bee56b37b7
X-SVN-Rev: 22564
947 lines
34 KiB
C++
947 lines
34 KiB
C++
/*
|
|
**********************************************************************
|
|
* Copyright (c) 2003-2007, International Business Machines
|
|
* Corporation and others. All Rights Reserved.
|
|
**********************************************************************
|
|
* Author: Alan Liu
|
|
* Created: July 21 2003
|
|
* Since: ICU 2.8
|
|
**********************************************************************
|
|
*/
|
|
|
|
#include "olsontz.h"
|
|
|
|
#if !UCONFIG_NO_FORMATTING
|
|
|
|
#include "unicode/ures.h"
|
|
#include "unicode/simpletz.h"
|
|
#include "unicode/gregocal.h"
|
|
#include "gregoimp.h"
|
|
#include "cmemory.h"
|
|
#include "uassert.h"
|
|
#include "uvector.h"
|
|
#include <float.h> // DBL_MAX
|
|
|
|
#ifdef U_DEBUG_TZ
|
|
# include <stdio.h>
|
|
# include "uresimp.h" // for debugging
|
|
|
|
static void debug_tz_loc(const char *f, int32_t l)
|
|
{
|
|
fprintf(stderr, "%s:%d: ", f, l);
|
|
}
|
|
|
|
static void debug_tz_msg(const char *pat, ...)
|
|
{
|
|
va_list ap;
|
|
va_start(ap, pat);
|
|
vfprintf(stderr, pat, ap);
|
|
fflush(stderr);
|
|
}
|
|
// must use double parens, i.e.: U_DEBUG_TZ_MSG(("four is: %d",4));
|
|
#define U_DEBUG_TZ_MSG(x) {debug_tz_loc(__FILE__,__LINE__);debug_tz_msg x;}
|
|
#else
|
|
#define U_DEBUG_TZ_MSG(x)
|
|
#endif
|
|
|
|
U_NAMESPACE_BEGIN
|
|
|
|
#define SECONDS_PER_DAY (24*60*60)
|
|
|
|
static const int32_t ZEROS[] = {0,0};
|
|
|
|
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(OlsonTimeZone)
|
|
|
|
/**
|
|
* Default constructor. Creates a time zone with an empty ID and
|
|
* a fixed GMT offset of zero.
|
|
*/
|
|
/*OlsonTimeZone::OlsonTimeZone() : finalYear(INT32_MAX), finalMillis(DBL_MAX), finalZone(0), transitionRulesInitialized(FALSE) {
|
|
clearTransitionRules();
|
|
constructEmpty();
|
|
}*/
|
|
|
|
/**
|
|
* Construct a GMT+0 zone with no transitions. This is done when a
|
|
* constructor fails so the resultant object is well-behaved.
|
|
*/
|
|
void OlsonTimeZone::constructEmpty() {
|
|
transitionCount = 0;
|
|
typeCount = 1;
|
|
transitionTimes = typeOffsets = ZEROS;
|
|
typeData = (const uint8_t*) ZEROS;
|
|
}
|
|
|
|
/**
|
|
* Construct from a resource bundle
|
|
* @param top the top-level zoneinfo resource bundle. This is used
|
|
* to lookup the rule that `res' may refer to, if there is one.
|
|
* @param res the resource bundle of the zone to be constructed
|
|
* @param ec input-output error code
|
|
*/
|
|
OlsonTimeZone::OlsonTimeZone(const UResourceBundle* top,
|
|
const UResourceBundle* res,
|
|
UErrorCode& ec) :
|
|
finalYear(INT32_MAX), finalMillis(DBL_MAX), finalZone(0), transitionRulesInitialized(FALSE)
|
|
{
|
|
clearTransitionRules();
|
|
U_DEBUG_TZ_MSG(("OlsonTimeZone(%s)\n", ures_getKey((UResourceBundle*)res)));
|
|
if ((top == NULL || res == NULL) && U_SUCCESS(ec)) {
|
|
ec = U_ILLEGAL_ARGUMENT_ERROR;
|
|
}
|
|
if (U_SUCCESS(ec)) {
|
|
// TODO -- clean up -- Doesn't work if res points to an alias
|
|
// // TODO remove nonconst casts below when ures_* API is fixed
|
|
// setID(ures_getKey((UResourceBundle*) res)); // cast away const
|
|
|
|
// Size 1 is an alias TO another zone (int)
|
|
// HOWEVER, the caller should dereference this and never pass it in to us
|
|
// Size 3 is a purely historical zone (no final rules)
|
|
// Size 4 is like size 3, but with an alias list at the end
|
|
// Size 5 is a hybrid zone, with historical and final elements
|
|
// Size 6 is like size 5, but with an alias list at the end
|
|
int32_t size = ures_getSize(res);
|
|
if (size < 3 || size > 6) {
|
|
ec = U_INVALID_FORMAT_ERROR;
|
|
}
|
|
|
|
// Transitions list may be empty
|
|
int32_t i;
|
|
UResourceBundle* r = ures_getByIndex(res, 0, NULL, &ec);
|
|
transitionTimes = ures_getIntVector(r, &i, &ec);
|
|
if ((i<0 || i>0x7FFF) && U_SUCCESS(ec)) {
|
|
ec = U_INVALID_FORMAT_ERROR;
|
|
}
|
|
transitionCount = (int16_t) i;
|
|
|
|
// Type offsets list must be of even size, with size >= 2
|
|
r = ures_getByIndex(res, 1, r, &ec);
|
|
typeOffsets = ures_getIntVector(r, &i, &ec);
|
|
if ((i<2 || i>0x7FFE || ((i&1)!=0)) && U_SUCCESS(ec)) {
|
|
ec = U_INVALID_FORMAT_ERROR;
|
|
}
|
|
typeCount = (int16_t) i >> 1;
|
|
|
|
// Type data must be of the same size as the transitions list
|
|
r = ures_getByIndex(res, 2, r, &ec);
|
|
int32_t len;
|
|
typeData = ures_getBinary(r, &len, &ec);
|
|
ures_close(r);
|
|
if (len != transitionCount && U_SUCCESS(ec)) {
|
|
ec = U_INVALID_FORMAT_ERROR;
|
|
}
|
|
|
|
#if defined (U_DEBUG_TZ)
|
|
U_DEBUG_TZ_MSG(("OlsonTimeZone(%s) - size = %d, typecount %d transitioncount %d - err %s\n", ures_getKey((UResourceBundle*)res), size, typeCount, transitionCount, u_errorName(ec)));
|
|
if(U_SUCCESS(ec)) {
|
|
int32_t jj;
|
|
for(jj=0;jj<transitionCount;jj++) {
|
|
int32_t year, month, dom, dow;
|
|
double millis=0;
|
|
double days = Math::floorDivide(((double)transitionTimes[jj])*1000.0, (double)U_MILLIS_PER_DAY, millis);
|
|
|
|
Grego::dayToFields(days, year, month, dom, dow);
|
|
U_DEBUG_TZ_MSG((" Transition %d: time %d (%04d.%02d.%02d+%.1fh), typedata%d\n", jj, transitionTimes[jj],
|
|
year, month+1, dom, (millis/kOneHour), typeData[jj]));
|
|
// U_DEBUG_TZ_MSG((" offset%d\n", typeOffsets[jj]));
|
|
int16_t f = jj;
|
|
f <<= 1;
|
|
U_DEBUG_TZ_MSG((" offsets[%d+%d]=(%d+%d)=(%d==%d)\n", (int)f,(int)f+1,(int)typeOffsets[f],(int)typeOffsets[f+1],(int)zoneOffset(jj),
|
|
(int)typeOffsets[f]+(int)typeOffsets[f+1]));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Process final rule and data, if any
|
|
if (size >= 5) {
|
|
int32_t ruleidLen = 0;
|
|
const UChar* idUStr = ures_getStringByIndex(res, 3, &ruleidLen, &ec);
|
|
UnicodeString ruleid(TRUE, idUStr, ruleidLen);
|
|
r = ures_getByIndex(res, 4, NULL, &ec);
|
|
const int32_t* data = ures_getIntVector(r, &len, &ec);
|
|
#if defined U_DEBUG_TZ
|
|
const char *rKey = ures_getKey(r);
|
|
const char *zKey = ures_getKey((UResourceBundle*)res);
|
|
#endif
|
|
ures_close(r);
|
|
if (U_SUCCESS(ec)) {
|
|
if (data != 0 && len == 2) {
|
|
int32_t rawOffset = data[0] * U_MILLIS_PER_SECOND;
|
|
// Subtract one from the actual final year; we
|
|
// actually store final year - 1, and compare
|
|
// using > rather than >=. This allows us to use
|
|
// INT32_MAX as an exclusive upper limit for all
|
|
// years, including INT32_MAX.
|
|
U_ASSERT(data[1] > INT32_MIN);
|
|
finalYear = data[1] - 1;
|
|
// Also compute the millis for Jan 1, 0:00 GMT of the
|
|
// finalYear. This reduces runtime computations.
|
|
finalMillis = Grego::fieldsToDay(data[1], 0, 1) * U_MILLIS_PER_DAY;
|
|
U_DEBUG_TZ_MSG(("zone%s|%s: {%d,%d}, finalYear%d, finalMillis%.1lf\n",
|
|
zKey,rKey, data[0], data[1], finalYear, finalMillis));
|
|
r = TimeZone::loadRule(top, ruleid, NULL, ec);
|
|
if (U_SUCCESS(ec)) {
|
|
// 3, 1, -1, 7200, 0, 9, -31, -1, 7200, 0, 3600
|
|
data = ures_getIntVector(r, &len, &ec);
|
|
if (U_SUCCESS(ec) && len == 11) {
|
|
UnicodeString emptyStr;
|
|
U_DEBUG_TZ_MSG(("zone%s, rule%s: {%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d}\n", zKey, ures_getKey(r),
|
|
data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7], data[8], data[9], data[10]));
|
|
finalZone = new SimpleTimeZone(rawOffset, emptyStr,
|
|
(int8_t)data[0], (int8_t)data[1], (int8_t)data[2],
|
|
data[3] * U_MILLIS_PER_SECOND,
|
|
(SimpleTimeZone::TimeMode) data[4],
|
|
(int8_t)data[5], (int8_t)data[6], (int8_t)data[7],
|
|
data[8] * U_MILLIS_PER_SECOND,
|
|
(SimpleTimeZone::TimeMode) data[9],
|
|
data[10] * U_MILLIS_PER_SECOND, ec);
|
|
} else {
|
|
ec = U_INVALID_FORMAT_ERROR;
|
|
}
|
|
}
|
|
ures_close(r);
|
|
} else {
|
|
ec = U_INVALID_FORMAT_ERROR;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (U_FAILURE(ec)) {
|
|
constructEmpty();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Copy constructor
|
|
*/
|
|
OlsonTimeZone::OlsonTimeZone(const OlsonTimeZone& other) :
|
|
BasicTimeZone(other), finalZone(0) {
|
|
*this = other;
|
|
}
|
|
|
|
/**
|
|
* Assignment operator
|
|
*/
|
|
OlsonTimeZone& OlsonTimeZone::operator=(const OlsonTimeZone& other) {
|
|
transitionCount = other.transitionCount;
|
|
typeCount = other.typeCount;
|
|
transitionTimes = other.transitionTimes;
|
|
typeOffsets = other.typeOffsets;
|
|
typeData = other.typeData;
|
|
finalYear = other.finalYear;
|
|
finalMillis = other.finalMillis;
|
|
delete finalZone;
|
|
finalZone = (other.finalZone != 0) ?
|
|
(SimpleTimeZone*) other.finalZone->clone() : 0;
|
|
clearTransitionRules();
|
|
return *this;
|
|
}
|
|
|
|
/**
|
|
* Destructor
|
|
*/
|
|
OlsonTimeZone::~OlsonTimeZone() {
|
|
deleteTransitionRules();
|
|
delete finalZone;
|
|
}
|
|
|
|
/**
|
|
* Returns true if the two TimeZone objects are equal.
|
|
*/
|
|
UBool OlsonTimeZone::operator==(const TimeZone& other) const {
|
|
return ((this == &other) ||
|
|
(getDynamicClassID() == other.getDynamicClassID() &&
|
|
TimeZone::operator==(other) &&
|
|
hasSameRules(other)));
|
|
}
|
|
|
|
/**
|
|
* TimeZone API.
|
|
*/
|
|
TimeZone* OlsonTimeZone::clone() const {
|
|
return new OlsonTimeZone(*this);
|
|
}
|
|
|
|
/**
|
|
* TimeZone API.
|
|
*/
|
|
int32_t OlsonTimeZone::getOffset(uint8_t era, int32_t year, int32_t month,
|
|
int32_t dom, uint8_t dow,
|
|
int32_t millis, UErrorCode& ec) const {
|
|
if (month < UCAL_JANUARY || month > UCAL_DECEMBER) {
|
|
if (U_SUCCESS(ec)) {
|
|
ec = U_ILLEGAL_ARGUMENT_ERROR;
|
|
}
|
|
return 0;
|
|
} else {
|
|
return getOffset(era, year, month, dom, dow, millis,
|
|
Grego::monthLength(year, month),
|
|
ec);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* TimeZone API.
|
|
*/
|
|
int32_t OlsonTimeZone::getOffset(uint8_t era, int32_t year, int32_t month,
|
|
int32_t dom, uint8_t dow,
|
|
int32_t millis, int32_t monthLength,
|
|
UErrorCode& ec) const {
|
|
if (U_FAILURE(ec)) {
|
|
return 0;
|
|
}
|
|
|
|
if ((era != GregorianCalendar::AD && era != GregorianCalendar::BC)
|
|
|| month < UCAL_JANUARY
|
|
|| month > UCAL_DECEMBER
|
|
|| dom < 1
|
|
|| dom > monthLength
|
|
|| dow < UCAL_SUNDAY
|
|
|| dow > UCAL_SATURDAY
|
|
|| millis < 0
|
|
|| millis >= U_MILLIS_PER_DAY
|
|
|| monthLength < 28
|
|
|| monthLength > 31) {
|
|
ec = U_ILLEGAL_ARGUMENT_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
if (era == GregorianCalendar::BC) {
|
|
year = -year;
|
|
}
|
|
|
|
if (year > finalYear) { // [sic] >, not >=; see above
|
|
U_ASSERT(finalZone != 0);
|
|
return finalZone->getOffset(era, year, month, dom, dow,
|
|
millis, monthLength, ec);
|
|
}
|
|
|
|
// Compute local epoch seconds from input fields
|
|
double time = Grego::fieldsToDay(year, month, dom) * SECONDS_PER_DAY +
|
|
uprv_floor(millis / (double) U_MILLIS_PER_SECOND);
|
|
|
|
return zoneOffset(findTransition(time, TRUE)) * U_MILLIS_PER_SECOND;
|
|
}
|
|
|
|
/**
|
|
* TimeZone API.
|
|
*/
|
|
void OlsonTimeZone::getOffset(UDate date, UBool local, int32_t& rawoff,
|
|
int32_t& dstoff, UErrorCode& ec) const {
|
|
if (U_FAILURE(ec)) {
|
|
return;
|
|
}
|
|
|
|
// The check against finalMillis will suffice most of the time, except
|
|
// for the case in which finalMillis == DBL_MAX, date == DBL_MAX,
|
|
// and finalZone == 0. For this case we add "&& finalZone != 0".
|
|
if (date >= finalMillis && finalZone != 0) {
|
|
int32_t year, month, dom, dow;
|
|
double millis;
|
|
double days = Math::floorDivide(date, (double)U_MILLIS_PER_DAY, millis);
|
|
|
|
Grego::dayToFields(days, year, month, dom, dow);
|
|
|
|
rawoff = finalZone->getRawOffset();
|
|
|
|
if (!local) {
|
|
// Adjust from GMT to local
|
|
date += rawoff;
|
|
double days2 = Math::floorDivide(date, (double)U_MILLIS_PER_DAY, millis);
|
|
if (days2 != days) {
|
|
Grego::dayToFields(days2, year, month, dom, dow);
|
|
}
|
|
}
|
|
|
|
dstoff = finalZone->getOffset(
|
|
GregorianCalendar::AD, year, month,
|
|
dom, (uint8_t) dow, (int32_t) millis, ec) - rawoff;
|
|
return;
|
|
}
|
|
|
|
double secs = uprv_floor(date / U_MILLIS_PER_SECOND);
|
|
int16_t i = findTransition(secs, local);
|
|
rawoff = rawOffset(i) * U_MILLIS_PER_SECOND;
|
|
dstoff = dstOffset(i) * U_MILLIS_PER_SECOND;
|
|
}
|
|
|
|
/**
|
|
* TimeZone API.
|
|
*/
|
|
void OlsonTimeZone::setRawOffset(int32_t /*offsetMillis*/) {
|
|
// We don't support this operation, since OlsonTimeZones are
|
|
// immutable (except for the ID, which is in the base class).
|
|
|
|
// Nothing to do!
|
|
}
|
|
|
|
/**
|
|
* TimeZone API.
|
|
*/
|
|
int32_t OlsonTimeZone::getRawOffset() const {
|
|
UErrorCode ec = U_ZERO_ERROR;
|
|
int32_t raw, dst;
|
|
getOffset((double) uprv_getUTCtime() * U_MILLIS_PER_SECOND,
|
|
FALSE, raw, dst, ec);
|
|
return raw;
|
|
}
|
|
|
|
#if defined U_DEBUG_TZ
|
|
void printTime(double ms) {
|
|
int32_t year, month, dom, dow;
|
|
double millis=0;
|
|
double days = Math::floorDivide(((double)ms), (double)U_MILLIS_PER_DAY, millis);
|
|
|
|
Grego::dayToFields(days, year, month, dom, dow);
|
|
U_DEBUG_TZ_MSG((" findTransition: time %.1f (%04d.%02d.%02d+%.1fh)\n", ms,
|
|
year, month+1, dom, (millis/kOneHour)));
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* Find the smallest i (in 0..transitionCount-1) such that time >=
|
|
* transition(i), where transition(i) is either the GMT or the local
|
|
* transition time, as specified by `local'.
|
|
* @param time epoch seconds, either GMT or local wall
|
|
* @param local if TRUE, `time' is in local wall units, otherwise it
|
|
* is GMT
|
|
* @return an index i, where 0 <= i < transitionCount, and
|
|
* transition(i) <= time < transition(i+1), or i == 0 if
|
|
* transitionCount == 0 or time < transition(0).
|
|
*/
|
|
int16_t OlsonTimeZone::findTransition(double time, UBool local) const {
|
|
int16_t i = 0;
|
|
U_DEBUG_TZ_MSG(("findTransition(%.1f, %s)\n", time, local?"T":"F"));
|
|
#if defined U_DEBUG_TZ
|
|
printTime(time*1000.0);
|
|
#endif
|
|
|
|
if (transitionCount != 0) {
|
|
// Linear search from the end is the fastest approach, since
|
|
// most lookups will happen at/near the end.
|
|
for (i = transitionCount - 1; i > 0; --i) {
|
|
int32_t transition = transitionTimes[i];
|
|
if (local) {
|
|
int32_t zoneOffsetPrev = zoneOffset(typeData[i-1]);
|
|
int32_t zoneOffsetCurr = zoneOffset(typeData[i]);
|
|
|
|
// use the lowest offset ( == standard time ). as per tzregts.cpp which says:
|
|
|
|
/**
|
|
* @bug 4084933
|
|
* The expected behavior of TimeZone around the boundaries is:
|
|
* (Assume transition time of 2:00 AM)
|
|
* day of onset 1:59 AM STD = display name 1:59 AM ST
|
|
* 2:00 AM STD = display name 3:00 AM DT
|
|
* day of end 0:59 AM STD = display name 1:59 AM DT
|
|
* 1:00 AM STD = display name 1:00 AM ST
|
|
*/
|
|
if(zoneOffsetPrev<zoneOffsetCurr) {
|
|
transition += zoneOffsetPrev;
|
|
} else {
|
|
transition += zoneOffsetCurr;
|
|
}
|
|
}
|
|
if (time >= transition) {
|
|
U_DEBUG_TZ_MSG(("Found@%d: time=%.1f, localtransition=%d (orig %d) dz %d\n", i, time, transition, transitionTimes[i],
|
|
zoneOffset(typeData[i-1])));
|
|
#if defined U_DEBUG_TZ
|
|
printTime(transition*1000.0);
|
|
printTime(transitionTimes[i]*1000.0);
|
|
#endif
|
|
break;
|
|
} else {
|
|
U_DEBUG_TZ_MSG(("miss@%d: time=%.1f, localtransition=%d (orig %d) dz %d\n", i, time, transition, transitionTimes[i],
|
|
zoneOffset(typeData[i-1])));
|
|
#if defined U_DEBUG_TZ
|
|
printTime(transition*1000.0);
|
|
printTime(transitionTimes[i]*1000.0);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
U_ASSERT(i>=0 && i<transitionCount);
|
|
|
|
// Check invariants for GMT times; if these pass for GMT times
|
|
// the local logic should be working too.
|
|
U_ASSERT(local || time < transitionTimes[0] || time >= transitionTimes[i]);
|
|
U_ASSERT(local || i == transitionCount-1 || time < transitionTimes[i+1]);
|
|
|
|
U_DEBUG_TZ_MSG(("findTransition(%.1f, %s)= trans %d\n", time, local?"T":"F", i));
|
|
i = typeData[i];
|
|
}
|
|
|
|
U_ASSERT(i>=0 && i<typeCount);
|
|
|
|
U_DEBUG_TZ_MSG(("findTransition(%.1f, %s)=%d, offset %d\n", time, local?"T":"F", i, zoneOffset(i)));
|
|
return i;
|
|
}
|
|
|
|
/**
|
|
* TimeZone API.
|
|
*/
|
|
UBool OlsonTimeZone::useDaylightTime() const {
|
|
// If DST was observed in 1942 (for example) but has never been
|
|
// observed from 1943 to the present, most clients will expect
|
|
// this method to return FALSE. This method determines whether
|
|
// DST is in use in the current year (at any point in the year)
|
|
// and returns TRUE if so.
|
|
|
|
int32_t days = (int32_t)Math::floorDivide(uprv_getUTCtime(), (double)U_MILLIS_PER_DAY); // epoch days
|
|
|
|
int32_t year, month, dom, dow;
|
|
|
|
Grego::dayToFields(days, year, month, dom, dow);
|
|
|
|
if (year > finalYear) { // [sic] >, not >=; see above
|
|
U_ASSERT(finalZone != 0 && finalZone->useDaylightTime());
|
|
return TRUE;
|
|
}
|
|
|
|
// Find start of this year, and start of next year
|
|
int32_t start = (int32_t) Grego::fieldsToDay(year, 0, 1) * SECONDS_PER_DAY;
|
|
int32_t limit = (int32_t) Grego::fieldsToDay(year+1, 0, 1) * SECONDS_PER_DAY;
|
|
|
|
// Return TRUE if DST is observed at any time during the current
|
|
// year.
|
|
for (int16_t i=0; i<transitionCount; ++i) {
|
|
if (transitionTimes[i] >= limit) {
|
|
break;
|
|
}
|
|
if (transitionTimes[i] >= start &&
|
|
dstOffset(typeData[i]) != 0) {
|
|
return TRUE;
|
|
}
|
|
}
|
|
return FALSE;
|
|
}
|
|
int32_t
|
|
OlsonTimeZone::getDSTSavings() const{
|
|
if(finalZone!=NULL){
|
|
return finalZone->getDSTSavings();
|
|
}
|
|
return TimeZone::getDSTSavings();
|
|
}
|
|
/**
|
|
* TimeZone API.
|
|
*/
|
|
UBool OlsonTimeZone::inDaylightTime(UDate date, UErrorCode& ec) const {
|
|
int32_t raw, dst;
|
|
getOffset(date, FALSE, raw, dst, ec);
|
|
return dst != 0;
|
|
}
|
|
|
|
UBool
|
|
OlsonTimeZone::hasSameRules(const TimeZone &other) const {
|
|
if (this == &other) {
|
|
return TRUE;
|
|
}
|
|
if (other.getDynamicClassID() != OlsonTimeZone::getStaticClassID()) {
|
|
return FALSE;
|
|
}
|
|
const OlsonTimeZone* z = (const OlsonTimeZone*) &other;
|
|
|
|
// [sic] pointer comparison: typeData points into
|
|
// memory-mapped or DLL space, so if two zones have the same
|
|
// pointer, they are equal.
|
|
if (typeData == z->typeData) {
|
|
return TRUE;
|
|
}
|
|
|
|
// If the pointers are not equal, the zones may still
|
|
// be equal if their rules and transitions are equal
|
|
return
|
|
(finalYear == z->finalYear &&
|
|
// Don't compare finalMillis; if finalYear is ==, so is finalMillis
|
|
((finalZone == 0 && z->finalZone == 0) ||
|
|
(finalZone != 0 && z->finalZone != 0 && *finalZone == *z->finalZone)) &&
|
|
|
|
transitionCount == z->transitionCount &&
|
|
typeCount == z->typeCount &&
|
|
uprv_memcmp(transitionTimes, z->transitionTimes,
|
|
sizeof(transitionTimes[0]) * transitionCount) == 0 &&
|
|
uprv_memcmp(typeOffsets, z->typeOffsets,
|
|
(sizeof(typeOffsets[0]) * typeCount) << 1) == 0 &&
|
|
uprv_memcmp(typeData, z->typeData,
|
|
(sizeof(typeData[0]) * typeCount)) == 0);
|
|
}
|
|
|
|
void
|
|
OlsonTimeZone::clearTransitionRules(void) {
|
|
initialRule = NULL;
|
|
firstTZTransition = NULL;
|
|
firstFinalTZTransition = NULL;
|
|
historicRules = NULL;
|
|
historicRuleCount = 0;
|
|
finalZoneWithStartYear = NULL;
|
|
firstTZTransitionIdx = 0;
|
|
transitionRulesInitialized = FALSE;
|
|
}
|
|
|
|
void
|
|
OlsonTimeZone::deleteTransitionRules(void) {
|
|
if (initialRule != NULL) {
|
|
delete initialRule;
|
|
}
|
|
if (firstTZTransition != NULL) {
|
|
delete firstTZTransition;
|
|
}
|
|
if (firstFinalTZTransition != NULL) {
|
|
delete firstFinalTZTransition;
|
|
}
|
|
if (finalZoneWithStartYear != NULL) {
|
|
delete finalZoneWithStartYear;
|
|
}
|
|
if (historicRules != NULL) {
|
|
for (int i = 0; i < historicRuleCount; i++) {
|
|
if (historicRules[i] != NULL) {
|
|
delete historicRules[i];
|
|
}
|
|
}
|
|
uprv_free(historicRules);
|
|
}
|
|
clearTransitionRules();
|
|
}
|
|
|
|
void
|
|
OlsonTimeZone::initTransitionRules(UErrorCode& status) {
|
|
if(U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
if (transitionRulesInitialized) {
|
|
return;
|
|
}
|
|
deleteTransitionRules();
|
|
UnicodeString tzid;
|
|
getID(tzid);
|
|
|
|
UnicodeString stdName = tzid + UNICODE_STRING_SIMPLE("(STD)");
|
|
UnicodeString dstName = tzid + UNICODE_STRING_SIMPLE("(DST)");
|
|
|
|
int32_t raw, dst;
|
|
if (transitionCount > 0) {
|
|
int16_t transitionIdx, typeIdx;
|
|
|
|
// Note: Since 2007c, the very first transition data is a dummy entry
|
|
// added for resolving a offset calculation problem.
|
|
|
|
// Create initial rule
|
|
typeIdx = (int16_t)typeData[0]; // initial type
|
|
raw = rawOffset(typeIdx) * U_MILLIS_PER_SECOND;
|
|
dst = dstOffset(typeIdx) * U_MILLIS_PER_SECOND;
|
|
initialRule = new InitialTimeZoneRule((dst == 0 ? stdName : dstName), raw, dst);
|
|
|
|
firstTZTransitionIdx = 0;
|
|
for (transitionIdx = 1; transitionIdx < transitionCount; transitionIdx++) {
|
|
firstTZTransitionIdx++;
|
|
if (typeIdx != (int16_t)typeData[transitionIdx]) {
|
|
break;
|
|
}
|
|
}
|
|
if (transitionIdx == transitionCount) {
|
|
// Actually no transitions...
|
|
} else {
|
|
// Build historic rule array
|
|
UDate* times = (UDate*)uprv_malloc(sizeof(UDate)*transitionCount); /* large enough to store all transition times */
|
|
if (times == NULL) {
|
|
status = U_MEMORY_ALLOCATION_ERROR;
|
|
deleteTransitionRules();
|
|
return;
|
|
}
|
|
for (typeIdx = 0; typeIdx < typeCount; typeIdx++) {
|
|
// Gather all start times for each pair of offsets
|
|
int32_t nTimes = 0;
|
|
for (transitionIdx = firstTZTransitionIdx; transitionIdx < transitionCount; transitionIdx++) {
|
|
if (typeIdx == (int16_t)typeData[transitionIdx]) {
|
|
UDate tt = ((UDate)transitionTimes[transitionIdx]) * U_MILLIS_PER_SECOND;
|
|
if (tt < finalMillis) {
|
|
// Exclude transitions after finalMillis
|
|
times[nTimes++] = tt;
|
|
}
|
|
}
|
|
}
|
|
if (nTimes > 0) {
|
|
// Create a TimeArrayTimeZoneRule
|
|
raw = rawOffset(typeIdx) * U_MILLIS_PER_SECOND;
|
|
dst = dstOffset(typeIdx) * U_MILLIS_PER_SECOND;
|
|
if (historicRules == NULL) {
|
|
historicRuleCount = typeCount;
|
|
historicRules = (TimeArrayTimeZoneRule**)uprv_malloc(sizeof(TimeArrayTimeZoneRule*)*historicRuleCount);
|
|
if (historicRules == NULL) {
|
|
status = U_MEMORY_ALLOCATION_ERROR;
|
|
deleteTransitionRules();
|
|
uprv_free(times);
|
|
return;
|
|
}
|
|
for (int i = 0; i < historicRuleCount; i++) {
|
|
// Initialize TimeArrayTimeZoneRule pointers as NULL
|
|
historicRules[i] = NULL;
|
|
}
|
|
}
|
|
historicRules[typeIdx] = new TimeArrayTimeZoneRule((dst == 0 ? stdName : dstName),
|
|
raw, dst, times, nTimes, DateTimeRule::UTC_TIME);
|
|
}
|
|
}
|
|
uprv_free(times);
|
|
|
|
// Create initial transition
|
|
typeIdx = (int16_t)typeData[firstTZTransitionIdx];
|
|
firstTZTransition = new TimeZoneTransition(((UDate)transitionTimes[firstTZTransitionIdx]) * U_MILLIS_PER_SECOND,
|
|
*initialRule, *historicRules[typeIdx]);
|
|
}
|
|
}
|
|
if (initialRule == NULL) {
|
|
// No historic transitions
|
|
raw = rawOffset(0) * U_MILLIS_PER_SECOND;
|
|
dst = dstOffset(0) * U_MILLIS_PER_SECOND;
|
|
initialRule = new InitialTimeZoneRule((dst == 0 ? stdName : dstName), raw, dst);
|
|
}
|
|
if (finalZone != NULL) {
|
|
// Get the first occurence of final rule starts
|
|
UDate startTime = (UDate)finalMillis;
|
|
TimeZoneRule *firstFinalRule = NULL;
|
|
if (finalZone->useDaylightTime()) {
|
|
/*
|
|
* Note: When an OlsonTimeZone is constructed, we should set the final year
|
|
* as the start year of finalZone. However, the bounday condition used for
|
|
* getting offset from finalZone has some problems. So setting the start year
|
|
* in the finalZone will cause a problem. For now, we do not set the valid
|
|
* start year when the construction time and create a clone and set the
|
|
* start year when extracting rules.
|
|
*/
|
|
finalZoneWithStartYear = (SimpleTimeZone*)finalZone->clone();
|
|
// finalYear is 1 year before the actual final year.
|
|
// See the comment in the construction method.
|
|
finalZoneWithStartYear->setStartYear(finalYear + 1);
|
|
|
|
TimeZoneTransition tzt;
|
|
finalZoneWithStartYear->getNextTransition(startTime, false, tzt);
|
|
firstFinalRule = tzt.getTo()->clone();
|
|
startTime = tzt.getTime();
|
|
} else {
|
|
finalZoneWithStartYear = (SimpleTimeZone*)finalZone->clone();
|
|
finalZone->getID(tzid);
|
|
firstFinalRule = new TimeArrayTimeZoneRule(tzid,
|
|
finalZone->getRawOffset(), 0, &startTime, 1, DateTimeRule::UTC_TIME);
|
|
}
|
|
TimeZoneRule *prevRule = NULL;
|
|
if (transitionCount > 0) {
|
|
prevRule = historicRules[typeData[transitionCount - 1]];
|
|
}
|
|
if (prevRule == NULL) {
|
|
// No historic transitions, but only finalZone available
|
|
prevRule = initialRule;
|
|
}
|
|
firstFinalTZTransition = new TimeZoneTransition();
|
|
firstFinalTZTransition->setTime(startTime);
|
|
firstFinalTZTransition->adoptFrom(prevRule->clone());
|
|
firstFinalTZTransition->adoptTo(firstFinalRule);
|
|
}
|
|
transitionRulesInitialized = TRUE;
|
|
}
|
|
|
|
UBool
|
|
OlsonTimeZone::getNextTransition(UDate base, UBool inclusive, TimeZoneTransition& result) /*const*/ {
|
|
UErrorCode status = U_ZERO_ERROR;
|
|
initTransitionRules(status);
|
|
if (U_FAILURE(status)) {
|
|
return FALSE;
|
|
}
|
|
|
|
if (finalZone != NULL) {
|
|
if (inclusive && base == firstFinalTZTransition->getTime()) {
|
|
result = *firstFinalTZTransition;
|
|
return TRUE;
|
|
} else if (base >= firstFinalTZTransition->getTime()) {
|
|
if (finalZone->useDaylightTime()) {
|
|
//return finalZone->getNextTransition(base, inclusive, result);
|
|
return finalZoneWithStartYear->getNextTransition(base, inclusive, result);
|
|
} else {
|
|
// No more transitions
|
|
return FALSE;
|
|
}
|
|
}
|
|
}
|
|
if (historicRules != NULL) {
|
|
// Find a historical transition
|
|
int16_t ttidx = transitionCount - 1;
|
|
for (; ttidx >= firstTZTransitionIdx; ttidx--) {
|
|
UDate t = ((UDate)transitionTimes[ttidx]) * U_MILLIS_PER_SECOND;
|
|
if (base > t || (!inclusive && base == t)) {
|
|
break;
|
|
}
|
|
}
|
|
if (ttidx == transitionCount - 1) {
|
|
if (firstFinalTZTransition != NULL) {
|
|
result = *firstFinalTZTransition;
|
|
return TRUE;
|
|
} else {
|
|
return FALSE;
|
|
}
|
|
} else if (ttidx < firstTZTransitionIdx) {
|
|
result = *firstTZTransition;
|
|
return TRUE;
|
|
} else {
|
|
// Create a TimeZoneTransition
|
|
TimeZoneRule *to = historicRules[typeData[ttidx + 1]];
|
|
TimeZoneRule *from = historicRules[typeData[ttidx]];
|
|
UDate startTime = ((UDate)transitionTimes[ttidx+1]) * U_MILLIS_PER_SECOND;
|
|
|
|
// The transitions loaded from zoneinfo.res may contain non-transition data
|
|
UnicodeString fromName, toName;
|
|
from->getName(fromName);
|
|
to->getName(toName);
|
|
if (fromName == toName && from->getRawOffset() == to->getRawOffset()
|
|
&& from->getDSTSavings() == to->getDSTSavings()) {
|
|
return getNextTransition(startTime, false, result);
|
|
}
|
|
result.setTime(startTime);
|
|
result.adoptFrom(from->clone());
|
|
result.adoptTo(to->clone());
|
|
return TRUE;
|
|
}
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
UBool
|
|
OlsonTimeZone::getPreviousTransition(UDate base, UBool inclusive, TimeZoneTransition& result) /*const*/ {
|
|
UErrorCode status = U_ZERO_ERROR;
|
|
initTransitionRules(status);
|
|
if (U_FAILURE(status)) {
|
|
return FALSE;
|
|
}
|
|
|
|
if (finalZone != NULL) {
|
|
if (inclusive && base == firstFinalTZTransition->getTime()) {
|
|
result = *firstFinalTZTransition;
|
|
return TRUE;
|
|
} else if (base > firstFinalTZTransition->getTime()) {
|
|
if (finalZone->useDaylightTime()) {
|
|
//return finalZone->getPreviousTransition(base, inclusive, result);
|
|
return finalZoneWithStartYear->getPreviousTransition(base, inclusive, result);
|
|
} else {
|
|
result = *firstFinalTZTransition;
|
|
return TRUE;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (historicRules != NULL) {
|
|
// Find a historical transition
|
|
int16_t ttidx = transitionCount - 1;
|
|
for (; ttidx >= firstTZTransitionIdx; ttidx--) {
|
|
UDate t = ((UDate)transitionTimes[ttidx]) * U_MILLIS_PER_SECOND;
|
|
if (base > t || (inclusive && base == t)) {
|
|
break;
|
|
}
|
|
}
|
|
if (ttidx < firstTZTransitionIdx) {
|
|
// No more transitions
|
|
return FALSE;
|
|
} else if (ttidx == firstTZTransitionIdx) {
|
|
result = *firstTZTransition;
|
|
return TRUE;
|
|
} else {
|
|
// Create a TimeZoneTransition
|
|
TimeZoneRule *to = historicRules[typeData[ttidx]];
|
|
TimeZoneRule *from = historicRules[typeData[ttidx-1]];
|
|
UDate startTime = ((UDate)transitionTimes[ttidx]) * U_MILLIS_PER_SECOND;
|
|
|
|
// The transitions loaded from zoneinfo.res may contain non-transition data
|
|
UnicodeString fromName, toName;
|
|
from->getName(fromName);
|
|
to->getName(toName);
|
|
if (fromName == toName && from->getRawOffset() == to->getRawOffset()
|
|
&& from->getDSTSavings() == to->getDSTSavings()) {
|
|
return getPreviousTransition(startTime, false, result);
|
|
}
|
|
result.setTime(startTime);
|
|
result.adoptFrom(from->clone());
|
|
result.adoptTo(to->clone());
|
|
return TRUE;
|
|
}
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
int32_t
|
|
OlsonTimeZone::countTransitionRules(UErrorCode& status) /*const*/ {
|
|
if (U_FAILURE(status)) {
|
|
return 0;
|
|
}
|
|
initTransitionRules(status);
|
|
if (U_FAILURE(status)) {
|
|
return 0;
|
|
}
|
|
|
|
int32_t count = 0;
|
|
if (historicRules != NULL) {
|
|
// historicRules may contain null entries when original zoneinfo data
|
|
// includes non transition data.
|
|
for (int32_t i = 0; i < historicRuleCount; i++) {
|
|
if (historicRules[i] != NULL) {
|
|
count++;
|
|
}
|
|
}
|
|
}
|
|
if (finalZone != NULL) {
|
|
if (finalZone->useDaylightTime()) {
|
|
count += 2;
|
|
} else {
|
|
count++;
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
void
|
|
OlsonTimeZone::getTimeZoneRules(const InitialTimeZoneRule*& initial,
|
|
const TimeZoneRule* trsrules[],
|
|
int32_t& trscount,
|
|
UErrorCode& status) /*const*/ {
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
initTransitionRules(status);
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
|
|
// Initial rule
|
|
initial = initialRule;
|
|
|
|
// Transition rules
|
|
int32_t cnt = 0;
|
|
if (historicRules != NULL && trscount > cnt) {
|
|
// historicRules may contain null entries when original zoneinfo data
|
|
// includes non transition data.
|
|
for (int32_t i = 0; i < historicRuleCount; i++) {
|
|
if (historicRules[i] != NULL) {
|
|
trsrules[cnt++] = historicRules[i];
|
|
if (cnt >= trscount) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (finalZoneWithStartYear != NULL && trscount > cnt) {
|
|
const InitialTimeZoneRule *tmpini;
|
|
int32_t tmpcnt = trscount - cnt;
|
|
finalZoneWithStartYear->getTimeZoneRules(tmpini, &trsrules[cnt], tmpcnt, status);
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
cnt += tmpcnt;
|
|
}
|
|
// Set the result length
|
|
trscount = cnt;
|
|
}
|
|
|
|
U_NAMESPACE_END
|
|
|
|
#endif // !UCONFIG_NO_FORMATTING
|
|
|
|
//eof
|