scuffed-code/icu4c/source/test/intltest/tsmthred.cpp
2009-06-12 19:34:21 +00:00

1585 lines
47 KiB
C++

/********************************************************************
* COPYRIGHT:
* Copyright (c) 1999-2009, International Business Machines Corporation and
* others. All Rights Reserved.
********************************************************************/
#if defined(hpux)
# ifndef _INCLUDE_POSIX_SOURCE
# define _INCLUDE_POSIX_SOURCE
# endif
#endif
/* Needed by z/OS to get usleep */
#include "platform_xopen_source_extended.h"
#include "unicode/utypes.h"
#include "unicode/ustring.h"
#include "umutex.h"
#include "cmemory.h"
#include "cstring.h"
#include "uparse.h"
#include "unicode/resbund.h"
#include "unicode/udata.h"
#include "unicode/uloc.h"
#include "unicode/locid.h"
#include "putilimp.h"
#if !defined(U_WINDOWS) && !defined(XP_MAC) && !defined(U_RHAPSODY)
#define POSIX 1
#endif
#if defined(POSIX) || defined(U_SOLARIS) || defined(U_AIX) || defined(U_HPUX)
#define HAVE_IMP
#if (ICU_USE_THREADS == 1)
#include <pthread.h>
#endif
#if defined(__hpux) && defined(HPUX_CMA)
# if defined(read) // read being defined as cma_read causes trouble with iostream::read
# undef read
# endif
#endif
/* Define __EXTENSIONS__ for Solaris and old friends in strict mode. */
#ifndef __EXTENSIONS__
#define __EXTENSIONS__
#endif
#include <signal.h>
/* Define _XPG4_2 for Solaris and friends. */
#ifndef _XPG4_2
#define _XPG4_2
#endif
/* Define __USE_XOPEN_EXTENDED for Linux and glibc. */
#ifndef __USE_XOPEN_EXTENDED
#define __USE_XOPEN_EXTENDED
#endif
/* Define _INCLUDE_XOPEN_SOURCE_EXTENDED for HP/UX (11?). */
#ifndef _INCLUDE_XOPEN_SOURCE_EXTENDED
#define _INCLUDE_XOPEN_SOURCE_EXTENDED
#endif
#include <unistd.h>
#endif
/* HPUX */
#ifdef sleep
#undef sleep
#endif
#include "tsmthred.h"
#define TSMTHREAD_FAIL(msg) errln("%s at file %s, line %d", msg, __FILE__, __LINE__)
#define TSMTHREAD_ASSERT(expr) {if (!(expr)) {TSMTHREAD_FAIL("Fail");}}
MultithreadTest::MultithreadTest()
{
}
MultithreadTest::~MultithreadTest()
{
}
#if (ICU_USE_THREADS==0)
void MultithreadTest::runIndexedTest( int32_t index, UBool exec,
const char* &name, char* /*par*/ ) {
if (exec) logln("TestSuite MultithreadTest: ");
if(index == 0)
name = "NO_THREADED_TESTS";
else
name = "";
if(exec) { logln("MultithreadTest - test DISABLED. ICU_USE_THREADS set to 0, check your configuration if this is a problem..");
}
}
#else
// Note: A LOT OF THE FUNCTIONS IN THIS FILE SHOULD LIVE ELSEWHERE!!!!!
// Note: A LOT OF THE FUNCTIONS IN THIS FILE SHOULD LIVE ELSEWHERE!!!!!
// -srl
#include <stdio.h>
#include <string.h>
#include <ctype.h> // tolower, toupper
#include "unicode/putil.h"
/* for mthreadtest*/
#include "unicode/numfmt.h"
#include "unicode/choicfmt.h"
#include "unicode/msgfmt.h"
#include "unicode/locid.h"
#include "unicode/ucol.h"
#include "unicode/calendar.h"
#include "ucaconf.h"
//-----------------------------------------------------------------------------------
//
// class SimpleThread Of course we need a thread class first..
// This wrapper has a ported implementation.
//
//-----------------------------------------------------------------------------------
class SimpleThread
{
public:
SimpleThread();
virtual ~SimpleThread();
int32_t start(void); // start the thread
UBool isRunning(); // return true if a started thread has exited.
virtual void run(void) = 0; // Override this to provide the code to run
// in the thread.
void *fImplementation;
public:
static void sleep(int32_t millis); // probably shouldn't go here but oh well.
static void errorFunc(); // Empty function, provides a single convenient place
// to break on errors.
};
void SimpleThread::errorFunc() {
// *(char *)0 = 3; // Force entry into a debugger via a crash;
}
#ifdef U_WINDOWS
#define HAVE_IMP
# define VC_EXTRALEAN
# define WIN32_LEAN_AND_MEAN
# define NOUSER
# define NOSERVICE
# define NOIME
# define NOMCX
#include <windows.h>
#include <process.h>
//-----------------------------------------------------------------------------------
//
// class SimpleThread Windows Implementation
//
//-----------------------------------------------------------------------------------
struct Win32ThreadImplementation
{
HANDLE fHandle;
unsigned int fThreadID;
};
extern "C" unsigned int __stdcall SimpleThreadProc(void *arg)
{
((SimpleThread*)arg)->run();
return 0;
}
SimpleThread::SimpleThread()
:fImplementation(0)
{
Win32ThreadImplementation *imp = new Win32ThreadImplementation;
imp->fHandle = 0;
fImplementation = imp;
}
SimpleThread::~SimpleThread()
{
// Destructor. Because we start the thread running with _beginthreadex(),
// we own the Windows HANDLE for the thread and must
// close it here.
Win32ThreadImplementation *imp = (Win32ThreadImplementation*)fImplementation;
if (imp != 0) {
if (imp->fHandle != 0) {
CloseHandle(imp->fHandle);
imp->fHandle = 0;
}
}
delete (Win32ThreadImplementation*)fImplementation;
}
int32_t SimpleThread::start()
{
Win32ThreadImplementation *imp = (Win32ThreadImplementation*)fImplementation;
if(imp->fHandle != NULL) {
// The thread appears to have already been started.
// This is probably an error on the part of our caller.
return -1;
}
imp->fHandle = (HANDLE) _beginthreadex(
NULL, // Security
0x20000, // Stack Size
SimpleThreadProc, // Function to Run
(void *)this, // Arg List
0, // initflag. Start running, not suspended
&imp->fThreadID // thraddr
);
if (imp->fHandle == 0) {
// An error occured
int err = errno;
if (err == 0) {
err = -1;
}
return err;
}
return 0;
}
UBool SimpleThread::isRunning() {
//
// Test whether the thread associated with the SimpleThread object is
// still actually running.
//
// NOTE: on Win64 on Itanium processors, a crashes
// occur if the main thread of a process exits concurrently with some
// other thread(s) exiting. To avoid the possibility, we wait until the
// OS indicates that all threads have terminated, rather than waiting
// only until the end of the user's Run function has been reached.
//
// I don't know whether the crashes represent a Windows bug, or whether
// main() programs are supposed to have to wait for their threads.
//
Win32ThreadImplementation *imp = (Win32ThreadImplementation*)fImplementation;
bool success;
DWORD threadExitCode;
if (imp->fHandle == 0) {
// No handle, thread must not be running.
return FALSE;
}
success = GetExitCodeThread(imp->fHandle, &threadExitCode) != 0;
if (! success) {
// Can't get status, thread must not be running.
return FALSE;
}
return (threadExitCode == STILL_ACTIVE);
}
void SimpleThread::sleep(int32_t millis)
{
::Sleep(millis);
}
//-----------------------------------------------------------------------------------
//
// class SimpleThread NULL Implementation
//
//-----------------------------------------------------------------------------------
#elif defined XP_MAC
// since the Mac has no preemptive threading (at least on MacOS 8), only
// cooperative threading, threads are a no-op. We have no yield() calls
// anywhere in the ICU, so we are guaranteed to be thread-safe.
#define HAVE_IMP
SimpleThread::SimpleThread()
{}
SimpleThread::~SimpleThread()
{}
int32_t
SimpleThread::start()
{ return 0; }
void
SimpleThread::run()
{}
void
SimpleThread::sleep(int32_t millis)
{}
UBool
SimpleThread::isRunning() {
return FALSE;
}
#endif
//-----------------------------------------------------------------------------------
//
// class SimpleThread POSIX implementation
//
// A note on the POSIX vs the Windows implementations of this class..
// On Windows, the main thread must verify that other threads have finished
// before exiting, or crashes occasionally occur. (Seen on Itanium Win64 only)
// The function SimpleThread::isRunning() is used for this purpose.
//
// On POSIX, there is NO reliable non-blocking mechanism to determine
// whether a thread has exited. pthread_kill(thread, 0) almost works,
// but the system can recycle thread ids immediately, so seeing that a
// thread exists with this call could mean that the original thread has
// finished and a new one started with the same ID. Useless.
//
// So we need to do the check with user code, by setting a flag just before
// the thread function returns. A technique that is guaranteed to fail
// on Windows, because it indicates that the thread is done before all
// system level cleanup has happened.
//
//-----------------------------------------------------------------------------------
#if defined(POSIX)||defined(U_SOLARIS)||defined(U_AIX)||defined(U_HPUX)
#define HAVE_IMP
struct PosixThreadImplementation
{
pthread_t fThread;
UBool fRunning;
UBool fRan; /* True if the thread was successfully started */
};
extern "C" void* SimpleThreadProc(void *arg)
{
// This is the code that is run in the new separate thread.
SimpleThread *This = (SimpleThread *)arg;
This->run(); // Run the user code.
// The user function has returned. Set the flag indicating that this thread
// is done. Need a mutex for memory barrier purposes only, so that other thread
// will reliably see that the flag has changed.
PosixThreadImplementation *imp = (PosixThreadImplementation*)This->fImplementation;
umtx_lock(NULL);
imp->fRunning = FALSE;
umtx_unlock(NULL);
return 0;
}
SimpleThread::SimpleThread()
{
PosixThreadImplementation *imp = new PosixThreadImplementation;
imp->fRunning = FALSE;
imp->fRan = FALSE;
fImplementation = imp;
}
SimpleThread::~SimpleThread()
{
PosixThreadImplementation *imp = (PosixThreadImplementation*)fImplementation;
if (imp->fRan) {
pthread_join(imp->fThread, NULL);
}
delete imp;
fImplementation = (void *)0xdeadbeef;
}
int32_t SimpleThread::start()
{
int32_t rc;
static pthread_attr_t attr;
static UBool attrIsInitialized = FALSE;
PosixThreadImplementation *imp = (PosixThreadImplementation*)fImplementation;
imp->fRunning = TRUE;
imp->fRan = TRUE;
#ifdef HPUX_CMA
if (attrIsInitialized == FALSE) {
rc = pthread_attr_create(&attr);
attrIsInitialized = TRUE;
}
rc = pthread_create(&(imp->fThread),attr,&SimpleThreadProc,(void*)this);
#else
if (attrIsInitialized == FALSE) {
rc = pthread_attr_init(&attr);
#if defined(OS390)
{
int detachstate = 0; /* jdc30: detach state of zero causes
threads created with this attr to be in
an undetached state. An undetached
thread will keep its resources after
termination. */
pthread_attr_setdetachstate(&attr, &detachstate);
}
#else
// pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
#endif
attrIsInitialized = TRUE;
}
rc = pthread_create(&(imp->fThread),&attr,&SimpleThreadProc,(void*)this);
#endif
if (rc != 0) {
// some kind of error occured, the thread did not start.
imp->fRan = FALSE;
imp->fRunning = FALSE;
}
return rc;
}
UBool
SimpleThread::isRunning() {
// Note: Mutex functions are used here not for synchronization,
// but to force memory barriors to exist, to ensure that one thread
// can see changes made by another when running on processors
// with memory models having weak coherency.
PosixThreadImplementation *imp = (PosixThreadImplementation*)fImplementation;
umtx_lock(NULL);
UBool retVal = imp->fRunning;
umtx_unlock(NULL);
return retVal;
}
void SimpleThread::sleep(int32_t millis)
{
#ifdef U_SOLARIS
sigignore(SIGALRM);
#endif
#ifdef HPUX_CMA
cma_sleep(millis/100);
#elif defined(U_HPUX) || defined(OS390)
millis *= 1000;
while(millis >= 1000000) {
usleep(999999);
millis -= 1000000;
}
if(millis > 0) {
usleep(millis);
}
#else
usleep(millis * 1000);
#endif
}
#endif
// end POSIX
#ifndef HAVE_IMP
#error No implementation for threads! Cannot test.
0 = 216; //die
#endif
// *************** end fluff ******************
/* now begins the real test. */
void MultithreadTest::runIndexedTest( int32_t index, UBool exec,
const char* &name, char* /*par*/ ) {
if (exec)
logln("TestSuite MultithreadTest: ");
switch (index) {
case 0:
name = "TestThreads";
if (exec)
TestThreads();
break;
case 1:
name = "TestMutex";
if (exec)
TestMutex();
break;
case 2:
name = "TestThreadedIntl";
#if !UCONFIG_NO_FORMATTING
if (exec) {
TestThreadedIntl();
}
#endif
break;
case 3:
name = "TestCollators";
#if !UCONFIG_NO_COLLATION
if (exec) {
TestCollators();
}
#endif /* #if !UCONFIG_NO_COLLATION */
break;
case 4:
name = "TestString";
if (exec) {
TestString();
}
break;
default:
name = "";
break; //needed to end loop
}
}
//-----------------------------------------------------------------------------------
//
// TestThreads -- see if threads really work at all.
//
// Set up N threads pointing at N chars. When they are started, they will
// each sleep 1 second and then set their chars. At the end we make sure they
// are all set.
//
//-----------------------------------------------------------------------------------
#define THREADTEST_NRTHREADS 8
class TestThreadsThread : public SimpleThread
{
public:
TestThreadsThread(char* whatToChange) { fWhatToChange = whatToChange; }
virtual void run() { SimpleThread::sleep(1000);
Mutex m;
*fWhatToChange = '*';
}
private:
char *fWhatToChange;
};
void MultithreadTest::TestThreads()
{
char threadTestChars[THREADTEST_NRTHREADS + 1];
SimpleThread *threads[THREADTEST_NRTHREADS];
int32_t numThreadsStarted = 0;
int32_t i;
for(i=0;i<THREADTEST_NRTHREADS;i++)
{
threadTestChars[i] = ' ';
threads[i] = new TestThreadsThread(&threadTestChars[i]);
}
threadTestChars[THREADTEST_NRTHREADS] = '\0';
logln("->" + UnicodeString(threadTestChars) + "<- Firing off threads.. ");
for(i=0;i<THREADTEST_NRTHREADS;i++)
{
if (threads[i]->start() != 0) {
errln("Error starting thread %d", i);
}
else {
numThreadsStarted++;
}
SimpleThread::sleep(100);
logln(" Subthread started.");
}
logln("Waiting for threads to be set..");
if (numThreadsStarted == 0) {
errln("No threads could be started for testing!");
return;
}
int32_t patience = 40; // seconds to wait
while(patience--)
{
int32_t count = 0;
umtx_lock(NULL);
for(i=0;i<THREADTEST_NRTHREADS;i++)
{
if(threadTestChars[i] == '*')
{
count++;
}
}
umtx_unlock(NULL);
if(count == THREADTEST_NRTHREADS)
{
logln("->" + UnicodeString(threadTestChars) + "<- Got all threads! cya");
for(i=0;i<THREADTEST_NRTHREADS;i++)
{
delete threads[i];
}
return;
}
logln("->" + UnicodeString(threadTestChars) + "<- Waiting..");
SimpleThread::sleep(500);
}
errln("->" + UnicodeString(threadTestChars) + "<- PATIENCE EXCEEDED!! Still missing some.");
for(i=0;i<THREADTEST_NRTHREADS;i++)
{
delete threads[i];
}
}
//-----------------------------------------------------------------------
//
// TestMutex - a simple (non-stress) test to verify that ICU mutexes
// are actually mutexing. Does not test the use of
// mutexes within ICU services, but rather that the
// platform's mutex support is at least superficially there.
//
//----------------------------------------------------------------------
static UMTX gTestMutexA = NULL;
static UMTX gTestMutexB = NULL;
static int gThreadsStarted = 0;
static int gThreadsInMiddle = 0;
static int gThreadsDone = 0;
static const int TESTMUTEX_THREAD_COUNT = 4;
static int safeIncr(int &var, int amt) {
// Thread safe (using global mutex) increment of a variable.
// Return the updated value.
// Can also be used as a safe load of a variable by incrementing it by 0.
Mutex m;
var += amt;
return var;
}
class TestMutexThread : public SimpleThread
{
public:
virtual void run()
{
// This is the code that each of the spawned threads runs.
// All of the spawned threads bunch up together at each of the two mutexes
// because the main holds the mutexes until they do.
//
safeIncr(gThreadsStarted, 1);
umtx_lock(&gTestMutexA);
umtx_unlock(&gTestMutexA);
safeIncr(gThreadsInMiddle, 1);
umtx_lock(&gTestMutexB);
umtx_unlock(&gTestMutexB);
safeIncr(gThreadsDone, 1);
}
};
void MultithreadTest::TestMutex()
{
// Start up the test threads. They should all pile up waiting on
// gTestMutexA, which we (the main thread) hold until the test threads
// all get there.
gThreadsStarted = 0;
gThreadsInMiddle = 0;
gThreadsDone = 0;
umtx_lock(&gTestMutexA);
TestMutexThread *threads[TESTMUTEX_THREAD_COUNT];
int i;
int32_t numThreadsStarted = 0;
for (i=0; i<TESTMUTEX_THREAD_COUNT; i++) {
threads[i] = new TestMutexThread;
if (threads[i]->start() != 0) {
errln("Error starting thread %d", i);
}
else {
numThreadsStarted++;
}
}
if (numThreadsStarted == 0) {
errln("No threads could be started for testing!");
return;
}
int patience = 0;
while (safeIncr(gThreadsStarted, 0) != TESTMUTEX_THREAD_COUNT) {
if (patience++ > 24) {
TSMTHREAD_FAIL("Patience Exceeded");
return;
}
SimpleThread::sleep(500);
}
// None of the test threads should have advanced past the first mutex.
TSMTHREAD_ASSERT(gThreadsInMiddle==0);
TSMTHREAD_ASSERT(gThreadsDone==0);
// All of the test threads have made it to the first mutex.
// We (the main thread) now let them advance to the second mutex,
// where they should all pile up again.
umtx_lock(&gTestMutexB);
umtx_unlock(&gTestMutexA);
patience = 0;
while (safeIncr(gThreadsInMiddle, 0) != TESTMUTEX_THREAD_COUNT) {
if (patience++ > 24) {
TSMTHREAD_FAIL("Patience Exceeded");
return;
}
SimpleThread::sleep(500);
}
TSMTHREAD_ASSERT(gThreadsDone==0);
// All test threads made it to the second mutex.
// Now let them proceed from there. They will all terminate.
umtx_unlock(&gTestMutexB);
patience = 0;
while (safeIncr(gThreadsDone, 0) != TESTMUTEX_THREAD_COUNT) {
if (patience++ > 24) {
TSMTHREAD_FAIL("Patience Exceeded");
return;
}
SimpleThread::sleep(500);
}
// All threads made it by both mutexes.
// Destroy the test mutexes.
umtx_destroy(&gTestMutexA);
umtx_destroy(&gTestMutexB);
gTestMutexA=NULL;
gTestMutexB=NULL;
for (i=0; i<TESTMUTEX_THREAD_COUNT; i++) {
delete threads[i];
}
}
//-------------------------------------------------------------------------------------------
//
// class ThreadWithStatus - a thread that we can check the status and error condition of
//
//-------------------------------------------------------------------------------------------
class ThreadWithStatus : public SimpleThread
{
public:
UBool getError() { return (fErrors > 0); }
UBool getError(UnicodeString& fillinError) { fillinError = fErrorString; return (fErrors > 0); }
virtual ~ThreadWithStatus(){}
protected:
ThreadWithStatus() : fErrors(0) {}
void error(const UnicodeString &error) {
fErrors++; fErrorString = error;
SimpleThread::errorFunc();
}
void error() { error("An error occured."); }
private:
int32_t fErrors;
UnicodeString fErrorString;
};
//-------------------------------------------------------------------------------------------
//
// TestMultithreadedIntl. Test ICU Formatting n a multi-threaded environment
//
//-------------------------------------------------------------------------------------------
// * Show exactly where the string's differences lie.
UnicodeString showDifference(const UnicodeString& expected, const UnicodeString& result)
{
UnicodeString res;
res = expected + "<Expected\n";
if(expected.length() != result.length())
res += " [ Different lengths ] \n";
else
{
for(int32_t i=0;i<expected.length();i++)
{
if(expected[i] == result[i])
{
res += " ";
}
else
{
res += "|";
}
}
res += "<Differences";
res += "\n";
}
res += result + "<Result\n";
return res;
}
//-------------------------------------------------------------------------------------------
//
// FormatThreadTest - a thread that tests performing a number of numberformats.
//
//-------------------------------------------------------------------------------------------
const int kFormatThreadIterations = 20; // # of iterations per thread
const int kFormatThreadThreads = 10; // # of threads to spawn
const int kFormatThreadPatience = 60; // time in seconds to wait for all threads
#if !UCONFIG_NO_FORMATTING
struct FormatThreadTestData
{
double number;
UnicodeString string;
FormatThreadTestData(double a, const UnicodeString& b) : number(a),string(b) {}
} ;
// "Someone from {2} is receiving a #{0} error - {1}. Their telephone call is costing {3 number,currency}."
void formatErrorMessage(UErrorCode &realStatus, const UnicodeString& pattern, const Locale& theLocale,
UErrorCode inStatus0, /* statusString 1 */ const Locale &inCountry2, double currency3, // these numbers are the message arguments.
UnicodeString &result)
{
if(U_FAILURE(realStatus))
return; // you messed up
UnicodeString errString1(u_errorName(inStatus0));
UnicodeString countryName2;
inCountry2.getDisplayCountry(theLocale,countryName2);
Formattable myArgs[] = {
Formattable((int32_t)inStatus0), // inStatus0 {0}
Formattable(errString1), // statusString1 {1}
Formattable(countryName2), // inCountry2 {2}
Formattable(currency3)// currency3 {3,number,currency}
};
MessageFormat *fmt = new MessageFormat("MessageFormat's API is broken!!!!!!!!!!!",realStatus);
fmt->setLocale(theLocale);
fmt->applyPattern(pattern, realStatus);
if (U_FAILURE(realStatus)) {
delete fmt;
return;
}
FieldPosition ignore = 0;
fmt->format(myArgs,4,result,ignore,realStatus);
delete fmt;
}
UBool U_CALLCONV isAcceptable(void *, const char *, const char *, const UDataInfo *) {
return TRUE;
}
//static UMTX debugMutex = NULL;
//static UMTX gDebugMutex;
class FormatThreadTest : public ThreadWithStatus
{
public:
int fNum;
int fTraceInfo;
FormatThreadTest() // constructor is NOT multithread safe.
: ThreadWithStatus(),
fNum(0),
fTraceInfo(0),
fOffset(0)
// the locale to use
{
static int32_t fgOffset = 0;
fgOffset += 3;
fOffset = fgOffset;
}
virtual void run()
{
fTraceInfo = 1;
NumberFormat *formatter = NULL;
NumberFormat *percentFormatter = NULL;
UErrorCode status = U_ZERO_ERROR;
#if 0
// debugging code,
for (int i=0; i<4000; i++) {
status = U_ZERO_ERROR;
UDataMemory *data1 = udata_openChoice(0, "res", "en_US", isAcceptable, 0, &status);
UDataMemory *data2 = udata_openChoice(0, "res", "fr", isAcceptable, 0, &status);
udata_close(data1);
udata_close(data2);
if (U_FAILURE(status)) {
error("udata_openChoice failed.\n");
break;
}
}
return;
#endif
#if 0
// debugging code,
int m;
for (m=0; m<4000; m++) {
status = U_ZERO_ERROR;
UResourceBundle *res = NULL;
const char *localeName = NULL;
Locale loc = Locale::getEnglish();
localeName = loc.getName();
// localeName = "en";
// ResourceBundle bund = ResourceBundle(0, loc, status);
//umtx_lock(&gDebugMutex);
res = ures_open(NULL, localeName, &status);
//umtx_unlock(&gDebugMutex);
//umtx_lock(&gDebugMutex);
ures_close(res);
//umtx_unlock(&gDebugMutex);
if (U_FAILURE(status)) {
error("Resource bundle construction failed.\n");
break;
}
}
return;
#endif
// Keep this data here to avoid static initialization.
FormatThreadTestData kNumberFormatTestData[] =
{
FormatThreadTestData((double)5.0, UnicodeString("5", "")),
FormatThreadTestData( 6.0, UnicodeString("6", "")),
FormatThreadTestData( 20.0, UnicodeString("20", "")),
FormatThreadTestData( 8.0, UnicodeString("8", "")),
FormatThreadTestData( 8.3, UnicodeString("8.3", "")),
FormatThreadTestData( 12345, UnicodeString("12,345", "")),
FormatThreadTestData( 81890.23, UnicodeString("81,890.23", "")),
};
int32_t kNumberFormatTestDataLength = (int32_t)(sizeof(kNumberFormatTestData) /
sizeof(kNumberFormatTestData[0]));
// Keep this data here to avoid static initialization.
FormatThreadTestData kPercentFormatTestData[] =
{
FormatThreadTestData((double)5.0, CharsToUnicodeString("500\\u00a0%")),
FormatThreadTestData( 1.0, CharsToUnicodeString("100\\u00a0%")),
FormatThreadTestData( 0.26, CharsToUnicodeString("26\\u00a0%")),
FormatThreadTestData(
16384.99, CharsToUnicodeString("1\\u00a0638\\u00a0499\\u00a0%")), // U+00a0 = NBSP
FormatThreadTestData(
81890.23, CharsToUnicodeString("8\\u00a0189\\u00a0023\\u00a0%")),
};
int32_t kPercentFormatTestDataLength =
(int32_t)(sizeof(kPercentFormatTestData) / sizeof(kPercentFormatTestData[0]));
int32_t iteration;
status = U_ZERO_ERROR;
formatter = NumberFormat::createInstance(Locale::getEnglish(),status);
if(U_FAILURE(status)) {
error("Error on NumberFormat::createInstance().");
goto cleanupAndReturn;
}
percentFormatter = NumberFormat::createPercentInstance(Locale::getFrench(),status);
if(U_FAILURE(status)) {
error("Error on NumberFormat::createPercentInstance().");
goto cleanupAndReturn;
}
for(iteration = 0;!getError() && iteration<kFormatThreadIterations;iteration++)
{
int32_t whichLine = (iteration + fOffset)%kNumberFormatTestDataLength;
UnicodeString output;
formatter->format(kNumberFormatTestData[whichLine].number, output);
if(0 != output.compare(kNumberFormatTestData[whichLine].string)) {
error("format().. expected " + kNumberFormatTestData[whichLine].string
+ " got " + output);
goto cleanupAndReturn;
}
// Now check percent.
output.remove();
whichLine = (iteration + fOffset)%kPercentFormatTestDataLength;
percentFormatter->format(kPercentFormatTestData[whichLine].number, output);
if(0 != output.compare(kPercentFormatTestData[whichLine].string))
{
error("percent format().. \n" +
showDifference(kPercentFormatTestData[whichLine].string,output));
goto cleanupAndReturn;
}
// Test message error
const int kNumberOfMessageTests = 3;
UErrorCode statusToCheck;
UnicodeString patternToCheck;
Locale messageLocale;
Locale countryToCheck;
double currencyToCheck;
UnicodeString expected;
// load the cases.
switch((iteration+fOffset) % kNumberOfMessageTests)
{
default:
case 0:
statusToCheck= U_FILE_ACCESS_ERROR;
patternToCheck= "0:Someone from {2} is receiving a #{0}"
" error - {1}. Their telephone call is costing "
"{3,number,currency}."; // number,currency
messageLocale= Locale("en","US");
countryToCheck= Locale("","HR");
currencyToCheck= 8192.77;
expected= "0:Someone from Croatia is receiving a #4 error - "
"U_FILE_ACCESS_ERROR. Their telephone call is costing $8,192.77.";
break;
case 1:
statusToCheck= U_INDEX_OUTOFBOUNDS_ERROR;
patternToCheck= "1:A customer in {2} is receiving a #{0} error - {1}. Their telephone call is costing {3,number,currency}."; // number,currency
messageLocale= Locale("de","DE@currency=DEM");
countryToCheck= Locale("","BF");
currencyToCheck= 2.32;
expected= CharsToUnicodeString(
"1:A customer in Burkina Faso is receiving a #8 error - U_INDEX_OUTOFBOUNDS_ERROR. Their telephone call is costing 2,32\\u00A0DM.");
break;
case 2:
statusToCheck= U_MEMORY_ALLOCATION_ERROR;
patternToCheck= "2:user in {2} is receiving a #{0} error - {1}. "
"They insist they just spent {3,number,currency} "
"on memory."; // number,currency
messageLocale= Locale("de","AT@currency=ATS"); // Austrian German
countryToCheck= Locale("","US"); // hmm
currencyToCheck= 40193.12;
expected= CharsToUnicodeString(
"2:user in Vereinigte Staaten is receiving a #7 error"
" - U_MEMORY_ALLOCATION_ERROR. They insist they just spent"
" \\u00f6S\\u00A040.193,12 on memory.");
break;
}
UnicodeString result;
UErrorCode status = U_ZERO_ERROR;
formatErrorMessage(status,patternToCheck,messageLocale,statusToCheck,
countryToCheck,currencyToCheck,result);
if(U_FAILURE(status))
{
UnicodeString tmp(u_errorName(status));
error("Failure on message format, pattern=" + patternToCheck +
", error = " + tmp);
goto cleanupAndReturn;
}
if(result != expected)
{
error("PatternFormat: \n" + showDifference(expected,result));
goto cleanupAndReturn;
}
} /* end of for loop */
cleanupAndReturn:
delete formatter;
delete percentFormatter;
// while (fNum == 4) {SimpleThread::sleep(10000);} // Force a failure by preventing thread from finishing
fTraceInfo = 2;
}
private:
int32_t fOffset; // where we are testing from.
};
// ** The actual test function.
void MultithreadTest::TestThreadedIntl()
{
int i;
UnicodeString theErr;
UBool haveDisplayedInfo[kFormatThreadThreads];
static const int32_t PATIENCE_SECONDS = 45;
//
// Create and start the test threads
//
logln("Spawning: %d threads * %d iterations each.",
kFormatThreadThreads, kFormatThreadIterations);
FormatThreadTest *tests = new FormatThreadTest[kFormatThreadThreads];
for(int32_t j = 0; j < kFormatThreadThreads; j++) {
tests[j].fNum = j;
int32_t threadStatus = tests[j].start();
if (threadStatus != 0) {
errln("System Error %d starting thread number %d.", threadStatus, j);
SimpleThread::errorFunc();
goto cleanupAndReturn;
}
haveDisplayedInfo[j] = FALSE;
}
// Spin, waiting for the test threads to finish.
UBool stillRunning;
UDate startTime, endTime;
startTime = Calendar::getNow();
do {
/* Spin until the test threads complete. */
stillRunning = FALSE;
endTime = Calendar::getNow();
if (((int32_t)(endTime - startTime)/U_MILLIS_PER_SECOND) > PATIENCE_SECONDS) {
errln("Patience exceeded. Test is taking too long.");
return;
}
/*
The following sleep must be here because the *BSD operating systems
have a brain dead thread scheduler. They starve the child threads from
CPU time.
*/
SimpleThread::sleep(1); // yield
for(i=0;i<kFormatThreadThreads;i++) {
if (tests[i].isRunning()) {
stillRunning = TRUE;
} else if (haveDisplayedInfo[i] == FALSE) {
logln("Thread # %d is complete..", i);
if(tests[i].getError(theErr)) {
dataerrln(UnicodeString("#") + i + ": " + theErr);
SimpleThread::errorFunc();
}
haveDisplayedInfo[i] = TRUE;
}
}
} while (stillRunning);
//
// All threads have finished.
//
cleanupAndReturn:
delete [] tests;
}
#endif /* #if !UCONFIG_NO_FORMATTING */
//-------------------------------------------------------------------------------------------
//
// Collation threading test
//
//-------------------------------------------------------------------------------------------
#if !UCONFIG_NO_COLLATION
#define kCollatorThreadThreads 10 // # of threads to spawn
#define kCollatorThreadPatience kCollatorThreadThreads*30
struct Line {
UChar buff[25];
int32_t buflen;
} ;
class CollatorThreadTest : public ThreadWithStatus
{
private:
const UCollator *coll;
const Line *lines;
int32_t noLines;
public:
CollatorThreadTest() : ThreadWithStatus(),
coll(NULL),
lines(NULL),
noLines(0)
{
};
void setCollator(UCollator *c, Line *l, int32_t nl)
{
coll = c;
lines = l;
noLines = nl;
}
virtual void run() {
//sleep(10000);
int32_t line = 0;
uint8_t sk1[1024], sk2[1024];
uint8_t *oldSk = NULL, *newSk = sk1;
int32_t resLen = 0, oldLen = 0;
int32_t i = 0;
for(i = 0; i < noLines; i++) {
resLen = ucol_getSortKey(coll, lines[i].buff, lines[i].buflen, newSk, 1024);
int32_t res = 0, cmpres = 0, cmpres2 = 0;
if(oldSk != NULL) {
res = strcmp((char *)oldSk, (char *)newSk);
cmpres = ucol_strcoll(coll, lines[i-1].buff, lines[i-1].buflen, lines[i].buff, lines[i].buflen);
cmpres2 = ucol_strcoll(coll, lines[i].buff, lines[i].buflen, lines[i-1].buff, lines[i-1].buflen);
//cmpres = res;
//cmpres2 = -cmpres;
if(cmpres != -cmpres2) {
error("Compare result not symmetrical on line "+ line);
break;
}
if(((res&0x80000000) != (cmpres&0x80000000)) || (res == 0 && cmpres != 0) || (res != 0 && cmpres == 0)) {
error(UnicodeString("Difference between ucol_strcoll and sortkey compare on line ")+ UnicodeString(line));
break;
}
if(res > 0) {
error(UnicodeString("Line %i is not greater or equal than previous line ")+ UnicodeString(i));
break;
} else if(res == 0) { /* equal */
res = u_strcmpCodePointOrder(lines[i-1].buff, lines[i].buff);
if (res == 0) {
error(UnicodeString("Probable error in test file on line %i (comparing identical strings)")+ UnicodeString(i));
break;
} else if (res > 0) {
error(UnicodeString("Sortkeys are identical, but code point comapare gives >0 on line ")+ UnicodeString(i));
break;
}
}
}
oldSk = newSk;
oldLen = resLen;
newSk = (newSk == sk1)?sk2:sk1;
}
}
};
void MultithreadTest::TestCollators()
{
UErrorCode status = U_ZERO_ERROR;
FILE *testFile = NULL;
char testDataPath[1024];
strcpy(testDataPath, IntlTest::getSourceTestData(status));
if (U_FAILURE(status)) {
errln("ERROR: could not open test data %s", u_errorName(status));
return;
}
strcat(testDataPath, "CollationTest_");
const char* type = "NON_IGNORABLE";
const char *ext = ".txt";
if(testFile) {
fclose(testFile);
}
char buffer[1024];
strcpy(buffer, testDataPath);
strcat(buffer, type);
size_t bufLen = strlen(buffer);
// we try to open 3 files:
// path/CollationTest_type.txt
// path/CollationTest_type_SHORT.txt
// path/CollationTest_type_STUB.txt
// we are going to test with the first one that we manage to open.
strcpy(buffer+bufLen, ext);
testFile = fopen(buffer, "rb");
if(testFile == 0) {
strcpy(buffer+bufLen, "_SHORT");
strcat(buffer, ext);
testFile = fopen(buffer, "rb");
if(testFile == 0) {
strcpy(buffer+bufLen, "_STUB");
strcat(buffer, ext);
testFile = fopen(buffer, "rb");
if (testFile == 0) {
*(buffer+bufLen) = 0;
dataerrln("could not open any of the conformance test files, tried opening base %s", buffer);
return;
} else {
infoln(
"INFO: Working with the stub file.\n"
"If you need the full conformance test, please\n"
"download the appropriate data files from:\n"
"http://source.icu-project.org/repos/icu/tools/trunk/unicodetools/com/ibm/text/data/");
}
}
}
Line *lines = new Line[200000];
memset(lines, 0, sizeof(Line)*200000);
int32_t lineNum = 0;
UChar bufferU[1024];
int32_t buflen = 0;
uint32_t first = 0;
uint32_t offset = 0;
while (fgets(buffer, 1024, testFile) != NULL) {
offset = 0;
if(*buffer == 0 || strlen(buffer) < 3 || buffer[0] == '#') {
continue;
}
offset = u_parseString(buffer, bufferU, 1024, &first, &status);
buflen = offset;
bufferU[offset++] = 0;
lines[lineNum].buflen = buflen;
//lines[lineNum].buff = new UChar[buflen+1];
u_memcpy(lines[lineNum].buff, bufferU, buflen);
lineNum++;
}
fclose(testFile);
if(U_FAILURE(status)) {
dataerrln("Couldn't read the test file!");
return;
}
UCollator *coll = ucol_open("root", &status);
if(U_FAILURE(status)) {
errcheckln(status, "Couldn't open UCA collator");
return;
}
ucol_setAttribute(coll, UCOL_NORMALIZATION_MODE, UCOL_ON, &status);
ucol_setAttribute(coll, UCOL_CASE_FIRST, UCOL_OFF, &status);
ucol_setAttribute(coll, UCOL_CASE_LEVEL, UCOL_OFF, &status);
ucol_setAttribute(coll, UCOL_STRENGTH, UCOL_TERTIARY, &status);
ucol_setAttribute(coll, UCOL_ALTERNATE_HANDLING, UCOL_NON_IGNORABLE, &status);
int32_t noSpawned = 0;
int32_t spawnResult = 0;
CollatorThreadTest *tests;
tests = new CollatorThreadTest[kCollatorThreadThreads];
logln(UnicodeString("Spawning: ") + kCollatorThreadThreads + " threads * " + kFormatThreadIterations + " iterations each.");
int32_t j = 0;
for(j = 0; j < kCollatorThreadThreads; j++) {
//logln("Setting collator %i", j);
tests[j].setCollator(coll, lines, lineNum);
}
for(j = 0; j < kCollatorThreadThreads; j++) {
log("%i ", j);
spawnResult = tests[j].start();
if(spawnResult != 0) {
infoln("THREAD INFO: Couldn't spawn more than %i threads", noSpawned);
break;
}
noSpawned++;
}
logln("Spawned all");
if (noSpawned == 0) {
errln("No threads could be spawned.");
return;
}
for(int32_t patience = kCollatorThreadPatience;patience > 0; patience --)
{
logln("Waiting...");
int32_t i;
int32_t terrs = 0;
int32_t completed =0;
for(i=0;i<kCollatorThreadThreads;i++)
{
if (tests[i].isRunning() == FALSE)
{
completed++;
//logln(UnicodeString("Test #") + i + " is complete.. ");
UnicodeString theErr;
if(tests[i].getError(theErr))
{
terrs++;
errln(UnicodeString("#") + i + ": " + theErr);
}
// print out the error, too, if any.
}
}
logln("Completed %i tests", completed);
if(completed == noSpawned)
{
logln("Done! All %i tests are finished", noSpawned);
if(terrs)
{
errln("There were errors.");
SimpleThread::errorFunc();
}
ucol_close(coll);
delete[] tests;
//for(i = 0; i < lineNum; i++) {
//delete[] lines[i].buff;
//}
delete[] lines;
return;
}
SimpleThread::sleep(900);
}
errln("patience exceeded. ");
SimpleThread::errorFunc();
ucol_close(coll);
}
#endif /* #if !UCONFIG_NO_COLLATION */
//-------------------------------------------------------------------------------------------
//
// StringThreadTest2
//
//-------------------------------------------------------------------------------------------
const int kStringThreadIterations = 2500;// # of iterations per thread
const int kStringThreadThreads = 10; // # of threads to spawn
const int kStringThreadPatience = 120; // time in seconds to wait for all threads
class StringThreadTest2 : public ThreadWithStatus
{
public:
int fNum;
int fTraceInfo;
const UnicodeString *fSharedString;
StringThreadTest2(const UnicodeString *sharedString, int num) // constructor is NOT multithread safe.
: ThreadWithStatus(),
fNum(num),
fTraceInfo(0),
fSharedString(sharedString)
{
};
virtual void run()
{
fTraceInfo = 1;
int loopCount = 0;
for (loopCount = 0; loopCount < kStringThreadIterations; loopCount++) {
if (*fSharedString != "This is the original test string.") {
error("Original string is corrupt.");
break;
}
UnicodeString s1 = *fSharedString;
s1 += "cat this";
UnicodeString s2(s1);
UnicodeString s3 = *fSharedString;
s2 = s3;
s3.truncate(12);
s2.truncate(0);
}
// while (fNum == 4) {SimpleThread::sleep(10000);} // Force a failure by preventing thread from finishing
fTraceInfo = 2;
}
};
// ** The actual test function.
void MultithreadTest::TestString()
{
int patience;
int terrs = 0;
int j;
UnicodeString *testString = new UnicodeString("This is the original test string.");
StringThreadTest2 *tests[kStringThreadThreads];
for(j = 0; j < kStringThreadThreads; j++) {
tests[j] = new StringThreadTest2(testString, j);
}
logln(UnicodeString("Spawning: ") + kStringThreadThreads + " threads * " + kStringThreadIterations + " iterations each.");
for(j = 0; j < kStringThreadThreads; j++) {
int32_t threadStatus = tests[j]->start();
if (threadStatus != 0) {
errln("System Error %d starting thread number %d.", threadStatus, j);
SimpleThread::errorFunc();
goto cleanupAndReturn;
}
}
for(patience = kStringThreadPatience;patience > 0; patience --)
{
logln("Waiting...");
int32_t i;
terrs = 0;
int32_t completed =0;
for(i=0;i<kStringThreadThreads;i++) {
if (tests[i]->isRunning() == FALSE)
{
completed++;
logln(UnicodeString("Test #") + i + " is complete.. ");
UnicodeString theErr;
if(tests[i]->getError(theErr))
{
terrs++;
errln(UnicodeString("#") + i + ": " + theErr);
}
// print out the error, too, if any.
}
}
if(completed == kStringThreadThreads)
{
logln("Done!");
if(terrs) {
errln("There were errors.");
}
break;
}
SimpleThread::sleep(900);
}
if (patience <= 0) {
errln("patience exceeded. ");
// while (TRUE) {SimpleThread::sleep(10000);} // TODO: for debugging. Sleep forever on failure.
terrs++;
}
if (terrs > 0) {
SimpleThread::errorFunc();
}
cleanupAndReturn:
if (terrs == 0) {
/*
Don't clean up if there are errors. This prevents crashes if the
threads are still running and using this data. This will only happen
if there is an error with the test, ICU, or the machine is too slow.
It's better to leak than crash.
*/
for(j = 0; j < kStringThreadThreads; j++) {
delete tests[j];
}
delete testString;
}
}
#endif // ICU_USE_THREADS