332037ef5b
X-SVN-Rev: 30018
4834 lines
184 KiB
C++
4834 lines
184 KiB
C++
/*
|
|
*******************************************************************************
|
|
* Copyright (C) 1997-2011, International Business Machines Corporation and *
|
|
* others. All Rights Reserved. *
|
|
*******************************************************************************
|
|
*
|
|
* File DECIMFMT.CPP
|
|
*
|
|
* Modification History:
|
|
*
|
|
* Date Name Description
|
|
* 02/19/97 aliu Converted from java.
|
|
* 03/20/97 clhuang Implemented with new APIs.
|
|
* 03/31/97 aliu Moved isLONG_MIN to DigitList, and fixed it.
|
|
* 04/3/97 aliu Rewrote parsing and formatting completely, and
|
|
* cleaned up and debugged. Actually works now.
|
|
* Implemented NAN and INF handling, for both parsing
|
|
* and formatting. Extensive testing & debugging.
|
|
* 04/10/97 aliu Modified to compile on AIX.
|
|
* 04/16/97 aliu Rewrote to use DigitList, which has been resurrected.
|
|
* Changed DigitCount to int per code review.
|
|
* 07/09/97 helena Made ParsePosition into a class.
|
|
* 08/26/97 aliu Extensive changes to applyPattern; completely
|
|
* rewritten from the Java.
|
|
* 09/09/97 aliu Ported over support for exponential formats.
|
|
* 07/20/98 stephen JDK 1.2 sync up.
|
|
* Various instances of '0' replaced with 'NULL'
|
|
* Check for grouping size in subFormat()
|
|
* Brought subParse() in line with Java 1.2
|
|
* Added method appendAffix()
|
|
* 08/24/1998 srl Removed Mutex calls. This is not a thread safe class!
|
|
* 02/22/99 stephen Removed character literals for EBCDIC safety
|
|
* 06/24/99 helena Integrated Alan's NF enhancements and Java2 bug fixes
|
|
* 06/28/99 stephen Fixed bugs in toPattern().
|
|
* 06/29/99 stephen Fixed operator= to copy fFormatWidth, fPad,
|
|
* fPadPosition
|
|
********************************************************************************
|
|
*/
|
|
|
|
#include "unicode/utypes.h"
|
|
|
|
#if !UCONFIG_NO_FORMATTING
|
|
|
|
#include "fphdlimp.h"
|
|
#include "unicode/decimfmt.h"
|
|
#include "unicode/choicfmt.h"
|
|
#include "unicode/ucurr.h"
|
|
#include "unicode/ustring.h"
|
|
#include "unicode/dcfmtsym.h"
|
|
#include "unicode/ures.h"
|
|
#include "unicode/uchar.h"
|
|
#include "unicode/uniset.h"
|
|
#include "unicode/curramt.h"
|
|
#include "unicode/currpinf.h"
|
|
#include "unicode/plurrule.h"
|
|
#include "uresimp.h"
|
|
#include "ucurrimp.h"
|
|
#include "charstr.h"
|
|
#include "cmemory.h"
|
|
#include "patternprops.h"
|
|
#include "digitlst.h"
|
|
#include "cstring.h"
|
|
#include "umutex.h"
|
|
#include "uassert.h"
|
|
#include "putilimp.h"
|
|
#include <math.h>
|
|
#include "hash.h"
|
|
#include "decfmtst.h"
|
|
|
|
|
|
U_NAMESPACE_BEGIN
|
|
|
|
/* For currency parsing purose,
|
|
* Need to remember all prefix patterns and suffix patterns of
|
|
* every currency format pattern,
|
|
* including the pattern of default currecny style
|
|
* and plural currency style. And the patterns are set through applyPattern.
|
|
*/
|
|
struct AffixPatternsForCurrency : public UMemory {
|
|
// negative prefix pattern
|
|
UnicodeString negPrefixPatternForCurrency;
|
|
// negative suffix pattern
|
|
UnicodeString negSuffixPatternForCurrency;
|
|
// positive prefix pattern
|
|
UnicodeString posPrefixPatternForCurrency;
|
|
// positive suffix pattern
|
|
UnicodeString posSuffixPatternForCurrency;
|
|
int8_t patternType;
|
|
|
|
AffixPatternsForCurrency(const UnicodeString& negPrefix,
|
|
const UnicodeString& negSuffix,
|
|
const UnicodeString& posPrefix,
|
|
const UnicodeString& posSuffix,
|
|
int8_t type) {
|
|
negPrefixPatternForCurrency = negPrefix;
|
|
negSuffixPatternForCurrency = negSuffix;
|
|
posPrefixPatternForCurrency = posPrefix;
|
|
posSuffixPatternForCurrency = posSuffix;
|
|
patternType = type;
|
|
}
|
|
};
|
|
|
|
/* affix for currency formatting when the currency sign in the pattern
|
|
* equals to 3, such as the pattern contains 3 currency sign or
|
|
* the formatter style is currency plural format style.
|
|
*/
|
|
struct AffixesForCurrency : public UMemory {
|
|
// negative prefix
|
|
UnicodeString negPrefixForCurrency;
|
|
// negative suffix
|
|
UnicodeString negSuffixForCurrency;
|
|
// positive prefix
|
|
UnicodeString posPrefixForCurrency;
|
|
// positive suffix
|
|
UnicodeString posSuffixForCurrency;
|
|
|
|
int32_t formatWidth;
|
|
|
|
AffixesForCurrency(const UnicodeString& negPrefix,
|
|
const UnicodeString& negSuffix,
|
|
const UnicodeString& posPrefix,
|
|
const UnicodeString& posSuffix) {
|
|
negPrefixForCurrency = negPrefix;
|
|
negSuffixForCurrency = negSuffix;
|
|
posPrefixForCurrency = posPrefix;
|
|
posSuffixForCurrency = posSuffix;
|
|
}
|
|
};
|
|
|
|
U_CDECL_BEGIN
|
|
|
|
/**
|
|
* @internal ICU 4.2
|
|
*/
|
|
static UBool U_CALLCONV decimfmtAffixValueComparator(UHashTok val1, UHashTok val2);
|
|
|
|
/**
|
|
* @internal ICU 4.2
|
|
*/
|
|
static UBool U_CALLCONV decimfmtAffixPatternValueComparator(UHashTok val1, UHashTok val2);
|
|
|
|
|
|
static UBool
|
|
U_CALLCONV decimfmtAffixValueComparator(UHashTok val1, UHashTok val2) {
|
|
const AffixesForCurrency* affix_1 =
|
|
(AffixesForCurrency*)val1.pointer;
|
|
const AffixesForCurrency* affix_2 =
|
|
(AffixesForCurrency*)val2.pointer;
|
|
return affix_1->negPrefixForCurrency == affix_2->negPrefixForCurrency &&
|
|
affix_1->negSuffixForCurrency == affix_2->negSuffixForCurrency &&
|
|
affix_1->posPrefixForCurrency == affix_2->posPrefixForCurrency &&
|
|
affix_1->posSuffixForCurrency == affix_2->posSuffixForCurrency;
|
|
}
|
|
|
|
|
|
static UBool
|
|
U_CALLCONV decimfmtAffixPatternValueComparator(UHashTok val1, UHashTok val2) {
|
|
const AffixPatternsForCurrency* affix_1 =
|
|
(AffixPatternsForCurrency*)val1.pointer;
|
|
const AffixPatternsForCurrency* affix_2 =
|
|
(AffixPatternsForCurrency*)val2.pointer;
|
|
return affix_1->negPrefixPatternForCurrency ==
|
|
affix_2->negPrefixPatternForCurrency &&
|
|
affix_1->negSuffixPatternForCurrency ==
|
|
affix_2->negSuffixPatternForCurrency &&
|
|
affix_1->posPrefixPatternForCurrency ==
|
|
affix_2->posPrefixPatternForCurrency &&
|
|
affix_1->posSuffixPatternForCurrency ==
|
|
affix_2->posSuffixPatternForCurrency &&
|
|
affix_1->patternType == affix_2->patternType;
|
|
}
|
|
|
|
U_CDECL_END
|
|
|
|
|
|
//#define FMT_DEBUG
|
|
|
|
#ifdef FMT_DEBUG
|
|
#include <stdio.h>
|
|
static void debugout(UnicodeString s) {
|
|
char buf[2000];
|
|
s.extract((int32_t) 0, s.length(), buf);
|
|
printf("%s\n", buf);
|
|
}
|
|
#define debug(x) printf("%s\n", x);
|
|
#else
|
|
#define debugout(x)
|
|
#define debug(x)
|
|
#endif
|
|
|
|
|
|
|
|
// *****************************************************************************
|
|
// class DecimalFormat
|
|
// *****************************************************************************
|
|
|
|
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(DecimalFormat)
|
|
|
|
// Constants for characters used in programmatic (unlocalized) patterns.
|
|
#define kPatternZeroDigit ((UChar)0x0030) /*'0'*/
|
|
#define kPatternSignificantDigit ((UChar)0x0040) /*'@'*/
|
|
#define kPatternGroupingSeparator ((UChar)0x002C) /*','*/
|
|
#define kPatternDecimalSeparator ((UChar)0x002E) /*'.'*/
|
|
#define kPatternPerMill ((UChar)0x2030)
|
|
#define kPatternPercent ((UChar)0x0025) /*'%'*/
|
|
#define kPatternDigit ((UChar)0x0023) /*'#'*/
|
|
#define kPatternSeparator ((UChar)0x003B) /*';'*/
|
|
#define kPatternExponent ((UChar)0x0045) /*'E'*/
|
|
#define kPatternPlus ((UChar)0x002B) /*'+'*/
|
|
#define kPatternMinus ((UChar)0x002D) /*'-'*/
|
|
#define kPatternPadEscape ((UChar)0x002A) /*'*'*/
|
|
#define kQuote ((UChar)0x0027) /*'\''*/
|
|
/**
|
|
* The CURRENCY_SIGN is the standard Unicode symbol for currency. It
|
|
* is used in patterns and substitued with either the currency symbol,
|
|
* or if it is doubled, with the international currency symbol. If the
|
|
* CURRENCY_SIGN is seen in a pattern, then the decimal separator is
|
|
* replaced with the monetary decimal separator.
|
|
*/
|
|
#define kCurrencySign ((UChar)0x00A4)
|
|
#define kDefaultPad ((UChar)0x0020) /* */
|
|
|
|
const int32_t DecimalFormat::kDoubleIntegerDigits = 309;
|
|
const int32_t DecimalFormat::kDoubleFractionDigits = 340;
|
|
|
|
const int32_t DecimalFormat::kMaxScientificIntegerDigits = 8;
|
|
|
|
/**
|
|
* These are the tags we expect to see in normal resource bundle files associated
|
|
* with a locale.
|
|
*/
|
|
const char DecimalFormat::fgNumberPatterns[]="NumberPatterns"; // Deprecated - not used
|
|
static const char fgNumberElements[]="NumberElements";
|
|
static const char fgLatn[]="latn";
|
|
static const char fgPatterns[]="patterns";
|
|
static const char fgDecimalFormat[]="decimalFormat";
|
|
static const char fgCurrencyFormat[]="currencyFormat";
|
|
static const UChar fgTripleCurrencySign[] = {0xA4, 0xA4, 0xA4, 0};
|
|
|
|
inline int32_t _min(int32_t a, int32_t b) { return (a<b) ? a : b; }
|
|
inline int32_t _max(int32_t a, int32_t b) { return (a<b) ? b : a; }
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Constructs a DecimalFormat instance in the default locale.
|
|
|
|
DecimalFormat::DecimalFormat(UErrorCode& status) {
|
|
init();
|
|
UParseError parseError;
|
|
construct(status, parseError);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Constructs a DecimalFormat instance with the specified number format
|
|
// pattern in the default locale.
|
|
|
|
DecimalFormat::DecimalFormat(const UnicodeString& pattern,
|
|
UErrorCode& status) {
|
|
init();
|
|
UParseError parseError;
|
|
construct(status, parseError, &pattern);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Constructs a DecimalFormat instance with the specified number format
|
|
// pattern and the number format symbols in the default locale. The
|
|
// created instance owns the symbols.
|
|
|
|
DecimalFormat::DecimalFormat(const UnicodeString& pattern,
|
|
DecimalFormatSymbols* symbolsToAdopt,
|
|
UErrorCode& status) {
|
|
init();
|
|
UParseError parseError;
|
|
if (symbolsToAdopt == NULL)
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
construct(status, parseError, &pattern, symbolsToAdopt);
|
|
}
|
|
|
|
DecimalFormat::DecimalFormat( const UnicodeString& pattern,
|
|
DecimalFormatSymbols* symbolsToAdopt,
|
|
UParseError& parseErr,
|
|
UErrorCode& status) {
|
|
init();
|
|
if (symbolsToAdopt == NULL)
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
construct(status,parseErr, &pattern, symbolsToAdopt);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Constructs a DecimalFormat instance with the specified number format
|
|
// pattern and the number format symbols in the default locale. The
|
|
// created instance owns the clone of the symbols.
|
|
|
|
DecimalFormat::DecimalFormat(const UnicodeString& pattern,
|
|
const DecimalFormatSymbols& symbols,
|
|
UErrorCode& status) {
|
|
init();
|
|
UParseError parseError;
|
|
construct(status, parseError, &pattern, new DecimalFormatSymbols(symbols));
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Constructs a DecimalFormat instance with the specified number format
|
|
// pattern, the number format symbols, and the number format style.
|
|
// The created instance owns the clone of the symbols.
|
|
|
|
DecimalFormat::DecimalFormat(const UnicodeString& pattern,
|
|
DecimalFormatSymbols* symbolsToAdopt,
|
|
UNumberFormatStyle style,
|
|
UErrorCode& status) {
|
|
init();
|
|
fStyle = style;
|
|
UParseError parseError;
|
|
construct(status, parseError, &pattern, symbolsToAdopt);
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Common DecimalFormat initialization.
|
|
// Put all fields of an uninitialized object into a known state.
|
|
// Common code, shared by all constructors.
|
|
void
|
|
DecimalFormat::init() {
|
|
fPosPrefixPattern = 0;
|
|
fPosSuffixPattern = 0;
|
|
fNegPrefixPattern = 0;
|
|
fNegSuffixPattern = 0;
|
|
fCurrencyChoice = 0;
|
|
fMultiplier = NULL;
|
|
fGroupingSize = 0;
|
|
fGroupingSize2 = 0;
|
|
fDecimalSeparatorAlwaysShown = FALSE;
|
|
fSymbols = NULL;
|
|
fUseSignificantDigits = FALSE;
|
|
fMinSignificantDigits = 1;
|
|
fMaxSignificantDigits = 6;
|
|
fUseExponentialNotation = FALSE;
|
|
fMinExponentDigits = 0;
|
|
fExponentSignAlwaysShown = FALSE;
|
|
fRoundingIncrement = 0;
|
|
fRoundingMode = kRoundHalfEven;
|
|
fPad = 0;
|
|
fFormatWidth = 0;
|
|
fPadPosition = kPadBeforePrefix;
|
|
fStyle = UNUM_DECIMAL;
|
|
fCurrencySignCount = 0;
|
|
fAffixPatternsForCurrency = NULL;
|
|
fAffixesForCurrency = NULL;
|
|
fPluralAffixesForCurrency = NULL;
|
|
fCurrencyPluralInfo = NULL;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Constructs a DecimalFormat instance with the specified number format
|
|
// pattern and the number format symbols in the desired locale. The
|
|
// created instance owns the symbols.
|
|
|
|
void
|
|
DecimalFormat::construct(UErrorCode& status,
|
|
UParseError& parseErr,
|
|
const UnicodeString* pattern,
|
|
DecimalFormatSymbols* symbolsToAdopt)
|
|
{
|
|
fSymbols = symbolsToAdopt; // Do this BEFORE aborting on status failure!!!
|
|
fRoundingIncrement = NULL;
|
|
fRoundingMode = kRoundHalfEven;
|
|
fPad = kPatternPadEscape;
|
|
fPadPosition = kPadBeforePrefix;
|
|
if (U_FAILURE(status))
|
|
return;
|
|
|
|
fPosPrefixPattern = fPosSuffixPattern = NULL;
|
|
fNegPrefixPattern = fNegSuffixPattern = NULL;
|
|
setMultiplier(1);
|
|
fGroupingSize = 3;
|
|
fGroupingSize2 = 0;
|
|
fDecimalSeparatorAlwaysShown = FALSE;
|
|
fUseExponentialNotation = FALSE;
|
|
fMinExponentDigits = 0;
|
|
|
|
if (fSymbols == NULL)
|
|
{
|
|
fSymbols = new DecimalFormatSymbols(Locale::getDefault(), status);
|
|
/* test for NULL */
|
|
if (fSymbols == 0) {
|
|
status = U_MEMORY_ALLOCATION_ERROR;
|
|
return;
|
|
}
|
|
}
|
|
|
|
UnicodeString str;
|
|
// Uses the default locale's number format pattern if there isn't
|
|
// one specified.
|
|
if (pattern == NULL)
|
|
{
|
|
int32_t len = 0;
|
|
UResourceBundle *resource = ures_open(NULL, Locale::getDefault().getName(), &status);
|
|
|
|
resource = ures_getByKeyWithFallback(resource, fgNumberElements, resource, &status);
|
|
// TODO : Get the pattern based on the active numbering system for the locale. Right now assumes "latn".
|
|
resource = ures_getByKeyWithFallback(resource, fgLatn, resource, &status);
|
|
resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &status);
|
|
const UChar *resStr = ures_getStringByKeyWithFallback(resource, fgDecimalFormat, &len, &status);
|
|
str.setTo(TRUE, resStr, len);
|
|
pattern = &str;
|
|
ures_close(resource);
|
|
}
|
|
|
|
if (U_FAILURE(status))
|
|
{
|
|
return;
|
|
}
|
|
|
|
if (pattern->indexOf((UChar)kCurrencySign) >= 0) {
|
|
// If it looks like we are going to use a currency pattern
|
|
// then do the time consuming lookup.
|
|
setCurrencyForSymbols();
|
|
} else {
|
|
setCurrencyInternally(NULL, status);
|
|
}
|
|
|
|
const UnicodeString* patternUsed;
|
|
UnicodeString currencyPluralPatternForOther;
|
|
// apply pattern
|
|
if (fStyle == UNUM_CURRENCY_PLURAL) {
|
|
fCurrencyPluralInfo = new CurrencyPluralInfo(fSymbols->getLocale(), status);
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
|
|
// the pattern used in format is not fixed until formatting,
|
|
// in which, the number is known and
|
|
// will be used to pick the right pattern based on plural count.
|
|
// Here, set the pattern as the pattern of plural count == "other".
|
|
// For most locale, the patterns are probably the same for all
|
|
// plural count. If not, the right pattern need to be re-applied
|
|
// during format.
|
|
fCurrencyPluralInfo->getCurrencyPluralPattern("other", currencyPluralPatternForOther);
|
|
patternUsed = ¤cyPluralPatternForOther;
|
|
// TODO: not needed?
|
|
setCurrencyForSymbols();
|
|
|
|
} else {
|
|
patternUsed = pattern;
|
|
}
|
|
|
|
if (patternUsed->indexOf(kCurrencySign) != -1) {
|
|
// initialize for currency, not only for plural format,
|
|
// but also for mix parsing
|
|
if (fCurrencyPluralInfo == NULL) {
|
|
fCurrencyPluralInfo = new CurrencyPluralInfo(fSymbols->getLocale(), status);
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
}
|
|
// need it for mix parsing
|
|
setupCurrencyAffixPatterns(status);
|
|
// expanded affixes for plural names
|
|
if (patternUsed->indexOf(fgTripleCurrencySign) != -1) {
|
|
setupCurrencyAffixes(*patternUsed, TRUE, TRUE, status);
|
|
}
|
|
}
|
|
|
|
applyPatternWithoutExpandAffix(*patternUsed,FALSE, parseErr, status);
|
|
|
|
// expand affixes
|
|
if (fCurrencySignCount != fgCurrencySignCountInPluralFormat) {
|
|
expandAffixAdjustWidth(NULL);
|
|
}
|
|
|
|
// If it was a currency format, apply the appropriate rounding by
|
|
// resetting the currency. NOTE: this copies fCurrency on top of itself.
|
|
if (fCurrencySignCount > fgCurrencySignCountZero) {
|
|
setCurrencyInternally(getCurrency(), status);
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
DecimalFormat::setupCurrencyAffixPatterns(UErrorCode& status) {
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
UParseError parseErr;
|
|
fAffixPatternsForCurrency = initHashForAffixPattern(status);
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
|
|
// Save the default currency patterns of this locale.
|
|
// Here, chose onlyApplyPatternWithoutExpandAffix without
|
|
// expanding the affix patterns into affixes.
|
|
UnicodeString currencyPattern;
|
|
UErrorCode error = U_ZERO_ERROR;
|
|
|
|
UResourceBundle *resource = ures_open(NULL, fSymbols->getLocale().getName(), &error);
|
|
resource = ures_getByKeyWithFallback(resource, fgNumberElements, resource, &error);
|
|
// TODO : Get the pattern based on the active numbering system for the locale. Right now assumes "latn".
|
|
resource = ures_getByKeyWithFallback(resource, fgLatn, resource, &error);
|
|
resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &error);
|
|
int32_t patLen = 0;
|
|
const UChar *patResStr = ures_getStringByKeyWithFallback(resource, fgCurrencyFormat, &patLen, &error);
|
|
ures_close(resource);
|
|
|
|
if (U_SUCCESS(error)) {
|
|
applyPatternWithoutExpandAffix(UnicodeString(patResStr, patLen), false,
|
|
parseErr, status);
|
|
AffixPatternsForCurrency* affixPtn = new AffixPatternsForCurrency(
|
|
*fNegPrefixPattern,
|
|
*fNegSuffixPattern,
|
|
*fPosPrefixPattern,
|
|
*fPosSuffixPattern,
|
|
UCURR_SYMBOL_NAME);
|
|
fAffixPatternsForCurrency->put("default", affixPtn, status);
|
|
}
|
|
|
|
// save the unique currency plural patterns of this locale.
|
|
Hashtable* pluralPtn = fCurrencyPluralInfo->fPluralCountToCurrencyUnitPattern;
|
|
const UHashElement* element = NULL;
|
|
int32_t pos = -1;
|
|
Hashtable pluralPatternSet;
|
|
while ((element = pluralPtn->nextElement(pos)) != NULL) {
|
|
const UHashTok valueTok = element->value;
|
|
const UnicodeString* value = (UnicodeString*)valueTok.pointer;
|
|
const UHashTok keyTok = element->key;
|
|
const UnicodeString* key = (UnicodeString*)keyTok.pointer;
|
|
if (pluralPatternSet.geti(*value) != 1) {
|
|
pluralPatternSet.puti(*value, 1, status);
|
|
applyPatternWithoutExpandAffix(*value, false, parseErr, status);
|
|
AffixPatternsForCurrency* affixPtn = new AffixPatternsForCurrency(
|
|
*fNegPrefixPattern,
|
|
*fNegSuffixPattern,
|
|
*fPosPrefixPattern,
|
|
*fPosSuffixPattern,
|
|
UCURR_LONG_NAME);
|
|
fAffixPatternsForCurrency->put(*key, affixPtn, status);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
DecimalFormat::setupCurrencyAffixes(const UnicodeString& pattern,
|
|
UBool setupForCurrentPattern,
|
|
UBool setupForPluralPattern,
|
|
UErrorCode& status) {
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
UParseError parseErr;
|
|
if (setupForCurrentPattern) {
|
|
if (fAffixesForCurrency) {
|
|
deleteHashForAffix(fAffixesForCurrency);
|
|
}
|
|
fAffixesForCurrency = initHashForAffix(status);
|
|
if (U_SUCCESS(status)) {
|
|
applyPatternWithoutExpandAffix(pattern, false, parseErr, status);
|
|
const PluralRules* pluralRules = fCurrencyPluralInfo->getPluralRules();
|
|
StringEnumeration* keywords = pluralRules->getKeywords(status);
|
|
if (U_SUCCESS(status)) {
|
|
const char* pluralCountCh;
|
|
while ((pluralCountCh = keywords->next(NULL, status)) != NULL) {
|
|
if ( U_SUCCESS(status) ) {
|
|
UnicodeString pluralCount = UnicodeString(pluralCountCh);
|
|
expandAffixAdjustWidth(&pluralCount);
|
|
AffixesForCurrency* affix = new AffixesForCurrency(
|
|
fNegativePrefix, fNegativeSuffix, fPositivePrefix, fPositiveSuffix);
|
|
fAffixesForCurrency->put(pluralCount, affix, status);
|
|
}
|
|
}
|
|
}
|
|
delete keywords;
|
|
}
|
|
}
|
|
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
|
|
if (setupForPluralPattern) {
|
|
if (fPluralAffixesForCurrency) {
|
|
deleteHashForAffix(fPluralAffixesForCurrency);
|
|
}
|
|
fPluralAffixesForCurrency = initHashForAffix(status);
|
|
if (U_SUCCESS(status)) {
|
|
const PluralRules* pluralRules = fCurrencyPluralInfo->getPluralRules();
|
|
StringEnumeration* keywords = pluralRules->getKeywords(status);
|
|
if (U_SUCCESS(status)) {
|
|
const char* pluralCountCh;
|
|
while ((pluralCountCh = keywords->next(NULL, status)) != NULL) {
|
|
if ( U_SUCCESS(status) ) {
|
|
UnicodeString pluralCount = UnicodeString(pluralCountCh);
|
|
UnicodeString ptn;
|
|
fCurrencyPluralInfo->getCurrencyPluralPattern(pluralCount, ptn);
|
|
applyPatternInternally(pluralCount, ptn, false, parseErr, status);
|
|
AffixesForCurrency* affix = new AffixesForCurrency(
|
|
fNegativePrefix, fNegativeSuffix, fPositivePrefix, fPositiveSuffix);
|
|
fPluralAffixesForCurrency->put(pluralCount, affix, status);
|
|
}
|
|
}
|
|
}
|
|
delete keywords;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
DecimalFormat::~DecimalFormat()
|
|
{
|
|
delete fPosPrefixPattern;
|
|
delete fPosSuffixPattern;
|
|
delete fNegPrefixPattern;
|
|
delete fNegSuffixPattern;
|
|
delete fCurrencyChoice;
|
|
delete fMultiplier;
|
|
delete fSymbols;
|
|
delete fRoundingIncrement;
|
|
deleteHashForAffixPattern();
|
|
deleteHashForAffix(fAffixesForCurrency);
|
|
deleteHashForAffix(fPluralAffixesForCurrency);
|
|
delete fCurrencyPluralInfo;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// copy constructor
|
|
|
|
DecimalFormat::DecimalFormat(const DecimalFormat &source) :
|
|
NumberFormat(source) {
|
|
init();
|
|
*this = source;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// assignment operator
|
|
|
|
static void _copy_us_ptr(UnicodeString** pdest, const UnicodeString* source) {
|
|
if (source == NULL) {
|
|
delete *pdest;
|
|
*pdest = NULL;
|
|
} else if (*pdest == NULL) {
|
|
*pdest = new UnicodeString(*source);
|
|
} else {
|
|
**pdest = *source;
|
|
}
|
|
}
|
|
|
|
DecimalFormat&
|
|
DecimalFormat::operator=(const DecimalFormat& rhs)
|
|
{
|
|
if(this != &rhs) {
|
|
NumberFormat::operator=(rhs);
|
|
fPositivePrefix = rhs.fPositivePrefix;
|
|
fPositiveSuffix = rhs.fPositiveSuffix;
|
|
fNegativePrefix = rhs.fNegativePrefix;
|
|
fNegativeSuffix = rhs.fNegativeSuffix;
|
|
_copy_us_ptr(&fPosPrefixPattern, rhs.fPosPrefixPattern);
|
|
_copy_us_ptr(&fPosSuffixPattern, rhs.fPosSuffixPattern);
|
|
_copy_us_ptr(&fNegPrefixPattern, rhs.fNegPrefixPattern);
|
|
_copy_us_ptr(&fNegSuffixPattern, rhs.fNegSuffixPattern);
|
|
if (rhs.fCurrencyChoice == 0) {
|
|
delete fCurrencyChoice;
|
|
fCurrencyChoice = 0;
|
|
} else {
|
|
fCurrencyChoice = (ChoiceFormat*) rhs.fCurrencyChoice->clone();
|
|
}
|
|
setRoundingIncrement(rhs.getRoundingIncrement());
|
|
fRoundingMode = rhs.fRoundingMode;
|
|
setMultiplier(rhs.getMultiplier());
|
|
fGroupingSize = rhs.fGroupingSize;
|
|
fGroupingSize2 = rhs.fGroupingSize2;
|
|
fDecimalSeparatorAlwaysShown = rhs.fDecimalSeparatorAlwaysShown;
|
|
if(fSymbols == NULL) {
|
|
fSymbols = new DecimalFormatSymbols(*rhs.fSymbols);
|
|
} else {
|
|
*fSymbols = *rhs.fSymbols;
|
|
}
|
|
fUseExponentialNotation = rhs.fUseExponentialNotation;
|
|
fExponentSignAlwaysShown = rhs.fExponentSignAlwaysShown;
|
|
/*Bertrand A. D. Update 98.03.17*/
|
|
fCurrencySignCount = rhs.fCurrencySignCount;
|
|
/*end of Update*/
|
|
fMinExponentDigits = rhs.fMinExponentDigits;
|
|
|
|
/* sfb 990629 */
|
|
fFormatWidth = rhs.fFormatWidth;
|
|
fPad = rhs.fPad;
|
|
fPadPosition = rhs.fPadPosition;
|
|
/* end sfb */
|
|
fMinSignificantDigits = rhs.fMinSignificantDigits;
|
|
fMaxSignificantDigits = rhs.fMaxSignificantDigits;
|
|
fUseSignificantDigits = rhs.fUseSignificantDigits;
|
|
fFormatPattern = rhs.fFormatPattern;
|
|
fStyle = rhs.fStyle;
|
|
fCurrencySignCount = rhs.fCurrencySignCount;
|
|
if (rhs.fCurrencyPluralInfo) {
|
|
delete fCurrencyPluralInfo;
|
|
fCurrencyPluralInfo = rhs.fCurrencyPluralInfo->clone();
|
|
}
|
|
if (rhs.fAffixPatternsForCurrency) {
|
|
UErrorCode status = U_ZERO_ERROR;
|
|
deleteHashForAffixPattern();
|
|
fAffixPatternsForCurrency = initHashForAffixPattern(status);
|
|
copyHashForAffixPattern(rhs.fAffixPatternsForCurrency,
|
|
fAffixPatternsForCurrency, status);
|
|
}
|
|
if (rhs.fAffixesForCurrency) {
|
|
UErrorCode status = U_ZERO_ERROR;
|
|
deleteHashForAffix(fAffixesForCurrency);
|
|
fAffixesForCurrency = initHashForAffixPattern(status);
|
|
copyHashForAffix(rhs.fAffixesForCurrency, fAffixesForCurrency, status);
|
|
}
|
|
if (rhs.fPluralAffixesForCurrency) {
|
|
UErrorCode status = U_ZERO_ERROR;
|
|
deleteHashForAffix(fPluralAffixesForCurrency);
|
|
fPluralAffixesForCurrency = initHashForAffixPattern(status);
|
|
copyHashForAffix(rhs.fPluralAffixesForCurrency, fPluralAffixesForCurrency, status);
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
UBool
|
|
DecimalFormat::operator==(const Format& that) const
|
|
{
|
|
if (this == &that)
|
|
return TRUE;
|
|
|
|
// NumberFormat::operator== guarantees this cast is safe
|
|
const DecimalFormat* other = (DecimalFormat*)&that;
|
|
|
|
#ifdef FMT_DEBUG
|
|
// This code makes it easy to determine why two format objects that should
|
|
// be equal aren't.
|
|
UBool first = TRUE;
|
|
if (!NumberFormat::operator==(that)) {
|
|
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
|
|
debug("NumberFormat::!=");
|
|
} else {
|
|
if (!((fPosPrefixPattern == other->fPosPrefixPattern && // both null
|
|
fPositivePrefix == other->fPositivePrefix)
|
|
|| (fPosPrefixPattern != 0 && other->fPosPrefixPattern != 0 &&
|
|
*fPosPrefixPattern == *other->fPosPrefixPattern))) {
|
|
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
|
|
debug("Pos Prefix !=");
|
|
}
|
|
if (!((fPosSuffixPattern == other->fPosSuffixPattern && // both null
|
|
fPositiveSuffix == other->fPositiveSuffix)
|
|
|| (fPosSuffixPattern != 0 && other->fPosSuffixPattern != 0 &&
|
|
*fPosSuffixPattern == *other->fPosSuffixPattern))) {
|
|
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
|
|
debug("Pos Suffix !=");
|
|
}
|
|
if (!((fNegPrefixPattern == other->fNegPrefixPattern && // both null
|
|
fNegativePrefix == other->fNegativePrefix)
|
|
|| (fNegPrefixPattern != 0 && other->fNegPrefixPattern != 0 &&
|
|
*fNegPrefixPattern == *other->fNegPrefixPattern))) {
|
|
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
|
|
debug("Neg Prefix ");
|
|
if (fNegPrefixPattern == NULL) {
|
|
debug("NULL(");
|
|
debugout(fNegativePrefix);
|
|
debug(")");
|
|
} else {
|
|
debugout(*fNegPrefixPattern);
|
|
}
|
|
debug(" != ");
|
|
if (other->fNegPrefixPattern == NULL) {
|
|
debug("NULL(");
|
|
debugout(other->fNegativePrefix);
|
|
debug(")");
|
|
} else {
|
|
debugout(*other->fNegPrefixPattern);
|
|
}
|
|
}
|
|
if (!((fNegSuffixPattern == other->fNegSuffixPattern && // both null
|
|
fNegativeSuffix == other->fNegativeSuffix)
|
|
|| (fNegSuffixPattern != 0 && other->fNegSuffixPattern != 0 &&
|
|
*fNegSuffixPattern == *other->fNegSuffixPattern))) {
|
|
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
|
|
debug("Neg Suffix ");
|
|
if (fNegSuffixPattern == NULL) {
|
|
debug("NULL(");
|
|
debugout(fNegativeSuffix);
|
|
debug(")");
|
|
} else {
|
|
debugout(*fNegSuffixPattern);
|
|
}
|
|
debug(" != ");
|
|
if (other->fNegSuffixPattern == NULL) {
|
|
debug("NULL(");
|
|
debugout(other->fNegativeSuffix);
|
|
debug(")");
|
|
} else {
|
|
debugout(*other->fNegSuffixPattern);
|
|
}
|
|
}
|
|
if (!((fRoundingIncrement == other->fRoundingIncrement) // both null
|
|
|| (fRoundingIncrement != NULL &&
|
|
other->fRoundingIncrement != NULL &&
|
|
*fRoundingIncrement == *other->fRoundingIncrement))) {
|
|
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
|
|
debug("Rounding Increment !=");
|
|
}
|
|
if (getMultiplier() != other->getMultiplier()) {
|
|
if (first) { printf("[ "); first = FALSE; }
|
|
printf("Multiplier %ld != %ld", getMultiplier(), other->getMultiplier());
|
|
}
|
|
if (fGroupingSize != other->fGroupingSize) {
|
|
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
|
|
printf("Grouping Size %ld != %ld", fGroupingSize, other->fGroupingSize);
|
|
}
|
|
if (fGroupingSize2 != other->fGroupingSize2) {
|
|
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
|
|
printf("Secondary Grouping Size %ld != %ld", fGroupingSize2, other->fGroupingSize2);
|
|
}
|
|
if (fDecimalSeparatorAlwaysShown != other->fDecimalSeparatorAlwaysShown) {
|
|
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
|
|
printf("Dec Sep Always %d != %d", fDecimalSeparatorAlwaysShown, other->fDecimalSeparatorAlwaysShown);
|
|
}
|
|
if (fUseExponentialNotation != other->fUseExponentialNotation) {
|
|
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
|
|
debug("Use Exp !=");
|
|
}
|
|
if (!(!fUseExponentialNotation ||
|
|
fMinExponentDigits != other->fMinExponentDigits)) {
|
|
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
|
|
debug("Exp Digits !=");
|
|
}
|
|
if (*fSymbols != *(other->fSymbols)) {
|
|
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
|
|
debug("Symbols !=");
|
|
}
|
|
// TODO Add debug stuff for significant digits here
|
|
if (fUseSignificantDigits != other->fUseSignificantDigits) {
|
|
debug("fUseSignificantDigits !=");
|
|
}
|
|
if (fUseSignificantDigits &&
|
|
fMinSignificantDigits != other->fMinSignificantDigits) {
|
|
debug("fMinSignificantDigits !=");
|
|
}
|
|
if (fUseSignificantDigits &&
|
|
fMaxSignificantDigits != other->fMaxSignificantDigits) {
|
|
debug("fMaxSignificantDigits !=");
|
|
}
|
|
|
|
if (!first) { printf(" ]"); }
|
|
if (fCurrencySignCount != other->fCurrencySignCount) {
|
|
debug("fCurrencySignCount !=");
|
|
}
|
|
if (fCurrencyPluralInfo == other->fCurrencyPluralInfo) {
|
|
debug("fCurrencyPluralInfo == ");
|
|
if (fCurrencyPluralInfo == NULL) {
|
|
debug("fCurrencyPluralInfo == NULL");
|
|
}
|
|
}
|
|
if (fCurrencyPluralInfo != NULL && other->fCurrencyPluralInfo != NULL &&
|
|
*fCurrencyPluralInfo != *(other->fCurrencyPluralInfo)) {
|
|
debug("fCurrencyPluralInfo !=");
|
|
}
|
|
if (fCurrencyPluralInfo != NULL && other->fCurrencyPluralInfo == NULL ||
|
|
fCurrencyPluralInfo == NULL && other->fCurrencyPluralInfo != NULL) {
|
|
debug("fCurrencyPluralInfo one NULL, the other not");
|
|
}
|
|
if (fCurrencyPluralInfo == NULL && other->fCurrencyPluralInfo == NULL) {
|
|
debug("fCurrencyPluralInfo == ");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return (NumberFormat::operator==(that) &&
|
|
((fCurrencySignCount == fgCurrencySignCountInPluralFormat) ?
|
|
(fAffixPatternsForCurrency->equals(*other->fAffixPatternsForCurrency)) :
|
|
(((fPosPrefixPattern == other->fPosPrefixPattern && // both null
|
|
fPositivePrefix == other->fPositivePrefix)
|
|
|| (fPosPrefixPattern != 0 && other->fPosPrefixPattern != 0 &&
|
|
*fPosPrefixPattern == *other->fPosPrefixPattern)) &&
|
|
((fPosSuffixPattern == other->fPosSuffixPattern && // both null
|
|
fPositiveSuffix == other->fPositiveSuffix)
|
|
|| (fPosSuffixPattern != 0 && other->fPosSuffixPattern != 0 &&
|
|
*fPosSuffixPattern == *other->fPosSuffixPattern)) &&
|
|
((fNegPrefixPattern == other->fNegPrefixPattern && // both null
|
|
fNegativePrefix == other->fNegativePrefix)
|
|
|| (fNegPrefixPattern != 0 && other->fNegPrefixPattern != 0 &&
|
|
*fNegPrefixPattern == *other->fNegPrefixPattern)) &&
|
|
((fNegSuffixPattern == other->fNegSuffixPattern && // both null
|
|
fNegativeSuffix == other->fNegativeSuffix)
|
|
|| (fNegSuffixPattern != 0 && other->fNegSuffixPattern != 0 &&
|
|
*fNegSuffixPattern == *other->fNegSuffixPattern)))) &&
|
|
((fRoundingIncrement == other->fRoundingIncrement) // both null
|
|
|| (fRoundingIncrement != NULL &&
|
|
other->fRoundingIncrement != NULL &&
|
|
*fRoundingIncrement == *other->fRoundingIncrement)) &&
|
|
getMultiplier() == other->getMultiplier() &&
|
|
fGroupingSize == other->fGroupingSize &&
|
|
fGroupingSize2 == other->fGroupingSize2 &&
|
|
fDecimalSeparatorAlwaysShown == other->fDecimalSeparatorAlwaysShown &&
|
|
fUseExponentialNotation == other->fUseExponentialNotation &&
|
|
(!fUseExponentialNotation ||
|
|
fMinExponentDigits == other->fMinExponentDigits) &&
|
|
*fSymbols == *(other->fSymbols) &&
|
|
fUseSignificantDigits == other->fUseSignificantDigits &&
|
|
(!fUseSignificantDigits ||
|
|
(fMinSignificantDigits == other->fMinSignificantDigits &&
|
|
fMaxSignificantDigits == other->fMaxSignificantDigits)) &&
|
|
fCurrencySignCount == other->fCurrencySignCount &&
|
|
((fCurrencyPluralInfo == other->fCurrencyPluralInfo &&
|
|
fCurrencyPluralInfo == NULL) ||
|
|
(fCurrencyPluralInfo != NULL && other->fCurrencyPluralInfo != NULL &&
|
|
*fCurrencyPluralInfo == *(other->fCurrencyPluralInfo))));
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
Format*
|
|
DecimalFormat::clone() const
|
|
{
|
|
return new DecimalFormat(*this);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
UnicodeString&
|
|
DecimalFormat::format(int32_t number,
|
|
UnicodeString& appendTo,
|
|
FieldPosition& fieldPosition) const
|
|
{
|
|
return format((int64_t)number, appendTo, fieldPosition);
|
|
}
|
|
|
|
UnicodeString&
|
|
DecimalFormat::format(int32_t number,
|
|
UnicodeString& appendTo,
|
|
FieldPositionIterator* posIter,
|
|
UErrorCode& status) const
|
|
{
|
|
return format((int64_t)number, appendTo, posIter, status);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
UnicodeString&
|
|
DecimalFormat::format(int64_t number,
|
|
UnicodeString& appendTo,
|
|
FieldPosition& fieldPosition) const
|
|
{
|
|
FieldPositionOnlyHandler handler(fieldPosition);
|
|
return _format(number, appendTo, handler);
|
|
}
|
|
|
|
UnicodeString&
|
|
DecimalFormat::format(int64_t number,
|
|
UnicodeString& appendTo,
|
|
FieldPositionIterator* posIter,
|
|
UErrorCode& status) const
|
|
{
|
|
FieldPositionIteratorHandler handler(posIter, status);
|
|
return _format(number, appendTo, handler);
|
|
}
|
|
|
|
UnicodeString&
|
|
DecimalFormat::_format(int64_t number,
|
|
UnicodeString& appendTo,
|
|
FieldPositionHandler& handler) const
|
|
{
|
|
UErrorCode status = U_ZERO_ERROR;
|
|
DigitList digits;
|
|
digits.set(number);
|
|
return _format(digits, appendTo, handler, status);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
UnicodeString&
|
|
DecimalFormat::format( double number,
|
|
UnicodeString& appendTo,
|
|
FieldPosition& fieldPosition) const
|
|
{
|
|
FieldPositionOnlyHandler handler(fieldPosition);
|
|
return _format(number, appendTo, handler);
|
|
}
|
|
|
|
UnicodeString&
|
|
DecimalFormat::format( double number,
|
|
UnicodeString& appendTo,
|
|
FieldPositionIterator* posIter,
|
|
UErrorCode& status) const
|
|
{
|
|
FieldPositionIteratorHandler handler(posIter, status);
|
|
return _format(number, appendTo, handler);
|
|
}
|
|
|
|
UnicodeString&
|
|
DecimalFormat::_format( double number,
|
|
UnicodeString& appendTo,
|
|
FieldPositionHandler& handler) const
|
|
{
|
|
// Special case for NaN, sets the begin and end index to be the
|
|
// the string length of localized name of NaN.
|
|
// TODO: let NaNs go through DigitList.
|
|
if (uprv_isNaN(number))
|
|
{
|
|
int begin = appendTo.length();
|
|
appendTo += getConstSymbol(DecimalFormatSymbols::kNaNSymbol);
|
|
|
|
handler.addAttribute(kIntegerField, begin, appendTo.length());
|
|
|
|
addPadding(appendTo, handler, 0, 0);
|
|
return appendTo;
|
|
}
|
|
|
|
UErrorCode status = U_ZERO_ERROR;
|
|
DigitList digits;
|
|
digits.set(number);
|
|
_format(digits, appendTo, handler, status);
|
|
// No way to return status from here.
|
|
return appendTo;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
UnicodeString&
|
|
DecimalFormat::format(const StringPiece &number,
|
|
UnicodeString &toAppendTo,
|
|
FieldPositionIterator *posIter,
|
|
UErrorCode &status) const
|
|
{
|
|
DigitList dnum;
|
|
dnum.set(number, status);
|
|
if (U_FAILURE(status)) {
|
|
return toAppendTo;
|
|
}
|
|
FieldPositionIteratorHandler handler(posIter, status);
|
|
_format(dnum, toAppendTo, handler, status);
|
|
return toAppendTo;
|
|
}
|
|
|
|
|
|
UnicodeString&
|
|
DecimalFormat::format(const DigitList &number,
|
|
UnicodeString &appendTo,
|
|
FieldPositionIterator *posIter,
|
|
UErrorCode &status) const {
|
|
FieldPositionIteratorHandler handler(posIter, status);
|
|
_format(number, appendTo, handler, status);
|
|
return appendTo;
|
|
}
|
|
|
|
|
|
|
|
UnicodeString&
|
|
DecimalFormat::format(const DigitList &number,
|
|
UnicodeString& appendTo,
|
|
FieldPosition& pos,
|
|
UErrorCode &status) const {
|
|
FieldPositionOnlyHandler handler(pos);
|
|
_format(number, appendTo, handler, status);
|
|
return appendTo;
|
|
}
|
|
|
|
|
|
|
|
UnicodeString&
|
|
DecimalFormat::_format(const DigitList &number,
|
|
UnicodeString& appendTo,
|
|
FieldPositionHandler& handler,
|
|
UErrorCode &status) const
|
|
{
|
|
// Special case for NaN, sets the begin and end index to be the
|
|
// the string length of localized name of NaN.
|
|
if (number.isNaN())
|
|
{
|
|
int begin = appendTo.length();
|
|
appendTo += getConstSymbol(DecimalFormatSymbols::kNaNSymbol);
|
|
|
|
handler.addAttribute(kIntegerField, begin, appendTo.length());
|
|
|
|
addPadding(appendTo, handler, 0, 0);
|
|
return appendTo;
|
|
}
|
|
|
|
// Do this BEFORE checking to see if value is infinite or negative! Sets the
|
|
// begin and end index to be length of the string composed of
|
|
// localized name of Infinite and the positive/negative localized
|
|
// signs.
|
|
|
|
DigitList adjustedNum(number); // Copy, so we do not alter the original.
|
|
adjustedNum.setRoundingMode(fRoundingMode);
|
|
if (fMultiplier != NULL) {
|
|
adjustedNum.mult(*fMultiplier, status);
|
|
}
|
|
|
|
/*
|
|
* Note: sign is important for zero as well as non-zero numbers.
|
|
* Proper detection of -0.0 is needed to deal with the
|
|
* issues raised by bugs 4106658, 4106667, and 4147706. Liu 7/6/98.
|
|
*/
|
|
UBool isNegative = !adjustedNum.isPositive();
|
|
|
|
// Apply rounding after multiplier
|
|
|
|
adjustedNum.fContext.status &= ~DEC_Inexact;
|
|
if (fRoundingIncrement != NULL) {
|
|
adjustedNum.div(*fRoundingIncrement, status);
|
|
adjustedNum.toIntegralValue();
|
|
adjustedNum.mult(*fRoundingIncrement, status);
|
|
adjustedNum.trim();
|
|
}
|
|
if (fRoundingMode == kRoundUnnecessary && (adjustedNum.fContext.status & DEC_Inexact)) {
|
|
status = U_FORMAT_INEXACT_ERROR;
|
|
return appendTo;
|
|
}
|
|
|
|
|
|
// Special case for INFINITE,
|
|
if (adjustedNum.isInfinite()) {
|
|
int32_t prefixLen = appendAffix(appendTo, adjustedNum.getDouble(), handler, isNegative, TRUE);
|
|
|
|
int begin = appendTo.length();
|
|
appendTo += getConstSymbol(DecimalFormatSymbols::kInfinitySymbol);
|
|
|
|
handler.addAttribute(kIntegerField, begin, appendTo.length());
|
|
|
|
int32_t suffixLen = appendAffix(appendTo, adjustedNum.getDouble(), handler, isNegative, FALSE);
|
|
|
|
addPadding(appendTo, handler, prefixLen, suffixLen);
|
|
return appendTo;
|
|
}
|
|
|
|
if (fUseExponentialNotation || areSignificantDigitsUsed()) {
|
|
int32_t sigDigits = precision();
|
|
if (sigDigits > 0) {
|
|
adjustedNum.round(sigDigits);
|
|
}
|
|
} else {
|
|
// Fixed point format. Round to a set number of fraction digits.
|
|
int32_t numFractionDigits = precision();
|
|
adjustedNum.roundFixedPoint(numFractionDigits);
|
|
}
|
|
if (fRoundingMode == kRoundUnnecessary && (adjustedNum.fContext.status & DEC_Inexact)) {
|
|
status = U_FORMAT_INEXACT_ERROR;
|
|
return appendTo;
|
|
}
|
|
|
|
return subformat(appendTo, handler, adjustedNum, FALSE);
|
|
}
|
|
|
|
|
|
UnicodeString&
|
|
DecimalFormat::format( const Formattable& obj,
|
|
UnicodeString& appendTo,
|
|
FieldPosition& fieldPosition,
|
|
UErrorCode& status) const
|
|
{
|
|
return NumberFormat::format(obj, appendTo, fieldPosition, status);
|
|
}
|
|
|
|
/**
|
|
* Return true if a grouping separator belongs at the given
|
|
* position, based on whether grouping is in use and the values of
|
|
* the primary and secondary grouping interval.
|
|
* @param pos the number of integer digits to the right of
|
|
* the current position. Zero indicates the position after the
|
|
* rightmost integer digit.
|
|
* @return true if a grouping character belongs at the current
|
|
* position.
|
|
*/
|
|
UBool DecimalFormat::isGroupingPosition(int32_t pos) const {
|
|
UBool result = FALSE;
|
|
if (isGroupingUsed() && (pos > 0) && (fGroupingSize > 0)) {
|
|
if ((fGroupingSize2 > 0) && (pos > fGroupingSize)) {
|
|
result = ((pos - fGroupingSize) % fGroupingSize2) == 0;
|
|
} else {
|
|
result = pos % fGroupingSize == 0;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
/**
|
|
* Complete the formatting of a finite number. On entry, the DigitList must
|
|
* be filled in with the correct digits.
|
|
*/
|
|
UnicodeString&
|
|
DecimalFormat::subformat(UnicodeString& appendTo,
|
|
FieldPositionHandler& handler,
|
|
DigitList& digits,
|
|
UBool isInteger) const
|
|
{
|
|
// char zero = '0';
|
|
// DigitList returns digits as '0' thru '9', so we will need to
|
|
// always need to subtract the character 0 to get the numeric value to use for indexing.
|
|
|
|
UChar32 localizedDigits[10];
|
|
localizedDigits[0] = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
|
|
localizedDigits[1] = getConstSymbol(DecimalFormatSymbols::kOneDigitSymbol).char32At(0);
|
|
localizedDigits[2] = getConstSymbol(DecimalFormatSymbols::kTwoDigitSymbol).char32At(0);
|
|
localizedDigits[3] = getConstSymbol(DecimalFormatSymbols::kThreeDigitSymbol).char32At(0);
|
|
localizedDigits[4] = getConstSymbol(DecimalFormatSymbols::kFourDigitSymbol).char32At(0);
|
|
localizedDigits[5] = getConstSymbol(DecimalFormatSymbols::kFiveDigitSymbol).char32At(0);
|
|
localizedDigits[6] = getConstSymbol(DecimalFormatSymbols::kSixDigitSymbol).char32At(0);
|
|
localizedDigits[7] = getConstSymbol(DecimalFormatSymbols::kSevenDigitSymbol).char32At(0);
|
|
localizedDigits[8] = getConstSymbol(DecimalFormatSymbols::kEightDigitSymbol).char32At(0);
|
|
localizedDigits[9] = getConstSymbol(DecimalFormatSymbols::kNineDigitSymbol).char32At(0);
|
|
|
|
const UnicodeString *grouping ;
|
|
if(fCurrencySignCount > fgCurrencySignCountZero) {
|
|
grouping = &getConstSymbol(DecimalFormatSymbols::kMonetaryGroupingSeparatorSymbol);
|
|
}else{
|
|
grouping = &getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol);
|
|
}
|
|
const UnicodeString *decimal;
|
|
if(fCurrencySignCount > fgCurrencySignCountZero) {
|
|
decimal = &getConstSymbol(DecimalFormatSymbols::kMonetarySeparatorSymbol);
|
|
} else {
|
|
decimal = &getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
|
|
}
|
|
UBool useSigDig = areSignificantDigitsUsed();
|
|
int32_t maxIntDig = getMaximumIntegerDigits();
|
|
int32_t minIntDig = getMinimumIntegerDigits();
|
|
|
|
// Appends the prefix.
|
|
double doubleValue = digits.getDouble();
|
|
int32_t prefixLen = appendAffix(appendTo, doubleValue, handler, !digits.isPositive(), TRUE);
|
|
|
|
if (fUseExponentialNotation)
|
|
{
|
|
int currentLength = appendTo.length();
|
|
int intBegin = currentLength;
|
|
int intEnd = -1;
|
|
int fracBegin = -1;
|
|
|
|
int32_t minFracDig = 0;
|
|
if (useSigDig) {
|
|
maxIntDig = minIntDig = 1;
|
|
minFracDig = getMinimumSignificantDigits() - 1;
|
|
} else {
|
|
minFracDig = getMinimumFractionDigits();
|
|
if (maxIntDig > kMaxScientificIntegerDigits) {
|
|
maxIntDig = 1;
|
|
if (maxIntDig < minIntDig) {
|
|
maxIntDig = minIntDig;
|
|
}
|
|
}
|
|
if (maxIntDig > minIntDig) {
|
|
minIntDig = 1;
|
|
}
|
|
}
|
|
|
|
// Minimum integer digits are handled in exponential format by
|
|
// adjusting the exponent. For example, 0.01234 with 3 minimum
|
|
// integer digits is "123.4E-4".
|
|
|
|
// Maximum integer digits are interpreted as indicating the
|
|
// repeating range. This is useful for engineering notation, in
|
|
// which the exponent is restricted to a multiple of 3. For
|
|
// example, 0.01234 with 3 maximum integer digits is "12.34e-3".
|
|
// If maximum integer digits are defined and are larger than
|
|
// minimum integer digits, then minimum integer digits are
|
|
// ignored.
|
|
digits.reduce(); // Removes trailing zero digits.
|
|
int32_t exponent = digits.getDecimalAt();
|
|
if (maxIntDig > 1 && maxIntDig != minIntDig) {
|
|
// A exponent increment is defined; adjust to it.
|
|
exponent = (exponent > 0) ? (exponent - 1) / maxIntDig
|
|
: (exponent / maxIntDig) - 1;
|
|
exponent *= maxIntDig;
|
|
} else {
|
|
// No exponent increment is defined; use minimum integer digits.
|
|
// If none is specified, as in "#E0", generate 1 integer digit.
|
|
exponent -= (minIntDig > 0 || minFracDig > 0)
|
|
? minIntDig : 1;
|
|
}
|
|
|
|
// We now output a minimum number of digits, and more if there
|
|
// are more digits, up to the maximum number of digits. We
|
|
// place the decimal point after the "integer" digits, which
|
|
// are the first (decimalAt - exponent) digits.
|
|
int32_t minimumDigits = minIntDig + minFracDig;
|
|
// The number of integer digits is handled specially if the number
|
|
// is zero, since then there may be no digits.
|
|
int32_t integerDigits = digits.isZero() ? minIntDig :
|
|
digits.getDecimalAt() - exponent;
|
|
int32_t totalDigits = digits.getCount();
|
|
if (minimumDigits > totalDigits)
|
|
totalDigits = minimumDigits;
|
|
if (integerDigits > totalDigits)
|
|
totalDigits = integerDigits;
|
|
|
|
// totalDigits records total number of digits needs to be processed
|
|
int32_t i;
|
|
for (i=0; i<totalDigits; ++i)
|
|
{
|
|
if (i == integerDigits)
|
|
{
|
|
intEnd = appendTo.length();
|
|
handler.addAttribute(kIntegerField, intBegin, intEnd);
|
|
|
|
appendTo += *decimal;
|
|
|
|
fracBegin = appendTo.length();
|
|
handler.addAttribute(kDecimalSeparatorField, fracBegin - 1, fracBegin);
|
|
}
|
|
// Restores the digit character or pads the buffer with zeros.
|
|
UChar32 c = (UChar32)((i < digits.getCount()) ?
|
|
localizedDigits[digits.getDigitValue(i)] :
|
|
localizedDigits[0]);
|
|
appendTo += c;
|
|
}
|
|
|
|
currentLength = appendTo.length();
|
|
|
|
if (intEnd < 0) {
|
|
handler.addAttribute(kIntegerField, intBegin, currentLength);
|
|
}
|
|
if (fracBegin > 0) {
|
|
handler.addAttribute(kFractionField, fracBegin, currentLength);
|
|
}
|
|
|
|
// The exponent is output using the pattern-specified minimum
|
|
// exponent digits. There is no maximum limit to the exponent
|
|
// digits, since truncating the exponent would appendTo in an
|
|
// unacceptable inaccuracy.
|
|
appendTo += getConstSymbol(DecimalFormatSymbols::kExponentialSymbol);
|
|
|
|
handler.addAttribute(kExponentSymbolField, currentLength, appendTo.length());
|
|
currentLength = appendTo.length();
|
|
|
|
// For zero values, we force the exponent to zero. We
|
|
// must do this here, and not earlier, because the value
|
|
// is used to determine integer digit count above.
|
|
if (digits.isZero())
|
|
exponent = 0;
|
|
|
|
if (exponent < 0) {
|
|
appendTo += getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
|
|
handler.addAttribute(kExponentSignField, currentLength, appendTo.length());
|
|
} else if (fExponentSignAlwaysShown) {
|
|
appendTo += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
|
|
handler.addAttribute(kExponentSignField, currentLength, appendTo.length());
|
|
}
|
|
|
|
currentLength = appendTo.length();
|
|
|
|
DigitList expDigits;
|
|
expDigits.set(exponent);
|
|
{
|
|
int expDig = fMinExponentDigits;
|
|
if (fUseExponentialNotation && expDig < 1) {
|
|
expDig = 1;
|
|
}
|
|
for (i=expDigits.getDecimalAt(); i<expDig; ++i)
|
|
appendTo += (localizedDigits[0]);
|
|
}
|
|
for (i=0; i<expDigits.getDecimalAt(); ++i)
|
|
{
|
|
UChar32 c = (UChar32)((i < expDigits.getCount()) ?
|
|
localizedDigits[expDigits.getDigitValue(i)] :
|
|
localizedDigits[0]);
|
|
appendTo += c;
|
|
}
|
|
|
|
handler.addAttribute(kExponentField, currentLength, appendTo.length());
|
|
}
|
|
else // Not using exponential notation
|
|
{
|
|
int currentLength = appendTo.length();
|
|
int intBegin = currentLength;
|
|
|
|
int32_t sigCount = 0;
|
|
int32_t minSigDig = getMinimumSignificantDigits();
|
|
int32_t maxSigDig = getMaximumSignificantDigits();
|
|
if (!useSigDig) {
|
|
minSigDig = 0;
|
|
maxSigDig = INT32_MAX;
|
|
}
|
|
|
|
// Output the integer portion. Here 'count' is the total
|
|
// number of integer digits we will display, including both
|
|
// leading zeros required to satisfy getMinimumIntegerDigits,
|
|
// and actual digits present in the number.
|
|
int32_t count = useSigDig ?
|
|
_max(1, digits.getDecimalAt()) : minIntDig;
|
|
if (digits.getDecimalAt() > 0 && count < digits.getDecimalAt()) {
|
|
count = digits.getDecimalAt();
|
|
}
|
|
|
|
// Handle the case where getMaximumIntegerDigits() is smaller
|
|
// than the real number of integer digits. If this is so, we
|
|
// output the least significant max integer digits. For example,
|
|
// the value 1997 printed with 2 max integer digits is just "97".
|
|
|
|
int32_t digitIndex = 0; // Index into digitList.fDigits[]
|
|
if (count > maxIntDig && maxIntDig >= 0) {
|
|
count = maxIntDig;
|
|
digitIndex = digits.getDecimalAt() - count;
|
|
}
|
|
|
|
int32_t sizeBeforeIntegerPart = appendTo.length();
|
|
|
|
int32_t i;
|
|
for (i=count-1; i>=0; --i)
|
|
{
|
|
if (i < digits.getDecimalAt() && digitIndex < digits.getCount() &&
|
|
sigCount < maxSigDig) {
|
|
// Output a real digit
|
|
appendTo += (UChar32)localizedDigits[digits.getDigitValue(digitIndex++)];
|
|
++sigCount;
|
|
}
|
|
else
|
|
{
|
|
// Output a zero (leading or trailing)
|
|
appendTo += localizedDigits[0];
|
|
if (sigCount > 0) {
|
|
++sigCount;
|
|
}
|
|
}
|
|
|
|
// Output grouping separator if necessary.
|
|
if (isGroupingPosition(i)) {
|
|
currentLength = appendTo.length();
|
|
appendTo.append(*grouping);
|
|
handler.addAttribute(kGroupingSeparatorField, currentLength, appendTo.length());
|
|
}
|
|
}
|
|
|
|
// TODO(dlf): this looks like it was a bug, we marked the int field as ending
|
|
// before the zero was generated.
|
|
// Record field information for caller.
|
|
// if (fieldPosition.getField() == NumberFormat::kIntegerField)
|
|
// fieldPosition.setEndIndex(appendTo.length());
|
|
|
|
// Determine whether or not there are any printable fractional
|
|
// digits. If we've used up the digits we know there aren't.
|
|
UBool fractionPresent = (!isInteger && digitIndex < digits.getCount()) ||
|
|
(useSigDig ? (sigCount < minSigDig) : (getMinimumFractionDigits() > 0));
|
|
|
|
// If there is no fraction present, and we haven't printed any
|
|
// integer digits, then print a zero. Otherwise we won't print
|
|
// _any_ digits, and we won't be able to parse this string.
|
|
if (!fractionPresent && appendTo.length() == sizeBeforeIntegerPart)
|
|
appendTo += localizedDigits[0];
|
|
|
|
currentLength = appendTo.length();
|
|
handler.addAttribute(kIntegerField, intBegin, currentLength);
|
|
|
|
// Output the decimal separator if we always do so.
|
|
if (fDecimalSeparatorAlwaysShown || fractionPresent) {
|
|
appendTo += *decimal;
|
|
handler.addAttribute(kDecimalSeparatorField, currentLength, appendTo.length());
|
|
currentLength = appendTo.length();
|
|
}
|
|
|
|
int fracBegin = currentLength;
|
|
|
|
count = useSigDig ? INT32_MAX : getMaximumFractionDigits();
|
|
if (useSigDig && (sigCount == maxSigDig ||
|
|
(sigCount >= minSigDig && digitIndex == digits.getCount()))) {
|
|
count = 0;
|
|
}
|
|
|
|
for (i=0; i < count; ++i) {
|
|
// Here is where we escape from the loop. We escape
|
|
// if we've output the maximum fraction digits
|
|
// (specified in the for expression above). We also
|
|
// stop when we've output the minimum digits and
|
|
// either: we have an integer, so there is no
|
|
// fractional stuff to display, or we're out of
|
|
// significant digits.
|
|
if (!useSigDig && i >= getMinimumFractionDigits() &&
|
|
(isInteger || digitIndex >= digits.getCount())) {
|
|
break;
|
|
}
|
|
|
|
// Output leading fractional zeros. These are zeros
|
|
// that come after the decimal but before any
|
|
// significant digits. These are only output if
|
|
// abs(number being formatted) < 1.0.
|
|
if (-1-i > (digits.getDecimalAt()-1)) {
|
|
appendTo += localizedDigits[0];
|
|
continue;
|
|
}
|
|
|
|
// Output a digit, if we have any precision left, or a
|
|
// zero if we don't. We don't want to output noise digits.
|
|
if (!isInteger && digitIndex < digits.getCount()) {
|
|
appendTo += (UChar32)localizedDigits[digits.getDigitValue(digitIndex++)];
|
|
} else {
|
|
appendTo += localizedDigits[0];
|
|
}
|
|
|
|
// If we reach the maximum number of significant
|
|
// digits, or if we output all the real digits and
|
|
// reach the minimum, then we are done.
|
|
++sigCount;
|
|
if (useSigDig &&
|
|
(sigCount == maxSigDig ||
|
|
(digitIndex == digits.getCount() && sigCount >= minSigDig))) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
handler.addAttribute(kFractionField, fracBegin, appendTo.length());
|
|
}
|
|
|
|
int32_t suffixLen = appendAffix(appendTo, doubleValue, handler, !digits.isPositive(), FALSE);
|
|
|
|
addPadding(appendTo, handler, prefixLen, suffixLen);
|
|
return appendTo;
|
|
}
|
|
|
|
/**
|
|
* Inserts the character fPad as needed to expand result to fFormatWidth.
|
|
* @param result the string to be padded
|
|
*/
|
|
void DecimalFormat::addPadding(UnicodeString& appendTo,
|
|
FieldPositionHandler& handler,
|
|
int32_t prefixLen,
|
|
int32_t suffixLen) const
|
|
{
|
|
if (fFormatWidth > 0) {
|
|
int32_t len = fFormatWidth - appendTo.length();
|
|
if (len > 0) {
|
|
UnicodeString padding;
|
|
for (int32_t i=0; i<len; ++i) {
|
|
padding += fPad;
|
|
}
|
|
switch (fPadPosition) {
|
|
case kPadAfterPrefix:
|
|
appendTo.insert(prefixLen, padding);
|
|
break;
|
|
case kPadBeforePrefix:
|
|
appendTo.insert(0, padding);
|
|
break;
|
|
case kPadBeforeSuffix:
|
|
appendTo.insert(appendTo.length() - suffixLen, padding);
|
|
break;
|
|
case kPadAfterSuffix:
|
|
appendTo += padding;
|
|
break;
|
|
}
|
|
if (fPadPosition == kPadBeforePrefix || fPadPosition == kPadAfterPrefix) {
|
|
handler.shiftLast(len);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
void
|
|
DecimalFormat::parse(const UnicodeString& text,
|
|
Formattable& result,
|
|
UErrorCode& status) const
|
|
{
|
|
NumberFormat::parse(text, result, status);
|
|
}
|
|
|
|
void
|
|
DecimalFormat::parse(const UnicodeString& text,
|
|
Formattable& result,
|
|
ParsePosition& parsePosition) const {
|
|
parse(text, result, parsePosition, FALSE);
|
|
}
|
|
|
|
Formattable& DecimalFormat::parseCurrency(const UnicodeString& text,
|
|
Formattable& result,
|
|
ParsePosition& pos) const {
|
|
parse(text, result, pos, TRUE);
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Parses the given text as either a number or a currency amount.
|
|
* @param text the string to parse
|
|
* @param result output parameter for the result
|
|
* @param parsePosition input-output position; on input, the
|
|
* position within text to match; must have 0 <= pos.getIndex() <
|
|
* text.length(); on output, the position after the last matched
|
|
* character. If the parse fails, the position in unchanged upon
|
|
* output.
|
|
* @param parseCurrency if true, a currency amount is parsed;
|
|
* otherwise a Number is parsed
|
|
*/
|
|
void DecimalFormat::parse(const UnicodeString& text,
|
|
Formattable& result,
|
|
ParsePosition& parsePosition,
|
|
UBool parseCurrency) const {
|
|
int32_t backup;
|
|
int32_t i = backup = parsePosition.getIndex();
|
|
|
|
// clear any old contents in the result. In particular, clears any DigitList
|
|
// that it may be holding.
|
|
result.setLong(0);
|
|
|
|
// Handle NaN as a special case:
|
|
|
|
// Skip padding characters, if around prefix
|
|
if (fFormatWidth > 0 && (fPadPosition == kPadBeforePrefix ||
|
|
fPadPosition == kPadAfterPrefix)) {
|
|
i = skipPadding(text, i);
|
|
}
|
|
|
|
if (isLenient()) {
|
|
// skip any leading whitespace
|
|
i = backup = skipUWhiteSpace(text, i);
|
|
}
|
|
|
|
// If the text is composed of the representation of NaN, returns NaN.length
|
|
const UnicodeString *nan = &getConstSymbol(DecimalFormatSymbols::kNaNSymbol);
|
|
int32_t nanLen = (text.compare(i, nan->length(), *nan)
|
|
? 0 : nan->length());
|
|
if (nanLen) {
|
|
i += nanLen;
|
|
if (fFormatWidth > 0 && (fPadPosition == kPadBeforeSuffix ||
|
|
fPadPosition == kPadAfterSuffix)) {
|
|
i = skipPadding(text, i);
|
|
}
|
|
parsePosition.setIndex(i);
|
|
result.setDouble(uprv_getNaN());
|
|
return;
|
|
}
|
|
|
|
// NaN parse failed; start over
|
|
i = backup;
|
|
parsePosition.setIndex(i);
|
|
|
|
// status is used to record whether a number is infinite.
|
|
UBool status[fgStatusLength];
|
|
UChar curbuf[4];
|
|
UChar* currency = parseCurrency ? curbuf : NULL;
|
|
DigitList *digits = new DigitList;
|
|
if (digits == NULL) {
|
|
return; // no way to report error from here.
|
|
}
|
|
|
|
if (fCurrencySignCount > fgCurrencySignCountZero) {
|
|
if (!parseForCurrency(text, parsePosition, *digits,
|
|
status, currency)) {
|
|
delete digits;
|
|
return;
|
|
}
|
|
} else {
|
|
if (!subparse(text,
|
|
fNegPrefixPattern, fNegSuffixPattern,
|
|
fPosPrefixPattern, fPosSuffixPattern,
|
|
FALSE, UCURR_SYMBOL_NAME,
|
|
parsePosition, *digits, status, currency)) {
|
|
parsePosition.setIndex(backup);
|
|
delete digits;
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Handle infinity
|
|
if (status[fgStatusInfinite]) {
|
|
double inf = uprv_getInfinity();
|
|
result.setDouble(digits->isPositive() ? inf : -inf);
|
|
delete digits; // TODO: set the dl to infinity, and let it fall into the code below.
|
|
}
|
|
|
|
else {
|
|
|
|
if (fMultiplier != NULL) {
|
|
UErrorCode ec = U_ZERO_ERROR;
|
|
digits->div(*fMultiplier, ec);
|
|
}
|
|
|
|
// Negative zero special case:
|
|
// if parsing integerOnly, change to +0, which goes into an int32 in a Formattable.
|
|
// if not parsing integerOnly, leave as -0, which a double can represent.
|
|
if (digits->isZero() && !digits->isPositive() && isParseIntegerOnly()) {
|
|
digits->setPositive(TRUE);
|
|
}
|
|
result.adoptDigitList(digits);
|
|
}
|
|
|
|
if (parseCurrency) {
|
|
UErrorCode ec = U_ZERO_ERROR;
|
|
Formattable n(result);
|
|
result.adoptObject(new CurrencyAmount(n, curbuf, ec));
|
|
U_ASSERT(U_SUCCESS(ec)); // should always succeed
|
|
}
|
|
}
|
|
|
|
|
|
|
|
UBool
|
|
DecimalFormat::parseForCurrency(const UnicodeString& text,
|
|
ParsePosition& parsePosition,
|
|
DigitList& digits,
|
|
UBool* status,
|
|
UChar* currency) const {
|
|
int origPos = parsePosition.getIndex();
|
|
int maxPosIndex = origPos;
|
|
int maxErrorPos = -1;
|
|
// First, parse against current pattern.
|
|
// Since current pattern could be set by applyPattern(),
|
|
// it could be an arbitrary pattern, and it may not be the one
|
|
// defined in current locale.
|
|
UBool tmpStatus[fgStatusLength];
|
|
ParsePosition tmpPos(origPos);
|
|
DigitList tmpDigitList;
|
|
UBool found;
|
|
if (fStyle == UNUM_CURRENCY_PLURAL) {
|
|
found = subparse(text,
|
|
fNegPrefixPattern, fNegSuffixPattern,
|
|
fPosPrefixPattern, fPosSuffixPattern,
|
|
TRUE, UCURR_LONG_NAME,
|
|
tmpPos, tmpDigitList, tmpStatus, currency);
|
|
} else {
|
|
found = subparse(text,
|
|
fNegPrefixPattern, fNegSuffixPattern,
|
|
fPosPrefixPattern, fPosSuffixPattern,
|
|
TRUE, UCURR_SYMBOL_NAME,
|
|
tmpPos, tmpDigitList, tmpStatus, currency);
|
|
}
|
|
if (found) {
|
|
if (tmpPos.getIndex() > maxPosIndex) {
|
|
maxPosIndex = tmpPos.getIndex();
|
|
for (int32_t i = 0; i < fgStatusLength; ++i) {
|
|
status[i] = tmpStatus[i];
|
|
}
|
|
digits = tmpDigitList;
|
|
}
|
|
} else {
|
|
maxErrorPos = tmpPos.getErrorIndex();
|
|
}
|
|
// Then, parse against affix patterns.
|
|
// Those are currency patterns and currency plural patterns.
|
|
int32_t pos = -1;
|
|
const UHashElement* element = NULL;
|
|
while ( (element = fAffixPatternsForCurrency->nextElement(pos)) != NULL ) {
|
|
const UHashTok keyTok = element->key;
|
|
const UHashTok valueTok = element->value;
|
|
const AffixPatternsForCurrency* affixPtn = (AffixPatternsForCurrency*)valueTok.pointer;
|
|
UBool tmpStatus[fgStatusLength];
|
|
ParsePosition tmpPos(origPos);
|
|
DigitList tmpDigitList;
|
|
UBool result = subparse(text,
|
|
&affixPtn->negPrefixPatternForCurrency,
|
|
&affixPtn->negSuffixPatternForCurrency,
|
|
&affixPtn->posPrefixPatternForCurrency,
|
|
&affixPtn->posSuffixPatternForCurrency,
|
|
TRUE, affixPtn->patternType,
|
|
tmpPos, tmpDigitList, tmpStatus, currency);
|
|
if (result) {
|
|
found = true;
|
|
if (tmpPos.getIndex() > maxPosIndex) {
|
|
maxPosIndex = tmpPos.getIndex();
|
|
for (int32_t i = 0; i < fgStatusLength; ++i) {
|
|
status[i] = tmpStatus[i];
|
|
}
|
|
digits = tmpDigitList;
|
|
}
|
|
} else {
|
|
maxErrorPos = (tmpPos.getErrorIndex() > maxErrorPos) ?
|
|
tmpPos.getErrorIndex() : maxErrorPos;
|
|
}
|
|
}
|
|
// Finally, parse against simple affix to find the match.
|
|
// For example, in TestMonster suite,
|
|
// if the to-be-parsed text is "-\u00A40,00".
|
|
// complexAffixCompare will not find match,
|
|
// since there is no ISO code matches "\u00A4",
|
|
// and the parse stops at "\u00A4".
|
|
// We will just use simple affix comparison (look for exact match)
|
|
// to pass it.
|
|
UBool tmpStatus_2[fgStatusLength];
|
|
ParsePosition tmpPos_2(origPos);
|
|
DigitList tmpDigitList_2;
|
|
// set currencySignCount to 0 so that compareAffix function will
|
|
// fall to compareSimpleAffix path, not compareComplexAffix path.
|
|
// ?? TODO: is it right? need "false"?
|
|
UBool result = subparse(text,
|
|
&fNegativePrefix, &fNegativeSuffix,
|
|
&fPositivePrefix, &fPositiveSuffix,
|
|
FALSE, UCURR_SYMBOL_NAME,
|
|
tmpPos_2, tmpDigitList_2, tmpStatus_2,
|
|
currency);
|
|
if (result) {
|
|
if (tmpPos_2.getIndex() > maxPosIndex) {
|
|
maxPosIndex = tmpPos_2.getIndex();
|
|
for (int32_t i = 0; i < fgStatusLength; ++i) {
|
|
status[i] = tmpStatus_2[i];
|
|
}
|
|
digits = tmpDigitList_2;
|
|
}
|
|
found = true;
|
|
} else {
|
|
maxErrorPos = (tmpPos_2.getErrorIndex() > maxErrorPos) ?
|
|
tmpPos_2.getErrorIndex() : maxErrorPos;
|
|
}
|
|
|
|
if (!found) {
|
|
//parsePosition.setIndex(origPos);
|
|
parsePosition.setErrorIndex(maxErrorPos);
|
|
} else {
|
|
parsePosition.setIndex(maxPosIndex);
|
|
parsePosition.setErrorIndex(-1);
|
|
}
|
|
return found;
|
|
}
|
|
|
|
|
|
/**
|
|
* Parse the given text into a number. The text is parsed beginning at
|
|
* parsePosition, until an unparseable character is seen.
|
|
* @param text the string to parse.
|
|
* @param negPrefix negative prefix.
|
|
* @param negSuffix negative suffix.
|
|
* @param posPrefix positive prefix.
|
|
* @param posSuffix positive suffix.
|
|
* @param currencyParsing whether it is currency parsing or not.
|
|
* @param type the currency type to parse against, LONG_NAME only or not.
|
|
* @param parsePosition The position at which to being parsing. Upon
|
|
* return, the first unparsed character.
|
|
* @param digits the DigitList to set to the parsed value.
|
|
* @param status output param containing boolean status flags indicating
|
|
* whether the value was infinite and whether it was positive.
|
|
* @param currency return value for parsed currency, for generic
|
|
* currency parsing mode, or NULL for normal parsing. In generic
|
|
* currency parsing mode, any currency is parsed, not just the
|
|
* currency that this formatter is set to.
|
|
*/
|
|
UBool DecimalFormat::subparse(const UnicodeString& text,
|
|
const UnicodeString* negPrefix,
|
|
const UnicodeString* negSuffix,
|
|
const UnicodeString* posPrefix,
|
|
const UnicodeString* posSuffix,
|
|
UBool currencyParsing,
|
|
int8_t type,
|
|
ParsePosition& parsePosition,
|
|
DigitList& digits, UBool* status,
|
|
UChar* currency) const
|
|
{
|
|
// The parsing process builds up the number as char string, in the neutral format that
|
|
// will be acceptable to the decNumber library, then at the end passes that string
|
|
// off for conversion to a decNumber.
|
|
UErrorCode err = U_ZERO_ERROR;
|
|
CharString parsedNum;
|
|
digits.setToZero();
|
|
|
|
int32_t position = parsePosition.getIndex();
|
|
int32_t oldStart = position;
|
|
UBool strictParse = !isLenient();
|
|
|
|
// Match padding before prefix
|
|
if (fFormatWidth > 0 && fPadPosition == kPadBeforePrefix) {
|
|
position = skipPadding(text, position);
|
|
}
|
|
|
|
// Match positive and negative prefixes; prefer longest match.
|
|
int32_t posMatch = compareAffix(text, position, FALSE, TRUE, posPrefix, currencyParsing, type, currency);
|
|
int32_t negMatch = compareAffix(text, position, TRUE, TRUE, negPrefix, currencyParsing, type, currency);
|
|
if (posMatch >= 0 && negMatch >= 0) {
|
|
if (posMatch > negMatch) {
|
|
negMatch = -1;
|
|
} else if (negMatch > posMatch) {
|
|
posMatch = -1;
|
|
}
|
|
}
|
|
if (posMatch >= 0) {
|
|
position += posMatch;
|
|
parsedNum.append('+', err);
|
|
} else if (negMatch >= 0) {
|
|
position += negMatch;
|
|
parsedNum.append('-', err);
|
|
} else if (strictParse){
|
|
parsePosition.setErrorIndex(position);
|
|
return FALSE;
|
|
}
|
|
|
|
// Match padding before prefix
|
|
if (fFormatWidth > 0 && fPadPosition == kPadAfterPrefix) {
|
|
position = skipPadding(text, position);
|
|
}
|
|
|
|
if (! strictParse) {
|
|
position = skipUWhiteSpace(text, position);
|
|
}
|
|
|
|
// process digits or Inf, find decimal position
|
|
const UnicodeString *inf = &getConstSymbol(DecimalFormatSymbols::kInfinitySymbol);
|
|
int32_t infLen = (text.compare(position, inf->length(), *inf)
|
|
? 0 : inf->length());
|
|
position += infLen; // infLen is non-zero when it does equal to infinity
|
|
status[fgStatusInfinite] = infLen != 0;
|
|
|
|
if (infLen != 0) {
|
|
parsedNum.append("Infinity", err);
|
|
} else {
|
|
// We now have a string of digits, possibly with grouping symbols,
|
|
// and decimal points. We want to process these into a DigitList.
|
|
// We don't want to put a bunch of leading zeros into the DigitList
|
|
// though, so we keep track of the location of the decimal point,
|
|
// put only significant digits into the DigitList, and adjust the
|
|
// exponent as needed.
|
|
|
|
UChar32 zero = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
|
|
|
|
UBool strictFail = FALSE; // did we exit with a strict parse failure?
|
|
int32_t lastGroup = -1; // where did we last see a grouping separator?
|
|
int32_t digitStart = position;
|
|
int32_t gs2 = fGroupingSize2 == 0 ? fGroupingSize : fGroupingSize2;
|
|
|
|
const UnicodeString *decimalString;
|
|
if (fCurrencySignCount > fgCurrencySignCountZero) {
|
|
decimalString = &getConstSymbol(DecimalFormatSymbols::kMonetarySeparatorSymbol);
|
|
} else {
|
|
decimalString = &getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
|
|
}
|
|
UChar32 decimalChar = decimalString->char32At(0);
|
|
|
|
const UnicodeString *groupingString = &getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol);
|
|
UChar32 groupingChar = groupingString->char32At(0);
|
|
UBool sawDecimal = FALSE;
|
|
UBool sawDigit = FALSE;
|
|
int32_t backup = -1;
|
|
int32_t digit;
|
|
int32_t textLength = text.length(); // One less pointer to follow
|
|
int32_t decimalStringLength = decimalString->length();
|
|
int32_t decimalCharLength = U16_LENGTH(decimalChar);
|
|
int32_t groupingStringLength = groupingString->length();
|
|
int32_t groupingCharLength = U16_LENGTH(groupingChar);
|
|
|
|
// equivalent grouping and decimal support
|
|
// TODO markdavis Cache these if it makes a difference in performance.
|
|
UnicodeSet decimalFallback;
|
|
UnicodeSet *decimalSet = NULL;
|
|
UnicodeSet *groupingSet = NULL;
|
|
|
|
if (decimalCharLength == decimalStringLength) {
|
|
decimalSet = (UnicodeSet *) DecimalFormatStaticSets::getSimilarDecimals(decimalChar, strictParse, &decimalFallback)->cloneAsThawed();
|
|
}
|
|
|
|
if (groupingCharLength == groupingStringLength) {
|
|
if (strictParse) {
|
|
groupingSet = (UnicodeSet *) DecimalFormatStaticSets::gStaticSets->fStrictDefaultGroupingSeparators->cloneAsThawed();
|
|
} else {
|
|
groupingSet = (UnicodeSet *) DecimalFormatStaticSets::gStaticSets->fDefaultGroupingSeparators->cloneAsThawed();
|
|
}
|
|
|
|
groupingSet->add(groupingChar);
|
|
|
|
if (decimalSet != NULL) {
|
|
groupingSet->removeAll(*decimalSet);
|
|
}
|
|
}
|
|
|
|
// we are guaranteed that
|
|
// decimalSet contains the decimal, and
|
|
// groupingSet contains the groupingSeparator
|
|
// (unless decimal and grouping are the same, which should never happen. But in that case, groupingSet will just be empty.)
|
|
|
|
// We have to track digitCount ourselves, because digits.fCount will
|
|
// pin when the maximum allowable digits is reached.
|
|
int32_t digitCount = 0;
|
|
int32_t integerDigitCount = 0;
|
|
|
|
for (; position < textLength; )
|
|
{
|
|
UChar32 ch = text.char32At(position);
|
|
|
|
/* We recognize all digit ranges, not only the Latin digit range
|
|
* '0'..'9'. We do so by using the Character.digit() method,
|
|
* which converts a valid Unicode digit to the range 0..9.
|
|
*
|
|
* The character 'ch' may be a digit. If so, place its value
|
|
* from 0 to 9 in 'digit'. First try using the locale digit,
|
|
* which may or MAY NOT be a standard Unicode digit range. If
|
|
* this fails, try using the standard Unicode digit ranges by
|
|
* calling Character.digit(). If this also fails, digit will
|
|
* have a value outside the range 0..9.
|
|
*/
|
|
digit = ch - zero;
|
|
if (digit < 0 || digit > 9)
|
|
{
|
|
digit = u_charDigitValue(ch);
|
|
}
|
|
|
|
// As a last resort, look through the localized digits if the zero digit
|
|
// is not a "standard" Unicode digit.
|
|
if ( (digit < 0 || digit > 9) && u_charDigitValue(zero) != 0) {
|
|
digit = 0;
|
|
if ( getConstSymbol((DecimalFormatSymbols::ENumberFormatSymbol)(DecimalFormatSymbols::kZeroDigitSymbol)).char32At(0) == ch ) {
|
|
break;
|
|
}
|
|
for (digit = 1 ; digit < 10 ; digit++ ) {
|
|
if ( getConstSymbol((DecimalFormatSymbols::ENumberFormatSymbol)(DecimalFormatSymbols::kOneDigitSymbol+digit-1)).char32At(0) == ch ) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (digit >= 0 && digit <= 9)
|
|
{
|
|
if (strictParse && backup != -1) {
|
|
// comma followed by digit, so group before comma is a
|
|
// secondary group. If there was a group separator
|
|
// before that, the group must == the secondary group
|
|
// length, else it can be <= the the secondary group
|
|
// length.
|
|
if ((lastGroup != -1 && backup - lastGroup - 1 != gs2) ||
|
|
(lastGroup == -1 && position - digitStart - 1 > gs2)) {
|
|
strictFail = TRUE;
|
|
break;
|
|
}
|
|
|
|
lastGroup = backup;
|
|
}
|
|
|
|
// Cancel out backup setting (see grouping handler below)
|
|
backup = -1;
|
|
sawDigit = TRUE;
|
|
|
|
// Note: this will append leading zeros
|
|
parsedNum.append((char)(digit + '0'), err);
|
|
|
|
// count any digit that's not a leading zero
|
|
if (digit > 0 || digitCount > 0 || sawDecimal) {
|
|
digitCount += 1;
|
|
|
|
// count any integer digit that's not a leading zero
|
|
if (! sawDecimal) {
|
|
integerDigitCount += 1;
|
|
}
|
|
}
|
|
|
|
position += U16_LENGTH(ch);
|
|
}
|
|
else if (groupingStringLength > 0 && matchSymbol(text, position, groupingStringLength, *groupingString, groupingSet, ch) && isGroupingUsed())
|
|
{
|
|
if (sawDecimal) {
|
|
break;
|
|
}
|
|
|
|
if (strictParse) {
|
|
if ((!sawDigit || backup != -1)) {
|
|
// leading group, or two group separators in a row
|
|
strictFail = TRUE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Ignore grouping characters, if we are using them, but require
|
|
// that they be followed by a digit. Otherwise we backup and
|
|
// reprocess them.
|
|
backup = position;
|
|
position += groupingStringLength;
|
|
|
|
if (groupingSet != NULL) {
|
|
// Once we see a grouping character, we only accept that grouping character from then on.
|
|
groupingSet->set(ch, ch);
|
|
}
|
|
}
|
|
else if (matchSymbol(text, position, decimalStringLength, *decimalString, decimalSet, ch))
|
|
{
|
|
if (strictParse) {
|
|
if (backup != -1 ||
|
|
(lastGroup != -1 && position - lastGroup != fGroupingSize + 1)) {
|
|
strictFail = TRUE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If we're only parsing integers, or if we ALREADY saw the
|
|
// decimal, then don't parse this one.
|
|
if (isParseIntegerOnly() || sawDecimal) {
|
|
break;
|
|
}
|
|
|
|
parsedNum.append('.', err);
|
|
position += decimalStringLength;
|
|
sawDecimal = TRUE;
|
|
|
|
if (decimalSet != NULL) {
|
|
// Once we see a decimal character, we only accept that decimal character from then on.
|
|
decimalSet->set(ch, ch);
|
|
}
|
|
}
|
|
else {
|
|
const UnicodeString *tmp;
|
|
tmp = &getConstSymbol(DecimalFormatSymbols::kExponentialSymbol);
|
|
if (!text.caseCompare(position, tmp->length(), *tmp, U_FOLD_CASE_DEFAULT)) // error code is set below if !sawDigit
|
|
{
|
|
// Parse sign, if present
|
|
int32_t pos = position + tmp->length();
|
|
char exponentSign = '+';
|
|
|
|
if (pos < textLength)
|
|
{
|
|
tmp = &getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
|
|
if (!text.compare(pos, tmp->length(), *tmp))
|
|
{
|
|
pos += tmp->length();
|
|
}
|
|
else {
|
|
tmp = &getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
|
|
if (!text.compare(pos, tmp->length(), *tmp))
|
|
{
|
|
exponentSign = '-';
|
|
pos += tmp->length();
|
|
}
|
|
}
|
|
}
|
|
|
|
UBool sawExponentDigit = FALSE;
|
|
while (pos < textLength) {
|
|
ch = text[(int32_t)pos];
|
|
digit = ch - zero;
|
|
|
|
if (digit < 0 || digit > 9) {
|
|
digit = u_charDigitValue(ch);
|
|
}
|
|
if (0 <= digit && digit <= 9) {
|
|
if (!sawExponentDigit) {
|
|
parsedNum.append('E', err);
|
|
parsedNum.append(exponentSign, err);
|
|
sawExponentDigit = TRUE;
|
|
}
|
|
++pos;
|
|
parsedNum.append((char)(digit + '0'), err);
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (sawExponentDigit) {
|
|
position = pos; // Advance past the exponent
|
|
}
|
|
|
|
break; // Whether we fail or succeed, we exit this loop
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
delete groupingSet;
|
|
delete decimalSet;
|
|
|
|
if (backup != -1)
|
|
{
|
|
position = backup;
|
|
}
|
|
|
|
if (strictParse && !sawDecimal) {
|
|
if (lastGroup != -1 && position - lastGroup != fGroupingSize + 1) {
|
|
strictFail = TRUE;
|
|
}
|
|
}
|
|
|
|
if (strictFail) {
|
|
// only set with strictParse and a grouping separator error
|
|
|
|
parsePosition.setIndex(oldStart);
|
|
parsePosition.setErrorIndex(position);
|
|
return FALSE;
|
|
}
|
|
|
|
// If there was no decimal point we have an integer
|
|
|
|
// If none of the text string was recognized. For example, parse
|
|
// "x" with pattern "#0.00" (return index and error index both 0)
|
|
// parse "$" with pattern "$#0.00". (return index 0 and error index
|
|
// 1).
|
|
if (!sawDigit && digitCount == 0) {
|
|
parsePosition.setIndex(oldStart);
|
|
parsePosition.setErrorIndex(oldStart);
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
// Match padding before suffix
|
|
if (fFormatWidth > 0 && fPadPosition == kPadBeforeSuffix) {
|
|
position = skipPadding(text, position);
|
|
}
|
|
|
|
int32_t posSuffixMatch = -1, negSuffixMatch = -1;
|
|
|
|
// Match positive and negative suffixes; prefer longest match.
|
|
if (posMatch >= 0 || (!strictParse && negMatch < 0)) {
|
|
posSuffixMatch = compareAffix(text, position, FALSE, FALSE, posSuffix, currencyParsing, type, currency);
|
|
}
|
|
if (negMatch >= 0) {
|
|
negSuffixMatch = compareAffix(text, position, TRUE, FALSE, negSuffix, currencyParsing, type, currency);
|
|
}
|
|
if (posSuffixMatch >= 0 && negSuffixMatch >= 0) {
|
|
if (posSuffixMatch > negSuffixMatch) {
|
|
negSuffixMatch = -1;
|
|
} else if (negSuffixMatch > posSuffixMatch) {
|
|
posSuffixMatch = -1;
|
|
}
|
|
}
|
|
|
|
// Fail if neither or both
|
|
if (strictParse && ((posSuffixMatch >= 0) == (negSuffixMatch >= 0))) {
|
|
parsePosition.setErrorIndex(position);
|
|
return FALSE;
|
|
}
|
|
|
|
position += (posSuffixMatch >= 0 ? posSuffixMatch : (negSuffixMatch >= 0 ? negSuffixMatch : 0));
|
|
|
|
// Match padding before suffix
|
|
if (fFormatWidth > 0 && fPadPosition == kPadAfterSuffix) {
|
|
position = skipPadding(text, position);
|
|
}
|
|
|
|
parsePosition.setIndex(position);
|
|
|
|
parsedNum.data()[0] = (posSuffixMatch >= 0 || (!strictParse && negMatch < 0 && negSuffixMatch < 0)) ? '+' : '-';
|
|
|
|
if(parsePosition.getIndex() == oldStart)
|
|
{
|
|
parsePosition.setErrorIndex(position);
|
|
return FALSE;
|
|
}
|
|
digits.set(parsedNum.toStringPiece(), err);
|
|
|
|
if (U_FAILURE(err)) {
|
|
parsePosition.setErrorIndex(position);
|
|
return FALSE;
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
/**
|
|
* Starting at position, advance past a run of pad characters, if any.
|
|
* Return the index of the first character after position that is not a pad
|
|
* character. Result is >= position.
|
|
*/
|
|
int32_t DecimalFormat::skipPadding(const UnicodeString& text, int32_t position) const {
|
|
int32_t padLen = U16_LENGTH(fPad);
|
|
while (position < text.length() &&
|
|
text.char32At(position) == fPad) {
|
|
position += padLen;
|
|
}
|
|
return position;
|
|
}
|
|
|
|
/**
|
|
* Return the length matched by the given affix, or -1 if none.
|
|
* Runs of white space in the affix, match runs of white space in
|
|
* the input. Pattern white space and input white space are
|
|
* determined differently; see code.
|
|
* @param text input text
|
|
* @param pos offset into input at which to begin matching
|
|
* @param isNegative
|
|
* @param isPrefix
|
|
* @param affixPat affix pattern used for currency affix comparison.
|
|
* @param currencyParsing whether it is currency parsing or not
|
|
* @param type the currency type to parse against, LONG_NAME only or not.
|
|
* @param currency return value for parsed currency, for generic
|
|
* currency parsing mode, or null for normal parsing. In generic
|
|
* currency parsing mode, any currency is parsed, not just the
|
|
* currency that this formatter is set to.
|
|
* @return length of input that matches, or -1 if match failure
|
|
*/
|
|
int32_t DecimalFormat::compareAffix(const UnicodeString& text,
|
|
int32_t pos,
|
|
UBool isNegative,
|
|
UBool isPrefix,
|
|
const UnicodeString* affixPat,
|
|
UBool currencyParsing,
|
|
int8_t type,
|
|
UChar* currency) const
|
|
{
|
|
const UnicodeString *patternToCompare;
|
|
if (fCurrencyChoice != NULL || currency != NULL ||
|
|
(fCurrencySignCount > fgCurrencySignCountZero && currencyParsing)) {
|
|
|
|
if (affixPat != NULL) {
|
|
return compareComplexAffix(*affixPat, text, pos, type, currency);
|
|
}
|
|
}
|
|
|
|
if (isNegative) {
|
|
if (isPrefix) {
|
|
patternToCompare = &fNegativePrefix;
|
|
}
|
|
else {
|
|
patternToCompare = &fNegativeSuffix;
|
|
}
|
|
}
|
|
else {
|
|
if (isPrefix) {
|
|
patternToCompare = &fPositivePrefix;
|
|
}
|
|
else {
|
|
patternToCompare = &fPositiveSuffix;
|
|
}
|
|
}
|
|
return compareSimpleAffix(*patternToCompare, text, pos, isLenient());
|
|
}
|
|
|
|
/**
|
|
* Return the length matched by the given affix, or -1 if none.
|
|
* Runs of white space in the affix, match runs of white space in
|
|
* the input. Pattern white space and input white space are
|
|
* determined differently; see code.
|
|
* @param affix pattern string, taken as a literal
|
|
* @param input input text
|
|
* @param pos offset into input at which to begin matching
|
|
* @return length of input that matches, or -1 if match failure
|
|
*/
|
|
int32_t DecimalFormat::compareSimpleAffix(const UnicodeString& affix,
|
|
const UnicodeString& input,
|
|
int32_t pos,
|
|
UBool lenient) {
|
|
UErrorCode status = U_ZERO_ERROR;
|
|
int32_t start = pos;
|
|
UChar32 affixChar = affix.char32At(0);
|
|
int32_t affixLength = affix.length();
|
|
int32_t inputLength = input.length();
|
|
int32_t affixCharLength = U16_LENGTH(affixChar);
|
|
UnicodeSet *affixSet;
|
|
|
|
DecimalFormatStaticSets::initSets(&status);
|
|
|
|
if (!lenient) {
|
|
affixSet = DecimalFormatStaticSets::gStaticSets->fStrictDashEquivalents;
|
|
|
|
// If the affix is exactly one character long and that character
|
|
// is in the dash set and the very next input character is also
|
|
// in the dash set, return a match.
|
|
if (affixCharLength == affixLength && affixSet->contains(affixChar)) {
|
|
if (affixSet->contains(input.char32At(pos))) {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
for (int32_t i = 0; i < affixLength; ) {
|
|
UChar32 c = affix.char32At(i);
|
|
int32_t len = U16_LENGTH(c);
|
|
if (PatternProps::isWhiteSpace(c)) {
|
|
// We may have a pattern like: \u200F \u0020
|
|
// and input text like: \u200F \u0020
|
|
// Note that U+200F and U+0020 are Pattern_White_Space but only
|
|
// U+0020 is UWhiteSpace. So we have to first do a direct
|
|
// match of the run of Pattern_White_Space in the pattern,
|
|
// then match any extra characters.
|
|
UBool literalMatch = FALSE;
|
|
while (pos < inputLength &&
|
|
input.char32At(pos) == c) {
|
|
literalMatch = TRUE;
|
|
i += len;
|
|
pos += len;
|
|
if (i == affixLength) {
|
|
break;
|
|
}
|
|
c = affix.char32At(i);
|
|
len = U16_LENGTH(c);
|
|
if (!PatternProps::isWhiteSpace(c)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Advance over run in pattern
|
|
i = skipPatternWhiteSpace(affix, i);
|
|
|
|
// Advance over run in input text
|
|
// Must see at least one white space char in input,
|
|
// unless we've already matched some characters literally.
|
|
int32_t s = pos;
|
|
pos = skipUWhiteSpace(input, pos);
|
|
if (pos == s && !literalMatch) {
|
|
return -1;
|
|
}
|
|
|
|
// If we skip UWhiteSpace in the input text, we need to skip it in the pattern.
|
|
// Otherwise, the previous lines may have skipped over text (such as U+00A0) that
|
|
// is also in the affix.
|
|
i = skipUWhiteSpace(affix, i);
|
|
} else {
|
|
if (pos < inputLength &&
|
|
input.char32At(pos) == c) {
|
|
i += len;
|
|
pos += len;
|
|
} else {
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
UBool match = FALSE;
|
|
|
|
affixSet = DecimalFormatStaticSets::gStaticSets->fDashEquivalents;
|
|
|
|
if (affixCharLength == affixLength && affixSet->contains(affixChar)) {
|
|
pos = skipUWhiteSpace(input, pos);
|
|
|
|
if (affixSet->contains(input.char32At(pos))) {
|
|
return pos - start + 1;
|
|
}
|
|
}
|
|
|
|
for (int32_t i = 0; i < affixLength; )
|
|
{
|
|
//i = skipRuleWhiteSpace(affix, i);
|
|
i = skipUWhiteSpace(affix, i);
|
|
pos = skipUWhiteSpace(input, pos);
|
|
|
|
if (i >= affixLength || pos >= inputLength) {
|
|
break;
|
|
}
|
|
|
|
UChar32 c = affix.char32At(i);
|
|
int32_t len = U16_LENGTH(c);
|
|
|
|
if (input.char32At(pos) != c) {
|
|
return -1;
|
|
}
|
|
|
|
match = TRUE;
|
|
i += len;
|
|
pos += len;
|
|
}
|
|
|
|
if (affixLength > 0 && ! match) {
|
|
return -1;
|
|
}
|
|
}
|
|
return pos - start;
|
|
}
|
|
|
|
/**
|
|
* Skip over a run of zero or more Pattern_White_Space characters at
|
|
* pos in text.
|
|
*/
|
|
int32_t DecimalFormat::skipPatternWhiteSpace(const UnicodeString& text, int32_t pos) {
|
|
const UChar* s = text.getBuffer();
|
|
return (int32_t)(PatternProps::skipWhiteSpace(s + pos, text.length() - pos) - s);
|
|
}
|
|
|
|
/**
|
|
* Skip over a run of zero or more isUWhiteSpace() characters at pos
|
|
* in text.
|
|
*/
|
|
int32_t DecimalFormat::skipUWhiteSpace(const UnicodeString& text, int32_t pos) {
|
|
while (pos < text.length()) {
|
|
UChar32 c = text.char32At(pos);
|
|
if (!u_isUWhiteSpace(c)) {
|
|
break;
|
|
}
|
|
pos += U16_LENGTH(c);
|
|
}
|
|
return pos;
|
|
}
|
|
|
|
/**
|
|
* Return the length matched by the given affix, or -1 if none.
|
|
* @param affixPat pattern string
|
|
* @param input input text
|
|
* @param pos offset into input at which to begin matching
|
|
* @param type the currency type to parse against, LONG_NAME only or not.
|
|
* @param currency return value for parsed currency, for generic
|
|
* currency parsing mode, or null for normal parsing. In generic
|
|
* currency parsing mode, any currency is parsed, not just the
|
|
* currency that this formatter is set to.
|
|
* @return length of input that matches, or -1 if match failure
|
|
*/
|
|
int32_t DecimalFormat::compareComplexAffix(const UnicodeString& affixPat,
|
|
const UnicodeString& text,
|
|
int32_t pos,
|
|
int8_t type,
|
|
UChar* currency) const
|
|
{
|
|
int32_t start = pos;
|
|
U_ASSERT(currency != NULL ||
|
|
(fCurrencyChoice != NULL && *getCurrency() != 0) ||
|
|
fCurrencySignCount > fgCurrencySignCountZero);
|
|
|
|
for (int32_t i=0;
|
|
i<affixPat.length() && pos >= 0; ) {
|
|
UChar32 c = affixPat.char32At(i);
|
|
i += U16_LENGTH(c);
|
|
|
|
if (c == kQuote) {
|
|
U_ASSERT(i <= affixPat.length());
|
|
c = affixPat.char32At(i);
|
|
i += U16_LENGTH(c);
|
|
|
|
const UnicodeString* affix = NULL;
|
|
|
|
switch (c) {
|
|
case kCurrencySign: {
|
|
// since the currency names in choice format is saved
|
|
// the same way as other currency names,
|
|
// do not need to do currency choice parsing here.
|
|
// the general currency parsing parse against all names,
|
|
// including names in choice format.
|
|
UBool intl = i<affixPat.length() &&
|
|
affixPat.char32At(i) == kCurrencySign;
|
|
if (intl) {
|
|
++i;
|
|
}
|
|
UBool plural = i<affixPat.length() &&
|
|
affixPat.char32At(i) == kCurrencySign;
|
|
if (plural) {
|
|
++i;
|
|
intl = FALSE;
|
|
}
|
|
// Parse generic currency -- anything for which we
|
|
// have a display name, or any 3-letter ISO code.
|
|
// Try to parse display name for our locale; first
|
|
// determine our locale.
|
|
const char* loc = fCurrencyPluralInfo->getLocale().getName();
|
|
ParsePosition ppos(pos);
|
|
UChar curr[4];
|
|
UErrorCode ec = U_ZERO_ERROR;
|
|
// Delegate parse of display name => ISO code to Currency
|
|
uprv_parseCurrency(loc, text, ppos, type, curr, ec);
|
|
|
|
// If parse succeeds, populate currency[0]
|
|
if (U_SUCCESS(ec) && ppos.getIndex() != pos) {
|
|
if (currency) {
|
|
u_strcpy(currency, curr);
|
|
}
|
|
pos = ppos.getIndex();
|
|
} else if (!isLenient()){
|
|
pos = -1;
|
|
}
|
|
continue;
|
|
}
|
|
case kPatternPercent:
|
|
affix = &getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
|
|
break;
|
|
case kPatternPerMill:
|
|
affix = &getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
|
|
break;
|
|
case kPatternPlus:
|
|
affix = &getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
|
|
break;
|
|
case kPatternMinus:
|
|
affix = &getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
|
|
break;
|
|
default:
|
|
// fall through to affix!=0 test, which will fail
|
|
break;
|
|
}
|
|
|
|
if (affix != NULL) {
|
|
pos = match(text, pos, *affix);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
pos = match(text, pos, c);
|
|
if (PatternProps::isWhiteSpace(c)) {
|
|
i = skipPatternWhiteSpace(affixPat, i);
|
|
}
|
|
}
|
|
return pos - start;
|
|
}
|
|
|
|
/**
|
|
* Match a single character at text[pos] and return the index of the
|
|
* next character upon success. Return -1 on failure. If
|
|
* ch is a Pattern_White_Space then match a run of white space in text.
|
|
*/
|
|
int32_t DecimalFormat::match(const UnicodeString& text, int32_t pos, UChar32 ch) {
|
|
if (PatternProps::isWhiteSpace(ch)) {
|
|
// Advance over run of white space in input text
|
|
// Must see at least one white space char in input
|
|
int32_t s = pos;
|
|
pos = skipPatternWhiteSpace(text, pos);
|
|
if (pos == s) {
|
|
return -1;
|
|
}
|
|
return pos;
|
|
}
|
|
return (pos >= 0 && text.char32At(pos) == ch) ?
|
|
(pos + U16_LENGTH(ch)) : -1;
|
|
}
|
|
|
|
/**
|
|
* Match a string at text[pos] and return the index of the next
|
|
* character upon success. Return -1 on failure. Match a run of
|
|
* white space in str with a run of white space in text.
|
|
*/
|
|
int32_t DecimalFormat::match(const UnicodeString& text, int32_t pos, const UnicodeString& str) {
|
|
for (int32_t i=0; i<str.length() && pos >= 0; ) {
|
|
UChar32 ch = str.char32At(i);
|
|
i += U16_LENGTH(ch);
|
|
if (PatternProps::isWhiteSpace(ch)) {
|
|
i = skipPatternWhiteSpace(str, i);
|
|
}
|
|
pos = match(text, pos, ch);
|
|
}
|
|
return pos;
|
|
}
|
|
|
|
UBool DecimalFormat::matchSymbol(const UnicodeString &text, int32_t position, int32_t length, const UnicodeString &symbol,
|
|
UnicodeSet *sset, UChar32 schar)
|
|
{
|
|
if (sset != NULL) {
|
|
return sset->contains(schar);
|
|
}
|
|
|
|
return text.compare(position, length, symbol) == 0;
|
|
}
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Gets the pointer to the localized decimal format symbols
|
|
|
|
const DecimalFormatSymbols*
|
|
DecimalFormat::getDecimalFormatSymbols() const
|
|
{
|
|
return fSymbols;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// De-owning the current localized symbols and adopt the new symbols.
|
|
|
|
void
|
|
DecimalFormat::adoptDecimalFormatSymbols(DecimalFormatSymbols* symbolsToAdopt)
|
|
{
|
|
if (symbolsToAdopt == NULL) {
|
|
return; // do not allow caller to set fSymbols to NULL
|
|
}
|
|
|
|
UBool sameSymbols = FALSE;
|
|
if (fSymbols != NULL) {
|
|
sameSymbols = (UBool)(getConstSymbol(DecimalFormatSymbols::kCurrencySymbol) ==
|
|
symbolsToAdopt->getConstSymbol(DecimalFormatSymbols::kCurrencySymbol) &&
|
|
getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol) ==
|
|
symbolsToAdopt->getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol));
|
|
delete fSymbols;
|
|
}
|
|
|
|
fSymbols = symbolsToAdopt;
|
|
if (!sameSymbols) {
|
|
// If the currency symbols are the same, there is no need to recalculate.
|
|
setCurrencyForSymbols();
|
|
}
|
|
expandAffixes(NULL);
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
// Setting the symbols is equlivalent to adopting a newly created localized
|
|
// symbols.
|
|
|
|
void
|
|
DecimalFormat::setDecimalFormatSymbols(const DecimalFormatSymbols& symbols)
|
|
{
|
|
adoptDecimalFormatSymbols(new DecimalFormatSymbols(symbols));
|
|
}
|
|
|
|
|
|
const CurrencyPluralInfo*
|
|
DecimalFormat::getCurrencyPluralInfo(void) const
|
|
{
|
|
return fCurrencyPluralInfo;
|
|
}
|
|
|
|
|
|
void
|
|
DecimalFormat::adoptCurrencyPluralInfo(CurrencyPluralInfo* toAdopt)
|
|
{
|
|
if (toAdopt != NULL) {
|
|
delete fCurrencyPluralInfo;
|
|
fCurrencyPluralInfo = toAdopt;
|
|
// re-set currency affix patterns and currency affixes.
|
|
if (fCurrencySignCount > fgCurrencySignCountZero) {
|
|
UErrorCode status = U_ZERO_ERROR;
|
|
if (fAffixPatternsForCurrency) {
|
|
deleteHashForAffixPattern();
|
|
}
|
|
setupCurrencyAffixPatterns(status);
|
|
if (fCurrencySignCount == fgCurrencySignCountInPluralFormat) {
|
|
// only setup the affixes of the plural pattern.
|
|
setupCurrencyAffixes(fFormatPattern, FALSE, TRUE, status);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
DecimalFormat::setCurrencyPluralInfo(const CurrencyPluralInfo& info)
|
|
{
|
|
adoptCurrencyPluralInfo(info.clone());
|
|
}
|
|
|
|
|
|
/**
|
|
* Update the currency object to match the symbols. This method
|
|
* is used only when the caller has passed in a symbols object
|
|
* that may not be the default object for its locale.
|
|
*/
|
|
void
|
|
DecimalFormat::setCurrencyForSymbols() {
|
|
/*Bug 4212072
|
|
Update the affix strings accroding to symbols in order to keep
|
|
the affix strings up to date.
|
|
[Richard/GCL]
|
|
*/
|
|
|
|
// With the introduction of the Currency object, the currency
|
|
// symbols in the DFS object are ignored. For backward
|
|
// compatibility, we check any explicitly set DFS object. If it
|
|
// is a default symbols object for its locale, we change the
|
|
// currency object to one for that locale. If it is custom,
|
|
// we set the currency to null.
|
|
UErrorCode ec = U_ZERO_ERROR;
|
|
const UChar* c = NULL;
|
|
const char* loc = fSymbols->getLocale().getName();
|
|
UChar intlCurrencySymbol[4];
|
|
ucurr_forLocale(loc, intlCurrencySymbol, 4, &ec);
|
|
UnicodeString currencySymbol;
|
|
|
|
uprv_getStaticCurrencyName(intlCurrencySymbol, loc, currencySymbol, ec);
|
|
if (U_SUCCESS(ec)
|
|
&& getConstSymbol(DecimalFormatSymbols::kCurrencySymbol) == currencySymbol
|
|
&& getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol) == intlCurrencySymbol)
|
|
{
|
|
// Trap an error in mapping locale to currency. If we can't
|
|
// map, then don't fail and set the currency to "".
|
|
c = intlCurrencySymbol;
|
|
}
|
|
ec = U_ZERO_ERROR; // reset local error code!
|
|
setCurrencyInternally(c, ec);
|
|
}
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Gets the positive prefix of the number pattern.
|
|
|
|
UnicodeString&
|
|
DecimalFormat::getPositivePrefix(UnicodeString& result) const
|
|
{
|
|
result = fPositivePrefix;
|
|
return result;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Sets the positive prefix of the number pattern.
|
|
|
|
void
|
|
DecimalFormat::setPositivePrefix(const UnicodeString& newValue)
|
|
{
|
|
fPositivePrefix = newValue;
|
|
delete fPosPrefixPattern;
|
|
fPosPrefixPattern = 0;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Gets the negative prefix of the number pattern.
|
|
|
|
UnicodeString&
|
|
DecimalFormat::getNegativePrefix(UnicodeString& result) const
|
|
{
|
|
result = fNegativePrefix;
|
|
return result;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Gets the negative prefix of the number pattern.
|
|
|
|
void
|
|
DecimalFormat::setNegativePrefix(const UnicodeString& newValue)
|
|
{
|
|
fNegativePrefix = newValue;
|
|
delete fNegPrefixPattern;
|
|
fNegPrefixPattern = 0;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Gets the positive suffix of the number pattern.
|
|
|
|
UnicodeString&
|
|
DecimalFormat::getPositiveSuffix(UnicodeString& result) const
|
|
{
|
|
result = fPositiveSuffix;
|
|
return result;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Sets the positive suffix of the number pattern.
|
|
|
|
void
|
|
DecimalFormat::setPositiveSuffix(const UnicodeString& newValue)
|
|
{
|
|
fPositiveSuffix = newValue;
|
|
delete fPosSuffixPattern;
|
|
fPosSuffixPattern = 0;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Gets the negative suffix of the number pattern.
|
|
|
|
UnicodeString&
|
|
DecimalFormat::getNegativeSuffix(UnicodeString& result) const
|
|
{
|
|
result = fNegativeSuffix;
|
|
return result;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Sets the negative suffix of the number pattern.
|
|
|
|
void
|
|
DecimalFormat::setNegativeSuffix(const UnicodeString& newValue)
|
|
{
|
|
fNegativeSuffix = newValue;
|
|
delete fNegSuffixPattern;
|
|
fNegSuffixPattern = 0;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Gets the multiplier of the number pattern.
|
|
// Multipliers are stored as decimal numbers (DigitLists) because that
|
|
// is the most convenient for muliplying or dividing the numbers to be formatted.
|
|
// A NULL multiplier implies one, and the scaling operations are skipped.
|
|
|
|
int32_t
|
|
DecimalFormat::getMultiplier() const
|
|
{
|
|
if (fMultiplier == NULL) {
|
|
return 1;
|
|
} else {
|
|
return fMultiplier->getLong();
|
|
}
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Sets the multiplier of the number pattern.
|
|
void
|
|
DecimalFormat::setMultiplier(int32_t newValue)
|
|
{
|
|
// if (newValue == 0) {
|
|
// throw new IllegalArgumentException("Bad multiplier: " + newValue);
|
|
// }
|
|
if (newValue == 0) {
|
|
newValue = 1; // one being the benign default value for a multiplier.
|
|
}
|
|
if (newValue == 1) {
|
|
delete fMultiplier;
|
|
fMultiplier = NULL;
|
|
} else {
|
|
if (fMultiplier == NULL) {
|
|
fMultiplier = new DigitList;
|
|
}
|
|
if (fMultiplier != NULL) {
|
|
fMultiplier->set(newValue);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Get the rounding increment.
|
|
* @return A positive rounding increment, or 0.0 if rounding
|
|
* is not in effect.
|
|
* @see #setRoundingIncrement
|
|
* @see #getRoundingMode
|
|
* @see #setRoundingMode
|
|
*/
|
|
double DecimalFormat::getRoundingIncrement() const {
|
|
if (fRoundingIncrement == NULL) {
|
|
return 0.0;
|
|
} else {
|
|
return fRoundingIncrement->getDouble();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Set the rounding increment. This method also controls whether
|
|
* rounding is enabled.
|
|
* @param newValue A positive rounding increment, or 0.0 to disable rounding.
|
|
* Negative increments are equivalent to 0.0.
|
|
* @see #getRoundingIncrement
|
|
* @see #getRoundingMode
|
|
* @see #setRoundingMode
|
|
*/
|
|
void DecimalFormat::setRoundingIncrement(double newValue) {
|
|
if (newValue > 0.0) {
|
|
if (fRoundingIncrement == NULL) {
|
|
fRoundingIncrement = new DigitList();
|
|
}
|
|
if (fRoundingIncrement != NULL) {
|
|
fRoundingIncrement->set(newValue);
|
|
return;
|
|
}
|
|
}
|
|
// These statements are executed if newValue is less than 0.0
|
|
// or fRoundingIncrement could not be created.
|
|
delete fRoundingIncrement;
|
|
fRoundingIncrement = NULL;
|
|
}
|
|
|
|
/**
|
|
* Get the rounding mode.
|
|
* @return A rounding mode
|
|
* @see #setRoundingIncrement
|
|
* @see #getRoundingIncrement
|
|
* @see #setRoundingMode
|
|
*/
|
|
DecimalFormat::ERoundingMode DecimalFormat::getRoundingMode() const {
|
|
return fRoundingMode;
|
|
}
|
|
|
|
/**
|
|
* Set the rounding mode. This has no effect unless the rounding
|
|
* increment is greater than zero.
|
|
* @param roundingMode A rounding mode
|
|
* @see #setRoundingIncrement
|
|
* @see #getRoundingIncrement
|
|
* @see #getRoundingMode
|
|
*/
|
|
void DecimalFormat::setRoundingMode(ERoundingMode roundingMode) {
|
|
fRoundingMode = roundingMode;
|
|
}
|
|
|
|
/**
|
|
* Get the width to which the output of <code>format()</code> is padded.
|
|
* @return the format width, or zero if no padding is in effect
|
|
* @see #setFormatWidth
|
|
* @see #getPadCharacter
|
|
* @see #setPadCharacter
|
|
* @see #getPadPosition
|
|
* @see #setPadPosition
|
|
*/
|
|
int32_t DecimalFormat::getFormatWidth() const {
|
|
return fFormatWidth;
|
|
}
|
|
|
|
/**
|
|
* Set the width to which the output of <code>format()</code> is padded.
|
|
* This method also controls whether padding is enabled.
|
|
* @param width the width to which to pad the result of
|
|
* <code>format()</code>, or zero to disable padding. A negative
|
|
* width is equivalent to 0.
|
|
* @see #getFormatWidth
|
|
* @see #getPadCharacter
|
|
* @see #setPadCharacter
|
|
* @see #getPadPosition
|
|
* @see #setPadPosition
|
|
*/
|
|
void DecimalFormat::setFormatWidth(int32_t width) {
|
|
fFormatWidth = (width > 0) ? width : 0;
|
|
}
|
|
|
|
UnicodeString DecimalFormat::getPadCharacterString() const {
|
|
return fPad;
|
|
}
|
|
|
|
void DecimalFormat::setPadCharacter(const UnicodeString &padChar) {
|
|
if (padChar.length() > 0) {
|
|
fPad = padChar.char32At(0);
|
|
}
|
|
else {
|
|
fPad = kDefaultPad;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Get the position at which padding will take place. This is the location
|
|
* at which padding will be inserted if the result of <code>format()</code>
|
|
* is shorter than the format width.
|
|
* @return the pad position, one of <code>kPadBeforePrefix</code>,
|
|
* <code>kPadAfterPrefix</code>, <code>kPadBeforeSuffix</code>, or
|
|
* <code>kPadAfterSuffix</code>.
|
|
* @see #setFormatWidth
|
|
* @see #getFormatWidth
|
|
* @see #setPadCharacter
|
|
* @see #getPadCharacter
|
|
* @see #setPadPosition
|
|
* @see #kPadBeforePrefix
|
|
* @see #kPadAfterPrefix
|
|
* @see #kPadBeforeSuffix
|
|
* @see #kPadAfterSuffix
|
|
*/
|
|
DecimalFormat::EPadPosition DecimalFormat::getPadPosition() const {
|
|
return fPadPosition;
|
|
}
|
|
|
|
/**
|
|
* <strong><font face=helvetica color=red>NEW</font></strong>
|
|
* Set the position at which padding will take place. This is the location
|
|
* at which padding will be inserted if the result of <code>format()</code>
|
|
* is shorter than the format width. This has no effect unless padding is
|
|
* enabled.
|
|
* @param padPos the pad position, one of <code>kPadBeforePrefix</code>,
|
|
* <code>kPadAfterPrefix</code>, <code>kPadBeforeSuffix</code>, or
|
|
* <code>kPadAfterSuffix</code>.
|
|
* @see #setFormatWidth
|
|
* @see #getFormatWidth
|
|
* @see #setPadCharacter
|
|
* @see #getPadCharacter
|
|
* @see #getPadPosition
|
|
* @see #kPadBeforePrefix
|
|
* @see #kPadAfterPrefix
|
|
* @see #kPadBeforeSuffix
|
|
* @see #kPadAfterSuffix
|
|
*/
|
|
void DecimalFormat::setPadPosition(EPadPosition padPos) {
|
|
fPadPosition = padPos;
|
|
}
|
|
|
|
/**
|
|
* Return whether or not scientific notation is used.
|
|
* @return TRUE if this object formats and parses scientific notation
|
|
* @see #setScientificNotation
|
|
* @see #getMinimumExponentDigits
|
|
* @see #setMinimumExponentDigits
|
|
* @see #isExponentSignAlwaysShown
|
|
* @see #setExponentSignAlwaysShown
|
|
*/
|
|
UBool DecimalFormat::isScientificNotation() {
|
|
return fUseExponentialNotation;
|
|
}
|
|
|
|
/**
|
|
* Set whether or not scientific notation is used.
|
|
* @param useScientific TRUE if this object formats and parses scientific
|
|
* notation
|
|
* @see #isScientificNotation
|
|
* @see #getMinimumExponentDigits
|
|
* @see #setMinimumExponentDigits
|
|
* @see #isExponentSignAlwaysShown
|
|
* @see #setExponentSignAlwaysShown
|
|
*/
|
|
void DecimalFormat::setScientificNotation(UBool useScientific) {
|
|
fUseExponentialNotation = useScientific;
|
|
}
|
|
|
|
/**
|
|
* Return the minimum exponent digits that will be shown.
|
|
* @return the minimum exponent digits that will be shown
|
|
* @see #setScientificNotation
|
|
* @see #isScientificNotation
|
|
* @see #setMinimumExponentDigits
|
|
* @see #isExponentSignAlwaysShown
|
|
* @see #setExponentSignAlwaysShown
|
|
*/
|
|
int8_t DecimalFormat::getMinimumExponentDigits() const {
|
|
return fMinExponentDigits;
|
|
}
|
|
|
|
/**
|
|
* Set the minimum exponent digits that will be shown. This has no
|
|
* effect unless scientific notation is in use.
|
|
* @param minExpDig a value >= 1 indicating the fewest exponent digits
|
|
* that will be shown. Values less than 1 will be treated as 1.
|
|
* @see #setScientificNotation
|
|
* @see #isScientificNotation
|
|
* @see #getMinimumExponentDigits
|
|
* @see #isExponentSignAlwaysShown
|
|
* @see #setExponentSignAlwaysShown
|
|
*/
|
|
void DecimalFormat::setMinimumExponentDigits(int8_t minExpDig) {
|
|
fMinExponentDigits = (int8_t)((minExpDig > 0) ? minExpDig : 1);
|
|
}
|
|
|
|
/**
|
|
* Return whether the exponent sign is always shown.
|
|
* @return TRUE if the exponent is always prefixed with either the
|
|
* localized minus sign or the localized plus sign, false if only negative
|
|
* exponents are prefixed with the localized minus sign.
|
|
* @see #setScientificNotation
|
|
* @see #isScientificNotation
|
|
* @see #setMinimumExponentDigits
|
|
* @see #getMinimumExponentDigits
|
|
* @see #setExponentSignAlwaysShown
|
|
*/
|
|
UBool DecimalFormat::isExponentSignAlwaysShown() {
|
|
return fExponentSignAlwaysShown;
|
|
}
|
|
|
|
/**
|
|
* Set whether the exponent sign is always shown. This has no effect
|
|
* unless scientific notation is in use.
|
|
* @param expSignAlways TRUE if the exponent is always prefixed with either
|
|
* the localized minus sign or the localized plus sign, false if only
|
|
* negative exponents are prefixed with the localized minus sign.
|
|
* @see #setScientificNotation
|
|
* @see #isScientificNotation
|
|
* @see #setMinimumExponentDigits
|
|
* @see #getMinimumExponentDigits
|
|
* @see #isExponentSignAlwaysShown
|
|
*/
|
|
void DecimalFormat::setExponentSignAlwaysShown(UBool expSignAlways) {
|
|
fExponentSignAlwaysShown = expSignAlways;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Gets the grouping size of the number pattern. For example, thousand or 10
|
|
// thousand groupings.
|
|
|
|
int32_t
|
|
DecimalFormat::getGroupingSize() const
|
|
{
|
|
return fGroupingSize;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Gets the grouping size of the number pattern.
|
|
|
|
void
|
|
DecimalFormat::setGroupingSize(int32_t newValue)
|
|
{
|
|
fGroupingSize = newValue;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
int32_t
|
|
DecimalFormat::getSecondaryGroupingSize() const
|
|
{
|
|
return fGroupingSize2;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
void
|
|
DecimalFormat::setSecondaryGroupingSize(int32_t newValue)
|
|
{
|
|
fGroupingSize2 = newValue;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Checks if to show the decimal separator.
|
|
|
|
UBool
|
|
DecimalFormat::isDecimalSeparatorAlwaysShown() const
|
|
{
|
|
return fDecimalSeparatorAlwaysShown;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Sets to always show the decimal separator.
|
|
|
|
void
|
|
DecimalFormat::setDecimalSeparatorAlwaysShown(UBool newValue)
|
|
{
|
|
fDecimalSeparatorAlwaysShown = newValue;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Emits the pattern of this DecimalFormat instance.
|
|
|
|
UnicodeString&
|
|
DecimalFormat::toPattern(UnicodeString& result) const
|
|
{
|
|
return toPattern(result, FALSE);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Emits the localized pattern this DecimalFormat instance.
|
|
|
|
UnicodeString&
|
|
DecimalFormat::toLocalizedPattern(UnicodeString& result) const
|
|
{
|
|
return toPattern(result, TRUE);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
/**
|
|
* Expand the affix pattern strings into the expanded affix strings. If any
|
|
* affix pattern string is null, do not expand it. This method should be
|
|
* called any time the symbols or the affix patterns change in order to keep
|
|
* the expanded affix strings up to date.
|
|
* This method also will be called before formatting if format currency
|
|
* plural names, since the plural name is not a static one, it is
|
|
* based on the currency plural count, the affix will be known only
|
|
* after the currency plural count is know.
|
|
* In which case, the parameter
|
|
* 'pluralCount' will be a non-null currency plural count.
|
|
* In all other cases, the 'pluralCount' is null, which means it is not needed.
|
|
*/
|
|
void DecimalFormat::expandAffixes(const UnicodeString* pluralCount) {
|
|
FieldPositionHandler none;
|
|
if (fPosPrefixPattern != 0) {
|
|
expandAffix(*fPosPrefixPattern, fPositivePrefix, 0, none, FALSE, pluralCount);
|
|
}
|
|
if (fPosSuffixPattern != 0) {
|
|
expandAffix(*fPosSuffixPattern, fPositiveSuffix, 0, none, FALSE, pluralCount);
|
|
}
|
|
if (fNegPrefixPattern != 0) {
|
|
expandAffix(*fNegPrefixPattern, fNegativePrefix, 0, none, FALSE, pluralCount);
|
|
}
|
|
if (fNegSuffixPattern != 0) {
|
|
expandAffix(*fNegSuffixPattern, fNegativeSuffix, 0, none, FALSE, pluralCount);
|
|
}
|
|
#ifdef FMT_DEBUG
|
|
UnicodeString s;
|
|
s.append("[")
|
|
.append(*fPosPrefixPattern).append("|").append(*fPosSuffixPattern)
|
|
.append(";") .append(*fNegPrefixPattern).append("|").append(*fNegSuffixPattern)
|
|
.append("]->[")
|
|
.append(fPositivePrefix).append("|").append(fPositiveSuffix)
|
|
.append(";") .append(fNegativePrefix).append("|").append(fNegativeSuffix)
|
|
.append("]\n");
|
|
debugout(s);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Expand an affix pattern into an affix string. All characters in the
|
|
* pattern are literal unless prefixed by kQuote. The following characters
|
|
* after kQuote are recognized: PATTERN_PERCENT, PATTERN_PER_MILLE,
|
|
* PATTERN_MINUS, and kCurrencySign. If kCurrencySign is doubled (kQuote +
|
|
* kCurrencySign + kCurrencySign), it is interpreted as an international
|
|
* currency sign. If CURRENCY_SIGN is tripled, it is interpreted as
|
|
* currency plural long names, such as "US Dollars".
|
|
* Any other character after a kQuote represents itself.
|
|
* kQuote must be followed by another character; kQuote may not occur by
|
|
* itself at the end of the pattern.
|
|
*
|
|
* This method is used in two distinct ways. First, it is used to expand
|
|
* the stored affix patterns into actual affixes. For this usage, doFormat
|
|
* must be false. Second, it is used to expand the stored affix patterns
|
|
* given a specific number (doFormat == true), for those rare cases in
|
|
* which a currency format references a ChoiceFormat (e.g., en_IN display
|
|
* name for INR). The number itself is taken from digitList.
|
|
*
|
|
* When used in the first way, this method has a side effect: It sets
|
|
* currencyChoice to a ChoiceFormat object, if the currency's display name
|
|
* in this locale is a ChoiceFormat pattern (very rare). It only does this
|
|
* if currencyChoice is null to start with.
|
|
*
|
|
* @param pattern the non-null, fPossibly empty pattern
|
|
* @param affix string to receive the expanded equivalent of pattern.
|
|
* Previous contents are deleted.
|
|
* @param doFormat if false, then the pattern will be expanded, and if a
|
|
* currency symbol is encountered that expands to a ChoiceFormat, the
|
|
* currencyChoice member variable will be initialized if it is null. If
|
|
* doFormat is true, then it is assumed that the currencyChoice has been
|
|
* created, and it will be used to format the value in digitList.
|
|
* @param pluralCount the plural count. It is only used for currency
|
|
* plural format. In which case, it is the plural
|
|
* count of the currency amount. For example,
|
|
* in en_US, it is the singular "one", or the plural
|
|
* "other". For all other cases, it is null, and
|
|
* is not being used.
|
|
*/
|
|
void DecimalFormat::expandAffix(const UnicodeString& pattern,
|
|
UnicodeString& affix,
|
|
double number,
|
|
FieldPositionHandler& handler,
|
|
UBool doFormat,
|
|
const UnicodeString* pluralCount) const {
|
|
affix.remove();
|
|
for (int i=0; i<pattern.length(); ) {
|
|
UChar32 c = pattern.char32At(i);
|
|
i += U16_LENGTH(c);
|
|
if (c == kQuote) {
|
|
c = pattern.char32At(i);
|
|
i += U16_LENGTH(c);
|
|
int beginIdx = affix.length();
|
|
switch (c) {
|
|
case kCurrencySign: {
|
|
// As of ICU 2.2 we use the currency object, and
|
|
// ignore the currency symbols in the DFS, unless
|
|
// we have a null currency object. This occurs if
|
|
// resurrecting a pre-2.2 object or if the user
|
|
// sets a custom DFS.
|
|
UBool intl = i<pattern.length() &&
|
|
pattern.char32At(i) == kCurrencySign;
|
|
UBool plural = FALSE;
|
|
if (intl) {
|
|
++i;
|
|
plural = i<pattern.length() &&
|
|
pattern.char32At(i) == kCurrencySign;
|
|
if (plural) {
|
|
intl = FALSE;
|
|
++i;
|
|
}
|
|
}
|
|
const UChar* currencyUChars = getCurrency();
|
|
if (currencyUChars[0] != 0) {
|
|
UErrorCode ec = U_ZERO_ERROR;
|
|
if (plural && pluralCount != NULL) {
|
|
// plural name is only needed when pluralCount != null,
|
|
// which means when formatting currency plural names.
|
|
// For other cases, pluralCount == null,
|
|
// and plural names are not needed.
|
|
int32_t len;
|
|
// TODO: num of char in plural count
|
|
char pluralCountChar[10];
|
|
if (pluralCount->length() >= 10) {
|
|
break;
|
|
}
|
|
pluralCount->extract(0, pluralCount->length(), pluralCountChar);
|
|
UBool isChoiceFormat;
|
|
const UChar* s = ucurr_getPluralName(currencyUChars,
|
|
fSymbols != NULL ? fSymbols->getLocale().getName() :
|
|
Locale::getDefault().getName(), &isChoiceFormat,
|
|
pluralCountChar, &len, &ec);
|
|
affix += UnicodeString(s, len);
|
|
handler.addAttribute(kCurrencyField, beginIdx, affix.length());
|
|
} else if(intl) {
|
|
affix += currencyUChars;
|
|
handler.addAttribute(kCurrencyField, beginIdx, affix.length());
|
|
} else {
|
|
int32_t len;
|
|
UBool isChoiceFormat;
|
|
// If fSymbols is NULL, use default locale
|
|
const UChar* s = ucurr_getName(currencyUChars,
|
|
fSymbols != NULL ? fSymbols->getLocale().getName() : Locale::getDefault().getName(),
|
|
UCURR_SYMBOL_NAME, &isChoiceFormat, &len, &ec);
|
|
if (isChoiceFormat) {
|
|
// Two modes here: If doFormat is false, we set up
|
|
// currencyChoice. If doFormat is true, we use the
|
|
// previously created currencyChoice to format the
|
|
// value in digitList.
|
|
if (!doFormat) {
|
|
// If the currency is handled by a ChoiceFormat,
|
|
// then we're not going to use the expanded
|
|
// patterns. Instantiate the ChoiceFormat and
|
|
// return.
|
|
if (fCurrencyChoice == NULL) {
|
|
// TODO Replace double-check with proper thread-safe code
|
|
ChoiceFormat* fmt = new ChoiceFormat(s, ec);
|
|
if (U_SUCCESS(ec)) {
|
|
umtx_lock(NULL);
|
|
if (fCurrencyChoice == NULL) {
|
|
// Cast away const
|
|
((DecimalFormat*)this)->fCurrencyChoice = fmt;
|
|
fmt = NULL;
|
|
}
|
|
umtx_unlock(NULL);
|
|
delete fmt;
|
|
}
|
|
}
|
|
// We could almost return null or "" here, since the
|
|
// expanded affixes are almost not used at all
|
|
// in this situation. However, one method --
|
|
// toPattern() -- still does use the expanded
|
|
// affixes, in order to set up a padding
|
|
// pattern. We use the CURRENCY_SIGN as a
|
|
// placeholder.
|
|
affix.append(kCurrencySign);
|
|
} else {
|
|
if (fCurrencyChoice != NULL) {
|
|
FieldPosition pos(0); // ignored
|
|
if (number < 0) {
|
|
number = -number;
|
|
}
|
|
fCurrencyChoice->format(number, affix, pos);
|
|
} else {
|
|
// We only arrive here if the currency choice
|
|
// format in the locale data is INVALID.
|
|
affix += currencyUChars;
|
|
handler.addAttribute(kCurrencyField, beginIdx, affix.length());
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
affix += UnicodeString(s, len);
|
|
handler.addAttribute(kCurrencyField, beginIdx, affix.length());
|
|
}
|
|
} else {
|
|
if(intl) {
|
|
affix += getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol);
|
|
} else {
|
|
affix += getConstSymbol(DecimalFormatSymbols::kCurrencySymbol);
|
|
}
|
|
handler.addAttribute(kCurrencyField, beginIdx, affix.length());
|
|
}
|
|
break;
|
|
}
|
|
case kPatternPercent:
|
|
affix += getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
|
|
handler.addAttribute(kPercentField, beginIdx, affix.length());
|
|
break;
|
|
case kPatternPerMill:
|
|
affix += getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
|
|
handler.addAttribute(kPermillField, beginIdx, affix.length());
|
|
break;
|
|
case kPatternPlus:
|
|
affix += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
|
|
handler.addAttribute(kSignField, beginIdx, affix.length());
|
|
break;
|
|
case kPatternMinus:
|
|
affix += getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
|
|
handler.addAttribute(kSignField, beginIdx, affix.length());
|
|
break;
|
|
default:
|
|
affix.append(c);
|
|
break;
|
|
}
|
|
}
|
|
else {
|
|
affix.append(c);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Append an affix to the given StringBuffer.
|
|
* @param buf buffer to append to
|
|
* @param isNegative
|
|
* @param isPrefix
|
|
*/
|
|
int32_t DecimalFormat::appendAffix(UnicodeString& buf, double number,
|
|
FieldPositionHandler& handler,
|
|
UBool isNegative, UBool isPrefix) const {
|
|
// plural format precedes choice format
|
|
if (fCurrencyChoice != 0 &&
|
|
fCurrencySignCount != fgCurrencySignCountInPluralFormat) {
|
|
const UnicodeString* affixPat;
|
|
if (isPrefix) {
|
|
affixPat = isNegative ? fNegPrefixPattern : fPosPrefixPattern;
|
|
} else {
|
|
affixPat = isNegative ? fNegSuffixPattern : fPosSuffixPattern;
|
|
}
|
|
if (affixPat) {
|
|
UnicodeString affixBuf;
|
|
expandAffix(*affixPat, affixBuf, number, handler, TRUE, NULL);
|
|
buf.append(affixBuf);
|
|
return affixBuf.length();
|
|
}
|
|
// else someone called a function that reset the pattern.
|
|
}
|
|
|
|
const UnicodeString* affix;
|
|
if (fCurrencySignCount == fgCurrencySignCountInPluralFormat) {
|
|
UnicodeString pluralCount = fCurrencyPluralInfo->getPluralRules()->select(number);
|
|
AffixesForCurrency* oneSet;
|
|
if (fStyle == UNUM_CURRENCY_PLURAL) {
|
|
oneSet = (AffixesForCurrency*)fPluralAffixesForCurrency->get(pluralCount);
|
|
} else {
|
|
oneSet = (AffixesForCurrency*)fAffixesForCurrency->get(pluralCount);
|
|
}
|
|
if (isPrefix) {
|
|
affix = isNegative ? &oneSet->negPrefixForCurrency :
|
|
&oneSet->posPrefixForCurrency;
|
|
} else {
|
|
affix = isNegative ? &oneSet->negSuffixForCurrency :
|
|
&oneSet->posSuffixForCurrency;
|
|
}
|
|
} else {
|
|
if (isPrefix) {
|
|
affix = isNegative ? &fNegativePrefix : &fPositivePrefix;
|
|
} else {
|
|
affix = isNegative ? &fNegativeSuffix : &fPositiveSuffix;
|
|
}
|
|
}
|
|
|
|
int32_t begin = (int) buf.length();
|
|
|
|
buf.append(*affix);
|
|
|
|
if (handler.isRecording()) {
|
|
int32_t offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kCurrencySymbol));
|
|
if (offset > -1) {
|
|
UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kCurrencySymbol);
|
|
handler.addAttribute(kCurrencyField, begin + offset, begin + offset + aff.length());
|
|
}
|
|
|
|
offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol));
|
|
if (offset > -1) {
|
|
UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol);
|
|
handler.addAttribute(kCurrencyField, begin + offset, begin + offset + aff.length());
|
|
}
|
|
|
|
offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol));
|
|
if (offset > -1) {
|
|
UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
|
|
handler.addAttribute(kSignField, begin + offset, begin + offset + aff.length());
|
|
}
|
|
|
|
offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kPercentSymbol));
|
|
if (offset > -1) {
|
|
UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
|
|
handler.addAttribute(kPercentField, begin + offset, begin + offset + aff.length());
|
|
}
|
|
|
|
offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kPerMillSymbol));
|
|
if (offset > -1) {
|
|
UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
|
|
handler.addAttribute(kPermillField, begin + offset, begin + offset + aff.length());
|
|
}
|
|
}
|
|
return affix->length();
|
|
}
|
|
|
|
/**
|
|
* Appends an affix pattern to the given StringBuffer, quoting special
|
|
* characters as needed. Uses the internal affix pattern, if that exists,
|
|
* or the literal affix, if the internal affix pattern is null. The
|
|
* appended string will generate the same affix pattern (or literal affix)
|
|
* when passed to toPattern().
|
|
*
|
|
* @param appendTo the affix string is appended to this
|
|
* @param affixPattern a pattern such as fPosPrefixPattern; may be null
|
|
* @param expAffix a corresponding expanded affix, such as fPositivePrefix.
|
|
* Ignored unless affixPattern is null. If affixPattern is null, then
|
|
* expAffix is appended as a literal affix.
|
|
* @param localized true if the appended pattern should contain localized
|
|
* pattern characters; otherwise, non-localized pattern chars are appended
|
|
*/
|
|
void DecimalFormat::appendAffixPattern(UnicodeString& appendTo,
|
|
const UnicodeString* affixPattern,
|
|
const UnicodeString& expAffix,
|
|
UBool localized) const {
|
|
if (affixPattern == 0) {
|
|
appendAffixPattern(appendTo, expAffix, localized);
|
|
} else {
|
|
int i;
|
|
for (int pos=0; pos<affixPattern->length(); pos=i) {
|
|
i = affixPattern->indexOf(kQuote, pos);
|
|
if (i < 0) {
|
|
UnicodeString s;
|
|
affixPattern->extractBetween(pos, affixPattern->length(), s);
|
|
appendAffixPattern(appendTo, s, localized);
|
|
break;
|
|
}
|
|
if (i > pos) {
|
|
UnicodeString s;
|
|
affixPattern->extractBetween(pos, i, s);
|
|
appendAffixPattern(appendTo, s, localized);
|
|
}
|
|
UChar32 c = affixPattern->char32At(++i);
|
|
++i;
|
|
if (c == kQuote) {
|
|
appendTo.append(c).append(c);
|
|
// Fall through and append another kQuote below
|
|
} else if (c == kCurrencySign &&
|
|
i<affixPattern->length() &&
|
|
affixPattern->char32At(i) == kCurrencySign) {
|
|
++i;
|
|
appendTo.append(c).append(c);
|
|
} else if (localized) {
|
|
switch (c) {
|
|
case kPatternPercent:
|
|
appendTo += getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
|
|
break;
|
|
case kPatternPerMill:
|
|
appendTo += getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
|
|
break;
|
|
case kPatternPlus:
|
|
appendTo += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
|
|
break;
|
|
case kPatternMinus:
|
|
appendTo += getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
|
|
break;
|
|
default:
|
|
appendTo.append(c);
|
|
}
|
|
} else {
|
|
appendTo.append(c);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Append an affix to the given StringBuffer, using quotes if
|
|
* there are special characters. Single quotes themselves must be
|
|
* escaped in either case.
|
|
*/
|
|
void
|
|
DecimalFormat::appendAffixPattern(UnicodeString& appendTo,
|
|
const UnicodeString& affix,
|
|
UBool localized) const {
|
|
UBool needQuote;
|
|
if(localized) {
|
|
needQuote = affix.indexOf(getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol)) >= 0
|
|
|| affix.indexOf(getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol)) >= 0
|
|
|| affix.indexOf(getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol)) >= 0
|
|
|| affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPercentSymbol)) >= 0
|
|
|| affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPerMillSymbol)) >= 0
|
|
|| affix.indexOf(getConstSymbol(DecimalFormatSymbols::kDigitSymbol)) >= 0
|
|
|| affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol)) >= 0
|
|
|| affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol)) >= 0
|
|
|| affix.indexOf(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol)) >= 0
|
|
|| affix.indexOf(kCurrencySign) >= 0;
|
|
}
|
|
else {
|
|
needQuote = affix.indexOf(kPatternZeroDigit) >= 0
|
|
|| affix.indexOf(kPatternGroupingSeparator) >= 0
|
|
|| affix.indexOf(kPatternDecimalSeparator) >= 0
|
|
|| affix.indexOf(kPatternPercent) >= 0
|
|
|| affix.indexOf(kPatternPerMill) >= 0
|
|
|| affix.indexOf(kPatternDigit) >= 0
|
|
|| affix.indexOf(kPatternSeparator) >= 0
|
|
|| affix.indexOf(kPatternExponent) >= 0
|
|
|| affix.indexOf(kPatternPlus) >= 0
|
|
|| affix.indexOf(kPatternMinus) >= 0
|
|
|| affix.indexOf(kCurrencySign) >= 0;
|
|
}
|
|
if (needQuote)
|
|
appendTo += (UChar)0x0027 /*'\''*/;
|
|
if (affix.indexOf((UChar)0x0027 /*'\''*/) < 0)
|
|
appendTo += affix;
|
|
else {
|
|
for (int32_t j = 0; j < affix.length(); ) {
|
|
UChar32 c = affix.char32At(j);
|
|
j += U16_LENGTH(c);
|
|
appendTo += c;
|
|
if (c == 0x0027 /*'\''*/)
|
|
appendTo += c;
|
|
}
|
|
}
|
|
if (needQuote)
|
|
appendTo += (UChar)0x0027 /*'\''*/;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
UnicodeString&
|
|
DecimalFormat::toPattern(UnicodeString& result, UBool localized) const
|
|
{
|
|
if (fStyle == UNUM_CURRENCY_PLURAL) {
|
|
// the prefix or suffix pattern might not be defined yet,
|
|
// so they can not be synthesized,
|
|
// instead, get them directly.
|
|
// but it might not be the actual pattern used in formatting.
|
|
// the actual pattern used in formatting depends on the
|
|
// formatted number's plural count.
|
|
result = fFormatPattern;
|
|
return result;
|
|
}
|
|
result.remove();
|
|
UChar32 zero, sigDigit = kPatternSignificantDigit;
|
|
UnicodeString digit, group;
|
|
int32_t i;
|
|
int32_t roundingDecimalPos = 0; // Pos of decimal in roundingDigits
|
|
UnicodeString roundingDigits;
|
|
int32_t padPos = (fFormatWidth > 0) ? fPadPosition : -1;
|
|
UnicodeString padSpec;
|
|
UBool useSigDig = areSignificantDigitsUsed();
|
|
|
|
if (localized) {
|
|
digit.append(getConstSymbol(DecimalFormatSymbols::kDigitSymbol));
|
|
group.append(getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol));
|
|
zero = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
|
|
if (useSigDig) {
|
|
sigDigit = getConstSymbol(DecimalFormatSymbols::kSignificantDigitSymbol).char32At(0);
|
|
}
|
|
}
|
|
else {
|
|
digit.append((UChar)kPatternDigit);
|
|
group.append((UChar)kPatternGroupingSeparator);
|
|
zero = (UChar32)kPatternZeroDigit;
|
|
}
|
|
if (fFormatWidth > 0) {
|
|
if (localized) {
|
|
padSpec.append(getConstSymbol(DecimalFormatSymbols::kPadEscapeSymbol));
|
|
}
|
|
else {
|
|
padSpec.append((UChar)kPatternPadEscape);
|
|
}
|
|
padSpec.append(fPad);
|
|
}
|
|
if (fRoundingIncrement != NULL) {
|
|
for(i=0; i<fRoundingIncrement->getCount(); ++i) {
|
|
roundingDigits.append(zero+(fRoundingIncrement->getDigitValue(i))); // Convert to Unicode digit
|
|
}
|
|
roundingDecimalPos = fRoundingIncrement->getDecimalAt();
|
|
}
|
|
for (int32_t part=0; part<2; ++part) {
|
|
if (padPos == kPadBeforePrefix) {
|
|
result.append(padSpec);
|
|
}
|
|
appendAffixPattern(result,
|
|
(part==0 ? fPosPrefixPattern : fNegPrefixPattern),
|
|
(part==0 ? fPositivePrefix : fNegativePrefix),
|
|
localized);
|
|
if (padPos == kPadAfterPrefix && ! padSpec.isEmpty()) {
|
|
result.append(padSpec);
|
|
}
|
|
int32_t sub0Start = result.length();
|
|
int32_t g = isGroupingUsed() ? _max(0, fGroupingSize) : 0;
|
|
if (g > 0 && fGroupingSize2 > 0 && fGroupingSize2 != fGroupingSize) {
|
|
g += fGroupingSize2;
|
|
}
|
|
int32_t maxDig = 0, minDig = 0, maxSigDig = 0;
|
|
if (useSigDig) {
|
|
minDig = getMinimumSignificantDigits();
|
|
maxDig = maxSigDig = getMaximumSignificantDigits();
|
|
} else {
|
|
minDig = getMinimumIntegerDigits();
|
|
maxDig = getMaximumIntegerDigits();
|
|
}
|
|
if (fUseExponentialNotation) {
|
|
if (maxDig > kMaxScientificIntegerDigits) {
|
|
maxDig = 1;
|
|
}
|
|
} else if (useSigDig) {
|
|
maxDig = _max(maxDig, g+1);
|
|
} else {
|
|
maxDig = _max(_max(g, getMinimumIntegerDigits()),
|
|
roundingDecimalPos) + 1;
|
|
}
|
|
for (i = maxDig; i > 0; --i) {
|
|
if (!fUseExponentialNotation && i<maxDig &&
|
|
isGroupingPosition(i)) {
|
|
result.append(group);
|
|
}
|
|
if (useSigDig) {
|
|
// #@,@### (maxSigDig == 5, minSigDig == 2)
|
|
// 65 4321 (1-based pos, count from the right)
|
|
// Use # if pos > maxSigDig or 1 <= pos <= (maxSigDig - minSigDig)
|
|
// Use @ if (maxSigDig - minSigDig) < pos <= maxSigDig
|
|
if (maxSigDig >= i && i > (maxSigDig - minDig)) {
|
|
result.append(sigDigit);
|
|
} else {
|
|
result.append(digit);
|
|
}
|
|
} else {
|
|
if (! roundingDigits.isEmpty()) {
|
|
int32_t pos = roundingDecimalPos - i;
|
|
if (pos >= 0 && pos < roundingDigits.length()) {
|
|
result.append((UChar) (roundingDigits.char32At(pos) - kPatternZeroDigit + zero));
|
|
continue;
|
|
}
|
|
}
|
|
if (i<=minDig) {
|
|
result.append(zero);
|
|
} else {
|
|
result.append(digit);
|
|
}
|
|
}
|
|
}
|
|
if (!useSigDig) {
|
|
if (getMaximumFractionDigits() > 0 || fDecimalSeparatorAlwaysShown) {
|
|
if (localized) {
|
|
result += getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
|
|
}
|
|
else {
|
|
result.append((UChar)kPatternDecimalSeparator);
|
|
}
|
|
}
|
|
int32_t pos = roundingDecimalPos;
|
|
for (i = 0; i < getMaximumFractionDigits(); ++i) {
|
|
if (! roundingDigits.isEmpty() && pos < roundingDigits.length()) {
|
|
if (pos < 0) {
|
|
result.append(zero);
|
|
}
|
|
else {
|
|
result.append((UChar)(roundingDigits.char32At(pos) - kPatternZeroDigit + zero));
|
|
}
|
|
++pos;
|
|
continue;
|
|
}
|
|
if (i<getMinimumFractionDigits()) {
|
|
result.append(zero);
|
|
}
|
|
else {
|
|
result.append(digit);
|
|
}
|
|
}
|
|
}
|
|
if (fUseExponentialNotation) {
|
|
if (localized) {
|
|
result += getConstSymbol(DecimalFormatSymbols::kExponentialSymbol);
|
|
}
|
|
else {
|
|
result.append((UChar)kPatternExponent);
|
|
}
|
|
if (fExponentSignAlwaysShown) {
|
|
if (localized) {
|
|
result += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
|
|
}
|
|
else {
|
|
result.append((UChar)kPatternPlus);
|
|
}
|
|
}
|
|
for (i=0; i<fMinExponentDigits; ++i) {
|
|
result.append(zero);
|
|
}
|
|
}
|
|
if (! padSpec.isEmpty() && !fUseExponentialNotation) {
|
|
int32_t add = fFormatWidth - result.length() + sub0Start
|
|
- ((part == 0)
|
|
? fPositivePrefix.length() + fPositiveSuffix.length()
|
|
: fNegativePrefix.length() + fNegativeSuffix.length());
|
|
while (add > 0) {
|
|
result.insert(sub0Start, digit);
|
|
++maxDig;
|
|
--add;
|
|
// Only add a grouping separator if we have at least
|
|
// 2 additional characters to be added, so we don't
|
|
// end up with ",###".
|
|
if (add>1 && isGroupingPosition(maxDig)) {
|
|
result.insert(sub0Start, group);
|
|
--add;
|
|
}
|
|
}
|
|
}
|
|
if (fPadPosition == kPadBeforeSuffix && ! padSpec.isEmpty()) {
|
|
result.append(padSpec);
|
|
}
|
|
if (part == 0) {
|
|
appendAffixPattern(result, fPosSuffixPattern, fPositiveSuffix, localized);
|
|
if (fPadPosition == kPadAfterSuffix && ! padSpec.isEmpty()) {
|
|
result.append(padSpec);
|
|
}
|
|
UBool isDefault = FALSE;
|
|
if ((fNegSuffixPattern == fPosSuffixPattern && // both null
|
|
fNegativeSuffix == fPositiveSuffix)
|
|
|| (fNegSuffixPattern != 0 && fPosSuffixPattern != 0 &&
|
|
*fNegSuffixPattern == *fPosSuffixPattern))
|
|
{
|
|
if (fNegPrefixPattern != NULL && fPosPrefixPattern != NULL)
|
|
{
|
|
int32_t length = fPosPrefixPattern->length();
|
|
isDefault = fNegPrefixPattern->length() == (length+2) &&
|
|
(*fNegPrefixPattern)[(int32_t)0] == kQuote &&
|
|
(*fNegPrefixPattern)[(int32_t)1] == kPatternMinus &&
|
|
fNegPrefixPattern->compare(2, length, *fPosPrefixPattern, 0, length) == 0;
|
|
}
|
|
if (!isDefault &&
|
|
fNegPrefixPattern == NULL && fPosPrefixPattern == NULL)
|
|
{
|
|
int32_t length = fPositivePrefix.length();
|
|
isDefault = fNegativePrefix.length() == (length+1) &&
|
|
fNegativePrefix.compare(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol)) == 0 &&
|
|
fNegativePrefix.compare(1, length, fPositivePrefix, 0, length) == 0;
|
|
}
|
|
}
|
|
if (isDefault) {
|
|
break; // Don't output default negative subpattern
|
|
} else {
|
|
if (localized) {
|
|
result += getConstSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol);
|
|
}
|
|
else {
|
|
result.append((UChar)kPatternSeparator);
|
|
}
|
|
}
|
|
} else {
|
|
appendAffixPattern(result, fNegSuffixPattern, fNegativeSuffix, localized);
|
|
if (fPadPosition == kPadAfterSuffix && ! padSpec.isEmpty()) {
|
|
result.append(padSpec);
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
void
|
|
DecimalFormat::applyPattern(const UnicodeString& pattern, UErrorCode& status)
|
|
{
|
|
UParseError parseError;
|
|
applyPattern(pattern, FALSE, parseError, status);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
void
|
|
DecimalFormat::applyPattern(const UnicodeString& pattern,
|
|
UParseError& parseError,
|
|
UErrorCode& status)
|
|
{
|
|
applyPattern(pattern, FALSE, parseError, status);
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
|
|
void
|
|
DecimalFormat::applyLocalizedPattern(const UnicodeString& pattern, UErrorCode& status)
|
|
{
|
|
UParseError parseError;
|
|
applyPattern(pattern, TRUE,parseError,status);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
void
|
|
DecimalFormat::applyLocalizedPattern(const UnicodeString& pattern,
|
|
UParseError& parseError,
|
|
UErrorCode& status)
|
|
{
|
|
applyPattern(pattern, TRUE,parseError,status);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
void
|
|
DecimalFormat::applyPatternWithoutExpandAffix(const UnicodeString& pattern,
|
|
UBool localized,
|
|
UParseError& parseError,
|
|
UErrorCode& status)
|
|
{
|
|
if (U_FAILURE(status))
|
|
{
|
|
return;
|
|
}
|
|
// Clear error struct
|
|
parseError.offset = -1;
|
|
parseError.preContext[0] = parseError.postContext[0] = (UChar)0;
|
|
|
|
// Set the significant pattern symbols
|
|
UChar32 zeroDigit = kPatternZeroDigit; // '0'
|
|
UChar32 sigDigit = kPatternSignificantDigit; // '@'
|
|
UnicodeString groupingSeparator ((UChar)kPatternGroupingSeparator);
|
|
UnicodeString decimalSeparator ((UChar)kPatternDecimalSeparator);
|
|
UnicodeString percent ((UChar)kPatternPercent);
|
|
UnicodeString perMill ((UChar)kPatternPerMill);
|
|
UnicodeString digit ((UChar)kPatternDigit); // '#'
|
|
UnicodeString separator ((UChar)kPatternSeparator);
|
|
UnicodeString exponent ((UChar)kPatternExponent);
|
|
UnicodeString plus ((UChar)kPatternPlus);
|
|
UnicodeString minus ((UChar)kPatternMinus);
|
|
UnicodeString padEscape ((UChar)kPatternPadEscape);
|
|
// Substitute with the localized symbols if necessary
|
|
if (localized) {
|
|
zeroDigit = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
|
|
sigDigit = getConstSymbol(DecimalFormatSymbols::kSignificantDigitSymbol).char32At(0);
|
|
groupingSeparator. remove().append(getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol));
|
|
decimalSeparator. remove().append(getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol));
|
|
percent. remove().append(getConstSymbol(DecimalFormatSymbols::kPercentSymbol));
|
|
perMill. remove().append(getConstSymbol(DecimalFormatSymbols::kPerMillSymbol));
|
|
digit. remove().append(getConstSymbol(DecimalFormatSymbols::kDigitSymbol));
|
|
separator. remove().append(getConstSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol));
|
|
exponent. remove().append(getConstSymbol(DecimalFormatSymbols::kExponentialSymbol));
|
|
plus. remove().append(getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol));
|
|
minus. remove().append(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol));
|
|
padEscape. remove().append(getConstSymbol(DecimalFormatSymbols::kPadEscapeSymbol));
|
|
}
|
|
UChar nineDigit = (UChar)(zeroDigit + 9);
|
|
int32_t digitLen = digit.length();
|
|
int32_t groupSepLen = groupingSeparator.length();
|
|
int32_t decimalSepLen = decimalSeparator.length();
|
|
|
|
int32_t pos = 0;
|
|
int32_t patLen = pattern.length();
|
|
// Part 0 is the positive pattern. Part 1, if present, is the negative
|
|
// pattern.
|
|
for (int32_t part=0; part<2 && pos<patLen; ++part) {
|
|
// The subpart ranges from 0 to 4: 0=pattern proper, 1=prefix,
|
|
// 2=suffix, 3=prefix in quote, 4=suffix in quote. Subpart 0 is
|
|
// between the prefix and suffix, and consists of pattern
|
|
// characters. In the prefix and suffix, percent, perMill, and
|
|
// currency symbols are recognized and translated.
|
|
int32_t subpart = 1, sub0Start = 0, sub0Limit = 0, sub2Limit = 0;
|
|
|
|
// It's important that we don't change any fields of this object
|
|
// prematurely. We set the following variables for the multiplier,
|
|
// grouping, etc., and then only change the actual object fields if
|
|
// everything parses correctly. This also lets us register
|
|
// the data from part 0 and ignore the part 1, except for the
|
|
// prefix and suffix.
|
|
UnicodeString prefix;
|
|
UnicodeString suffix;
|
|
int32_t decimalPos = -1;
|
|
int32_t multiplier = 1;
|
|
int32_t digitLeftCount = 0, zeroDigitCount = 0, digitRightCount = 0, sigDigitCount = 0;
|
|
int8_t groupingCount = -1;
|
|
int8_t groupingCount2 = -1;
|
|
int32_t padPos = -1;
|
|
UChar32 padChar = 0;
|
|
int32_t roundingPos = -1;
|
|
DigitList roundingInc;
|
|
int8_t expDigits = -1;
|
|
UBool expSignAlways = FALSE;
|
|
|
|
// The affix is either the prefix or the suffix.
|
|
UnicodeString* affix = &prefix;
|
|
|
|
int32_t start = pos;
|
|
UBool isPartDone = FALSE;
|
|
UChar32 ch;
|
|
|
|
for (; !isPartDone && pos < patLen; ) {
|
|
// Todo: account for surrogate pairs
|
|
ch = pattern.char32At(pos);
|
|
switch (subpart) {
|
|
case 0: // Pattern proper subpart (between prefix & suffix)
|
|
// Process the digits, decimal, and grouping characters. We
|
|
// record five pieces of information. We expect the digits
|
|
// to occur in the pattern ####00.00####, and we record the
|
|
// number of left digits, zero (central) digits, and right
|
|
// digits. The position of the last grouping character is
|
|
// recorded (should be somewhere within the first two blocks
|
|
// of characters), as is the position of the decimal point,
|
|
// if any (should be in the zero digits). If there is no
|
|
// decimal point, then there should be no right digits.
|
|
if (pattern.compare(pos, digitLen, digit) == 0) {
|
|
if (zeroDigitCount > 0 || sigDigitCount > 0) {
|
|
++digitRightCount;
|
|
} else {
|
|
++digitLeftCount;
|
|
}
|
|
if (groupingCount >= 0 && decimalPos < 0) {
|
|
++groupingCount;
|
|
}
|
|
pos += digitLen;
|
|
} else if ((ch >= zeroDigit && ch <= nineDigit) ||
|
|
ch == sigDigit) {
|
|
if (digitRightCount > 0) {
|
|
// Unexpected '0'
|
|
debug("Unexpected '0'")
|
|
status = U_UNEXPECTED_TOKEN;
|
|
syntaxError(pattern,pos,parseError);
|
|
return;
|
|
}
|
|
if (ch == sigDigit) {
|
|
++sigDigitCount;
|
|
} else {
|
|
++zeroDigitCount;
|
|
if (ch != zeroDigit && roundingPos < 0) {
|
|
roundingPos = digitLeftCount + zeroDigitCount;
|
|
}
|
|
if (roundingPos >= 0) {
|
|
roundingInc.append((char)(ch - zeroDigit + '0'));
|
|
}
|
|
}
|
|
if (groupingCount >= 0 && decimalPos < 0) {
|
|
++groupingCount;
|
|
}
|
|
pos += U16_LENGTH(ch);
|
|
} else if (pattern.compare(pos, groupSepLen, groupingSeparator) == 0) {
|
|
if (decimalPos >= 0) {
|
|
// Grouping separator after decimal
|
|
debug("Grouping separator after decimal")
|
|
status = U_UNEXPECTED_TOKEN;
|
|
syntaxError(pattern,pos,parseError);
|
|
return;
|
|
}
|
|
groupingCount2 = groupingCount;
|
|
groupingCount = 0;
|
|
pos += groupSepLen;
|
|
} else if (pattern.compare(pos, decimalSepLen, decimalSeparator) == 0) {
|
|
if (decimalPos >= 0) {
|
|
// Multiple decimal separators
|
|
debug("Multiple decimal separators")
|
|
status = U_MULTIPLE_DECIMAL_SEPARATORS;
|
|
syntaxError(pattern,pos,parseError);
|
|
return;
|
|
}
|
|
// Intentionally incorporate the digitRightCount,
|
|
// even though it is illegal for this to be > 0
|
|
// at this point. We check pattern syntax below.
|
|
decimalPos = digitLeftCount + zeroDigitCount + digitRightCount;
|
|
pos += decimalSepLen;
|
|
} else {
|
|
if (pattern.compare(pos, exponent.length(), exponent) == 0) {
|
|
if (expDigits >= 0) {
|
|
// Multiple exponential symbols
|
|
debug("Multiple exponential symbols")
|
|
status = U_MULTIPLE_EXPONENTIAL_SYMBOLS;
|
|
syntaxError(pattern,pos,parseError);
|
|
return;
|
|
}
|
|
if (groupingCount >= 0) {
|
|
// Grouping separator in exponential pattern
|
|
debug("Grouping separator in exponential pattern")
|
|
status = U_MALFORMED_EXPONENTIAL_PATTERN;
|
|
syntaxError(pattern,pos,parseError);
|
|
return;
|
|
}
|
|
pos += exponent.length();
|
|
// Check for positive prefix
|
|
if (pos < patLen
|
|
&& pattern.compare(pos, plus.length(), plus) == 0) {
|
|
expSignAlways = TRUE;
|
|
pos += plus.length();
|
|
}
|
|
// Use lookahead to parse out the exponential part of the
|
|
// pattern, then jump into suffix subpart.
|
|
expDigits = 0;
|
|
while (pos < patLen &&
|
|
pattern.char32At(pos) == zeroDigit) {
|
|
++expDigits;
|
|
pos += U16_LENGTH(zeroDigit);
|
|
}
|
|
|
|
// 1. Require at least one mantissa pattern digit
|
|
// 2. Disallow "#+ @" in mantissa
|
|
// 3. Require at least one exponent pattern digit
|
|
if (((digitLeftCount + zeroDigitCount) < 1 &&
|
|
(sigDigitCount + digitRightCount) < 1) ||
|
|
(sigDigitCount > 0 && digitLeftCount > 0) ||
|
|
expDigits < 1) {
|
|
// Malformed exponential pattern
|
|
debug("Malformed exponential pattern")
|
|
status = U_MALFORMED_EXPONENTIAL_PATTERN;
|
|
syntaxError(pattern,pos,parseError);
|
|
return;
|
|
}
|
|
}
|
|
// Transition to suffix subpart
|
|
subpart = 2; // suffix subpart
|
|
affix = &suffix;
|
|
sub0Limit = pos;
|
|
continue;
|
|
}
|
|
break;
|
|
case 1: // Prefix subpart
|
|
case 2: // Suffix subpart
|
|
// Process the prefix / suffix characters
|
|
// Process unquoted characters seen in prefix or suffix
|
|
// subpart.
|
|
|
|
// Several syntax characters implicitly begins the
|
|
// next subpart if we are in the prefix; otherwise
|
|
// they are illegal if unquoted.
|
|
if (!pattern.compare(pos, digitLen, digit) ||
|
|
!pattern.compare(pos, groupSepLen, groupingSeparator) ||
|
|
!pattern.compare(pos, decimalSepLen, decimalSeparator) ||
|
|
(ch >= zeroDigit && ch <= nineDigit) ||
|
|
ch == sigDigit) {
|
|
if (subpart == 1) { // prefix subpart
|
|
subpart = 0; // pattern proper subpart
|
|
sub0Start = pos; // Reprocess this character
|
|
continue;
|
|
} else {
|
|
status = U_UNQUOTED_SPECIAL;
|
|
syntaxError(pattern,pos,parseError);
|
|
return;
|
|
}
|
|
} else if (ch == kCurrencySign) {
|
|
affix->append(kQuote); // Encode currency
|
|
// Use lookahead to determine if the currency sign is
|
|
// doubled or not.
|
|
U_ASSERT(U16_LENGTH(kCurrencySign) == 1);
|
|
if ((pos+1) < pattern.length() && pattern[pos+1] == kCurrencySign) {
|
|
affix->append(kCurrencySign);
|
|
++pos; // Skip over the doubled character
|
|
if ((pos+1) < pattern.length() &&
|
|
pattern[pos+1] == kCurrencySign) {
|
|
affix->append(kCurrencySign);
|
|
++pos; // Skip over the doubled character
|
|
fCurrencySignCount = fgCurrencySignCountInPluralFormat;
|
|
} else {
|
|
fCurrencySignCount = fgCurrencySignCountInISOFormat;
|
|
}
|
|
} else {
|
|
fCurrencySignCount = fgCurrencySignCountInSymbolFormat;
|
|
}
|
|
// Fall through to append(ch)
|
|
} else if (ch == kQuote) {
|
|
// A quote outside quotes indicates either the opening
|
|
// quote or two quotes, which is a quote literal. That is,
|
|
// we have the first quote in 'do' or o''clock.
|
|
U_ASSERT(U16_LENGTH(kQuote) == 1);
|
|
++pos;
|
|
if (pos < pattern.length() && pattern[pos] == kQuote) {
|
|
affix->append(kQuote); // Encode quote
|
|
// Fall through to append(ch)
|
|
} else {
|
|
subpart += 2; // open quote
|
|
continue;
|
|
}
|
|
} else if (pattern.compare(pos, separator.length(), separator) == 0) {
|
|
// Don't allow separators in the prefix, and don't allow
|
|
// separators in the second pattern (part == 1).
|
|
if (subpart == 1 || part == 1) {
|
|
// Unexpected separator
|
|
debug("Unexpected separator")
|
|
status = U_UNEXPECTED_TOKEN;
|
|
syntaxError(pattern,pos,parseError);
|
|
return;
|
|
}
|
|
sub2Limit = pos;
|
|
isPartDone = TRUE; // Go to next part
|
|
pos += separator.length();
|
|
break;
|
|
} else if (pattern.compare(pos, percent.length(), percent) == 0) {
|
|
// Next handle characters which are appended directly.
|
|
if (multiplier != 1) {
|
|
// Too many percent/perMill characters
|
|
debug("Too many percent characters")
|
|
status = U_MULTIPLE_PERCENT_SYMBOLS;
|
|
syntaxError(pattern,pos,parseError);
|
|
return;
|
|
}
|
|
affix->append(kQuote); // Encode percent/perMill
|
|
affix->append(kPatternPercent); // Use unlocalized pattern char
|
|
multiplier = 100;
|
|
pos += percent.length();
|
|
break;
|
|
} else if (pattern.compare(pos, perMill.length(), perMill) == 0) {
|
|
// Next handle characters which are appended directly.
|
|
if (multiplier != 1) {
|
|
// Too many percent/perMill characters
|
|
debug("Too many perMill characters")
|
|
status = U_MULTIPLE_PERMILL_SYMBOLS;
|
|
syntaxError(pattern,pos,parseError);
|
|
return;
|
|
}
|
|
affix->append(kQuote); // Encode percent/perMill
|
|
affix->append(kPatternPerMill); // Use unlocalized pattern char
|
|
multiplier = 1000;
|
|
pos += perMill.length();
|
|
break;
|
|
} else if (pattern.compare(pos, padEscape.length(), padEscape) == 0) {
|
|
if (padPos >= 0 || // Multiple pad specifiers
|
|
(pos+1) == pattern.length()) { // Nothing after padEscape
|
|
debug("Multiple pad specifiers")
|
|
status = U_MULTIPLE_PAD_SPECIFIERS;
|
|
syntaxError(pattern,pos,parseError);
|
|
return;
|
|
}
|
|
padPos = pos;
|
|
pos += padEscape.length();
|
|
padChar = pattern.char32At(pos);
|
|
pos += U16_LENGTH(padChar);
|
|
break;
|
|
} else if (pattern.compare(pos, minus.length(), minus) == 0) {
|
|
affix->append(kQuote); // Encode minus
|
|
affix->append(kPatternMinus);
|
|
pos += minus.length();
|
|
break;
|
|
} else if (pattern.compare(pos, plus.length(), plus) == 0) {
|
|
affix->append(kQuote); // Encode plus
|
|
affix->append(kPatternPlus);
|
|
pos += plus.length();
|
|
break;
|
|
}
|
|
// Unquoted, non-special characters fall through to here, as
|
|
// well as other code which needs to append something to the
|
|
// affix.
|
|
affix->append(ch);
|
|
pos += U16_LENGTH(ch);
|
|
break;
|
|
case 3: // Prefix subpart, in quote
|
|
case 4: // Suffix subpart, in quote
|
|
// A quote within quotes indicates either the closing
|
|
// quote or two quotes, which is a quote literal. That is,
|
|
// we have the second quote in 'do' or 'don''t'.
|
|
if (ch == kQuote) {
|
|
++pos;
|
|
if (pos < pattern.length() && pattern[pos] == kQuote) {
|
|
affix->append(kQuote); // Encode quote
|
|
// Fall through to append(ch)
|
|
} else {
|
|
subpart -= 2; // close quote
|
|
continue;
|
|
}
|
|
}
|
|
affix->append(ch);
|
|
pos += U16_LENGTH(ch);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (sub0Limit == 0) {
|
|
sub0Limit = pattern.length();
|
|
}
|
|
|
|
if (sub2Limit == 0) {
|
|
sub2Limit = pattern.length();
|
|
}
|
|
|
|
/* Handle patterns with no '0' pattern character. These patterns
|
|
* are legal, but must be recodified to make sense. "##.###" ->
|
|
* "#0.###". ".###" -> ".0##".
|
|
*
|
|
* We allow patterns of the form "####" to produce a zeroDigitCount
|
|
* of zero (got that?); although this seems like it might make it
|
|
* possible for format() to produce empty strings, format() checks
|
|
* for this condition and outputs a zero digit in this situation.
|
|
* Having a zeroDigitCount of zero yields a minimum integer digits
|
|
* of zero, which allows proper round-trip patterns. We don't want
|
|
* "#" to become "#0" when toPattern() is called (even though that's
|
|
* what it really is, semantically).
|
|
*/
|
|
if (zeroDigitCount == 0 && sigDigitCount == 0 &&
|
|
digitLeftCount > 0 && decimalPos >= 0) {
|
|
// Handle "###.###" and "###." and ".###"
|
|
int n = decimalPos;
|
|
if (n == 0)
|
|
++n; // Handle ".###"
|
|
digitRightCount = digitLeftCount - n;
|
|
digitLeftCount = n - 1;
|
|
zeroDigitCount = 1;
|
|
}
|
|
|
|
// Do syntax checking on the digits, decimal points, and quotes.
|
|
if ((decimalPos < 0 && digitRightCount > 0 && sigDigitCount == 0) ||
|
|
(decimalPos >= 0 &&
|
|
(sigDigitCount > 0 ||
|
|
decimalPos < digitLeftCount ||
|
|
decimalPos > (digitLeftCount + zeroDigitCount))) ||
|
|
groupingCount == 0 || groupingCount2 == 0 ||
|
|
(sigDigitCount > 0 && zeroDigitCount > 0) ||
|
|
subpart > 2)
|
|
{ // subpart > 2 == unmatched quote
|
|
debug("Syntax error")
|
|
status = U_PATTERN_SYNTAX_ERROR;
|
|
syntaxError(pattern,pos,parseError);
|
|
return;
|
|
}
|
|
|
|
// Make sure pad is at legal position before or after affix.
|
|
if (padPos >= 0) {
|
|
if (padPos == start) {
|
|
padPos = kPadBeforePrefix;
|
|
} else if (padPos+2 == sub0Start) {
|
|
padPos = kPadAfterPrefix;
|
|
} else if (padPos == sub0Limit) {
|
|
padPos = kPadBeforeSuffix;
|
|
} else if (padPos+2 == sub2Limit) {
|
|
padPos = kPadAfterSuffix;
|
|
} else {
|
|
// Illegal pad position
|
|
debug("Illegal pad position")
|
|
status = U_ILLEGAL_PAD_POSITION;
|
|
syntaxError(pattern,pos,parseError);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (part == 0) {
|
|
delete fPosPrefixPattern;
|
|
delete fPosSuffixPattern;
|
|
delete fNegPrefixPattern;
|
|
delete fNegSuffixPattern;
|
|
fPosPrefixPattern = new UnicodeString(prefix);
|
|
/* test for NULL */
|
|
if (fPosPrefixPattern == 0) {
|
|
status = U_MEMORY_ALLOCATION_ERROR;
|
|
return;
|
|
}
|
|
fPosSuffixPattern = new UnicodeString(suffix);
|
|
/* test for NULL */
|
|
if (fPosSuffixPattern == 0) {
|
|
status = U_MEMORY_ALLOCATION_ERROR;
|
|
delete fPosPrefixPattern;
|
|
return;
|
|
}
|
|
fNegPrefixPattern = 0;
|
|
fNegSuffixPattern = 0;
|
|
|
|
fUseExponentialNotation = (expDigits >= 0);
|
|
if (fUseExponentialNotation) {
|
|
fMinExponentDigits = expDigits;
|
|
}
|
|
fExponentSignAlwaysShown = expSignAlways;
|
|
int32_t digitTotalCount = digitLeftCount + zeroDigitCount + digitRightCount;
|
|
// The effectiveDecimalPos is the position the decimal is at or
|
|
// would be at if there is no decimal. Note that if
|
|
// decimalPos<0, then digitTotalCount == digitLeftCount +
|
|
// zeroDigitCount.
|
|
int32_t effectiveDecimalPos = decimalPos >= 0 ? decimalPos : digitTotalCount;
|
|
UBool isSigDig = (sigDigitCount > 0);
|
|
setSignificantDigitsUsed(isSigDig);
|
|
if (isSigDig) {
|
|
setMinimumSignificantDigits(sigDigitCount);
|
|
setMaximumSignificantDigits(sigDigitCount + digitRightCount);
|
|
} else {
|
|
int32_t minInt = effectiveDecimalPos - digitLeftCount;
|
|
setMinimumIntegerDigits(minInt);
|
|
setMaximumIntegerDigits(fUseExponentialNotation
|
|
? digitLeftCount + getMinimumIntegerDigits()
|
|
: kDoubleIntegerDigits);
|
|
setMaximumFractionDigits(decimalPos >= 0
|
|
? (digitTotalCount - decimalPos) : 0);
|
|
setMinimumFractionDigits(decimalPos >= 0
|
|
? (digitLeftCount + zeroDigitCount - decimalPos) : 0);
|
|
}
|
|
setGroupingUsed(groupingCount > 0);
|
|
fGroupingSize = (groupingCount > 0) ? groupingCount : 0;
|
|
fGroupingSize2 = (groupingCount2 > 0 && groupingCount2 != groupingCount)
|
|
? groupingCount2 : 0;
|
|
setMultiplier(multiplier);
|
|
setDecimalSeparatorAlwaysShown(decimalPos == 0
|
|
|| decimalPos == digitTotalCount);
|
|
if (padPos >= 0) {
|
|
fPadPosition = (EPadPosition) padPos;
|
|
// To compute the format width, first set up sub0Limit -
|
|
// sub0Start. Add in prefix/suffix length later.
|
|
|
|
// fFormatWidth = prefix.length() + suffix.length() +
|
|
// sub0Limit - sub0Start;
|
|
fFormatWidth = sub0Limit - sub0Start;
|
|
fPad = padChar;
|
|
} else {
|
|
fFormatWidth = 0;
|
|
}
|
|
if (roundingPos >= 0) {
|
|
roundingInc.setDecimalAt(effectiveDecimalPos - roundingPos);
|
|
if (fRoundingIncrement != NULL) {
|
|
*fRoundingIncrement = roundingInc;
|
|
} else {
|
|
fRoundingIncrement = new DigitList(roundingInc);
|
|
/* test for NULL */
|
|
if (fRoundingIncrement == NULL) {
|
|
status = U_MEMORY_ALLOCATION_ERROR;
|
|
delete fPosPrefixPattern;
|
|
delete fPosSuffixPattern;
|
|
return;
|
|
}
|
|
}
|
|
fRoundingIncrement->getDouble(); // forces caching of double in the DigitList,
|
|
// makes getting it thread safe.
|
|
fRoundingMode = kRoundHalfEven;
|
|
} else {
|
|
setRoundingIncrement(0.0);
|
|
}
|
|
} else {
|
|
fNegPrefixPattern = new UnicodeString(prefix);
|
|
/* test for NULL */
|
|
if (fNegPrefixPattern == 0) {
|
|
status = U_MEMORY_ALLOCATION_ERROR;
|
|
return;
|
|
}
|
|
fNegSuffixPattern = new UnicodeString(suffix);
|
|
/* test for NULL */
|
|
if (fNegSuffixPattern == 0) {
|
|
delete fNegPrefixPattern;
|
|
status = U_MEMORY_ALLOCATION_ERROR;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (pattern.length() == 0) {
|
|
delete fNegPrefixPattern;
|
|
delete fNegSuffixPattern;
|
|
fNegPrefixPattern = NULL;
|
|
fNegSuffixPattern = NULL;
|
|
if (fPosPrefixPattern != NULL) {
|
|
fPosPrefixPattern->remove();
|
|
} else {
|
|
fPosPrefixPattern = new UnicodeString();
|
|
/* test for NULL */
|
|
if (fPosPrefixPattern == 0) {
|
|
status = U_MEMORY_ALLOCATION_ERROR;
|
|
return;
|
|
}
|
|
}
|
|
if (fPosSuffixPattern != NULL) {
|
|
fPosSuffixPattern->remove();
|
|
} else {
|
|
fPosSuffixPattern = new UnicodeString();
|
|
/* test for NULL */
|
|
if (fPosSuffixPattern == 0) {
|
|
delete fPosPrefixPattern;
|
|
status = U_MEMORY_ALLOCATION_ERROR;
|
|
return;
|
|
}
|
|
}
|
|
|
|
setMinimumIntegerDigits(0);
|
|
setMaximumIntegerDigits(kDoubleIntegerDigits);
|
|
setMinimumFractionDigits(0);
|
|
setMaximumFractionDigits(kDoubleFractionDigits);
|
|
|
|
fUseExponentialNotation = FALSE;
|
|
fCurrencySignCount = 0;
|
|
setGroupingUsed(FALSE);
|
|
fGroupingSize = 0;
|
|
fGroupingSize2 = 0;
|
|
setMultiplier(1);
|
|
setDecimalSeparatorAlwaysShown(FALSE);
|
|
fFormatWidth = 0;
|
|
setRoundingIncrement(0.0);
|
|
}
|
|
|
|
// If there was no negative pattern, or if the negative pattern is
|
|
// identical to the positive pattern, then prepend the minus sign to the
|
|
// positive pattern to form the negative pattern.
|
|
if (fNegPrefixPattern == NULL ||
|
|
(*fNegPrefixPattern == *fPosPrefixPattern
|
|
&& *fNegSuffixPattern == *fPosSuffixPattern)) {
|
|
_copy_us_ptr(&fNegSuffixPattern, fPosSuffixPattern);
|
|
if (fNegPrefixPattern == NULL) {
|
|
fNegPrefixPattern = new UnicodeString();
|
|
/* test for NULL */
|
|
if (fNegPrefixPattern == 0) {
|
|
status = U_MEMORY_ALLOCATION_ERROR;
|
|
return;
|
|
}
|
|
} else {
|
|
fNegPrefixPattern->remove();
|
|
}
|
|
fNegPrefixPattern->append(kQuote).append(kPatternMinus)
|
|
.append(*fPosPrefixPattern);
|
|
}
|
|
#ifdef FMT_DEBUG
|
|
UnicodeString s;
|
|
s.append("\"").append(pattern).append("\"->");
|
|
debugout(s);
|
|
#endif
|
|
|
|
// save the pattern
|
|
fFormatPattern = pattern;
|
|
}
|
|
|
|
|
|
void
|
|
DecimalFormat::expandAffixAdjustWidth(const UnicodeString* pluralCount) {
|
|
expandAffixes(pluralCount);
|
|
if (fFormatWidth > 0) {
|
|
// Finish computing format width (see above)
|
|
// TODO: how to handle fFormatWidth,
|
|
// need to save in f(Plural)AffixesForCurrecy?
|
|
fFormatWidth += fPositivePrefix.length() + fPositiveSuffix.length();
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
DecimalFormat::applyPattern(const UnicodeString& pattern,
|
|
UBool localized,
|
|
UParseError& parseError,
|
|
UErrorCode& status)
|
|
{
|
|
// do the following re-set first. since they change private data by
|
|
// apply pattern again.
|
|
if (pattern.indexOf(kCurrencySign) != -1) {
|
|
if (fCurrencyPluralInfo == NULL) {
|
|
// initialize currencyPluralInfo if needed
|
|
fCurrencyPluralInfo = new CurrencyPluralInfo(fSymbols->getLocale(), status);
|
|
}
|
|
if (fAffixPatternsForCurrency == NULL) {
|
|
setupCurrencyAffixPatterns(status);
|
|
}
|
|
if (pattern.indexOf(fgTripleCurrencySign) != -1) {
|
|
// only setup the affixes of the current pattern.
|
|
setupCurrencyAffixes(pattern, TRUE, FALSE, status);
|
|
}
|
|
}
|
|
applyPatternWithoutExpandAffix(pattern, localized, parseError, status);
|
|
expandAffixAdjustWidth(NULL);
|
|
}
|
|
|
|
|
|
void
|
|
DecimalFormat::applyPatternInternally(const UnicodeString& pluralCount,
|
|
const UnicodeString& pattern,
|
|
UBool localized,
|
|
UParseError& parseError,
|
|
UErrorCode& status) {
|
|
applyPatternWithoutExpandAffix(pattern, localized, parseError, status);
|
|
expandAffixAdjustWidth(&pluralCount);
|
|
}
|
|
|
|
|
|
/**
|
|
* Sets the maximum number of digits allowed in the integer portion of a
|
|
* number. This override limits the integer digit count to 309.
|
|
* @see NumberFormat#setMaximumIntegerDigits
|
|
*/
|
|
void DecimalFormat::setMaximumIntegerDigits(int32_t newValue) {
|
|
NumberFormat::setMaximumIntegerDigits(_min(newValue, kDoubleIntegerDigits));
|
|
}
|
|
|
|
/**
|
|
* Sets the minimum number of digits allowed in the integer portion of a
|
|
* number. This override limits the integer digit count to 309.
|
|
* @see NumberFormat#setMinimumIntegerDigits
|
|
*/
|
|
void DecimalFormat::setMinimumIntegerDigits(int32_t newValue) {
|
|
NumberFormat::setMinimumIntegerDigits(_min(newValue, kDoubleIntegerDigits));
|
|
}
|
|
|
|
/**
|
|
* Sets the maximum number of digits allowed in the fraction portion of a
|
|
* number. This override limits the fraction digit count to 340.
|
|
* @see NumberFormat#setMaximumFractionDigits
|
|
*/
|
|
void DecimalFormat::setMaximumFractionDigits(int32_t newValue) {
|
|
NumberFormat::setMaximumFractionDigits(_min(newValue, kDoubleFractionDigits));
|
|
}
|
|
|
|
/**
|
|
* Sets the minimum number of digits allowed in the fraction portion of a
|
|
* number. This override limits the fraction digit count to 340.
|
|
* @see NumberFormat#setMinimumFractionDigits
|
|
*/
|
|
void DecimalFormat::setMinimumFractionDigits(int32_t newValue) {
|
|
NumberFormat::setMinimumFractionDigits(_min(newValue, kDoubleFractionDigits));
|
|
}
|
|
|
|
int32_t DecimalFormat::getMinimumSignificantDigits() const {
|
|
return fMinSignificantDigits;
|
|
}
|
|
|
|
int32_t DecimalFormat::getMaximumSignificantDigits() const {
|
|
return fMaxSignificantDigits;
|
|
}
|
|
|
|
void DecimalFormat::setMinimumSignificantDigits(int32_t min) {
|
|
if (min < 1) {
|
|
min = 1;
|
|
}
|
|
// pin max sig dig to >= min
|
|
int32_t max = _max(fMaxSignificantDigits, min);
|
|
fMinSignificantDigits = min;
|
|
fMaxSignificantDigits = max;
|
|
}
|
|
|
|
void DecimalFormat::setMaximumSignificantDigits(int32_t max) {
|
|
if (max < 1) {
|
|
max = 1;
|
|
}
|
|
// pin min sig dig to 1..max
|
|
U_ASSERT(fMinSignificantDigits >= 1);
|
|
int32_t min = _min(fMinSignificantDigits, max);
|
|
fMinSignificantDigits = min;
|
|
fMaxSignificantDigits = max;
|
|
}
|
|
|
|
UBool DecimalFormat::areSignificantDigitsUsed() const {
|
|
return fUseSignificantDigits;
|
|
}
|
|
|
|
void DecimalFormat::setSignificantDigitsUsed(UBool useSignificantDigits) {
|
|
fUseSignificantDigits = useSignificantDigits;
|
|
}
|
|
|
|
void DecimalFormat::setCurrencyInternally(const UChar* theCurrency,
|
|
UErrorCode& ec) {
|
|
// If we are a currency format, then modify our affixes to
|
|
// encode the currency symbol for the given currency in our
|
|
// locale, and adjust the decimal digits and rounding for the
|
|
// given currency.
|
|
|
|
// Note: The code is ordered so that this object is *not changed*
|
|
// until we are sure we are going to succeed.
|
|
|
|
// NULL or empty currency is *legal* and indicates no currency.
|
|
UBool isCurr = (theCurrency && *theCurrency);
|
|
|
|
double rounding = 0.0;
|
|
int32_t frac = 0;
|
|
if (fCurrencySignCount > fgCurrencySignCountZero && isCurr) {
|
|
rounding = ucurr_getRoundingIncrement(theCurrency, &ec);
|
|
frac = ucurr_getDefaultFractionDigits(theCurrency, &ec);
|
|
}
|
|
|
|
NumberFormat::setCurrency(theCurrency, ec);
|
|
if (U_FAILURE(ec)) return;
|
|
|
|
if (fCurrencySignCount > fgCurrencySignCountZero) {
|
|
// NULL or empty currency is *legal* and indicates no currency.
|
|
if (isCurr) {
|
|
setRoundingIncrement(rounding);
|
|
setMinimumFractionDigits(frac);
|
|
setMaximumFractionDigits(frac);
|
|
}
|
|
expandAffixes(NULL);
|
|
}
|
|
}
|
|
|
|
void DecimalFormat::setCurrency(const UChar* theCurrency, UErrorCode& ec) {
|
|
// set the currency before compute affixes to get the right currency names
|
|
NumberFormat::setCurrency(theCurrency, ec);
|
|
if (fFormatPattern.indexOf(fgTripleCurrencySign) != -1) {
|
|
UnicodeString savedPtn = fFormatPattern;
|
|
setupCurrencyAffixes(fFormatPattern, TRUE, TRUE, ec);
|
|
UParseError parseErr;
|
|
applyPattern(savedPtn, FALSE, parseErr, ec);
|
|
}
|
|
// set the currency after apply pattern to get the correct rounding/fraction
|
|
setCurrencyInternally(theCurrency, ec);
|
|
}
|
|
|
|
// Deprecated variant with no UErrorCode parameter
|
|
void DecimalFormat::setCurrency(const UChar* theCurrency) {
|
|
UErrorCode ec = U_ZERO_ERROR;
|
|
setCurrency(theCurrency, ec);
|
|
}
|
|
|
|
void DecimalFormat::getEffectiveCurrency(UChar* result, UErrorCode& ec) const {
|
|
if (fSymbols == NULL) {
|
|
ec = U_MEMORY_ALLOCATION_ERROR;
|
|
return;
|
|
}
|
|
ec = U_ZERO_ERROR;
|
|
const UChar* c = getCurrency();
|
|
if (*c == 0) {
|
|
const UnicodeString &intl =
|
|
fSymbols->getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol);
|
|
c = intl.getBuffer(); // ok for intl to go out of scope
|
|
}
|
|
u_strncpy(result, c, 3);
|
|
result[3] = 0;
|
|
}
|
|
|
|
/**
|
|
* Return the number of fraction digits to display, or the total
|
|
* number of digits for significant digit formats and exponential
|
|
* formats.
|
|
*/
|
|
int32_t
|
|
DecimalFormat::precision() const {
|
|
if (areSignificantDigitsUsed()) {
|
|
return getMaximumSignificantDigits();
|
|
} else if (fUseExponentialNotation) {
|
|
return getMinimumIntegerDigits() + getMaximumFractionDigits();
|
|
} else {
|
|
return getMaximumFractionDigits();
|
|
}
|
|
}
|
|
|
|
|
|
// TODO: template algorithm
|
|
Hashtable*
|
|
DecimalFormat::initHashForAffix(UErrorCode& status) {
|
|
if ( U_FAILURE(status) ) {
|
|
return NULL;
|
|
}
|
|
Hashtable* hTable;
|
|
if ( (hTable = new Hashtable(TRUE, status)) == NULL ) {
|
|
status = U_MEMORY_ALLOCATION_ERROR;
|
|
return NULL;
|
|
}
|
|
if ( U_FAILURE(status) ) {
|
|
delete hTable;
|
|
return NULL;
|
|
}
|
|
hTable->setValueComparator(decimfmtAffixValueComparator);
|
|
return hTable;
|
|
}
|
|
|
|
Hashtable*
|
|
DecimalFormat::initHashForAffixPattern(UErrorCode& status) {
|
|
if ( U_FAILURE(status) ) {
|
|
return NULL;
|
|
}
|
|
Hashtable* hTable;
|
|
if ( (hTable = new Hashtable(TRUE, status)) == NULL ) {
|
|
status = U_MEMORY_ALLOCATION_ERROR;
|
|
return NULL;
|
|
}
|
|
if ( U_FAILURE(status) ) {
|
|
delete hTable;
|
|
return NULL;
|
|
}
|
|
hTable->setValueComparator(decimfmtAffixPatternValueComparator);
|
|
return hTable;
|
|
}
|
|
|
|
void
|
|
DecimalFormat::deleteHashForAffix(Hashtable*& table)
|
|
{
|
|
if ( table == NULL ) {
|
|
return;
|
|
}
|
|
int32_t pos = -1;
|
|
const UHashElement* element = NULL;
|
|
while ( (element = table->nextElement(pos)) != NULL ) {
|
|
const UHashTok keyTok = element->key;
|
|
const UHashTok valueTok = element->value;
|
|
const AffixesForCurrency* value = (AffixesForCurrency*)valueTok.pointer;
|
|
delete value;
|
|
}
|
|
delete table;
|
|
table = NULL;
|
|
}
|
|
|
|
|
|
|
|
void
|
|
DecimalFormat::deleteHashForAffixPattern()
|
|
{
|
|
if ( fAffixPatternsForCurrency == NULL ) {
|
|
return;
|
|
}
|
|
int32_t pos = -1;
|
|
const UHashElement* element = NULL;
|
|
while ( (element = fAffixPatternsForCurrency->nextElement(pos)) != NULL ) {
|
|
const UHashTok keyTok = element->key;
|
|
const UHashTok valueTok = element->value;
|
|
const AffixPatternsForCurrency* value = (AffixPatternsForCurrency*)valueTok.pointer;
|
|
delete value;
|
|
}
|
|
delete fAffixPatternsForCurrency;
|
|
fAffixPatternsForCurrency = NULL;
|
|
}
|
|
|
|
|
|
void
|
|
DecimalFormat::copyHashForAffixPattern(const Hashtable* source,
|
|
Hashtable* target,
|
|
UErrorCode& status) {
|
|
if ( U_FAILURE(status) ) {
|
|
return;
|
|
}
|
|
int32_t pos = -1;
|
|
const UHashElement* element = NULL;
|
|
if ( source ) {
|
|
while ( (element = source->nextElement(pos)) != NULL ) {
|
|
const UHashTok keyTok = element->key;
|
|
const UnicodeString* key = (UnicodeString*)keyTok.pointer;
|
|
const UHashTok valueTok = element->value;
|
|
const AffixPatternsForCurrency* value = (AffixPatternsForCurrency*)valueTok.pointer;
|
|
AffixPatternsForCurrency* copy = new AffixPatternsForCurrency(
|
|
value->negPrefixPatternForCurrency,
|
|
value->negSuffixPatternForCurrency,
|
|
value->posPrefixPatternForCurrency,
|
|
value->posSuffixPatternForCurrency,
|
|
value->patternType);
|
|
target->put(UnicodeString(*key), copy, status);
|
|
if ( U_FAILURE(status) ) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void
|
|
DecimalFormat::copyHashForAffix(const Hashtable* source,
|
|
Hashtable* target,
|
|
UErrorCode& status) {
|
|
if ( U_FAILURE(status) ) {
|
|
return;
|
|
}
|
|
int32_t pos = -1;
|
|
const UHashElement* element = NULL;
|
|
if ( source ) {
|
|
while ( (element = source->nextElement(pos)) != NULL ) {
|
|
const UHashTok keyTok = element->key;
|
|
const UnicodeString* key = (UnicodeString*)keyTok.pointer;
|
|
|
|
const UHashTok valueTok = element->value;
|
|
const AffixesForCurrency* value = (AffixesForCurrency*)valueTok.pointer;
|
|
AffixesForCurrency* copy = new AffixesForCurrency(
|
|
value->negPrefixForCurrency,
|
|
value->negSuffixForCurrency,
|
|
value->posPrefixForCurrency,
|
|
value->posSuffixForCurrency);
|
|
target->put(UnicodeString(*key), copy, status);
|
|
if ( U_FAILURE(status) ) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
U_NAMESPACE_END
|
|
|
|
#endif /* #if !UCONFIG_NO_FORMATTING */
|
|
|
|
//eof
|