242e02c388
X-SVN-Rev: 39583
408 lines
12 KiB
C
408 lines
12 KiB
C
// © 2016 and later: Unicode, Inc. and others.
|
|
// License & terms of use: http://www.unicode.org/copyright.html
|
|
/*
|
|
*******************************************************************************
|
|
*
|
|
* Copyright (C) 2000-2003, International Business Machines
|
|
* Corporation and others. All Rights Reserved.
|
|
*
|
|
*******************************************************************************
|
|
*
|
|
* File writejava.c
|
|
*
|
|
* Modification History:
|
|
*
|
|
* Date Name Description
|
|
* 01/11/02 Ram Creation.
|
|
*******************************************************************************
|
|
*/
|
|
#include "rle.h"
|
|
/**
|
|
* The ESCAPE character is used during run-length encoding. It signals
|
|
* a run of identical chars.
|
|
*/
|
|
static const uint16_t ESCAPE = 0xA5A5;
|
|
|
|
/**
|
|
* The ESCAPE_BYTE character is used during run-length encoding. It signals
|
|
* a run of identical bytes.
|
|
*/
|
|
static const uint8_t ESCAPE_BYTE = (uint8_t)0xA5;
|
|
|
|
/**
|
|
* Append a byte to the given StringBuffer, packing two bytes into each
|
|
* character. The state parameter maintains intermediary data between
|
|
* calls.
|
|
* @param state A two-element array, with state[0] == 0 if this is the
|
|
* first byte of a pair, or state[0] != 0 if this is the second byte
|
|
* of a pair, in which case state[1] is the first byte.
|
|
*/
|
|
static uint16_t*
|
|
appendEncodedByte(uint16_t* buffer, uint16_t* buffLimit, uint8_t value, uint8_t state[],UErrorCode* status) {
|
|
if(!status || U_FAILURE(*status)){
|
|
return NULL;
|
|
}
|
|
if (state[0] != 0) {
|
|
uint16_t c = (uint16_t) ((state[1] << 8) | (((int32_t) value) & 0xFF));
|
|
if(buffer < buffLimit){
|
|
*buffer++ = c;
|
|
}else{
|
|
*status = U_BUFFER_OVERFLOW_ERROR;
|
|
}
|
|
state[0] = 0;
|
|
return buffer;
|
|
}
|
|
else {
|
|
state[0] = 1;
|
|
state[1] = value;
|
|
return buffer;
|
|
}
|
|
}
|
|
/**
|
|
* Encode a run, possibly a degenerate run (of < 4 values).
|
|
* @param length The length of the run; must be > 0 && <= 0xFF.
|
|
*/
|
|
static uint16_t*
|
|
encodeRunByte(uint16_t* buffer,uint16_t* bufLimit, uint8_t value, int32_t length, uint8_t state[], UErrorCode* status) {
|
|
if(!status || U_FAILURE(*status)){
|
|
return NULL;
|
|
}
|
|
if (length < 4) {
|
|
int32_t j=0;
|
|
for (; j<length; ++j) {
|
|
if (value == ESCAPE_BYTE) {
|
|
buffer = appendEncodedByte(buffer,bufLimit, ESCAPE_BYTE, state,status);
|
|
}
|
|
buffer = appendEncodedByte(buffer,bufLimit, value, state, status);
|
|
}
|
|
}
|
|
else {
|
|
if (length == ESCAPE_BYTE) {
|
|
if (value == ESCAPE_BYTE){
|
|
buffer = appendEncodedByte(buffer, bufLimit,ESCAPE_BYTE, state,status);
|
|
}
|
|
buffer = appendEncodedByte(buffer,bufLimit, value, state, status);
|
|
--length;
|
|
}
|
|
buffer = appendEncodedByte(buffer,bufLimit, ESCAPE_BYTE, state,status);
|
|
buffer = appendEncodedByte(buffer,bufLimit, (char)length, state, status);
|
|
buffer = appendEncodedByte(buffer,bufLimit, value, state, status); /* Don't need to escape this value*/
|
|
}
|
|
return buffer;
|
|
}
|
|
|
|
#define APPEND( buffer, bufLimit, value, num, status){ \
|
|
if(buffer<bufLimit){ \
|
|
*buffer++=(value); \
|
|
}else{ \
|
|
*status = U_BUFFER_OVERFLOW_ERROR; \
|
|
} \
|
|
num++; \
|
|
}
|
|
|
|
/**
|
|
* Encode a run, possibly a degenerate run (of < 4 values).
|
|
* @param length The length of the run; must be > 0 && <= 0xFFFF.
|
|
*/
|
|
static uint16_t*
|
|
encodeRunShort(uint16_t* buffer,uint16_t* bufLimit, uint16_t value, int32_t length,UErrorCode* status) {
|
|
int32_t num=0;
|
|
if (length < 4) {
|
|
int j=0;
|
|
for (; j<length; ++j) {
|
|
if (value == (int32_t) ESCAPE){
|
|
APPEND(buffer,bufLimit,ESCAPE, num, status);
|
|
|
|
}
|
|
APPEND(buffer,bufLimit,value,num, status);
|
|
}
|
|
}
|
|
else {
|
|
if (length == (int32_t) ESCAPE) {
|
|
if (value == (int32_t) ESCAPE){
|
|
APPEND(buffer,bufLimit,ESCAPE,num,status);
|
|
|
|
}
|
|
APPEND(buffer,bufLimit,value,num,status);
|
|
--length;
|
|
}
|
|
APPEND(buffer,bufLimit,ESCAPE,num,status);
|
|
APPEND(buffer,bufLimit,(uint16_t) length, num,status);
|
|
APPEND(buffer,bufLimit,(uint16_t)value, num, status); /* Don't need to escape this value */
|
|
}
|
|
return buffer;
|
|
}
|
|
|
|
/**
|
|
* Construct a string representing a char array. Use run-length encoding.
|
|
* A character represents itself, unless it is the ESCAPE character. Then
|
|
* the following notations are possible:
|
|
* ESCAPE ESCAPE ESCAPE literal
|
|
* ESCAPE n c n instances of character c
|
|
* Since an encoded run occupies 3 characters, we only encode runs of 4 or
|
|
* more characters. Thus we have n > 0 and n != ESCAPE and n <= 0xFFFF.
|
|
* If we encounter a run where n == ESCAPE, we represent this as:
|
|
* c ESCAPE n-1 c
|
|
* The ESCAPE value is chosen so as not to collide with commonly
|
|
* seen values.
|
|
*/
|
|
int32_t
|
|
usArrayToRLEString(const uint16_t* src,int32_t srcLen,uint16_t* buffer, int32_t bufLen,UErrorCode* status) {
|
|
uint16_t* bufLimit = buffer+bufLen;
|
|
uint16_t* saveBuffer = buffer;
|
|
if(buffer < bufLimit){
|
|
*buffer++ = (uint16_t)(srcLen>>16);
|
|
if(buffer<bufLimit){
|
|
uint16_t runValue = src[0];
|
|
int32_t runLength = 1;
|
|
int i=1;
|
|
*buffer++ = (uint16_t) srcLen;
|
|
|
|
for (; i<srcLen; ++i) {
|
|
uint16_t s = src[i];
|
|
if (s == runValue && runLength < 0xFFFF){
|
|
++runLength;
|
|
}else {
|
|
buffer = encodeRunShort(buffer,bufLimit, (uint16_t)runValue, runLength,status);
|
|
runValue = s;
|
|
runLength = 1;
|
|
}
|
|
}
|
|
buffer= encodeRunShort(buffer,bufLimit,(uint16_t)runValue, runLength,status);
|
|
}else{
|
|
*status = U_BUFFER_OVERFLOW_ERROR;
|
|
}
|
|
}else{
|
|
*status = U_BUFFER_OVERFLOW_ERROR;
|
|
}
|
|
return (int32_t)(buffer - saveBuffer);
|
|
}
|
|
|
|
/**
|
|
* Construct a string representing a byte array. Use run-length encoding.
|
|
* Two bytes are packed into a single char, with a single extra zero byte at
|
|
* the end if needed. A byte represents itself, unless it is the
|
|
* ESCAPE_BYTE. Then the following notations are possible:
|
|
* ESCAPE_BYTE ESCAPE_BYTE ESCAPE_BYTE literal
|
|
* ESCAPE_BYTE n b n instances of byte b
|
|
* Since an encoded run occupies 3 bytes, we only encode runs of 4 or
|
|
* more bytes. Thus we have n > 0 and n != ESCAPE_BYTE and n <= 0xFF.
|
|
* If we encounter a run where n == ESCAPE_BYTE, we represent this as:
|
|
* b ESCAPE_BYTE n-1 b
|
|
* The ESCAPE_BYTE value is chosen so as not to collide with commonly
|
|
* seen values.
|
|
*/
|
|
int32_t
|
|
byteArrayToRLEString(const uint8_t* src,int32_t srcLen, uint16_t* buffer,int32_t bufLen, UErrorCode* status) {
|
|
const uint16_t* saveBuf = buffer;
|
|
uint16_t* bufLimit = buffer+bufLen;
|
|
if(buffer < bufLimit){
|
|
*buffer++ = ((uint16_t) (srcLen >> 16));
|
|
|
|
if(buffer<bufLimit){
|
|
uint8_t runValue = src[0];
|
|
int runLength = 1;
|
|
uint8_t state[2]= {0};
|
|
int i=1;
|
|
*buffer++=((uint16_t) srcLen);
|
|
for (; i<srcLen; ++i) {
|
|
uint8_t b = src[i];
|
|
if (b == runValue && runLength < 0xFF){
|
|
++runLength;
|
|
}
|
|
else {
|
|
buffer = encodeRunByte(buffer, bufLimit,runValue, runLength, state,status);
|
|
runValue = b;
|
|
runLength = 1;
|
|
}
|
|
}
|
|
buffer = encodeRunByte(buffer,bufLimit, runValue, runLength, state, status);
|
|
|
|
/* We must save the final byte, if there is one, by padding
|
|
* an extra zero.
|
|
*/
|
|
if (state[0] != 0) {
|
|
buffer = appendEncodedByte(buffer,bufLimit, 0, state ,status);
|
|
}
|
|
}else{
|
|
*status = U_BUFFER_OVERFLOW_ERROR;
|
|
}
|
|
}else{
|
|
*status = U_BUFFER_OVERFLOW_ERROR;
|
|
}
|
|
return (int32_t) (buffer - saveBuf);
|
|
}
|
|
|
|
|
|
/**
|
|
* Construct an array of shorts from a run-length encoded string.
|
|
*/
|
|
int32_t
|
|
rleStringToUCharArray(uint16_t* src, int32_t srcLen, uint16_t* target, int32_t tgtLen, UErrorCode* status) {
|
|
int32_t length = 0;
|
|
int32_t ai = 0;
|
|
int i=2;
|
|
|
|
if(!status || U_FAILURE(*status)){
|
|
return 0;
|
|
}
|
|
/* the source is null terminated */
|
|
if(srcLen == -1){
|
|
srcLen = u_strlen(src);
|
|
}
|
|
if(srcLen <= 2){
|
|
return 2;
|
|
}
|
|
length = (((int32_t) src[0]) << 16) | ((int32_t) src[1]);
|
|
|
|
if(target == NULL){
|
|
return length;
|
|
}
|
|
if(tgtLen < length){
|
|
*status = U_BUFFER_OVERFLOW_ERROR;
|
|
return length;
|
|
}
|
|
|
|
for (; i<srcLen; ++i) {
|
|
uint16_t c = src[i];
|
|
if (c == ESCAPE) {
|
|
c = src[++i];
|
|
if (c == ESCAPE) {
|
|
target[ai++] = c;
|
|
} else {
|
|
int32_t runLength = (int32_t) c;
|
|
uint16_t runValue = src[++i];
|
|
int j=0;
|
|
for (; j<runLength; ++j) {
|
|
target[ai++] = runValue;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
target[ai++] = c;
|
|
}
|
|
}
|
|
|
|
if (ai != length){
|
|
*status = U_INTERNAL_PROGRAM_ERROR;
|
|
}
|
|
|
|
return length;
|
|
}
|
|
|
|
/**
|
|
* Construct an array of bytes from a run-length encoded string.
|
|
*/
|
|
int32_t
|
|
rleStringToByteArray(uint16_t* src, int32_t srcLen, uint8_t* target, int32_t tgtLen, UErrorCode* status) {
|
|
|
|
int32_t length = 0;
|
|
UBool nextChar = TRUE;
|
|
uint16_t c = 0;
|
|
int32_t node = 0;
|
|
int32_t runLength = 0;
|
|
int32_t i = 2;
|
|
int32_t ai=0;
|
|
|
|
if(!status || U_FAILURE(*status)){
|
|
return 0;
|
|
}
|
|
/* the source is null terminated */
|
|
if(srcLen == -1){
|
|
srcLen = u_strlen(src);
|
|
}
|
|
if(srcLen <= 2){
|
|
return 2;
|
|
}
|
|
length = (((int32_t) src[0]) << 16) | ((int32_t) src[1]);
|
|
|
|
if(target == NULL){
|
|
return length;
|
|
}
|
|
if(tgtLen < length){
|
|
*status = U_BUFFER_OVERFLOW_ERROR;
|
|
return length;
|
|
}
|
|
|
|
for (; ai<tgtLen; ) {
|
|
/* This part of the loop places the next byte into the local
|
|
* variable 'b' each time through the loop. It keeps the
|
|
* current character in 'c' and uses the boolean 'nextChar'
|
|
* to see if we've taken both bytes out of 'c' yet.
|
|
*/
|
|
uint8_t b;
|
|
if (nextChar) {
|
|
c = src[i++];
|
|
b = (uint8_t) (c >> 8);
|
|
nextChar = FALSE;
|
|
}
|
|
else {
|
|
b = (uint8_t) (c & 0xFF);
|
|
nextChar = TRUE;
|
|
}
|
|
|
|
/* This part of the loop is a tiny state machine which handles
|
|
* the parsing of the run-length encoding. This would be simpler
|
|
* if we could look ahead, but we can't, so we use 'node' to
|
|
* move between three nodes in the state machine.
|
|
*/
|
|
switch (node) {
|
|
case 0:
|
|
/* Normal idle node */
|
|
if (b == ESCAPE_BYTE) {
|
|
node = 1;
|
|
}
|
|
else {
|
|
target[ai++] = b;
|
|
}
|
|
break;
|
|
case 1:
|
|
/* We have seen one ESCAPE_BYTE; we expect either a second
|
|
* one, or a run length and value.
|
|
*/
|
|
if (b == ESCAPE_BYTE) {
|
|
target[ai++] = ESCAPE_BYTE;
|
|
node = 0;
|
|
}
|
|
else {
|
|
runLength = b;
|
|
node = 2;
|
|
}
|
|
break;
|
|
case 2:
|
|
{
|
|
int j=0;
|
|
/* We have seen an ESCAPE_BYTE and length byte. We interpret
|
|
* the next byte as the value to be repeated.
|
|
*/
|
|
for (; j<runLength; ++j){
|
|
if(ai<tgtLen){
|
|
target[ai++] = b;
|
|
}else{
|
|
*status = U_BUFFER_OVERFLOW_ERROR;
|
|
return ai;
|
|
}
|
|
}
|
|
node = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (node != 0){
|
|
*status = U_INTERNAL_PROGRAM_ERROR;
|
|
/*("Bad run-length encoded byte array")*/
|
|
return 0;
|
|
}
|
|
|
|
|
|
if (i != srcLen){
|
|
/*("Excess data in RLE byte array string");*/
|
|
*status = U_INTERNAL_PROGRAM_ERROR;
|
|
return ai;
|
|
}
|
|
|
|
return ai;
|
|
}
|
|
|