>index.limit</code>, advancing
* <code>index.limit</code> by <code>insertion.length()</code>.
* Then the transliterator will try to transliterate characters of
* <code>text</code> between <code>index.cursor</code> and
* <code>index.limit</code>. Characters before
* <code>index.cursor</code> will not be changed.
*
* <p>Upon return, values in <code>index</code> will be updated.
* <code>index.start</code> will be advanced to the first
* character that future calls to this method will read.
* <code>index.cursor</code> and <code>index.limit</code> will
* be adjusted to delimit the range of text that future calls to
* this method may change.
*
* <p>Typical usage of this method begins with an initial call
* with <code>index.start</code> and <code>index.limit</code>
* set to indicate the portion of <code>text</code> to be
* transliterated, and <code>index.cursor == index.start</code>.
* Thereafter, <code>index</code> can be used without
* modification in future calls, provided that all changes to
* <code>text</code> are made via this method.
*
* <p>This method assumes that future calls may be made that will
* insert new text into the buffer. As a result, it only performs
* unambiguous transliterations. After the last call to this
* method, there may be untransliterated text that is waiting for
* more input to resolve an ambiguity. In order to perform these
* pending transliterations, clients should call {@link
* #finishTransliteration} after the last call to this
* method has been made.
*
* @param text the buffer holding transliterated and untransliterated text
* @param index an array of three integers.
*
* <ul><li><code>index.start</code>: the beginning index,
* inclusive; <code>0 <= index.start <= index.limit</code>.
*
* <li><code>index.limit</code>: the ending index, exclusive;
* <code>index.start <= index.limit <= text.length()</code>.
* <code>insertion</code> is inserted at
* <code>index.limit</code>.
*
* <li><code>index.cursor</code>: the next character to be
* considered for transliteration; <code>index.start <=
* index.cursor <= index.limit</code>. Characters before
* <code>index.cursor</code> will not be changed by future calls
* to this method.</ul>
*
* @param insertion text to be inserted and possibly
* transliterated into the translation buffer at
* <code>index.limit</code>. If <code>null</code> then no text
* is inserted.
* @see #handleTransliterate
* @exception IllegalArgumentException if <code>index</code>
* is invalid
*/
virtual void transliterate(Replaceable& text, Position& index,
const UnicodeString& insertion,
UErrorCode& status) const;
/**
* Transliterates the portion of the text buffer that can be
* transliterated unambiguosly after a new character has been
* inserted, typically as a result of a keyboard event. This is a
* convenience method; see {@link
* #transliterate(Replaceable, int[], String)} for details.
* @param text the buffer holding transliterated and
* untransliterated text
* @param index an array of three integers. See {@link
* #transliterate(Replaceable, int[], String)}.
* @param insertion text to be inserted and possibly
* transliterated into the translation buffer at
* <code>index.limit</code>.
* @see #transliterate(Replaceable, int[], String)
*/
virtual void transliterate(Replaceable& text, Position& index,
UChar insertion,
UErrorCode& status) const;
/**
* Transliterates the portion of the text buffer that can be
* transliterated unambiguosly. This is a convenience method; see
* {@link #transliterate(Replaceable, int[], String)} for
* details.
* @param text the buffer holding transliterated and
* untransliterated text
* @param index an array of three integers. See {@link
* #transliterate(Replaceable, int[], String)}.
* @see #transliterate(Replaceable, int[], String)
*/
virtual void transliterate(Replaceable& text, Position& index,
UErrorCode& status) const;
/**
* Finishes any pending transliterations that were waiting for
* more characters. Clients should call this method as the last
* call after a sequence of one or more calls to
* <code>transliterate()</code>.
* @param text the buffer holding transliterated and
* untransliterated text.
* @param index the array of indices previously passed to {@link
* #transliterate}
*/
virtual void finishTransliteration(Replaceable& text,
Position& index) const;
private:
/**
* This internal method does incremental transliteration. If the
* 'insertion' is non-null then we append it to 'text' before
* proceeding. This method calls through to the pure virtual
* framework method handleTransliterate() to do the actual
* work.
*/
void _transliterate(Replaceable& text,
Position& index,
const UnicodeString* insertion,
UErrorCode &status) const;
protected:
/**
* Abstract method that concrete subclasses define to implement
* keyboard transliteration. This method should transliterate all
* characters between <code>index.cursor</code> and
* <code>index.limit</code> that can be unambiguously
* transliterated, regardless of future insertions of text at
* <code>index.limit</code>. <code>index.cursor</code> should
* be advanced past committed characters (those that will not
* change in future calls to this method).
* <code>index.limit</code> should be updated to reflect text
* replacements that shorten or lengthen the text between
* <code>index.cursor</code> and <code>index.limit</code>. Upon
* return, neither <code>index.cursor</code> nor
* <code>index.limit</code> should be less than the initial value
* of <code>index.cursor</code>. <code>index.start</code>
* should <em>not</em> be changed.
*
* @param text the buffer holding transliterated and
* untransliterated text
* @param index an array of three integers. See {@link
* #transliterate(Replaceable, int[], String)}.
* @see #transliterate
*/
virtual void handleTransliterate(Replaceable& text,
Position& index,
bool_t incremental) const = 0;
// C++ requires this friend declaration so CompoundTransliterator
// can access handleTransliterate. Alternatively, we could
// make handleTransliterate public.
friend class CompoundTransliterator;
public:
/**
* Returns the length of the longest context required by this transliterator.
* This is <em>preceding</em> context. The default implementation supplied
* by <code>Transliterator</code> returns zero; subclasses
* that use preceding context should override this method to return the
* correct value. For example, if a transliterator translates "ddd" (where
* d is any digit) to "555" when preceded by "(ddd)", then the preceding
* context length is 5, the length of "(ddd)".
*
* @return The maximum number of preceding context characters this
* transliterator needs to examine
*/
int32_t getMaximumContextLength(void) const;
protected:
/**
* Method for subclasses to use to set the maximum context length.
* @see #getMaximumContextLength
*/
void setMaximumContextLength(int32_t maxContextLength);
public:
/**
* Returns a programmatic identifier for this transliterator.
* If this identifier is passed to <code>getInstance()</code>, it
* will return this object, if it has been registered.
* @see #registerInstance
* @see #registerClass
* @see #getAvailableIDs
*/
virtual const UnicodeString& getID(void) const;
/**
* Returns a name for this transliterator that is appropriate for
* display to the user in the default locale. See {@link
* #getDisplayName(Locale)} for details.
*/
static UnicodeString& getDisplayName(const UnicodeString& ID,
UnicodeString& result);
/**
* Returns a name for this transliterator that is appropriate for
* display to the user in the given locale. This name is taken
* from the locale resource data in the standard manner of the
* <code>java.text</code> package.
*
* <p>If no localized names exist in the system resource bundles,
* a name is synthesized using a localized
* <code>MessageFormat</code> pattern from the resource data. The
* arguments to this pattern are an integer followed by one or two
* strings. The integer is the number of strings, either 1 or 2.
* The strings are formed by splitting the ID for this
* transliterator at the first '-'. If there is no '-', then the
* entire ID forms the only string.
* @param inLocale the Locale in which the display name should be
* localized.
* @see java.text.MessageFormat
*/
static UnicodeString& getDisplayName(const UnicodeString& ID,
const Locale& inLocale,
UnicodeString& result);
/**
* Returns the filter used by this transliterator, or <tt>null</tt>
* if this transliterator uses no filter.
*/
virtual const UnicodeFilter* getFilter(void) const;
/**
* Changes the filter used by this transliterator. If the filter
* is set to <tt>null</tt> then no filtering will occur.
*
* <p>Callers must take care if a transliterator is in use by
* multiple threads. The filter should not be changed by one
* thread while another thread may be transliterating.
*/
virtual void adoptFilter(UnicodeFilter* adoptedFilter);
/**
* Returns this transliterator's inverse. See the class
* documentation for details. This implementation simply inverts
* the two entities in the ID and attempts to retrieve the
* resulting transliterator. That is, if <code>getID()</code>
* returns "A-B", then this method will return the result of
* <code>getInstance("B-A")</code>, or <code>null</code> if that
* call fails.
*
* <p>This method does not take filtering into account. The
* returned transliterator will have no filter.
*
* <p>Subclasses with knowledge of their inverse may wish to
* override this method.
*
* @return a transliterator that is an inverse, not necessarily
* exact, of this transliterator, or <code>null</code> if no such
* transliterator is registered.
* @see #registerInstance
*/
Transliterator* createInverse(void) const;
/**
* Returns a <code>Transliterator</code> object given its ID.
* The ID must be either a system transliterator ID or a ID registered
* using <code>registerInstance()</code>.
*
* @param ID a valid ID, as enumerated by <code>getAvailableIDs()</code>
* @return A <code>Transliterator</code> object with the given ID
* @exception IllegalArgumentException if the given ID is invalid.
* @see #registerInstance
* @see #getAvailableIDs
* @see #getID
*/
static Transliterator* createInstance(const UnicodeString& ID,
Direction dir = FORWARD);
private:
/**
* This is the path to the subdirectory within the locale data
* directory that contains the rule-based transliterator resource
* bundle files. This is constructed dynamically the first time
* Transliterator::getDataDirectory() is called.
*/
static char* DATA_DIR;
/**
* This is the name of a subdirectory within the locale data directory
* that contains the rule-based transliterator resource bundle files.
*/
static const char* RESOURCE_SUB_DIR;
/**
* Returns the directory in which the transliterator resource bundle
* files are located. This is a subdirectory, named RESOURCE_SUB_DIR,
* under Locale::getDataDirectory(). It ends in a path separator.
*/
static const char* getDataDirectory(void);
static int32_t hash(const UnicodeString& str);
/**
* Returns a transliterator object given its ID. Unlike getInstance(),
* this method returns null if it cannot make use of the given ID.
*/
static Transliterator* _createInstance(const UnicodeString& ID);
public:
/**
* Registers a instance <tt>obj</tt> of a subclass of
* <code>Transliterator</code> with the system. When
* <tt>createInstance()</tt> is called with an ID string that is
* equal to <tt>obj->getID()</tt>, then <tt>obj->clone()</tt> is
* returned.
*
* After this call the Transliterator class owns the adoptedObj
* and will delete it.
*
* @param obj an instance of subclass of
* <code>Transliterator</code> that defines <tt>clone()</tt>
* @see #getInstance
* @see #registerClass
* @see #unregister
*/
static void registerInstance(Transliterator* adoptedObj,
UErrorCode& status);
private:
/**
* This internal method registers a prototype instance in the cache.
* The CALLER MUST MUTEX using cacheMutex before calling this method.
*/
static void _registerInstance(Transliterator* adoptedPrototype,
UErrorCode &status);
public:
/**
* Unregisters a transliterator or class. This may be either
* a system transliterator or a user transliterator or class.
*
* @param ID the ID of the transliterator or class
* @return the <code>Object</code> that was registered with
* <code>ID</code>, or <code>null</code> if none was
* @see #registerInstance
* @see #registerClass
*/
static void unregister(const UnicodeString& ID);
private:
/**
* Unregisters a transliterator or class. Internal method.
* Prerequisites: The cache must be initialized, and the
* caller must own the cacheMutex.
*/
static void _unregister(const UnicodeString& ID);
/**
* Returns an enumeration over the programmatic names of registered
* <code>Transliterator</code> objects. This includes both system
* transliterators and user transliterators registered using
* <code>registerInstance()</code>. The enumerated names may be
* passed to <code>getInstance()</code>.
*
* @return An <code>Enumeration</code> over <code>String</code> objects
* @see #getInstance
* @see #registerInstance
*/
// virtual Enumeration getAvailableIDs();
/**
* Vector of registered IDs.
*/
static UVector cacheIDs;
public:
/**
* Return the number of IDs currently registered with the system.
* To retrieve the actual IDs, call getAvailableID(i) with
* i from 0 to countAvailableIDs() - 1.
*/
static int32_t countAvailableIDs(void);
/**
* Return the index-th available ID. index must be between 0
* and countAvailableIDs() - 1, inclusive. If index is out of
* range, the result of getAvailableID(0) is returned.
*/
static const UnicodeString& getAvailableID(int32_t index);
protected:
/**
* Method for subclasses to use to obtain a character in the given
* string, with filtering.
*/
UChar filteredCharAt(const Replaceable& text, int32_t i) const;
private:
/**
* Comparison function for UVector. Compares two UnicodeString
* objects given void* pointers to them.
*/
static bool_t compareIDs(void* a, void* b);
static void initializeCache(void);
};
inline int32_t Transliterator::getMaximumContextLength(void) const {
return maximumContextLength;
}
#endif