47c47a5cd9
X-SVN-Rev: 7582
1141 lines
45 KiB
C++
1141 lines
45 KiB
C++
/*
|
|
* Copyright (C) 1999-2001, International Business Machines Corporation and others. All Rights Reserved.
|
|
**********************************************************************
|
|
* Date Name Description
|
|
* 11/17/99 aliu Creation.
|
|
**********************************************************************
|
|
*/
|
|
#ifndef TRANSLIT_H
|
|
#define TRANSLIT_H
|
|
|
|
#include "unicode/unistr.h"
|
|
#include "unicode/parseerr.h"
|
|
#include "unicode/utrans.h" // UTransPosition, UTransDirection
|
|
|
|
U_NAMESPACE_BEGIN
|
|
|
|
class Replaceable;
|
|
class UnicodeFilter;
|
|
class UnicodeSet;
|
|
class TransliterationRuleData;
|
|
class U_I18N_API UVector;
|
|
class CompoundTransliterator;
|
|
class TransliteratorParser;
|
|
class NormalizationTransliterator;
|
|
class TransliteratorIDParser;
|
|
|
|
/**
|
|
* <code>Transliterator</code> is an abstract class that
|
|
* transliterates text from one format to another. The most common
|
|
* kind of transliterator is a script, or alphabet, transliterator.
|
|
* For example, a Russian to Latin transliterator changes Russian text
|
|
* written in Cyrillic characters to phonetically equivalent Latin
|
|
* characters. It does not <em>translate</em> Russian to English!
|
|
* Transliteration, unlike translation, operates on characters, without
|
|
* reference to the meanings of words and sentences.
|
|
*
|
|
* <p>Although script conversion is its most common use, a
|
|
* transliterator can actually perform a more general class of tasks.
|
|
* In fact, <code>Transliterator</code> defines a very general API
|
|
* which specifies only that a segment of the input text is replaced
|
|
* by new text. The particulars of this conversion are determined
|
|
* entirely by subclasses of <code>Transliterator</code>.
|
|
*
|
|
* <p><b>Transliterators are stateless</b>
|
|
*
|
|
* <p><code>Transliterator</code> objects are <em>stateless</em>; they
|
|
* retain no information between calls to
|
|
* <code>transliterate()</code>. (However, this does <em>not</em>
|
|
* mean that threads may share transliterators without synchronizing
|
|
* them. Transliterators are not immutable, so they must be
|
|
* synchronized when shared between threads.) This1 might seem to
|
|
* limit the complexity of the transliteration operation. In
|
|
* practice, subclasses perform complex transliterations by delaying
|
|
* the replacement of text until it is known that no other
|
|
* replacements are possible. In other words, although the
|
|
* <code>Transliterator</code> objects are stateless, the source text
|
|
* itself embodies all the needed information, and delayed operation
|
|
* allows arbitrary complexity.
|
|
*
|
|
* <p><b>Batch transliteration</b>
|
|
*
|
|
* <p>The simplest way to perform transliteration is all at once, on a
|
|
* string of existing text. This is referred to as <em>batch</em>
|
|
* transliteration. For example, given a string <code>input</code>
|
|
* and a transliterator <code>t</code>, the call
|
|
*
|
|
* <blockquote><code>String result = t.transliterate(input);
|
|
* </code></blockquote>
|
|
*
|
|
* will transliterate it and return the result. Other methods allow
|
|
* the client to specify a substring to be transliterated and to use
|
|
* {@link Replaceable} objects instead of strings, in order to
|
|
* preserve out-of-band information (such as text styles).
|
|
*
|
|
* <p><b>Keyboard transliteration</b>
|
|
*
|
|
* <p>Somewhat more involved is <em>keyboard</em>, or incremental
|
|
* transliteration. This is the transliteration of text that is
|
|
* arriving from some source (typically the user's keyboard) one
|
|
* character at a time, or in some other piecemeal fashion.
|
|
*
|
|
* <p>In keyboard transliteration, a <code>Replaceable</code> buffer
|
|
* stores the text. As text is inserted, as much as possible is
|
|
* transliterated on the fly. This means a GUI that displays the
|
|
* contents of the buffer may show text being modified as each new
|
|
* character arrives.
|
|
*
|
|
* <p>Consider the simple <code>RuleBasedTransliterator</code>:
|
|
*
|
|
* <blockquote><code>
|
|
* th>{theta}<br>
|
|
* t>{tau}
|
|
* </code></blockquote>
|
|
*
|
|
* When the user types 't', nothing will happen, since the
|
|
* transliterator is waiting to see if the next character is 'h'. To
|
|
* remedy this, we introduce the notion of a cursor, marked by a '|'
|
|
* in the output string:
|
|
*
|
|
* <blockquote><code>
|
|
* t>|{tau}<br>
|
|
* {tau}h>{theta}
|
|
* </code></blockquote>
|
|
*
|
|
* Now when the user types 't', tau appears, and if the next character
|
|
* is 'h', the tau changes to a theta. This is accomplished by
|
|
* maintaining a cursor position (independent of the insertion point,
|
|
* and invisible in the GUI) across calls to
|
|
* <code>transliterate()</code>. Typically, the cursor will
|
|
* be coincident with the insertion point, but in a case like the one
|
|
* above, it will precede the insertion point.
|
|
*
|
|
* <p>Keyboard transliteration methods maintain a set of three indices
|
|
* that are updated with each call to
|
|
* <code>transliterate()</code>, including the cursor, start,
|
|
* and limit. Since these indices are changed by the method, they are
|
|
* passed in an <code>int[]</code> array. The <code>START</code> index
|
|
* marks the beginning of the substring that the transliterator will
|
|
* look at. It is advanced as text becomes committed (but it is not
|
|
* the committed index; that's the <code>CURSOR</code>). The
|
|
* <code>CURSOR</code> index, described above, marks the point at
|
|
* which the transliterator last stopped, either because it reached
|
|
* the end, or because it required more characters to disambiguate
|
|
* between possible inputs. The <code>CURSOR</code> can also be
|
|
* explicitly set by rules in a <code>RuleBasedTransliterator</code>.
|
|
* Any characters before the <code>CURSOR</code> index are frozen;
|
|
* future keyboard transliteration calls within this input sequence
|
|
* will not change them. New text is inserted at the
|
|
* <code>LIMIT</code> index, which marks the end of the substring that
|
|
* the transliterator looks at.
|
|
*
|
|
* <p>Because keyboard transliteration assumes that more characters
|
|
* are to arrive, it is conservative in its operation. It only
|
|
* transliterates when it can do so unambiguously. Otherwise it waits
|
|
* for more characters to arrive. When the client code knows that no
|
|
* more characters are forthcoming, perhaps because the user has
|
|
* performed some input termination operation, then it should call
|
|
* <code>finishTransliteration()</code> to complete any
|
|
* pending transliterations.
|
|
*
|
|
* <p><b>Inverses</b>
|
|
*
|
|
* <p>Pairs of transliterators may be inverses of one another. For
|
|
* example, if transliterator <b>A</b> transliterates characters by
|
|
* incrementing their Unicode value (so "abc" -> "def"), and
|
|
* transliterator <b>B</b> decrements character values, then <b>A</b>
|
|
* is an inverse of <b>B</b> and vice versa. If we compose <b>A</b>
|
|
* with <b>B</b> in a compound transliterator, the result is the
|
|
* indentity transliterator, that is, a transliterator that does not
|
|
* change its input text.
|
|
*
|
|
* The <code>Transliterator</code> method <code>getInverse()</code>
|
|
* returns a transliterator's inverse, if one exists, or
|
|
* <code>null</code> otherwise. However, the result of
|
|
* <code>getInverse()</code> usually will <em>not</em> be a true
|
|
* mathematical inverse. This is because true inverse transliterators
|
|
* are difficult to formulate. For example, consider two
|
|
* transliterators: <b>AB</b>, which transliterates the character 'A'
|
|
* to 'B', and <b>BA</b>, which transliterates 'B' to 'A'. It might
|
|
* seem that these are exact inverses, since
|
|
*
|
|
* <blockquote>"A" x <b>AB</b> -> "B"<br>
|
|
* "B" x <b>BA</b> -> "A"</blockquote>
|
|
*
|
|
* where 'x' represents transliteration. However,
|
|
*
|
|
* <blockquote>"ABCD" x <b>AB</b> -> "BBCD"<br>
|
|
* "BBCD" x <b>BA</b> -> "AACD"</blockquote>
|
|
*
|
|
* so <b>AB</b> composed with <b>BA</b> is not the
|
|
* identity. Nonetheless, <b>BA</b> may be usefully considered to be
|
|
* <b>AB</b>'s inverse, and it is on this basis that
|
|
* <b>AB</b><code>.getInverse()</code> could legitimately return
|
|
* <b>BA</b>.
|
|
*
|
|
* <p><b>IDs and display names</b>
|
|
*
|
|
* <p>A transliterator is designated by a short identifier string or
|
|
* <em>ID</em>. IDs follow the format <em>source-destination</em>,
|
|
* where <em>source</em> describes the entity being replaced, and
|
|
* <em>destination</em> describes the entity replacing
|
|
* <em>source</em>. The entities may be the names of scripts,
|
|
* particular sequences of characters, or whatever else it is that the
|
|
* transliterator converts to or from. For example, a transliterator
|
|
* from Russian to Latin might be named "Russian-Latin". A
|
|
* transliterator from keyboard escape sequences to Latin-1 characters
|
|
* might be named "KeyboardEscape-Latin1". By convention, system
|
|
* entity names are in English, with the initial letters of words
|
|
* capitalized; user entity names may follow any format so long as
|
|
* they do not contain dashes.
|
|
*
|
|
* <p>In addition to programmatic IDs, transliterator objects have
|
|
* display names for presentation in user interfaces, returned by
|
|
* {@link #getDisplayName}.
|
|
*
|
|
* <p><b>Factory methods and registration</b>
|
|
*
|
|
* <p>In general, client code should use the factory method
|
|
* <code>getInstance()</code> to obtain an instance of a
|
|
* transliterator given its ID. Valid IDs may be enumerated using
|
|
* <code>getAvailableIDs()</code>. Since transliterators are mutable,
|
|
* multiple calls to <code>getInstance()</code> with the same ID will
|
|
* return distinct objects.
|
|
*
|
|
* <p>In addition to the system transliterators registered at startup,
|
|
* user transliterators may be registered by calling
|
|
* <code>registerInstance()</code> at run time. A registered instance
|
|
* acts a template; future calls to <tt>getInstance()</tt> with the ID
|
|
* of the registered object return clones of that object. Thus any
|
|
* object passed to <tt>registerInstance()</tt> must implement
|
|
* <tt>clone()</tt> propertly. To register a transliterator subclass
|
|
* without instantiating it (until it is needed), users may call
|
|
* <code>registerClass()</code>. In this case, the objects are
|
|
* instantiated by invoking the zero-argument public constructor of
|
|
* the class.
|
|
*
|
|
* <p><b>Subclassing</b>
|
|
*
|
|
* Subclasses must implement the abstract method
|
|
* <code>handleTransliterate()</code>. <p>Subclasses should override
|
|
* the <code>transliterate()</code> method taking a
|
|
* <code>Replaceable</code> and the <code>transliterate()</code>
|
|
* method taking a <code>String</code> and <code>StringBuffer</code>
|
|
* if the performance of these methods can be improved over the
|
|
* performance obtained by the default implementations in this class.
|
|
*
|
|
* @author Alan Liu
|
|
* @stable
|
|
*/
|
|
class U_I18N_API Transliterator {
|
|
|
|
private:
|
|
|
|
/**
|
|
* Programmatic name, e.g., "Latin-Arabic".
|
|
*/
|
|
UnicodeString ID;
|
|
|
|
/**
|
|
* This transliterator's filter. Any character for which
|
|
* <tt>filter.contains()</tt> returns <tt>false</tt> will not be
|
|
* altered by this transliterator. If <tt>filter</tt> is
|
|
* <tt>null</tt> then no filtering is applied.
|
|
*/
|
|
UnicodeFilter* filter;
|
|
|
|
int32_t maximumContextLength;
|
|
|
|
public:
|
|
|
|
/**
|
|
* A context integer or pointer for a factory function, passed by
|
|
* value.
|
|
*/
|
|
union Token {
|
|
int32_t integer;
|
|
void* pointer;
|
|
};
|
|
|
|
/**
|
|
* Return a token containing an integer.
|
|
*/
|
|
inline static Token integerToken(int32_t);
|
|
|
|
/**
|
|
* Return a token containing a pointer.
|
|
*/
|
|
inline static Token pointerToken(void*);
|
|
|
|
/**
|
|
* A function that creates and returns a Transliterator. When
|
|
* invoked, it will be passed the ID string that is being
|
|
* instantiated, together with the context pointer that was passed
|
|
* in when the factory function was first registered. Many
|
|
* factory functions will ignore both parameters, however,
|
|
* functions that are registered to more than one ID may use the
|
|
* ID or the context parameter to parameterize the transliterator
|
|
* they create.
|
|
*/
|
|
typedef Transliterator* (*Factory)(const UnicodeString& ID, Token context);
|
|
|
|
protected:
|
|
|
|
/**
|
|
* Default constructor.
|
|
* @param ID the string identifier for this transliterator
|
|
* @param adoptedFilter the filter. Any character for which
|
|
* <tt>filter.contains()</tt> returns <tt>false</tt> will not be
|
|
* altered by this transliterator. If <tt>filter</tt> is
|
|
* <tt>null</tt> then no filtering is applied.
|
|
*/
|
|
Transliterator(const UnicodeString& ID, UnicodeFilter* adoptedFilter);
|
|
|
|
/**
|
|
* Copy constructor.
|
|
*/
|
|
Transliterator(const Transliterator&);
|
|
|
|
/**
|
|
* Assignment operator.
|
|
*/
|
|
Transliterator& operator=(const Transliterator&);
|
|
|
|
/**
|
|
* Internal factory method.
|
|
*/
|
|
static Transliterator* createInstance(const UnicodeString& ID,
|
|
UTransDirection dir,
|
|
int32_t idSplitPoint,
|
|
Transliterator *adoptedSplitTrans,
|
|
UParseError& parseError,
|
|
UErrorCode& status);
|
|
|
|
/**
|
|
* Create a transliterator from a basic ID. This is an ID
|
|
* containing only the forward direction source, target, and
|
|
* variant.
|
|
* @param id a basic ID of the form S-T or S-T/V.
|
|
* @param canon canonical ID to assign to the object, or
|
|
* NULL to leave the ID unchanged
|
|
* @return a newly created Transliterator or null if the ID is
|
|
* invalid.
|
|
*/
|
|
static Transliterator* createBasicInstance(const UnicodeString& id,
|
|
const UnicodeString* canon);
|
|
|
|
friend class TransliteratorParser; // for parseID()
|
|
friend class TransliteratorIDParser; // for createBasicInstance()
|
|
|
|
public:
|
|
|
|
/**
|
|
* Destructor.
|
|
* @stable
|
|
*/
|
|
virtual ~Transliterator();
|
|
|
|
/**
|
|
* Implements Cloneable.
|
|
* All subclasses are encouraged to implement this method if it is
|
|
* possible and reasonable to do so. Subclasses that are to be
|
|
* registered with the system using <tt>registerInstance()<tt>
|
|
* are required to implement this method. If a subclass does not
|
|
* implement clone() properly and is registered with the system
|
|
* using registerInstance(), then the default clone() implementation
|
|
* will return null, and calls to createInstance() will fail.
|
|
*
|
|
* @see #registerInstance
|
|
* @stable
|
|
*/
|
|
virtual Transliterator* clone() const { return 0; }
|
|
|
|
/**
|
|
* Transliterates a segment of a string, with optional filtering.
|
|
*
|
|
* @param text the string to be transliterated
|
|
* @param start the beginning index, inclusive; <code>0 <= start
|
|
* <= limit</code>.
|
|
* @param limit the ending index, exclusive; <code>start <= limit
|
|
* <= text.length()</code>.
|
|
* @return The new limit index. The text previously occupying <code>[start,
|
|
* limit)</code> has been transliterated, possibly to a string of a different
|
|
* length, at <code>[start, </code><em>new-limit</em><code>)</code>, where
|
|
* <em>new-limit</em> is the return value. If the input offsets are out of bounds,
|
|
* the returned value is -1 and the input string remains unchanged.
|
|
* @stable
|
|
*/
|
|
virtual int32_t transliterate(Replaceable& text,
|
|
int32_t start, int32_t limit) const;
|
|
|
|
/**
|
|
* Transliterates an entire string in place. Convenience method.
|
|
* @param text the string to be transliterated
|
|
* @stable
|
|
*/
|
|
virtual void transliterate(Replaceable& text) const;
|
|
|
|
/**
|
|
* Transliterates the portion of the text buffer that can be
|
|
* transliterated unambiguosly after new text has been inserted,
|
|
* typically as a result of a keyboard event. The new text in
|
|
* <code>insertion</code> will be inserted into <code>text</code>
|
|
* at <code>index.limit</code>, advancing
|
|
* <code>index.limit</code> by <code>insertion.length()</code>.
|
|
* Then the transliterator will try to transliterate characters of
|
|
* <code>text</code> between <code>index.cursor</code> and
|
|
* <code>index.limit</code>. Characters before
|
|
* <code>index.cursor</code> will not be changed.
|
|
*
|
|
* <p>Upon return, values in <code>index</code> will be updated.
|
|
* <code>index.start</code> will be advanced to the first
|
|
* character that future calls to this method will read.
|
|
* <code>index.cursor</code> and <code>index.limit</code> will
|
|
* be adjusted to delimit the range of text that future calls to
|
|
* this method may change.
|
|
*
|
|
* <p>Typical usage of this method begins with an initial call
|
|
* with <code>index.start</code> and <code>index.limit</code>
|
|
* set to indicate the portion of <code>text</code> to be
|
|
* transliterated, and <code>index.cursor == index.start</code>.
|
|
* Thereafter, <code>index</code> can be used without
|
|
* modification in future calls, provided that all changes to
|
|
* <code>text</code> are made via this method.
|
|
*
|
|
* <p>This method assumes that future calls may be made that will
|
|
* insert new text into the buffer. As a result, it only performs
|
|
* unambiguous transliterations. After the last call to this
|
|
* method, there may be untransliterated text that is waiting for
|
|
* more input to resolve an ambiguity. In order to perform these
|
|
* pending transliterations, clients should call {@link
|
|
* #finishTransliteration} after the last call to this
|
|
* method has been made.
|
|
*
|
|
* @param text the buffer holding transliterated and untransliterated text
|
|
* @param index an array of three integers.
|
|
*
|
|
* <ul><li><code>index.start</code>: the beginning index,
|
|
* inclusive; <code>0 <= index.start <= index.limit</code>.
|
|
*
|
|
* <li><code>index.limit</code>: the ending index, exclusive;
|
|
* <code>index.start <= index.limit <= text.length()</code>.
|
|
* <code>insertion</code> is inserted at
|
|
* <code>index.limit</code>.
|
|
*
|
|
* <li><code>index.cursor</code>: the next character to be
|
|
* considered for transliteration; <code>index.start <=
|
|
* index.cursor <= index.limit</code>. Characters before
|
|
* <code>index.cursor</code> will not be changed by future calls
|
|
* to this method.</ul>
|
|
*
|
|
* @param insertion text to be inserted and possibly
|
|
* transliterated into the translation buffer at
|
|
* <code>index.limit</code>. If <code>null</code> then no text
|
|
* is inserted.
|
|
* @see #handleTransliterate
|
|
* @exception IllegalArgumentException if <code>index</code>
|
|
* is invalid
|
|
* @see UTransPosition
|
|
* @stable
|
|
*/
|
|
virtual void transliterate(Replaceable& text, UTransPosition& index,
|
|
const UnicodeString& insertion,
|
|
UErrorCode& status) const;
|
|
|
|
/**
|
|
* Transliterates the portion of the text buffer that can be
|
|
* transliterated unambiguosly after a new character has been
|
|
* inserted, typically as a result of a keyboard event. This is a
|
|
* convenience method; see {@link
|
|
* #transliterate(Replaceable, int[], String)} for details.
|
|
* @param text the buffer holding transliterated and
|
|
* untransliterated text
|
|
* @param index an array of three integers. See {@link
|
|
* #transliterate(Replaceable, int[], String)}.
|
|
* @param insertion text to be inserted and possibly
|
|
* transliterated into the translation buffer at
|
|
* <code>index.limit</code>.
|
|
* @see #transliterate(Replaceable, int[], String)
|
|
* @stable
|
|
*/
|
|
virtual void transliterate(Replaceable& text, UTransPosition& index,
|
|
UChar32 insertion,
|
|
UErrorCode& status) const;
|
|
|
|
/**
|
|
* Transliterates the portion of the text buffer that can be
|
|
* transliterated unambiguosly. This is a convenience method; see
|
|
* {@link #transliterate(Replaceable, int[], String)} for
|
|
* details.
|
|
* @param text the buffer holding transliterated and
|
|
* untransliterated text
|
|
* @param index an array of three integers. See {@link
|
|
* #transliterate(Replaceable, int[], String)}.
|
|
* @see #transliterate(Replaceable, int[], String)
|
|
* @stable
|
|
*/
|
|
virtual void transliterate(Replaceable& text, UTransPosition& index,
|
|
UErrorCode& status) const;
|
|
|
|
/**
|
|
* Finishes any pending transliterations that were waiting for
|
|
* more characters. Clients should call this method as the last
|
|
* call after a sequence of one or more calls to
|
|
* <code>transliterate()</code>.
|
|
* @param text the buffer holding transliterated and
|
|
* untransliterated text.
|
|
* @param index the array of indices previously passed to {@link
|
|
* #transliterate}
|
|
* @stable
|
|
*/
|
|
virtual void finishTransliteration(Replaceable& text,
|
|
UTransPosition& index) const;
|
|
|
|
private:
|
|
|
|
/**
|
|
* This internal method does incremental transliteration. If the
|
|
* 'insertion' is non-null then we append it to 'text' before
|
|
* proceeding. This method calls through to the pure virtual
|
|
* framework method handleTransliterate() to do the actual
|
|
* work.
|
|
*/
|
|
void _transliterate(Replaceable& text,
|
|
UTransPosition& index,
|
|
const UnicodeString* insertion,
|
|
UErrorCode &status) const;
|
|
|
|
protected:
|
|
|
|
/**
|
|
* Abstract method that concrete subclasses define to implement
|
|
* keyboard transliteration. This method should transliterate all
|
|
* characters between <code>pos.start</code> and
|
|
* <code>pos.contextLimit</code> that can be unambiguously
|
|
* transliterated, regardless of future insertions of text at
|
|
* <code>pos.contextLimit</code>. <code>pos.start</code> should
|
|
* be advanced past committed characters (those that will not
|
|
* change in future calls to this method).
|
|
* <code>pos.contextLimit</code> should be updated to reflect text
|
|
* replacements that shorten or lengthen the text between
|
|
* <code>pos.start</code> and <code>pos.contextLimit</code>. Upon
|
|
* return, neither <code>pos.start</code> nor
|
|
* <code>pos.contextLimit</code> should be less than the initial value
|
|
* of <code>pos.start</code>. <code>pos.contextStart</code>
|
|
* should <em>not</em> be changed.
|
|
*
|
|
* <p>Subclasses may safely assume that all characters in
|
|
* [pos.start, pos.limit) are unfiltered. In other words, the
|
|
* filter has already been applied by the time this method is
|
|
* called. See filteredTransliterate().
|
|
*
|
|
* <p>This method is <b>not</b> for public consumption. Calling
|
|
* this method directly will transliterate [pos.start,
|
|
* pos.limit) without applying the filter. End user code that
|
|
* wants to call this method should be calling transliterate().
|
|
* Subclass code that wants to call this method should probably be
|
|
* calling filteredTransliterate().
|
|
*
|
|
* <p>If incremental is true, then upon return pos.start may be
|
|
* less than pos.limit, if some characters are unprocessed. If
|
|
* incremental is false, then pos.start should be equal to pos.limit.
|
|
*
|
|
* @param text the buffer holding transliterated and
|
|
* untransliterated text
|
|
* @param pos the start and limit of the text, the position
|
|
* of the cursor, and the start and limit of transliteration.
|
|
* @param incremental if true, assume more text may be coming after
|
|
* pos.contextLimit. Otherwise, assume the text is complete.
|
|
* @see #transliterate
|
|
*/
|
|
virtual void handleTransliterate(Replaceable& text,
|
|
UTransPosition& pos,
|
|
UBool incremental) const = 0;
|
|
|
|
/**
|
|
* Transliterate a substring of text, as specified by index, taking filters
|
|
* into account. This method is for subclasses that need to delegate to
|
|
* another transliterator, such as CompoundTransliterator.
|
|
* @param text the text to be transliterated
|
|
* @param index the position indices
|
|
* @param incremental if TRUE, then assume more characters may be inserted
|
|
* at index.limit, and postpone processing to accomodate future incoming
|
|
* characters
|
|
*/
|
|
virtual void filteredTransliterate(Replaceable& text,
|
|
UTransPosition& index,
|
|
UBool incremental) const;
|
|
|
|
friend class CompoundTransliterator; // for filteredTransliterate()
|
|
|
|
private:
|
|
|
|
/**
|
|
* Top-level transliteration method, handling filtering, incremental and
|
|
* non-incremental transliteration, and rollback. All transliteration
|
|
* public API methods eventually call this method with a rollback argument
|
|
* of TRUE. Other entities may call this method but rollback should be
|
|
* FALSE.
|
|
*
|
|
* <p>If this transliterator has a filter, break up the input text into runs
|
|
* of unfiltered characters. Pass each run to
|
|
* <subclass>.handleTransliterate().
|
|
*
|
|
* <p>In incremental mode, if rollback is TRUE, perform a special
|
|
* incremental procedure in which several passes are made over the input
|
|
* text, adding one character at a time, and committing successful
|
|
* transliterations as they occur. Unsuccessful transliterations are rolled
|
|
* back and retried with additional characters to give correct results.
|
|
*
|
|
* @param text the text to be transliterated
|
|
* @param index the position indices
|
|
* @param incremental if TRUE, then assume more characters may be inserted
|
|
* at index.limit, and postpone processing to accomodate future incoming
|
|
* characters
|
|
* @param rollback if TRUE and if incremental is TRUE, then perform special
|
|
* incremental processing, as described above, and undo partial
|
|
* transliterations where necessary. If incremental is FALSE then this
|
|
* parameter is ignored.
|
|
*/
|
|
virtual void filteredTransliterate(Replaceable& text,
|
|
UTransPosition& index,
|
|
UBool incremental,
|
|
UBool rollback) const;
|
|
|
|
public:
|
|
|
|
/**
|
|
* Returns the length of the longest context required by this transliterator.
|
|
* This is <em>preceding</em> context. The default implementation supplied
|
|
* by <code>Transliterator</code> returns zero; subclasses
|
|
* that use preceding context should override this method to return the
|
|
* correct value. For example, if a transliterator translates "ddd" (where
|
|
* d is any digit) to "555" when preceded by "(ddd)", then the preceding
|
|
* context length is 5, the length of "(ddd)".
|
|
*
|
|
* @return The maximum number of preceding context characters this
|
|
* transliterator needs to examine
|
|
* @stable
|
|
*/
|
|
int32_t getMaximumContextLength(void) const;
|
|
|
|
protected:
|
|
|
|
/**
|
|
* Method for subclasses to use to set the maximum context length.
|
|
* @see #getMaximumContextLength
|
|
*/
|
|
void setMaximumContextLength(int32_t maxContextLength);
|
|
|
|
public:
|
|
|
|
/**
|
|
* Returns a programmatic identifier for this transliterator.
|
|
* If this identifier is passed to <code>getInstance()</code>, it
|
|
* will return this object, if it has been registered.
|
|
* @see #registerInstance
|
|
* @see #registerClass
|
|
* @see #getAvailableIDs
|
|
* @stable
|
|
*/
|
|
virtual const UnicodeString& getID(void) const;
|
|
|
|
/**
|
|
* Returns a name for this transliterator that is appropriate for
|
|
* display to the user in the default locale. See {@link
|
|
* #getDisplayName(Locale)} for details.
|
|
* @stable
|
|
*/
|
|
static UnicodeString& getDisplayName(const UnicodeString& ID,
|
|
UnicodeString& result);
|
|
|
|
/**
|
|
* Returns a name for this transliterator that is appropriate for
|
|
* display to the user in the given locale. This name is taken
|
|
* from the locale resource data in the standard manner of the
|
|
* <code>java.text</code> package.
|
|
*
|
|
* <p>If no localized names exist in the system resource bundles,
|
|
* a name is synthesized using a localized
|
|
* <code>MessageFormat</code> pattern from the resource data. The
|
|
* arguments to this pattern are an integer followed by one or two
|
|
* strings. The integer is the number of strings, either 1 or 2.
|
|
* The strings are formed by splitting the ID for this
|
|
* transliterator at the first '-'. If there is no '-', then the
|
|
* entire ID forms the only string.
|
|
* @param inLocale the Locale in which the display name should be
|
|
* localized.
|
|
* @see java.text.MessageFormat
|
|
* @stable
|
|
*/
|
|
static UnicodeString& getDisplayName(const UnicodeString& ID,
|
|
const Locale& inLocale,
|
|
UnicodeString& result);
|
|
|
|
/**
|
|
* Returns the filter used by this transliterator, or <tt>NULL</tt>
|
|
* if this transliterator uses no filter.
|
|
* @stable
|
|
*/
|
|
const UnicodeFilter* getFilter(void) const;
|
|
|
|
/**
|
|
* Returns the filter used by this transliterator, or <tt>NULL</tt> if this
|
|
* transliterator uses no filter. The caller must eventually delete the
|
|
* result. After this call, this transliterator's filter is set to
|
|
* <tt>NULL</tt>.
|
|
*/
|
|
UnicodeFilter* orphanFilter(void);
|
|
|
|
#ifdef U_USE_DEPRECATED_TRANSLITERATOR_API
|
|
/**
|
|
* Changes the filter used by this transliterator. If the filter
|
|
* is set to <tt>null</tt> then no filtering will occur.
|
|
*
|
|
* <p>Callers must take care if a transliterator is in use by
|
|
* multiple threads. The filter should not be changed by one
|
|
* thread while another thread may be transliterating.
|
|
*
|
|
* @deprecated This method will be made NON-VIRTUAL in Aug 2002.
|
|
*/
|
|
virtual void adoptFilter(UnicodeFilter* adoptedFilter);
|
|
#else
|
|
/**
|
|
* Changes the filter used by this transliterator. If the filter
|
|
* is set to <tt>null</tt> then no filtering will occur.
|
|
*
|
|
* <p>Callers must take care if a transliterator is in use by
|
|
* multiple threads. The filter should not be changed by one
|
|
* thread while another thread may be transliterating.
|
|
* @draft ICU 2.0
|
|
*/
|
|
void adoptFilter(UnicodeFilter* adoptedFilter);
|
|
#endif
|
|
|
|
/**
|
|
* Returns this transliterator's inverse. See the class
|
|
* documentation for details. This implementation simply inverts
|
|
* the two entities in the ID and attempts to retrieve the
|
|
* resulting transliterator. That is, if <code>getID()</code>
|
|
* returns "A-B", then this method will return the result of
|
|
* <code>getInstance("B-A")</code>, or <code>null</code> if that
|
|
* call fails.
|
|
*
|
|
* <p>Subclasses with knowledge of their inverse may wish to
|
|
* override this method.
|
|
*
|
|
* @return a transliterator that is an inverse, not necessarily
|
|
* exact, of this transliterator, or <code>null</code> if no such
|
|
* transliterator is registered.
|
|
* @see #registerInstance
|
|
* @stable
|
|
*/
|
|
Transliterator* createInverse(UErrorCode& status) const;
|
|
|
|
/**
|
|
* Returns a <code>Transliterator</code> object given its ID.
|
|
* The ID must be either a system transliterator ID or a ID registered
|
|
* using <code>registerInstance()</code>.
|
|
*
|
|
* @param ID a valid ID, as enumerated by <code>getAvailableIDs()</code>
|
|
* @return A <code>Transliterator</code> object with the given ID
|
|
* @see #registerInstance
|
|
* @see #getAvailableIDs
|
|
* @see #getID
|
|
* @draft ICU 2.0
|
|
*/
|
|
static Transliterator* createInstance(const UnicodeString& ID,
|
|
UTransDirection dir,
|
|
UParseError& parseError,
|
|
UErrorCode& status);
|
|
|
|
/**
|
|
* Returns a <code>Transliterator</code> object given its ID.
|
|
* The ID must be either a system transliterator ID or a ID registered
|
|
* using <code>registerInstance()</code>.
|
|
* @draft ICU 2.0
|
|
*/
|
|
static Transliterator* createInstance(const UnicodeString& ID,
|
|
UTransDirection dir,
|
|
UErrorCode& status);
|
|
/**
|
|
* Returns a <code>Transliterator</code> object constructed from
|
|
* the given rule string. This will be a RuleBasedTransliterator,
|
|
* if the rule string contains only rules, or a
|
|
* CompoundTransliterator, if it contains ID blocks, or a
|
|
* NullTransliterator, if it contains ID blocks which parse as
|
|
* empty for the given direction.
|
|
* @draft ICU 2.0
|
|
*/
|
|
static Transliterator* createFromRules(const UnicodeString& ID,
|
|
const UnicodeString& rules,
|
|
UTransDirection dir,
|
|
UParseError& parseError,
|
|
UErrorCode& status);
|
|
|
|
/**
|
|
* Create a rule string that can be passed to createFromRules()
|
|
* to recreate this transliterator.
|
|
* @param result the string to receive the rules. Previous
|
|
* contents will be deleted.
|
|
* @param escapeUnprintable if TRUE then convert unprintable
|
|
* character to their hex escape representations, \uxxxx or
|
|
* \Uxxxxxxxx. Unprintable characters are those other than
|
|
* U+000A, U+0020..U+007E.
|
|
* @draft ICU 2.0
|
|
*/
|
|
virtual UnicodeString& toRules(UnicodeString& result,
|
|
UBool escapeUnprintable) const;
|
|
|
|
public:
|
|
|
|
/**
|
|
* Registers a factory function that creates transliterators of
|
|
* a given ID.
|
|
* @param id the ID being registered
|
|
* @param factory a function pointer that will be copied and
|
|
* called later when the given ID is passed to createInstance()
|
|
* @param context a context pointer that will be stored and
|
|
* later passed to the factory function when an ID matching
|
|
* the registration ID is being instantiated with this factory.
|
|
* @draft ICU 2.0
|
|
*/
|
|
static void registerFactory(const UnicodeString& id,
|
|
Factory factory,
|
|
Token context);
|
|
|
|
/**
|
|
* Registers a instance <tt>obj</tt> of a subclass of
|
|
* <code>Transliterator</code> with the system. When
|
|
* <tt>createInstance()</tt> is called with an ID string that is
|
|
* equal to <tt>obj->getID()</tt>, then <tt>obj->clone()</tt> is
|
|
* returned.
|
|
*
|
|
* After this call the Transliterator class owns the adoptedObj
|
|
* and will delete it.
|
|
*
|
|
* @param obj an instance of subclass of
|
|
* <code>Transliterator</code> that defines <tt>clone()</tt>
|
|
* @see #getInstance
|
|
* @see #registerClass
|
|
* @see #unregister
|
|
* @stable
|
|
*/
|
|
static void registerInstance(Transliterator* adoptedObj);
|
|
|
|
protected:
|
|
|
|
/**
|
|
* @internal
|
|
*/
|
|
static void _registerFactory(const UnicodeString& id,
|
|
Factory factory,
|
|
Token context);
|
|
|
|
/**
|
|
* Register two targets as being inverses of one another. For
|
|
* example, calling registerSpecialInverse("NFC", "NFD", true) causes
|
|
* Transliterator to form the following inverse relationships:
|
|
*
|
|
* <pre>NFC => NFD
|
|
* Any-NFC => Any-NFD
|
|
* NFD => NFC
|
|
* Any-NFD => Any-NFC</pre>
|
|
*
|
|
* (Without the special inverse registration, the inverse of NFC
|
|
* would be NFC-Any.) Note that NFD is shorthand for Any-NFD, but
|
|
* that the presence or absence of "Any-" is preserved.
|
|
*
|
|
* <p>The relationship is symmetrical; registering (a, b) is
|
|
* equivalent to registering (b, a).
|
|
*
|
|
* <p>The relevant IDs must still be registered separately as
|
|
* factories or classes.
|
|
*
|
|
* <p>Only the targets are specified. Special inverses always
|
|
* have the form Any-Target1 <=> Any-Target2. The target should
|
|
* have canonical casing (the casing desired to be produced when
|
|
* an inverse is formed) and should contain no whitespace or other
|
|
* extraneous characters.
|
|
*
|
|
* @param target the target against which to register the inverse
|
|
* @param inverseTarget the inverse of target, that is
|
|
* Any-target.getInverse() => Any-inverseTarget
|
|
* @param bidirectional if true, register the reverse relation
|
|
* as well, that is, Any-inverseTarget.getInverse() => Any-target
|
|
* @internal
|
|
*/
|
|
static void _registerSpecialInverse(const UnicodeString& target,
|
|
const UnicodeString& inverseTarget,
|
|
UBool bidirectional);
|
|
|
|
public:
|
|
|
|
/**
|
|
* Unregisters a transliterator or class. This may be either
|
|
* a system transliterator or a user transliterator or class.
|
|
* Any attempt to construct an unregistered transliterator based
|
|
* on its ID will fail.
|
|
*
|
|
* @param ID the ID of the transliterator or class
|
|
* @return the <code>Object</code> that was registered with
|
|
* <code>ID</code>, or <code>null</code> if none was
|
|
* @see #registerInstance
|
|
* @see #registerClass
|
|
* @stable
|
|
*/
|
|
static void unregister(const UnicodeString& ID);
|
|
|
|
public:
|
|
|
|
/**
|
|
* Return the number of IDs currently registered with the system.
|
|
* To retrieve the actual IDs, call getAvailableID(i) with
|
|
* i from 0 to countAvailableIDs() - 1.
|
|
* @stable
|
|
*/
|
|
static int32_t countAvailableIDs(void);
|
|
|
|
/**
|
|
* Return the index-th available ID. index must be between 0
|
|
* and countAvailableIDs() - 1, inclusive. If index is out of
|
|
* range, the result of getAvailableID(0) is returned.
|
|
* @stable
|
|
*/
|
|
static const UnicodeString& getAvailableID(int32_t index);
|
|
|
|
/**
|
|
* Return the number of registered source specifiers.
|
|
* @draft ICU 2.0
|
|
*/
|
|
static int32_t countAvailableSources(void);
|
|
|
|
/**
|
|
* Return a registered source specifier.
|
|
* @param index which specifier to return, from 0 to n-1, where
|
|
* n = countAvailableSources()
|
|
* @param result fill-in paramter to receive the source specifier.
|
|
* If index is out of range, result will be empty.
|
|
* @return reference to result
|
|
* @draft ICU 2.0
|
|
*/
|
|
static UnicodeString& getAvailableSource(int32_t index,
|
|
UnicodeString& result);
|
|
|
|
/**
|
|
* Return the number of registered target specifiers for a given
|
|
* source specifier.
|
|
* @draft ICU 2.0
|
|
*/
|
|
static int32_t countAvailableTargets(const UnicodeString& source);
|
|
|
|
/**
|
|
* Return a registered target specifier for a given source.
|
|
* @param index which specifier to return, from 0 to n-1, where
|
|
* n = countAvailableTargets(source)
|
|
* @param source the source specifier
|
|
* @param result fill-in paramter to receive the target specifier.
|
|
* If source is invalid or if index is out of range, result will
|
|
* be empty.
|
|
* @return reference to result
|
|
* @draft ICU 2.0
|
|
*/
|
|
static UnicodeString& getAvailableTarget(int32_t index,
|
|
const UnicodeString& source,
|
|
UnicodeString& result);
|
|
|
|
/**
|
|
* Return the number of registered variant specifiers for a given
|
|
* source-target pair.
|
|
* @draft ICU 2.0
|
|
*/
|
|
static int32_t countAvailableVariants(const UnicodeString& source,
|
|
const UnicodeString& target);
|
|
|
|
/**
|
|
* Return a registered variant specifier for a given source-target
|
|
* pair.
|
|
* @param index which specifier to return, from 0 to n-1, where
|
|
* n = countAvailableVariants(source, target)
|
|
* @param source the source specifier
|
|
* @param target the target specifier
|
|
* @param result fill-in paramter to receive the variant
|
|
* specifier. If source is invalid or if target is invalid or if
|
|
* index is out of range, result will be empty.
|
|
* @return reference to result
|
|
* @draft ICU 2.0
|
|
*/
|
|
static UnicodeString& getAvailableVariant(int32_t index,
|
|
const UnicodeString& source,
|
|
const UnicodeString& target,
|
|
UnicodeString& result);
|
|
|
|
/**
|
|
* Return the class ID for this class. This is useful only for
|
|
* comparing to a return value from getDynamicClassID(). For example:
|
|
* <pre>
|
|
* . Base* polymorphic_pointer = createPolymorphicObject();
|
|
* . if (polymorphic_pointer->getDynamicClassID() ==
|
|
* . Derived::getStaticClassID()) ...
|
|
* </pre>
|
|
* @return The class ID for all objects of this class.
|
|
* @draft ICU 2.0
|
|
*/
|
|
static UClassID getStaticClassID(void) { return (UClassID)&fgClassID; }
|
|
|
|
/**
|
|
* Returns a unique class ID <b>polymorphically</b>. This method
|
|
* is to implement a simple version of RTTI, since not all C++
|
|
* compilers support genuine RTTI. Polymorphic operator==() and
|
|
* clone() methods call this method.
|
|
*
|
|
* <p>Concrete subclasses of Transliterator that wish clients to
|
|
* be able to identify them should implement getDynamicClassID()
|
|
* and also a static method and data member:
|
|
*
|
|
* <pre>
|
|
* static UClassID getStaticClassID() { return (UClassID)&fgClassID; }
|
|
* static char fgClassID;
|
|
* </pre>
|
|
*
|
|
* Subclasses that do not implement this method will have a
|
|
* dynamic class ID of Transliterator::getStatisClassID().
|
|
*
|
|
* @return The class ID for this object. All objects of a given
|
|
* class have the same class ID. Objects of other classes have
|
|
* different class IDs.
|
|
* @draft ICU 2.0
|
|
*/
|
|
virtual UClassID getDynamicClassID(void) const { return getStaticClassID(); };
|
|
|
|
private:
|
|
|
|
/**
|
|
* Class identifier for subclasses of Transliterator that do not
|
|
* define their class (anonymous subclasses).
|
|
*/
|
|
static const char fgClassID;
|
|
|
|
protected:
|
|
|
|
/**
|
|
* Set the ID of this transliterators. Subclasses shouldn't do
|
|
* this, unless the underlying script behavior has changed.
|
|
*/
|
|
void setID(const UnicodeString& id);
|
|
|
|
private:
|
|
static void initializeRegistry(void);
|
|
|
|
#ifdef U_USE_DEPRECATED_TRANSLITERATOR_API
|
|
|
|
public:
|
|
/**
|
|
* Returns a <code>Transliterator</code> object given its ID.
|
|
* The ID must be either a system transliterator ID or a ID registered
|
|
* using <code>registerInstance()</code>.
|
|
*
|
|
* @param ID a valid ID, as enumerated by <code>getAvailableIDs()</code>
|
|
* @return A <code>Transliterator</code> object with the given ID
|
|
* @exception IllegalArgumentException if the given ID is invalid.
|
|
* @see #registerInstance
|
|
* @see #getAvailableIDs
|
|
* @see #getID
|
|
* @deprecated Remove after Aug 2002 use factory mehod that takes UParseError
|
|
* and UErrorCode
|
|
*/
|
|
inline Transliterator* createInstance(const UnicodeString& ID,
|
|
UTransDirection dir=UTRANS_FORWARD,
|
|
UParseError* parseError=0);
|
|
/**
|
|
* Returns this transliterator's inverse. See the class
|
|
* documentation for details. This implementation simply inverts
|
|
* the two entities in the ID and attempts to retrieve the
|
|
* resulting transliterator. That is, if <code>getID()</code>
|
|
* returns "A-B", then this method will return the result of
|
|
* <code>getInstance("B-A")</code>, or <code>null</code> if that
|
|
* call fails.
|
|
*
|
|
* <p>This method does not take filtering into account. The
|
|
* returned transliterator will have no filter.
|
|
*
|
|
* <p>Subclasses with knowledge of their inverse may wish to
|
|
* override this method.
|
|
*
|
|
* @return a transliterator that is an inverse, not necessarily
|
|
* exact, of this transliterator, or <code>null</code> if no such
|
|
* transliterator is registered.
|
|
* @deprecated Remove after Aug 2002 use factory mehod that takes UErrorCode
|
|
*/
|
|
inline Transliterator* createInverse() const;
|
|
|
|
protected:
|
|
/**
|
|
* Method for subclasses to use to obtain a character in the given
|
|
* string, with filtering. If the character at the given offset
|
|
* is excluded by this transliterator's filter, then U+FFFE is returned.
|
|
*
|
|
* <p><b>Note:</b> Most subclasses that implement
|
|
* handleTransliterator() will <em>not</em> want to use this
|
|
* method, since characters they see are already filtered. Only
|
|
* subclasses with special requirements, such as those overriding
|
|
* filteredTransliterate(), should need this method.
|
|
*
|
|
* @deprecated the new architecture provides filtering at the top
|
|
* level. This method will be removed Aug 2002.
|
|
*/
|
|
UChar filteredCharAt(const Replaceable& text, int32_t i) const;
|
|
|
|
#endif
|
|
};
|
|
|
|
inline int32_t Transliterator::getMaximumContextLength(void) const {
|
|
return maximumContextLength;
|
|
}
|
|
|
|
inline void Transliterator::setID(const UnicodeString& id) {
|
|
ID = id;
|
|
}
|
|
|
|
inline Transliterator::Token Transliterator::integerToken(int32_t i) {
|
|
Token t;
|
|
t.integer = i;
|
|
return t;
|
|
}
|
|
|
|
inline Transliterator::Token Transliterator::pointerToken(void* p) {
|
|
Token t;
|
|
t.pointer = p;
|
|
return t;
|
|
}
|
|
|
|
/**
|
|
* Definitions for deprecated API
|
|
* @deprecated Remove after Aug 2002
|
|
*/
|
|
#ifdef U_USE_DEPRECATED_TRANSLITERATOR_API
|
|
|
|
inline Transliterator* Transliterator::createInstance(const UnicodeString& ID,
|
|
UTransDirection dir,
|
|
UParseError* parseError){
|
|
UErrorCode status = U_ZERO_ERROR;
|
|
UParseError error;
|
|
if(parseError == NULL){
|
|
parseError = &error;
|
|
}
|
|
return Transliterator::createInstance(ID,dir,*parseError,status);
|
|
}
|
|
|
|
inline Transliterator* Transliterator::createInverse() const{
|
|
|
|
UErrorCode status = U_ZERO_ERROR;
|
|
return createInverse(status);
|
|
}
|
|
|
|
#endif
|
|
|
|
U_NAMESPACE_END
|
|
|
|
#endif
|
|
|