b4853d0331
X-SVN-Rev: 26870
815 lines
24 KiB
C++
815 lines
24 KiB
C++
/*
|
|
*******************************************************************************
|
|
*
|
|
* Copyright (C) 2008-2009, International Business Machines
|
|
* Corporation, Google and others. All Rights Reserved.
|
|
*
|
|
*******************************************************************************
|
|
*/
|
|
// Author : eldawy@google.com (Mohamed Eldawy)
|
|
// ucnvsel.cpp
|
|
//
|
|
// Purpose: To generate a list of encodings capable of handling
|
|
// a given Unicode text
|
|
//
|
|
// Started 09-April-2008
|
|
|
|
/**
|
|
* \file
|
|
*
|
|
* This is an implementation of an encoding selector.
|
|
* The goal is, given a unicode string, find the encodings
|
|
* this string can be mapped to. To make processing faster
|
|
* a trie is built when you call ucnvsel_open() that
|
|
* stores all encodings a codepoint can map to
|
|
*/
|
|
|
|
#include "unicode/ucnvsel.h"
|
|
|
|
#include <string.h>
|
|
|
|
#include "unicode/uchar.h"
|
|
#include "unicode/uniset.h"
|
|
#include "unicode/ucnv.h"
|
|
#include "unicode/ustring.h"
|
|
#include "unicode/uchriter.h"
|
|
#include "utrie2.h"
|
|
#include "propsvec.h"
|
|
#include "uassert.h"
|
|
#include "ucmndata.h"
|
|
#include "uenumimp.h"
|
|
#include "cmemory.h"
|
|
#include "cstring.h"
|
|
|
|
U_NAMESPACE_USE
|
|
|
|
struct UConverterSelector {
|
|
UTrie2 *trie; // 16 bit trie containing offsets into pv
|
|
uint32_t* pv; // table of bits!
|
|
int32_t pvCount;
|
|
char** encodings; // which encodings did user ask to use?
|
|
int32_t encodingsCount;
|
|
int32_t encodingStrLength;
|
|
uint8_t* swapped;
|
|
UBool ownPv, ownEncodingStrings;
|
|
};
|
|
|
|
static void generateSelectorData(UConverterSelector* result,
|
|
UPropsVectors *upvec,
|
|
const USet* excludedCodePoints,
|
|
const UConverterUnicodeSet whichSet,
|
|
UErrorCode* status) {
|
|
if (U_FAILURE(*status)) {
|
|
return;
|
|
}
|
|
|
|
int32_t columns = (result->encodingsCount+31)/32;
|
|
|
|
// set errorValue to all-ones
|
|
for (int32_t col = 0; col < columns; col++) {
|
|
upvec_setValue(upvec, UPVEC_ERROR_VALUE_CP, UPVEC_ERROR_VALUE_CP,
|
|
col, ~0, ~0, status);
|
|
}
|
|
|
|
for (int32_t i = 0; i < result->encodingsCount; ++i) {
|
|
uint32_t mask;
|
|
uint32_t column;
|
|
int32_t item_count;
|
|
int32_t j;
|
|
UConverter* test_converter = ucnv_open(result->encodings[i], status);
|
|
if (U_FAILURE(*status)) {
|
|
return;
|
|
}
|
|
USet* unicode_point_set;
|
|
unicode_point_set = uset_open(1, 0); // empty set
|
|
|
|
ucnv_getUnicodeSet(test_converter, unicode_point_set,
|
|
whichSet, status);
|
|
if (U_FAILURE(*status)) {
|
|
ucnv_close(test_converter);
|
|
return;
|
|
}
|
|
|
|
column = i / 32;
|
|
mask = 1 << (i%32);
|
|
// now iterate over intervals on set i!
|
|
item_count = uset_getItemCount(unicode_point_set);
|
|
|
|
for (j = 0; j < item_count; ++j) {
|
|
UChar32 start_char;
|
|
UChar32 end_char;
|
|
UErrorCode smallStatus = U_ZERO_ERROR;
|
|
uset_getItem(unicode_point_set, j, &start_char, &end_char, NULL, 0,
|
|
&smallStatus);
|
|
if (U_FAILURE(smallStatus)) {
|
|
// this will be reached for the converters that fill the set with
|
|
// strings. Those should be ignored by our system
|
|
} else {
|
|
upvec_setValue(upvec, start_char, end_char, column, ~0, mask,
|
|
status);
|
|
}
|
|
}
|
|
ucnv_close(test_converter);
|
|
uset_close(unicode_point_set);
|
|
if (U_FAILURE(*status)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
// handle excluded encodings! Simply set their values to all 1's in the upvec
|
|
if (excludedCodePoints) {
|
|
int32_t item_count = uset_getItemCount(excludedCodePoints);
|
|
for (int32_t j = 0; j < item_count; ++j) {
|
|
UChar32 start_char;
|
|
UChar32 end_char;
|
|
|
|
uset_getItem(excludedCodePoints, j, &start_char, &end_char, NULL, 0,
|
|
status);
|
|
for (int32_t col = 0; col < columns; col++) {
|
|
upvec_setValue(upvec, start_char, end_char, col, ~0, ~0,
|
|
status);
|
|
}
|
|
}
|
|
}
|
|
|
|
// alright. Now, let's put things in the same exact form you'd get when you
|
|
// unserialize things.
|
|
result->trie = upvec_compactToUTrie2WithRowIndexes(upvec, status);
|
|
result->pv = upvec_cloneArray(upvec, &result->pvCount, NULL, status);
|
|
result->pvCount *= columns; // number of uint32_t = rows * columns
|
|
result->ownPv = TRUE;
|
|
}
|
|
|
|
/* open a selector. If converterListSize is 0, build for all converters.
|
|
If excludedCodePoints is NULL, don't exclude any codepoints */
|
|
U_CAPI UConverterSelector* U_EXPORT2
|
|
ucnvsel_open(const char* const* converterList, int32_t converterListSize,
|
|
const USet* excludedCodePoints,
|
|
const UConverterUnicodeSet whichSet, UErrorCode* status) {
|
|
// check if already failed
|
|
if (U_FAILURE(*status)) {
|
|
return NULL;
|
|
}
|
|
// ensure args make sense!
|
|
if (converterListSize < 0 || (converterList == NULL && converterListSize != 0)) {
|
|
*status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
return NULL;
|
|
}
|
|
|
|
// allocate a new converter
|
|
UConverterSelector* newSelector =
|
|
(UConverterSelector*)uprv_malloc(sizeof(UConverterSelector));
|
|
if (!newSelector) {
|
|
*status = U_MEMORY_ALLOCATION_ERROR;
|
|
return NULL;
|
|
}
|
|
uprv_memset(newSelector, 0, sizeof(UConverterSelector));
|
|
|
|
if (converterListSize == 0) {
|
|
converterList = NULL;
|
|
converterListSize = ucnv_countAvailable();
|
|
}
|
|
newSelector->encodings =
|
|
(char**)uprv_malloc(converterListSize * sizeof(char*));
|
|
if (!newSelector->encodings) {
|
|
*status = U_MEMORY_ALLOCATION_ERROR;
|
|
uprv_free(newSelector);
|
|
return NULL;
|
|
}
|
|
newSelector->encodings[0] = NULL; // now we can call ucnvsel_close()
|
|
|
|
// make a backup copy of the list of converters
|
|
int32_t totalSize = 0;
|
|
int32_t i;
|
|
for (i = 0; i < converterListSize; i++) {
|
|
totalSize +=
|
|
(int32_t)uprv_strlen(converterList != NULL ? converterList[i] : ucnv_getAvailableName(i)) + 1;
|
|
}
|
|
// 4-align the totalSize to 4-align the size of the serialized form
|
|
int32_t encodingStrPadding = totalSize & 3;
|
|
if (encodingStrPadding != 0) {
|
|
encodingStrPadding = 4 - encodingStrPadding;
|
|
}
|
|
newSelector->encodingStrLength = totalSize += encodingStrPadding;
|
|
char* allStrings = (char*) uprv_malloc(totalSize);
|
|
if (!allStrings) {
|
|
*status = U_MEMORY_ALLOCATION_ERROR;
|
|
ucnvsel_close(newSelector);
|
|
return NULL;
|
|
}
|
|
|
|
for (i = 0; i < converterListSize; i++) {
|
|
newSelector->encodings[i] = allStrings;
|
|
uprv_strcpy(newSelector->encodings[i],
|
|
converterList != NULL ? converterList[i] : ucnv_getAvailableName(i));
|
|
allStrings += uprv_strlen(newSelector->encodings[i]) + 1;
|
|
}
|
|
while (encodingStrPadding > 0) {
|
|
*allStrings++ = 0;
|
|
--encodingStrPadding;
|
|
}
|
|
|
|
newSelector->ownEncodingStrings = TRUE;
|
|
newSelector->encodingsCount = converterListSize;
|
|
UPropsVectors *upvec = upvec_open((converterListSize+31)/32, status);
|
|
generateSelectorData(newSelector, upvec, excludedCodePoints, whichSet, status);
|
|
upvec_close(upvec);
|
|
|
|
if (U_FAILURE(*status)) {
|
|
ucnvsel_close(newSelector);
|
|
return NULL;
|
|
}
|
|
|
|
return newSelector;
|
|
}
|
|
|
|
/* close opened selector */
|
|
U_CAPI void U_EXPORT2
|
|
ucnvsel_close(UConverterSelector *sel) {
|
|
if (!sel) {
|
|
return;
|
|
}
|
|
if (sel->ownEncodingStrings) {
|
|
uprv_free(sel->encodings[0]);
|
|
}
|
|
uprv_free(sel->encodings);
|
|
if (sel->ownPv) {
|
|
uprv_free(sel->pv);
|
|
}
|
|
utrie2_close(sel->trie);
|
|
uprv_free(sel->swapped);
|
|
uprv_free(sel);
|
|
}
|
|
|
|
static const UDataInfo dataInfo = {
|
|
sizeof(UDataInfo),
|
|
0,
|
|
|
|
U_IS_BIG_ENDIAN,
|
|
U_CHARSET_FAMILY,
|
|
U_SIZEOF_UCHAR,
|
|
0,
|
|
|
|
{ 0x43, 0x53, 0x65, 0x6c }, /* dataFormat="CSel" */
|
|
{ 1, 0, 0, 0 }, /* formatVersion */
|
|
{ 0, 0, 0, 0 } /* dataVersion */
|
|
};
|
|
|
|
enum {
|
|
UCNVSEL_INDEX_TRIE_SIZE, // trie size in bytes
|
|
UCNVSEL_INDEX_PV_COUNT, // number of uint32_t in the bit vectors
|
|
UCNVSEL_INDEX_NAMES_COUNT, // number of encoding names
|
|
UCNVSEL_INDEX_NAMES_LENGTH, // number of encoding name bytes including padding
|
|
UCNVSEL_INDEX_SIZE = 15, // bytes following the DataHeader
|
|
UCNVSEL_INDEX_COUNT = 16
|
|
};
|
|
|
|
/*
|
|
* Serialized form of a UConverterSelector, formatVersion 1:
|
|
*
|
|
* The serialized form begins with a standard ICU DataHeader with a UDataInfo
|
|
* as the template above.
|
|
* This is followed by:
|
|
* int32_t indexes[UCNVSEL_INDEX_COUNT]; // see index entry constants above
|
|
* serialized UTrie2; // indexes[UCNVSEL_INDEX_TRIE_SIZE] bytes
|
|
* uint32_t pv[indexes[UCNVSEL_INDEX_PV_COUNT]]; // bit vectors
|
|
* char* encodingNames[indexes[UCNVSEL_INDEX_NAMES_LENGTH]]; // NUL-terminated strings + padding
|
|
*/
|
|
|
|
/* serialize a selector */
|
|
U_CAPI int32_t U_EXPORT2
|
|
ucnvsel_serialize(const UConverterSelector* sel,
|
|
void* buffer, int32_t bufferCapacity, UErrorCode* status) {
|
|
// check if already failed
|
|
if (U_FAILURE(*status)) {
|
|
return 0;
|
|
}
|
|
// ensure args make sense!
|
|
uint8_t *p = (uint8_t *)buffer;
|
|
if (bufferCapacity < 0 ||
|
|
(bufferCapacity > 0 && (p == NULL || (U_POINTER_MASK_LSB(p, 3) != 0)))
|
|
) {
|
|
*status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
return 0;
|
|
}
|
|
// add up the size of the serialized form
|
|
int32_t serializedTrieSize = utrie2_serialize(sel->trie, NULL, 0, status);
|
|
if (*status != U_BUFFER_OVERFLOW_ERROR && U_FAILURE(*status)) {
|
|
return 0;
|
|
}
|
|
*status = U_ZERO_ERROR;
|
|
|
|
DataHeader header;
|
|
uprv_memset(&header, 0, sizeof(header));
|
|
header.dataHeader.headerSize = (uint16_t)((sizeof(header) + 15) & ~15);
|
|
header.dataHeader.magic1 = 0xda;
|
|
header.dataHeader.magic2 = 0x27;
|
|
uprv_memcpy(&header.info, &dataInfo, sizeof(dataInfo));
|
|
|
|
int32_t indexes[UCNVSEL_INDEX_COUNT] = {
|
|
serializedTrieSize,
|
|
sel->pvCount,
|
|
sel->encodingsCount,
|
|
sel->encodingStrLength
|
|
};
|
|
|
|
int32_t totalSize =
|
|
header.dataHeader.headerSize +
|
|
(int32_t)sizeof(indexes) +
|
|
serializedTrieSize +
|
|
sel->pvCount * 4 +
|
|
sel->encodingStrLength;
|
|
indexes[UCNVSEL_INDEX_SIZE] = totalSize - header.dataHeader.headerSize;
|
|
if (totalSize > bufferCapacity) {
|
|
*status = U_BUFFER_OVERFLOW_ERROR;
|
|
return totalSize;
|
|
}
|
|
// ok, save!
|
|
int32_t length = header.dataHeader.headerSize;
|
|
uprv_memcpy(p, &header, sizeof(header));
|
|
uprv_memset(p + sizeof(header), 0, length - sizeof(header));
|
|
p += length;
|
|
|
|
length = (int32_t)sizeof(indexes);
|
|
uprv_memcpy(p, indexes, length);
|
|
p += length;
|
|
|
|
utrie2_serialize(sel->trie, p, serializedTrieSize, status);
|
|
p += serializedTrieSize;
|
|
|
|
length = sel->pvCount * 4;
|
|
uprv_memcpy(p, sel->pv, length);
|
|
p += length;
|
|
|
|
uprv_memcpy(p, sel->encodings[0], sel->encodingStrLength);
|
|
p += sel->encodingStrLength;
|
|
|
|
return totalSize;
|
|
}
|
|
|
|
/**
|
|
* swap a selector into the desired Endianness and Asciiness of
|
|
* the system. Just as FYI, selectors are always saved in the format
|
|
* of the system that created them. They are only converted if used
|
|
* on another system. In other words, selectors created on different
|
|
* system can be different even if the params are identical (endianness
|
|
* and Asciiness differences only)
|
|
*
|
|
* @param ds pointer to data swapper containing swapping info
|
|
* @param inData pointer to incoming data
|
|
* @param length length of inData in bytes
|
|
* @param outData pointer to output data. Capacity should
|
|
* be at least equal to capacity of inData
|
|
* @param status an in/out ICU UErrorCode
|
|
* @return 0 on failure, number of bytes swapped on success
|
|
* number of bytes swapped can be smaller than length
|
|
*/
|
|
static int32_t
|
|
ucnvsel_swap(const UDataSwapper *ds,
|
|
const void *inData, int32_t length,
|
|
void *outData, UErrorCode *status) {
|
|
/* udata_swapDataHeader checks the arguments */
|
|
int32_t headerSize = udata_swapDataHeader(ds, inData, length, outData, status);
|
|
if(U_FAILURE(*status)) {
|
|
return 0;
|
|
}
|
|
|
|
/* check data format and format version */
|
|
const UDataInfo *pInfo = (const UDataInfo *)((const char *)inData + 4);
|
|
if(!(
|
|
pInfo->dataFormat[0] == 0x43 && /* dataFormat="CSel" */
|
|
pInfo->dataFormat[1] == 0x53 &&
|
|
pInfo->dataFormat[2] == 0x65 &&
|
|
pInfo->dataFormat[3] == 0x6c
|
|
)) {
|
|
udata_printError(ds, "ucnvsel_swap(): data format %02x.%02x.%02x.%02x is not recognized as UConverterSelector data\n",
|
|
pInfo->dataFormat[0], pInfo->dataFormat[1],
|
|
pInfo->dataFormat[2], pInfo->dataFormat[3]);
|
|
*status = U_INVALID_FORMAT_ERROR;
|
|
return 0;
|
|
}
|
|
if(pInfo->formatVersion[0] != 1) {
|
|
udata_printError(ds, "ucnvsel_swap(): format version %02x is not supported\n",
|
|
pInfo->formatVersion[0]);
|
|
*status = U_UNSUPPORTED_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
if(length >= 0) {
|
|
length -= headerSize;
|
|
if(length < 16*4) {
|
|
udata_printError(ds, "ucnvsel_swap(): too few bytes (%d after header) for UConverterSelector data\n",
|
|
length);
|
|
*status = U_INDEX_OUTOFBOUNDS_ERROR;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
const uint8_t *inBytes = (const uint8_t *)inData + headerSize;
|
|
uint8_t *outBytes = (uint8_t *)outData + headerSize;
|
|
|
|
/* read the indexes */
|
|
const int32_t *inIndexes = (const int32_t *)inBytes;
|
|
int32_t indexes[16];
|
|
int32_t i;
|
|
for(i = 0; i < 16; ++i) {
|
|
indexes[i] = udata_readInt32(ds, inIndexes[i]);
|
|
}
|
|
|
|
/* get the total length of the data */
|
|
int32_t size = indexes[UCNVSEL_INDEX_SIZE];
|
|
if(length >= 0) {
|
|
if(length < size) {
|
|
udata_printError(ds, "ucnvsel_swap(): too few bytes (%d after header) for all of UConverterSelector data\n",
|
|
length);
|
|
*status = U_INDEX_OUTOFBOUNDS_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
/* copy the data for inaccessible bytes */
|
|
if(inBytes != outBytes) {
|
|
uprv_memcpy(outBytes, inBytes, size);
|
|
}
|
|
|
|
int32_t offset = 0, count;
|
|
|
|
/* swap the int32_t indexes[] */
|
|
count = UCNVSEL_INDEX_COUNT*4;
|
|
ds->swapArray32(ds, inBytes, count, outBytes, status);
|
|
offset += count;
|
|
|
|
/* swap the UTrie2 */
|
|
count = indexes[UCNVSEL_INDEX_TRIE_SIZE];
|
|
utrie2_swap(ds, inBytes + offset, count, outBytes + offset, status);
|
|
offset += count;
|
|
|
|
/* swap the uint32_t pv[] */
|
|
count = indexes[UCNVSEL_INDEX_PV_COUNT]*4;
|
|
ds->swapArray32(ds, inBytes + offset, count, outBytes + offset, status);
|
|
offset += count;
|
|
|
|
/* swap the encoding names */
|
|
count = indexes[UCNVSEL_INDEX_NAMES_LENGTH];
|
|
ds->swapInvChars(ds, inBytes + offset, count, outBytes + offset, status);
|
|
offset += count;
|
|
|
|
U_ASSERT(offset == size);
|
|
}
|
|
|
|
return headerSize + size;
|
|
}
|
|
|
|
/* unserialize a selector */
|
|
U_CAPI UConverterSelector* U_EXPORT2
|
|
ucnvsel_openFromSerialized(const void* buffer, int32_t length, UErrorCode* status) {
|
|
// check if already failed
|
|
if (U_FAILURE(*status)) {
|
|
return NULL;
|
|
}
|
|
// ensure args make sense!
|
|
const uint8_t *p = (const uint8_t *)buffer;
|
|
if (length <= 0 ||
|
|
(length > 0 && (p == NULL || (U_POINTER_MASK_LSB(p, 3) != 0)))
|
|
) {
|
|
*status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
return NULL;
|
|
}
|
|
// header
|
|
if (length < 32) {
|
|
// not even enough space for a minimal header
|
|
*status = U_INDEX_OUTOFBOUNDS_ERROR;
|
|
return NULL;
|
|
}
|
|
const DataHeader *pHeader = (const DataHeader *)p;
|
|
if (!(
|
|
pHeader->dataHeader.magic1==0xda &&
|
|
pHeader->dataHeader.magic2==0x27 &&
|
|
pHeader->info.dataFormat[0] == 0x43 &&
|
|
pHeader->info.dataFormat[1] == 0x53 &&
|
|
pHeader->info.dataFormat[2] == 0x65 &&
|
|
pHeader->info.dataFormat[3] == 0x6c
|
|
)) {
|
|
/* header not valid or dataFormat not recognized */
|
|
*status = U_INVALID_FORMAT_ERROR;
|
|
return NULL;
|
|
}
|
|
if (pHeader->info.formatVersion[0] != 1) {
|
|
*status = U_UNSUPPORTED_ERROR;
|
|
return NULL;
|
|
}
|
|
uint8_t* swapped = NULL;
|
|
if (pHeader->info.isBigEndian != U_IS_BIG_ENDIAN ||
|
|
pHeader->info.charsetFamily != U_CHARSET_FAMILY
|
|
) {
|
|
// swap the data
|
|
UDataSwapper *ds =
|
|
udata_openSwapperForInputData(p, length, U_IS_BIG_ENDIAN, U_CHARSET_FAMILY, status);
|
|
int32_t totalSize = ucnvsel_swap(ds, p, -1, NULL, status);
|
|
if (U_FAILURE(*status)) {
|
|
udata_closeSwapper(ds);
|
|
return NULL;
|
|
}
|
|
if (length < totalSize) {
|
|
udata_closeSwapper(ds);
|
|
*status = U_INDEX_OUTOFBOUNDS_ERROR;
|
|
return NULL;
|
|
}
|
|
swapped = (uint8_t*)uprv_malloc(totalSize);
|
|
if (swapped == NULL) {
|
|
udata_closeSwapper(ds);
|
|
*status = U_MEMORY_ALLOCATION_ERROR;
|
|
return NULL;
|
|
}
|
|
ucnvsel_swap(ds, p, length, swapped, status);
|
|
udata_closeSwapper(ds);
|
|
if (U_FAILURE(*status)) {
|
|
uprv_free(swapped);
|
|
return NULL;
|
|
}
|
|
p = swapped;
|
|
pHeader = (const DataHeader *)p;
|
|
}
|
|
if (length < (pHeader->dataHeader.headerSize + 16 * 4)) {
|
|
// not even enough space for the header and the indexes
|
|
uprv_free(swapped);
|
|
*status = U_INDEX_OUTOFBOUNDS_ERROR;
|
|
return NULL;
|
|
}
|
|
p += pHeader->dataHeader.headerSize;
|
|
length -= pHeader->dataHeader.headerSize;
|
|
// indexes
|
|
const int32_t *indexes = (const int32_t *)p;
|
|
if (length < indexes[UCNVSEL_INDEX_SIZE]) {
|
|
uprv_free(swapped);
|
|
*status = U_INDEX_OUTOFBOUNDS_ERROR;
|
|
return NULL;
|
|
}
|
|
p += UCNVSEL_INDEX_COUNT * 4;
|
|
// create and populate the selector object
|
|
UConverterSelector* sel = (UConverterSelector*)uprv_malloc(sizeof(UConverterSelector));
|
|
char **encodings =
|
|
(char **)uprv_malloc(
|
|
indexes[UCNVSEL_INDEX_NAMES_COUNT] * sizeof(char *));
|
|
if (sel == NULL || encodings == NULL) {
|
|
uprv_free(swapped);
|
|
uprv_free(sel);
|
|
uprv_free(encodings);
|
|
*status = U_MEMORY_ALLOCATION_ERROR;
|
|
return NULL;
|
|
}
|
|
uprv_memset(sel, 0, sizeof(UConverterSelector));
|
|
sel->pvCount = indexes[UCNVSEL_INDEX_PV_COUNT];
|
|
sel->encodings = encodings;
|
|
sel->encodingsCount = indexes[UCNVSEL_INDEX_NAMES_COUNT];
|
|
sel->encodingStrLength = indexes[UCNVSEL_INDEX_NAMES_LENGTH];
|
|
sel->swapped = swapped;
|
|
// trie
|
|
sel->trie = utrie2_openFromSerialized(UTRIE2_16_VALUE_BITS,
|
|
p, indexes[UCNVSEL_INDEX_TRIE_SIZE], NULL,
|
|
status);
|
|
p += indexes[UCNVSEL_INDEX_TRIE_SIZE];
|
|
if (U_FAILURE(*status)) {
|
|
ucnvsel_close(sel);
|
|
return NULL;
|
|
}
|
|
// bit vectors
|
|
sel->pv = (uint32_t *)p;
|
|
p += sel->pvCount * 4;
|
|
// encoding names
|
|
char* s = (char*)p;
|
|
for (int32_t i = 0; i < sel->encodingsCount; ++i) {
|
|
sel->encodings[i] = s;
|
|
s += uprv_strlen(s) + 1;
|
|
}
|
|
p += sel->encodingStrLength;
|
|
|
|
return sel;
|
|
}
|
|
|
|
// a bunch of functions for the enumeration thingie! Nothing fancy here. Just
|
|
// iterate over the selected encodings
|
|
struct Enumerator {
|
|
int16_t* index;
|
|
int16_t length;
|
|
int16_t cur;
|
|
const UConverterSelector* sel;
|
|
};
|
|
|
|
U_CDECL_BEGIN
|
|
|
|
static void U_CALLCONV
|
|
ucnvsel_close_selector_iterator(UEnumeration *enumerator) {
|
|
uprv_free(((Enumerator*)(enumerator->context))->index);
|
|
uprv_free(enumerator->context);
|
|
uprv_free(enumerator);
|
|
}
|
|
|
|
|
|
static int32_t U_CALLCONV
|
|
ucnvsel_count_encodings(UEnumeration *enumerator, UErrorCode *status) {
|
|
// check if already failed
|
|
if (U_FAILURE(*status)) {
|
|
return 0;
|
|
}
|
|
return ((Enumerator*)(enumerator->context))->length;
|
|
}
|
|
|
|
|
|
static const char* U_CALLCONV ucnvsel_next_encoding(UEnumeration* enumerator,
|
|
int32_t* resultLength,
|
|
UErrorCode* status) {
|
|
// check if already failed
|
|
if (U_FAILURE(*status)) {
|
|
return NULL;
|
|
}
|
|
|
|
int16_t cur = ((Enumerator*)(enumerator->context))->cur;
|
|
const UConverterSelector* sel;
|
|
const char* result;
|
|
if (cur >= ((Enumerator*)(enumerator->context))->length) {
|
|
return NULL;
|
|
}
|
|
sel = ((Enumerator*)(enumerator->context))->sel;
|
|
result = sel->encodings[((Enumerator*)(enumerator->context))->index[cur] ];
|
|
((Enumerator*)(enumerator->context))->cur++;
|
|
if (resultLength) {
|
|
*resultLength = (int32_t)uprv_strlen(result);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static void U_CALLCONV ucnvsel_reset_iterator(UEnumeration* enumerator,
|
|
UErrorCode* status) {
|
|
// check if already failed
|
|
if (U_FAILURE(*status)) {
|
|
return ;
|
|
}
|
|
((Enumerator*)(enumerator->context))->cur = 0;
|
|
}
|
|
|
|
U_CDECL_END
|
|
|
|
|
|
static const UEnumeration defaultEncodings = {
|
|
NULL,
|
|
NULL,
|
|
ucnvsel_close_selector_iterator,
|
|
ucnvsel_count_encodings,
|
|
uenum_unextDefault,
|
|
ucnvsel_next_encoding,
|
|
ucnvsel_reset_iterator
|
|
};
|
|
|
|
|
|
// internal fn to intersect two sets of masks
|
|
// returns whether the mask has reduced to all zeros
|
|
static UBool intersectMasks(uint32_t* dest, const uint32_t* source1, int32_t len) {
|
|
int32_t i;
|
|
uint32_t oredDest = 0;
|
|
for (i = 0 ; i < len ; ++i) {
|
|
oredDest |= (dest[i] &= source1[i]);
|
|
}
|
|
return oredDest == 0;
|
|
}
|
|
|
|
// internal fn to count how many 1's are there in a mask
|
|
// algorithm taken from http://graphics.stanford.edu/~seander/bithacks.html
|
|
static int16_t countOnes(uint32_t* mask, int32_t len) {
|
|
int32_t i, totalOnes = 0;
|
|
for (i = 0 ; i < len ; ++i) {
|
|
uint32_t ent = mask[i];
|
|
for (; ent; totalOnes++)
|
|
{
|
|
ent &= ent - 1; // clear the least significant bit set
|
|
}
|
|
}
|
|
return totalOnes;
|
|
}
|
|
|
|
|
|
/* internal function! */
|
|
static UEnumeration *selectForMask(const UConverterSelector* sel,
|
|
uint32_t *mask, UErrorCode *status) {
|
|
// this is the context we will use. Store a table of indices to which
|
|
// encodings are legit.
|
|
struct Enumerator* result = (Enumerator*)uprv_malloc(sizeof(Enumerator));
|
|
if (result == NULL) {
|
|
uprv_free(mask);
|
|
*status = U_MEMORY_ALLOCATION_ERROR;
|
|
return NULL;
|
|
}
|
|
result->index = NULL; // this will be allocated later!
|
|
result->length = result->cur = 0;
|
|
result->sel = sel;
|
|
|
|
UEnumeration *en = (UEnumeration *)uprv_malloc(sizeof(UEnumeration));
|
|
if (en == NULL) {
|
|
// TODO(markus): Combine Enumerator and UEnumeration into one struct.
|
|
uprv_free(mask);
|
|
uprv_free(result);
|
|
*status = U_MEMORY_ALLOCATION_ERROR;
|
|
return NULL;
|
|
}
|
|
memcpy(en, &defaultEncodings, sizeof(UEnumeration));
|
|
en->context = result;
|
|
|
|
int32_t columns = (sel->encodingsCount+31)/32;
|
|
int16_t numOnes = countOnes(mask, columns);
|
|
// now, we know the exact space we need for index
|
|
if (numOnes > 0) {
|
|
result->index = (int16_t*) uprv_malloc(numOnes * sizeof(int16_t));
|
|
|
|
int32_t i, j;
|
|
int16_t k = 0;
|
|
for (j = 0 ; j < columns; j++) {
|
|
uint32_t v = mask[j];
|
|
for (i = 0 ; i < 32 && k < sel->encodingsCount; i++, k++) {
|
|
if ((v & 1) != 0) {
|
|
result->index[result->length++] = k;
|
|
}
|
|
v >>= 1;
|
|
}
|
|
}
|
|
} //otherwise, index will remain NULL (and will never be touched by
|
|
//the enumerator code anyway)
|
|
uprv_free(mask);
|
|
return en;
|
|
}
|
|
|
|
/* check a string against the selector - UTF16 version */
|
|
U_CAPI UEnumeration * U_EXPORT2
|
|
ucnvsel_selectForString(const UConverterSelector* sel,
|
|
const UChar *s, int32_t length, UErrorCode *status) {
|
|
// check if already failed
|
|
if (U_FAILURE(*status)) {
|
|
return NULL;
|
|
}
|
|
// ensure args make sense!
|
|
if (sel == NULL || (s == NULL && length != 0)) {
|
|
*status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
return NULL;
|
|
}
|
|
|
|
int32_t columns = (sel->encodingsCount+31)/32;
|
|
uint32_t* mask = (uint32_t*) uprv_malloc(columns * 4);
|
|
if (mask == NULL) {
|
|
*status = U_MEMORY_ALLOCATION_ERROR;
|
|
return NULL;
|
|
}
|
|
uprv_memset(mask, ~0, columns *4);
|
|
|
|
const UChar *limit;
|
|
if (length >= 0) {
|
|
limit = s + length;
|
|
} else {
|
|
limit = NULL;
|
|
}
|
|
|
|
while (limit == NULL ? *s != 0 : s != limit) {
|
|
UChar32 c;
|
|
uint16_t pvIndex;
|
|
UTRIE2_U16_NEXT16(sel->trie, s, limit, c, pvIndex);
|
|
if (intersectMasks(mask, sel->pv+pvIndex, columns)) {
|
|
break;
|
|
}
|
|
}
|
|
return selectForMask(sel, mask, status);
|
|
}
|
|
|
|
/* check a string against the selector - UTF8 version */
|
|
U_CAPI UEnumeration * U_EXPORT2
|
|
ucnvsel_selectForUTF8(const UConverterSelector* sel,
|
|
const char *s, int32_t length, UErrorCode *status) {
|
|
// check if already failed
|
|
if (U_FAILURE(*status)) {
|
|
return NULL;
|
|
}
|
|
// ensure args make sense!
|
|
if (sel == NULL || (s == NULL && length != 0)) {
|
|
*status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
return NULL;
|
|
}
|
|
|
|
int32_t columns = (sel->encodingsCount+31)/32;
|
|
uint32_t* mask = (uint32_t*) uprv_malloc(columns * 4);
|
|
if (mask == NULL) {
|
|
*status = U_MEMORY_ALLOCATION_ERROR;
|
|
return NULL;
|
|
}
|
|
uprv_memset(mask, ~0, columns *4);
|
|
|
|
if (length < 0) {
|
|
length = (int32_t)uprv_strlen(s);
|
|
}
|
|
const char *limit = s + length;
|
|
|
|
while (s != limit) {
|
|
uint16_t pvIndex;
|
|
UTRIE2_U8_NEXT16(sel->trie, s, limit, pvIndex);
|
|
if (intersectMasks(mask, sel->pv+pvIndex, columns)) {
|
|
break;
|
|
}
|
|
}
|
|
return selectForMask(sel, mask, status);
|
|
}
|