scuffed-code/icu4c/source/common/uniset.cpp
2003-04-09 17:34:24 +00:00

3517 lines
118 KiB
C++

/*
**********************************************************************
* Copyright (C) 1999-2001, International Business Machines
* Corporation and others. All Rights Reserved.
**********************************************************************
* Date Name Description
* 10/20/99 alan Creation.
**********************************************************************
*/
#include "unicode/uniset.h"
#include "unicode/parsepos.h"
#include "unicode/uchar.h"
#include "unicode/uscript.h"
#include "symtable.h"
#include "cmemory.h"
#include "uhash.h"
#include "util.h"
#include "uvector.h"
#include "uprops.h"
#include "charstr.h"
#include "ustrfmt.h"
#include "mutex.h"
#include "uassert.h"
#include "hash.h"
#include "ucmp8.h"
// HIGH_VALUE > all valid values. 110000 for codepoints
#define UNICODESET_HIGH 0x0110000
// LOW <= all valid values. ZERO for codepoints
#define UNICODESET_LOW 0x000000
// initial storage. Must be >= 0
#define START_EXTRA 16
// extra amount for growth. Must be >= 0
#define GROW_EXTRA START_EXTRA
// Define UChar constants using hex for EBCDIC compatibility
// Used #define to reduce private static exports and memory access time.
#define SET_OPEN ((UChar)0x005B) /*[*/
#define SET_CLOSE ((UChar)0x005D) /*]*/
#define HYPHEN ((UChar)0x002D) /*-*/
#define COMPLEMENT ((UChar)0x005E) /*^*/
#define COLON ((UChar)0x003A) /*:*/
#define BACKSLASH ((UChar)0x005C) /*\*/
#define INTERSECTION ((UChar)0x0026) /*&*/
#define UPPER_U ((UChar)0x0055) /*U*/
#define LOWER_U ((UChar)0x0075) /*u*/
#define OPEN_BRACE ((UChar)123) /*{*/
#define CLOSE_BRACE ((UChar)125) /*}*/
#define UPPER_P ((UChar)0x0050) /*P*/
#define UPPER_N ((UChar)78) /*N*/
#define EQUALS ((UChar)0x003D) /*=*/
static const UChar POSIX_OPEN[] = { 91,58,0 }; // "[:"
static const UChar POSIX_CLOSE[] = { 58,93,0 }; // ":]"
static const UChar PERL_OPEN[] = { 92,112,0 }; // "\\p"
static const UChar PERL_CLOSE[] = { 125,0 }; // "}"
static const UChar NAME_OPEN[] = { 92,78,0 }; // "\\N"
// Special property set IDs
static const char ANY[] = "ANY"; // [\u0000-\U0010FFFF]
static const char ASCII[] = "ASCII"; // [\u0000-\u007F]
static const char NAME_PROP[] = "na"; // Unicode name property alias
// TEMPORARY: Remove when deprecated category code constructor is removed.
static const UChar CATEGORY_NAMES[] = {
// Must be kept in sync with uchar.h/UCharCategory
0x43, 0x6E, /* "Cn" */
0x4C, 0x75, /* "Lu" */
0x4C, 0x6C, /* "Ll" */
0x4C, 0x74, /* "Lt" */
0x4C, 0x6D, /* "Lm" */
0x4C, 0x6F, /* "Lo" */
0x4D, 0x6E, /* "Mn" */
0x4D, 0x65, /* "Me" */
0x4D, 0x63, /* "Mc" */
0x4E, 0x64, /* "Nd" */
0x4E, 0x6C, /* "Nl" */
0x4E, 0x6F, /* "No" */
0x5A, 0x73, /* "Zs" */
0x5A, 0x6C, /* "Zl" */
0x5A, 0x70, /* "Zp" */
0x43, 0x63, /* "Cc" */
0x43, 0x66, /* "Cf" */
0x43, 0x6F, /* "Co" */
0x43, 0x73, /* "Cs" */
0x50, 0x64, /* "Pd" */
0x50, 0x73, /* "Ps" */
0x50, 0x65, /* "Pe" */
0x50, 0x63, /* "Pc" */
0x50, 0x6F, /* "Po" */
0x53, 0x6D, /* "Sm" */
0x53, 0x63, /* "Sc" */
0x53, 0x6B, /* "Sk" */
0x53, 0x6F, /* "So" */
0x50, 0x69, /* "Pi" */
0x50, 0x66, /* "Pf" */
0x00
};
/**
* Delimiter string used in patterns to close a category reference:
* ":]". Example: "[:Lu:]".
*/
static const UChar CATEGORY_CLOSE[] = {COLON, SET_CLOSE, 0x0000}; /* ":]" */
U_NAMESPACE_BEGIN
const char ParsePosition::fgClassID=0;
/**
* Minimum value that can be stored in a UnicodeSet.
*/
const UChar32 UnicodeSet::MIN_VALUE = UNICODESET_LOW;
/**
* Maximum value that can be stored in a UnicodeSet.
*/
const UChar32 UnicodeSet::MAX_VALUE = UNICODESET_HIGH - 1;
const char UnicodeSet::fgClassID = 0;
static UnicodeSet* INCLUSIONS = NULL; // cached uprv_getInclusions()
static Hashtable* CASE_EQUIV_HASH = NULL; // for closeOver(USET_CASE)
static CompactByteArray* CASE_EQUIV_CBA = NULL; // for closeOver(USET_CASE)
//----------------------------------------------------------------
// Debugging
//----------------------------------------------------------------
// DO NOT DELETE THIS CODE. This code is used to debug memory leaks.
// To enable the debugging, define the symbol DEBUG_MEM in the line
// below. This will result in text being sent to stdout that looks
// like this:
// DEBUG UnicodeSet: ct 0x00A39B20; 397 [\u0A81-\u0A83\u0A85-
// DEBUG UnicodeSet: dt 0x00A39B20; 396 [\u0A81-\u0A83\u0A85-
// Each line lists a construction (ct) or destruction (dt) event, the
// object address, the number of outstanding objects after the event,
// and the pattern of the object in question.
// #define DEBUG_MEM
#ifdef DEBUG_MEM
#include <stdio.h>
static int32_t _dbgCount = 0;
static inline void _dbgct(UnicodeSet* set) {
UnicodeString str;
set->toPattern(str, TRUE);
char buf[40];
str.extract(0, 39, buf, "");
printf("DEBUG UnicodeSet: ct 0x%08X; %d %s\n", set, ++_dbgCount, buf);
}
static inline void _dbgdt(UnicodeSet* set) {
UnicodeString str;
set->toPattern(str, TRUE);
char buf[40];
str.extract(0, 39, buf, "");
printf("DEBUG UnicodeSet: dt 0x%08X; %d %s\n", set, --_dbgCount, buf);
}
#else
#define _dbgct(set)
#define _dbgdt(set)
#endif
//----------------------------------------------------------------
// UnicodeString in UVector support
//----------------------------------------------------------------
static void U_CALLCONV cloneUnicodeString(UHashTok *dst, UHashTok *src) {
dst->pointer = new UnicodeString(*(UnicodeString*)src->pointer);
}
static int8_t U_CALLCONV compareUnicodeString(UHashTok t1, UHashTok t2) {
const UnicodeString &a = *(const UnicodeString*)t1.pointer;
const UnicodeString &b = *(const UnicodeString*)t2.pointer;
return a.compare(b);
}
//----------------------------------------------------------------
// Constructors &c
//----------------------------------------------------------------
/**
* Constructs an empty set.
*/
UnicodeSet::UnicodeSet() :
len(1), capacity(1 + START_EXTRA), bufferCapacity(0),
list(0), buffer(0), strings(0)
{
list = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity);
if(list!=NULL){
list[0] = UNICODESET_HIGH;
}
allocateStrings();
_dbgct(this);
}
/**
* Constructs a set containing the given range. If <code>end >
* start</code> then an empty set is created.
*
* @param start first character, inclusive, of range
* @param end last character, inclusive, of range
*/
UnicodeSet::UnicodeSet(UChar32 start, UChar32 end) :
len(1), capacity(1 + START_EXTRA), bufferCapacity(0),
list(0), buffer(0), strings(0)
{
list = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity);
if(list!=NULL){
list[0] = UNICODESET_HIGH;
}
allocateStrings();
complement(start, end);
_dbgct(this);
}
/**
* Constructs a set from the given pattern, optionally ignoring
* white space. See the class description for the syntax of the
* pattern language.
* @param pattern a string specifying what characters are in the set
*/
UnicodeSet::UnicodeSet(const UnicodeString& pattern,
UErrorCode& status) :
len(0), capacity(START_EXTRA), bufferCapacity(0),
list(0), buffer(0), strings(0)
{
if(U_SUCCESS(status)){
list = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity);
/* test for NULL */
if(list == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
}else{
allocateStrings();
applyPattern(pattern, USET_IGNORE_SPACE, status);
}
}
_dbgct(this);
}
/**
* Constructs a set from the given pattern, optionally ignoring
* white space. See the class description for the syntax of the
* pattern language.
* @param pattern a string specifying what characters are in the set
* @param options bitmask for options to apply to the pattern.
* Valid options are USET_IGNORE_SPACE and USET_CASE_INSENSITIVE.
*/
UnicodeSet::UnicodeSet(const UnicodeString& pattern,
uint32_t options,
UErrorCode& status) :
len(0), capacity(START_EXTRA), bufferCapacity(0),
list(0), buffer(0), strings(0)
{
if(U_SUCCESS(status)){
list = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity);
/* test for NULL */
if(list == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
}else{
allocateStrings();
applyPattern(pattern, options, status);
}
}
_dbgct(this);
}
// For internal use by RuleBasedTransliterator
UnicodeSet::UnicodeSet(const UnicodeString& pattern, ParsePosition& pos,
const SymbolTable& symbols,
UErrorCode& status) :
len(0), capacity(START_EXTRA), bufferCapacity(0),
list(0), buffer(0), strings(0)
{
if(U_SUCCESS(status)){
list = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity);
/* test for NULL */
if(list == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
}else{
allocateStrings();
applyPattern(pattern, pos, USET_IGNORE_SPACE, &symbols, status);
}
}
_dbgct(this);
}
// For internal use by TransliteratorIDParser
UnicodeSet::UnicodeSet(const UnicodeString& pattern, ParsePosition& pos,
uint32_t options, UErrorCode& status) :
len(0), capacity(START_EXTRA), bufferCapacity(0),
list(0), buffer(0), strings(0)
{
if(U_SUCCESS(status)){
list = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity);
/* test for NULL */
if(list == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
}else{
allocateStrings();
applyPattern(pattern, pos, options, NULL, status);
}
}
_dbgct(this);
}
/**
* DEPRECATED Constructs a set from the given Unicode character category.
* @param category an integer indicating the character category as
* defined in uchar.h.
* @deprecated To be removed after 2002-DEC-31
*/
UnicodeSet::UnicodeSet(int8_t category, UErrorCode& status) :
len(0), capacity(START_EXTRA), bufferCapacity(0),
list(0), buffer(0), strings(0)
{
static const UChar OPEN[] = { 91, 58, 0 }; // "[:"
static const UChar CLOSE[]= { 58, 93, 0 }; // ":]"
if (U_SUCCESS(status)) {
if (category < 0 || category >= U_CHAR_CATEGORY_COUNT) {
status = U_ILLEGAL_ARGUMENT_ERROR;
} else {
UnicodeString pattern(FALSE, CATEGORY_NAMES + category*2, 2);
pattern.insert(0, OPEN);
pattern.append(CLOSE);
list = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity);
/* test for NULL */
if(list == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
}else{
allocateStrings();
applyPattern(pattern, status);
}
}
}
_dbgct(this);
}
/**
* Constructs a set that is identical to the given UnicodeSet.
*/
UnicodeSet::UnicodeSet(const UnicodeSet& o) :
UnicodeFilter(o),
len(0), capacity(o.len + GROW_EXTRA), bufferCapacity(0),
list(0), buffer(0), strings(0)
{
list = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity);
if(list!=NULL){
allocateStrings();
*this = o;
}
_dbgct(this);
}
/**
* Destructs the set.
*/
UnicodeSet::~UnicodeSet() {
_dbgdt(this); // first!
uprv_free(list);
if (buffer) {
uprv_free(buffer);
}
delete strings;
}
/**
* Assigns this object to be a copy of another.
*/
UnicodeSet& UnicodeSet::operator=(const UnicodeSet& o) {
ensureCapacity(o.len);
len = o.len;
uprv_memcpy(list, o.list, len*sizeof(UChar32));
UErrorCode ec = U_ZERO_ERROR;
strings->assign(*o.strings, cloneUnicodeString, ec);
pat = o.pat;
return *this;
}
/**
* Compares the specified object with this set for equality. Returns
* <tt>true</tt> if the two sets
* have the same size, and every member of the specified set is
* contained in this set (or equivalently, every member of this set is
* contained in the specified set).
*
* @param o set to be compared for equality with this set.
* @return <tt>true</tt> if the specified set is equal to this set.
*/
UBool UnicodeSet::operator==(const UnicodeSet& o) const {
if (len != o.len) return FALSE;
for (int32_t i = 0; i < len; ++i) {
if (list[i] != o.list[i]) return FALSE;
}
if (*strings != *o.strings) return FALSE;
return TRUE;
}
/**
* Returns a copy of this object. All UnicodeMatcher objects have
* to support cloning in order to allow classes using
* UnicodeMatchers, such as Transliterator, to implement cloning.
*/
UnicodeFunctor* UnicodeSet::clone() const {
return new UnicodeSet(*this);
}
/**
* Returns the hash code value for this set.
*
* @return the hash code value for this set.
* @see Object#hashCode()
*/
int32_t UnicodeSet::hashCode(void) const {
int32_t result = len;
for (int32_t i = 0; i < len; ++i) {
result *= 1000003;
result += list[i];
}
return result;
}
//----------------------------------------------------------------
// Public API
//----------------------------------------------------------------
/**
* Make this object represent the range <code>start - end</code>.
* If <code>end > start</code> then this object is set to an
* an empty range.
*
* @param start first character in the set, inclusive
* @rparam end last character in the set, inclusive
*/
UnicodeSet& UnicodeSet::set(UChar32 start, UChar32 end) {
clear();
complement(start, end);
return *this;
}
/**
* Modifies this set to represent the set specified by the given
* pattern, optionally ignoring white space. See the class
* description for the syntax of the pattern language.
* @param pattern a string specifying what characters are in the set
* @param ignoreSpaces if <code>true</code>, all spaces in the
* pattern are ignored. Spaces are those characters for which
* <code>uprv_isRuleWhiteSpace()</code> is <code>true</code>.
* Characters preceded by '\\' are escaped, losing any special
* meaning they otherwise have. Spaces may be included by
* escaping them.
* @exception <code>IllegalArgumentException</code> if the pattern
* contains a syntax error.
*/
UnicodeSet& UnicodeSet::applyPattern(const UnicodeString& pattern,
UErrorCode& status) {
return applyPattern(pattern, USET_IGNORE_SPACE, status);
}
/**
* Modifies this set to represent the set specified by the given
* pattern, optionally ignoring white space. See the class
* description for the syntax of the pattern language.
* @param pattern a string specifying what characters are in the set
* @param options bitmask for options to apply to the pattern.
* Valid options are USET_IGNORE_SPACE and USET_CASE_INSENSITIVE.
*/
UnicodeSet& UnicodeSet::applyPattern(const UnicodeString& pattern,
uint32_t options,
UErrorCode& status) {
if (U_FAILURE(status)) {
return *this;
}
ParsePosition pos(0);
applyPattern(pattern, pos, options, NULL, status);
if (U_FAILURE(status)) return *this;
int32_t i = pos.getIndex();
int32_t n = pattern.length();
if (options & USET_IGNORE_SPACE) {
// Skip over trailing whitespace
while (i<n && uprv_isRuleWhiteSpace(pattern.charAt(i))) {
++i;
}
}
if (i != n) {
status = U_ILLEGAL_ARGUMENT_ERROR;
}
return *this;
}
/**
* Return true if the given position, in the given pattern, appears
* to be the start of a UnicodeSet pattern.
*/
UBool UnicodeSet::resemblesPattern(const UnicodeString& pattern, int32_t pos) {
return ((pos+1) < pattern.length() &&
pattern.charAt(pos) == (UChar)91/*[*/) ||
resemblesPropertyPattern(pattern, pos);
}
/**
* Append the <code>toPattern()</code> representation of a
* string to the given <code>StringBuffer</code>.
*/
void UnicodeSet::_appendToPat(UnicodeString& buf, const UnicodeString& s, UBool escapeUnprintable) {
UChar32 cp;
for (int32_t i = 0; i < s.length(); i += UTF_CHAR_LENGTH(cp)) {
_appendToPat(buf, cp = s.char32At(i), escapeUnprintable);
}
}
/**
* Append the <code>toPattern()</code> representation of a
* character to the given <code>StringBuffer</code>.
*/
void UnicodeSet::_appendToPat(UnicodeString& buf, UChar32 c, UBool escapeUnprintable) {
if (escapeUnprintable && ICU_Utility::isUnprintable(c)) {
// Use hex escape notation (\uxxxx or \Uxxxxxxxx) for anything
// unprintable
if (ICU_Utility::escapeUnprintable(buf, c)) {
return;
}
}
// Okay to let ':' pass through
switch (c) {
case SET_OPEN:
case SET_CLOSE:
case HYPHEN:
case COMPLEMENT:
case INTERSECTION:
case BACKSLASH:
case 123/*{*/:
case 125/*}*/:
case SymbolTable::SYMBOL_REF:
case COLON:
buf.append(BACKSLASH);
break;
default:
// Escape whitespace
if (uprv_isRuleWhiteSpace(c)) {
buf.append(BACKSLASH);
}
break;
}
buf.append(c);
}
/**
* Returns a string representation of this set. If the result of
* calling this function is passed to a UnicodeSet constructor, it
* will produce another set that is equal to this one.
*/
UnicodeString& UnicodeSet::toPattern(UnicodeString& result,
UBool escapeUnprintable) const {
result.truncate(0);
return _toPattern(result, escapeUnprintable);
}
/**
* Append a string representation of this set to result. This will be
* a cleaned version of the string passed to applyPattern(), if there
* is one. Otherwise it will be generated.
*/
UnicodeString& UnicodeSet::_toPattern(UnicodeString& result,
UBool escapeUnprintable) const {
if (pat.length() > 0) {
int32_t i;
int32_t backslashCount = 0;
for (i=0; i<pat.length(); ) {
UChar32 c = pat.char32At(i);
i += UTF_CHAR_LENGTH(c);
if (escapeUnprintable && ICU_Utility::isUnprintable(c)) {
// If the unprintable character is preceded by an odd
// number of backslashes, then it has been escaped.
// Before unescaping it, we delete the final
// backslash.
if ((backslashCount % 2) == 1) {
result.truncate(result.length() - 1);
}
ICU_Utility::escapeUnprintable(result, c);
backslashCount = 0;
} else {
result.append(c);
if (c == BACKSLASH) {
++backslashCount;
} else {
backslashCount = 0;
}
}
}
return result;
}
return _generatePattern(result, escapeUnprintable);
}
/**
* Generate and append a string representation of this set to result.
* This does not use this.pat, the cleaned up copy of the string
* passed to applyPattern().
*/
UnicodeString& UnicodeSet::_generatePattern(UnicodeString& result,
UBool escapeUnprintable) const {
result.append(SET_OPEN);
// // Check against the predefined categories. We implicitly build
// // up ALL category sets the first time toPattern() is called.
// for (int8_t cat=0; cat<Unicode::GENERAL_TYPES_COUNT; ++cat) {
// if (*this == getCategorySet(cat)) {
// result.append(COLON);
// result.append(CATEGORY_NAMES, cat*2, 2);
// return result.append(CATEGORY_CLOSE);
// }
// }
int32_t count = getRangeCount();
// If the set contains at least 2 intervals and includes both
// MIN_VALUE and MAX_VALUE, then the inverse representation will
// be more economical.
if (count > 1 &&
getRangeStart(0) == MIN_VALUE &&
getRangeEnd(count-1) == MAX_VALUE) {
// Emit the inverse
result.append(COMPLEMENT);
for (int32_t i = 1; i < count; ++i) {
UChar32 start = getRangeEnd(i-1)+1;
UChar32 end = getRangeStart(i)-1;
_appendToPat(result, start, escapeUnprintable);
if (start != end) {
result.append(HYPHEN);
_appendToPat(result, end, escapeUnprintable);
}
}
}
// Default; emit the ranges as pairs
else {
for (int32_t i = 0; i < count; ++i) {
UChar32 start = getRangeStart(i);
UChar32 end = getRangeEnd(i);
_appendToPat(result, start, escapeUnprintable);
if (start != end) {
result.append(HYPHEN);
_appendToPat(result, end, escapeUnprintable);
}
}
}
for (int32_t i = 0; i<strings->size(); ++i) {
result.append(OPEN_BRACE);
_appendToPat(result,
*(const UnicodeString*) strings->elementAt(i),
escapeUnprintable);
result.append(CLOSE_BRACE);
}
return result.append(SET_CLOSE);
}
/**
* Returns the number of elements in this set (its cardinality),
* <em>n</em>, where <code>0 <= </code><em>n</em><code> <= 65536</code>.
*
* @return the number of elements in this set (its cardinality).
*/
int32_t UnicodeSet::size(void) const {
int32_t n = 0;
int32_t count = getRangeCount();
for (int32_t i = 0; i < count; ++i) {
n += getRangeEnd(i) - getRangeStart(i) + 1;
}
return n + strings->size();
}
/**
* Returns <tt>true</tt> if this set contains no elements.
*
* @return <tt>true</tt> if this set contains no elements.
*/
UBool UnicodeSet::isEmpty(void) const {
return len == 1 && strings->size() == 0;
}
/**
* Returns true if this set contains the given character.
* @param c character to be checked for containment
* @return true if the test condition is met
*/
UBool UnicodeSet::contains(UChar32 c) const {
// Set i to the index of the start item greater than ch
// We know we will terminate without length test!
// LATER: for large sets, add binary search
//int32_t i = -1;
//for (;;) {
// if (c < list[++i]) break;
//}
int32_t i = findCodePoint(c);
return ((i & 1) != 0); // return true if odd
}
/**
* Returns the smallest value i such that c < list[i]. Caller
* must ensure that c is a legal value or this method will enter
* an infinite loop. This method performs a binary search.
* @param c a character in the range MIN_VALUE..MAX_VALUE
* inclusive
* @return the smallest integer i in the range 0..len-1,
* inclusive, such that c < list[i]
*/
int32_t UnicodeSet::findCodePoint(UChar32 c) const {
/* Examples:
findCodePoint(c)
set list[] c=0 1 3 4 7 8
=== ============== ===========
[] [110000] 0 0 0 0 0 0
[\u0000-\u0003] [0, 4, 110000] 1 1 1 2 2 2
[\u0004-\u0007] [4, 8, 110000] 0 0 0 1 1 2
[:all:] [0, 110000] 1 1 1 1 1 1
*/
// Return the smallest i such that c < list[i]. Assume
// list[len - 1] == HIGH and that c is legal (0..HIGH-1).
if (c < list[0]) return 0;
// High runner test. c is often after the last range, so an
// initial check for this condition pays off.
if (len >= 2 && c >= list[len-2]) return len-1;
int32_t lo = 0;
int32_t hi = len - 1;
// invariant: c >= list[lo]
// invariant: c < list[hi]
for (;;) {
int32_t i = (lo + hi) >> 1;
if (i == lo) return hi;
if (c < list[i]) {
hi = i;
} else {
lo = i;
}
}
return 0; // To make compiler happy; never reached
}
/**
* Returns true if this set contains every character
* of the given range.
* @param start first character, inclusive, of the range
* @param end last character, inclusive, of the range
* @return true if the test condition is met
*/
UBool UnicodeSet::contains(UChar32 start, UChar32 end) const {
//int32_t i = -1;
//for (;;) {
// if (start < list[++i]) break;
//}
int32_t i = findCodePoint(start);
return ((i & 1) != 0 && end < list[i]);
}
/**
* Returns <tt>true</tt> if this set contains the given
* multicharacter string.
* @param s string to be checked for containment
* @return <tt>true</tt> if this set contains the specified string
*/
UBool UnicodeSet::contains(const UnicodeString& s) const {
if (s.length() == 0) return FALSE;
int32_t cp = getSingleCP(s);
if (cp < 0) {
return strings->contains((void*) &s);
} else {
return contains((UChar32) cp);
}
}
/**
* Returns true if this set contains all the characters and strings
* of the given set.
* @param c set to be checked for containment
* @return true if the test condition is met
*/
UBool UnicodeSet::containsAll(const UnicodeSet& c) const {
// The specified set is a subset if all of its pairs are contained in
// this set. It's possible to code this more efficiently in terms of
// direct manipulation of the inversion lists if the need arises.
int32_t n = c.getRangeCount();
for (int i=0; i<n; ++i) {
if (!contains(c.getRangeStart(i), c.getRangeEnd(i))) {
return FALSE;
}
}
if (!strings->containsAll(*c.strings)) return FALSE;
return TRUE;
}
/**
* Returns true if this set contains all the characters
* of the given string.
* @param s string containing characters to be checked for containment
* @return true if the test condition is met
*/
UBool UnicodeSet::containsAll(const UnicodeString& s) const {
UChar32 cp;
for (int32_t i = 0; i < s.length(); i += UTF_CHAR_LENGTH(cp)) {
cp = s.char32At(i);
if (!contains(cp)) return FALSE;
}
return TRUE;
}
/**
* Returns true if this set contains none of the characters
* of the given range.
* @param start first character, inclusive, of the range
* @param end last character, inclusive, of the range
* @return true if the test condition is met
*/
UBool UnicodeSet::containsNone(UChar32 start, UChar32 end) const {
int32_t i = -1;
for (;;) {
if (start < list[++i]) break;
}
return ((i & 1) == 0 && end < list[i]);
}
/**
* Returns true if this set contains none of the characters and strings
* of the given set.
* @param c set to be checked for containment
* @return true if the test condition is met
*/
UBool UnicodeSet::containsNone(const UnicodeSet& c) const {
// The specified set is a subset if all of its pairs are contained in
// this set. It's possible to code this more efficiently in terms of
// direct manipulation of the inversion lists if the need arises.
int32_t n = c.getRangeCount();
for (int32_t i=0; i<n; ++i) {
if (!containsNone(c.getRangeStart(i), c.getRangeEnd(i))) {
return FALSE;
}
}
if (!strings->containsNone(*c.strings)) return FALSE;
return TRUE;
}
/**
* Returns true if this set contains none of the characters
* of the given string.
* @param s string containing characters to be checked for containment
* @return true if the test condition is met
*/
UBool UnicodeSet::containsNone(const UnicodeString& s) const {
UChar32 cp;
for (int32_t i = 0; i < s.length(); i += UTF_CHAR_LENGTH(cp)) {
cp = s.char32At(i);
if (contains(cp)) return FALSE;
}
return TRUE;
}
/**
* Returns <tt>true</tt> if this set contains any character whose low byte
* is the given value. This is used by <tt>RuleBasedTransliterator</tt> for
* indexing.
*/
UBool UnicodeSet::matchesIndexValue(uint8_t v) const {
/* The index value v, in the range [0,255], is contained in this set if
* it is contained in any pair of this set. Pairs either have the high
* bytes equal, or unequal. If the high bytes are equal, then we have
* aaxx..aayy, where aa is the high byte. Then v is contained if xx <=
* v <= yy. If the high bytes are unequal we have aaxx..bbyy, bb>aa.
* Then v is contained if xx <= v || v <= yy. (This is identical to the
* time zone month containment logic.)
*/
int32_t i;
for (i=0; i<getRangeCount(); ++i) {
UChar32 low = getRangeStart(i);
UChar32 high = getRangeEnd(i);
if ((low & ~0xFF) == (high & ~0xFF)) {
if ((low & 0xFF) <= v && v <= (high & 0xFF)) {
return TRUE;
}
} else if ((low & 0xFF) <= v || v <= (high & 0xFF)) {
return TRUE;
}
}
if (strings->size() != 0) {
for (i=0; i<strings->size(); ++i) {
const UnicodeString& s = *(const UnicodeString*)strings->elementAt(i);
//if (s.length() == 0) {
// // Empty strings match everything
// return TRUE;
//}
// assert(s.length() != 0); // We enforce this elsewhere
UChar32 c = s.char32At(0);
if ((c & 0xFF) == v) {
return TRUE;
}
}
}
return FALSE;
}
/**
* Implementation of UnicodeMatcher::matches(). Always matches the
* longest possible multichar string.
*/
UMatchDegree UnicodeSet::matches(const Replaceable& text,
int32_t& offset,
int32_t limit,
UBool incremental) {
if (offset == limit) {
// Strings, if any, have length != 0, so we don't worry
// about them here. If we ever allow zero-length strings
// we much check for them here.
if (contains(U_ETHER)) {
return incremental ? U_PARTIAL_MATCH : U_MATCH;
} else {
return U_MISMATCH;
}
} else {
if (strings->size() != 0) { // try strings first
// might separate forward and backward loops later
// for now they are combined
// TODO Improve efficiency of this, at least in the forward
// direction, if not in both. In the forward direction we
// can assume the strings are sorted.
int32_t i;
UBool forward = offset < limit;
// firstChar is the leftmost char to match in the
// forward direction or the rightmost char to match in
// the reverse direction.
UChar firstChar = text.charAt(offset);
// If there are multiple strings that can match we
// return the longest match.
int32_t highWaterLength = 0;
for (i=0; i<strings->size(); ++i) {
const UnicodeString& trial = *(const UnicodeString*)strings->elementAt(i);
//if (trial.length() == 0) {
// return U_MATCH; // null-string always matches
//}
// assert(trial.length() != 0); // We ensure this elsewhere
UChar c = trial.charAt(forward ? 0 : trial.length() - 1);
// Strings are sorted, so we can optimize in the
// forward direction.
if (forward && c > firstChar) break;
if (c != firstChar) continue;
int32_t matchLen = matchRest(text, offset, limit, trial);
if (incremental) {
int32_t maxLen = forward ? limit-offset : offset-limit;
if (matchLen == maxLen) {
// We have successfully matched but only up to limit.
return U_PARTIAL_MATCH;
}
}
if (matchLen == trial.length()) {
// We have successfully matched the whole string.
if (matchLen > highWaterLength) {
highWaterLength = matchLen;
}
// In the forward direction we know strings
// are sorted so we can bail early.
if (forward && matchLen < highWaterLength) {
break;
}
continue;
}
}
// We've checked all strings without a partial match.
// If we have full matches, return the longest one.
if (highWaterLength != 0) {
offset += forward ? highWaterLength : -highWaterLength;
return U_MATCH;
}
}
return UnicodeFilter::matches(text, offset, limit, incremental);
}
}
/**
* Returns the longest match for s in text at the given position.
* If limit > start then match forward from start+1 to limit
* matching all characters except s.charAt(0). If limit < start,
* go backward starting from start-1 matching all characters
* except s.charAt(s.length()-1). This method assumes that the
* first character, text.charAt(start), matches s, so it does not
* check it.
* @param text the text to match
* @param start the first character to match. In the forward
* direction, text.charAt(start) is matched against s.charAt(0).
* In the reverse direction, it is matched against
* s.charAt(s.length()-1).
* @param limit the limit offset for matching, either last+1 in
* the forward direction, or last-1 in the reverse direction,
* where last is the index of the last character to match.
* @return If part of s matches up to the limit, return |limit -
* start|. If all of s matches before reaching the limit, return
* s.length(). If there is a mismatch between s and text, return
* 0
*/
int32_t UnicodeSet::matchRest(const Replaceable& text,
int32_t start, int32_t limit,
const UnicodeString& s) {
int32_t i;
int32_t maxLen;
int32_t slen = s.length();
if (start < limit) {
maxLen = limit - start;
if (maxLen > slen) maxLen = slen;
for (i = 1; i < maxLen; ++i) {
if (text.charAt(start + i) != s.charAt(i)) return 0;
}
} else {
maxLen = start - limit;
if (maxLen > slen) maxLen = slen;
--slen; // <=> slen = s.length() - 1;
for (i = 1; i < maxLen; ++i) {
if (text.charAt(start - i) != s.charAt(slen - i)) return 0;
}
}
return maxLen;
}
/**
* Implement of UnicodeMatcher
*/
void UnicodeSet::addMatchSetTo(UnicodeSet& toUnionTo) const {
toUnionTo.addAll(*this);
}
/**
* Returns the index of the given character within this set, where
* the set is ordered by ascending code point. If the character
* is not in this set, return -1. The inverse of this method is
* <code>charAt()</code>.
* @return an index from 0..size()-1, or -1
*/
int32_t UnicodeSet::indexOf(UChar32 c) const {
if (c < MIN_VALUE || c > MAX_VALUE) {
return -1;
}
int32_t i = 0;
int32_t n = 0;
for (;;) {
UChar32 start = list[i++];
if (c < start) {
return -1;
}
UChar32 limit = list[i++];
if (c < limit) {
return n + c - start;
}
n += limit - start;
}
}
/**
* Returns the character at the given index within this set, where
* the set is ordered by ascending code point. If the index is
* out of range, return (UChar32)-1. The inverse of this method is
* <code>indexOf()</code>.
* @param index an index from 0..size()-1
* @return the character at the given index, or (UChar32)-1.
*/
UChar32 UnicodeSet::charAt(int32_t index) const {
if (index >= 0) {
// len2 is the largest even integer <= len, that is, it is len
// for even values and len-1 for odd values. With odd values
// the last entry is UNICODESET_HIGH.
int32_t len2 = len & ~1;
for (int32_t i=0; i < len2;) {
UChar32 start = list[i++];
int32_t count = list[i++] - start;
if (index < count) {
return (UChar32)(start + index);
}
index -= count;
}
}
return (UChar32)-1;
}
/**
* Adds the specified range to this set if it is not already
* present. If this set already contains the specified range,
* the call leaves this set unchanged. If <code>end > start</code>
* then an empty range is added, leaving the set unchanged.
*
* @param start first character, inclusive, of range to be added
* to this set.
* @param end last character, inclusive, of range to be added
* to this set.
*/
UnicodeSet& UnicodeSet::add(UChar32 start, UChar32 end) {
if (start < end) {
UChar32 range[3] = { start, end+1, UNICODESET_HIGH };
add(range, 2, 0);
} else if (start == end) {
add(start);
}
return *this;
}
// #define DEBUG_US_ADD
#ifdef DEBUG_US_ADD
#include <stdio.h>
void dump(UChar32 c) {
if (c <= 0xFF) {
printf("%c", (char)c);
} else {
printf("U+%04X", c);
}
}
void dump(const UChar32* list, int32_t len) {
printf("[");
for (int32_t i=0; i<len; ++i) {
if (i != 0) printf(", ");
dump(list[i]);
}
printf("]");
}
#endif
/**
* Adds the specified character to this set if it is not already
* present. If this set already contains the specified character,
* the call leaves this set unchanged.
*/
UnicodeSet& UnicodeSet::add(UChar32 c) {
// find smallest i such that c < list[i]
// if odd, then it is IN the set
// if even, then it is OUT of the set
int32_t i = findCodePoint(c);
// already in set?
if ((i & 1) != 0) return *this;
// HIGH is 0x110000
// assert(list[len-1] == HIGH);
// empty = [HIGH]
// [start_0, limit_0, start_1, limit_1, HIGH]
// [..., start_k-1, limit_k-1, start_k, limit_k, ..., HIGH]
// ^
// list[i]
// i == 0 means c is before the first range
#ifdef DEBUG_US_ADD
printf("Add of ");
dump(c);
printf(" found at %d", i);
printf(": ");
dump(list, len);
printf(" => ");
#endif
if (c == list[i]-1) {
// c is before start of next range
list[i] = c;
// if we touched the HIGH mark, then add a new one
if (c == (UNICODESET_HIGH - 1)) {
ensureCapacity(len+1);
list[len++] = UNICODESET_HIGH;
}
if (i > 0 && c == list[i-1]) {
// collapse adjacent ranges
// [..., start_k-1, c, c, limit_k, ..., HIGH]
// ^
// list[i]
//for (int32_t k=i-1; k<len-2; ++k) {
// list[k] = list[k+2];
//}
UChar32* dst = list + i - 1;
UChar32* src = dst + 2;
UChar32* srclimit = list + len;
while (src < srclimit) *(dst++) = *(src++);
len -= 2;
}
}
else if (i > 0 && c == list[i-1]) {
// c is after end of prior range
list[i-1]++;
// no need to check for collapse here
}
else {
// At this point we know the new char is not adjacent to
// any existing ranges, and it is not 10FFFF.
// [..., start_k-1, limit_k-1, start_k, limit_k, ..., HIGH]
// ^
// list[i]
// [..., start_k-1, limit_k-1, c, c+1, start_k, limit_k, ..., HIGH]
// ^
// list[i]
ensureCapacity(len+2);
//for (int32_t k=len-1; k>=i; --k) {
// list[k+2] = list[k];
//}
UChar32* src = list + len;
UChar32* dst = src + 2;
UChar32* srclimit = list + i;
while (src > srclimit) *(--dst) = *(--src);
list[i] = c;
list[i+1] = c+1;
len += 2;
}
#ifdef DEBUG_US_ADD
dump(list, len);
printf("\n");
for (i=1; i<len; ++i) {
if (list[i] <= list[i-1]) {
// Corrupt array!
printf("ERROR: list has been corrupted\n");
exit(1);
}
}
#endif
pat.truncate(0);
return *this;
}
/**
* Adds the specified multicharacter to this set if it is not already
* present. If this set already contains the multicharacter,
* the call leaves this set unchanged.
* Thus "ch" => {"ch"}
* <br><b>Warning: you cannot add an empty string ("") to a UnicodeSet.</b>
* @param s the source string
* @return the modified set, for chaining
*/
UnicodeSet& UnicodeSet::add(const UnicodeString& s) {
if (s.length() == 0) return *this;
int32_t cp = getSingleCP(s);
if (cp < 0) {
if (!strings->contains((void*) &s)) {
_add(s);
pat.truncate(0);
}
} else {
add((UChar32)cp, (UChar32)cp);
}
return *this;
}
/**
* Adds the given string, in order, to 'strings'. The given string
* must have been checked by the caller to not be empty and to not
* already be in 'strings'.
*/
void UnicodeSet::_add(const UnicodeString& s) {
UnicodeString* t = new UnicodeString(s);
UErrorCode ec = U_ZERO_ERROR;
strings->sortedInsert(t, compareUnicodeString, ec);
}
/**
* @return a code point IF the string consists of a single one.
* otherwise returns -1.
* @param string to test
*/
int32_t UnicodeSet::getSingleCP(const UnicodeString& s) {
//if (s.length() < 1) {
// throw new IllegalArgumentException("Can't use zero-length strings in UnicodeSet");
//}
if (s.length() > 2) return -1;
if (s.length() == 1) return s.charAt(0);
// at this point, len = 2
UChar32 cp = s.char32At(0);
if (cp > 0xFFFF) { // is surrogate pair
return cp;
}
return -1;
}
/**
* Adds each of the characters in this string to the set. Thus "ch" => {"c", "h"}
* If this set already any particular character, it has no effect on that character.
* @param the source string
* @return the modified set, for chaining
*/
UnicodeSet& UnicodeSet::addAll(const UnicodeString& s) {
UChar32 cp;
for (int32_t i = 0; i < s.length(); i += UTF_CHAR_LENGTH(cp)) {
cp = s.char32At(i);
add(cp, cp);
}
return *this;
}
/**
* Retains EACH of the characters in this string. Note: "ch" == {"c", "h"}
* If this set already any particular character, it has no effect on that character.
* @param the source string
* @return the modified set, for chaining
*/
UnicodeSet& UnicodeSet::retainAll(const UnicodeString& s) {
UnicodeSet set;
set.addAll(s);
retainAll(set);
return *this;
}
/**
* Complement EACH of the characters in this string. Note: "ch" == {"c", "h"}
* If this set already any particular character, it has no effect on that character.
* @param the source string
* @return the modified set, for chaining
*/
UnicodeSet& UnicodeSet::complementAll(const UnicodeString& s) {
UnicodeSet set;
set.addAll(s);
complementAll(set);
return *this;
}
/**
* Remove EACH of the characters in this string. Note: "ch" == {"c", "h"}
* If this set already any particular character, it has no effect on that character.
* @param the source string
* @return the modified set, for chaining
*/
UnicodeSet& UnicodeSet::removeAll(const UnicodeString& s) {
UnicodeSet set;
set.addAll(s);
removeAll(set);
return *this;
}
/**
* Makes a set from a multicharacter string. Thus "ch" => {"ch"}
* <br><b>Warning: you cannot add an empty string ("") to a UnicodeSet.</b>
* @param the source string
* @return a newly created set containing the given string
*/
UnicodeSet* UnicodeSet::createFrom(const UnicodeString& s) {
UnicodeSet *set = new UnicodeSet();
set->add(s);
return set;
}
/**
* Makes a set from each of the characters in the string. Thus "ch" => {"c", "h"}
* @param the source string
* @return a newly created set containing the given characters
*/
UnicodeSet* UnicodeSet::createFromAll(const UnicodeString& s) {
UnicodeSet *set = new UnicodeSet();
set->addAll(s);
return set;
}
/**
* Retain only the elements in this set that are contained in the
* specified range. If <code>end > start</code> then an empty range is
* retained, leaving the set empty.
*
* @param start first character, inclusive, of range to be retained
* to this set.
* @param end last character, inclusive, of range to be retained
* to this set.
*/
UnicodeSet& UnicodeSet::retain(UChar32 start, UChar32 end) {
if (start <= end) {
UChar32 range[3] = { start, end+1, UNICODESET_HIGH };
retain(range, 2, 0);
} else {
clear();
}
return *this;
}
UnicodeSet& UnicodeSet::retain(UChar32 c) {
return retain(c, c);
}
/**
* Removes the specified range from this set if it is present.
* The set will not contain the specified range once the call
* returns. If <code>end > start</code> then an empty range is
* removed, leaving the set unchanged.
*
* @param start first character, inclusive, of range to be removed
* from this set.
* @param end last character, inclusive, of range to be removed
* from this set.
*/
UnicodeSet& UnicodeSet::remove(UChar32 start, UChar32 end) {
if (start <= end) {
UChar32 range[3] = { start, end+1, UNICODESET_HIGH };
retain(range, 2, 2);
}
return *this;
}
/**
* Removes the specified character from this set if it is present.
* The set will not contain the specified range once the call
* returns.
*/
UnicodeSet& UnicodeSet::remove(UChar32 c) {
return remove(c, c);
}
/**
* Removes the specified string from this set if it is present.
* The set will not contain the specified character once the call
* returns.
* @param the source string
* @return the modified set, for chaining
*/
UnicodeSet& UnicodeSet::remove(const UnicodeString& s) {
if (s.length() == 0) return *this;
int32_t cp = getSingleCP(s);
if (cp < 0) {
strings->removeElement((void*) &s);
pat.truncate(0);
} else {
remove((UChar32)cp, (UChar32)cp);
}
return *this;
}
/**
* Complements the specified range in this set. Any character in
* the range will be removed if it is in this set, or will be
* added if it is not in this set. If <code>end > start</code>
* then an empty range is xor'ed, leaving the set unchanged.
*
* @param start first character, inclusive, of range to be removed
* from this set.
* @param end last character, inclusive, of range to be removed
* from this set.
*/
UnicodeSet& UnicodeSet::complement(UChar32 start, UChar32 end) {
if (start <= end) {
UChar32 range[3] = { start, end+1, UNICODESET_HIGH };
exclusiveOr(range, 2, 0);
}
pat.truncate(0);
return *this;
}
UnicodeSet& UnicodeSet::complement(UChar32 c) {
return complement(c, c);
}
/**
* This is equivalent to
* <code>complement(MIN_VALUE, MAX_VALUE)</code>.
*/
UnicodeSet& UnicodeSet::complement(void) {
if (list[0] == UNICODESET_LOW) {
ensureBufferCapacity(len-1);
uprv_memcpy(buffer, list + 1, (len-1)*sizeof(UChar32));
--len;
} else {
ensureBufferCapacity(len+1);
uprv_memcpy(buffer + 1, list, len*sizeof(UChar32));
buffer[0] = UNICODESET_LOW;
++len;
}
swapBuffers();
pat.truncate(0);
return *this;
}
/**
* Complement the specified string in this set.
* The set will not contain the specified string once the call
* returns.
* <br><b>Warning: you cannot add an empty string ("") to a UnicodeSet.</b>
* @param s the string to complement
* @return this object, for chaining
*/
UnicodeSet& UnicodeSet::complement(const UnicodeString& s) {
if (s.length() == 0) return *this;
int32_t cp = getSingleCP(s);
if (cp < 0) {
if (strings->contains((void*) &s)) {
strings->removeElement((void*) &s);
} else {
_add(s);
}
pat.truncate(0);
} else {
complement((UChar32)cp, (UChar32)cp);
}
return *this;
}
/**
* Adds all of the elements in the specified set to this set if
* they're not already present. This operation effectively
* modifies this set so that its value is the <i>union</i> of the two
* sets. The behavior of this operation is unspecified if the specified
* collection is modified while the operation is in progress.
*
* @param c set whose elements are to be added to this set.
* @see #add(char, char)
*/
UnicodeSet& UnicodeSet::addAll(const UnicodeSet& c) {
add(c.list, c.len, 0);
// Add strings in order
for (int32_t i=0; i<c.strings->size(); ++i) {
const UnicodeString* s = (const UnicodeString*)c.strings->elementAt(i);
if (!strings->contains((void*) s)) {
_add(*s);
}
}
return *this;
}
/**
* Retains only the elements in this set that are contained in the
* specified set. In other words, removes from this set all of
* its elements that are not contained in the specified set. This
* operation effectively modifies this set so that its value is
* the <i>intersection</i> of the two sets.
*
* @param c set that defines which elements this set will retain.
*/
UnicodeSet& UnicodeSet::retainAll(const UnicodeSet& c) {
retain(c.list, c.len, 0);
strings->retainAll(*c.strings);
return *this;
}
/**
* Removes from this set all of its elements that are contained in the
* specified set. This operation effectively modifies this
* set so that its value is the <i>asymmetric set difference</i> of
* the two sets.
*
* @param c set that defines which elements will be removed from
* this set.
*/
UnicodeSet& UnicodeSet::removeAll(const UnicodeSet& c) {
retain(c.list, c.len, 2);
strings->removeAll(*c.strings);
return *this;
}
/**
* Complements in this set all elements contained in the specified
* set. Any character in the other set will be removed if it is
* in this set, or will be added if it is not in this set.
*
* @param c set that defines which elements will be xor'ed from
* this set.
*/
UnicodeSet& UnicodeSet::complementAll(const UnicodeSet& c) {
exclusiveOr(c.list, c.len, 0);
for (int32_t i=0; i<c.strings->size(); ++i) {
void* e = c.strings->elementAt(i);
if (!strings->removeElement(e)) {
_add(*(const UnicodeString*)e);
}
}
return *this;
}
/**
* Removes all of the elements from this set. This set will be
* empty after this call returns.
*/
UnicodeSet& UnicodeSet::clear(void) {
list[0] = UNICODESET_HIGH;
len = 1;
pat.truncate(0);
strings->removeAllElements();
return *this;
}
/**
* Iteration method that returns the number of ranges contained in
* this set.
* @see #getRangeStart
* @see #getRangeEnd
*/
int32_t UnicodeSet::getRangeCount() const {
return len/2;
}
/**
* Iteration method that returns the first character in the
* specified range of this set.
* @see #getRangeCount
* @see #getRangeEnd
*/
UChar32 UnicodeSet::getRangeStart(int32_t index) const {
return list[index*2];
}
/**
* Iteration method that returns the last character in the
* specified range of this set.
* @see #getRangeStart
* @see #getRangeEnd
*/
UChar32 UnicodeSet::getRangeEnd(int32_t index) const {
return list[index*2 + 1] - 1;
}
int32_t UnicodeSet::getStringCount() const {
return strings->size();
}
const UnicodeString* UnicodeSet::getString(int32_t index) const {
return (const UnicodeString*) strings->elementAt(index);
}
/**
* Reallocate this objects internal structures to take up the least
* possible space, without changing this object's value.
*/
UnicodeSet& UnicodeSet::compact() {
if (len != capacity) {
capacity = len;
UChar32* temp = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity);
uprv_memcpy(temp, list, len*sizeof(UChar32));
uprv_free(list);
list = temp;
}
uprv_free(buffer);
buffer = NULL;
return *this;
}
int32_t UnicodeSet::serialize(uint16_t *dest, int32_t destCapacity, UErrorCode& ec) const {
int32_t bmpLength, length, destLength;
if (U_FAILURE(ec)) {
return 0;
}
if (destCapacity<0 || (destCapacity>0 && dest==NULL)) {
ec=U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
/* count necessary 16-bit units */
length=this->len-1; // Subtract 1 to ignore final UNICODESET_HIGH
// assert(length>=0);
if (length==0) {
/* empty set */
if (destCapacity>0) {
*dest=0;
} else {
ec=U_BUFFER_OVERFLOW_ERROR;
}
return 1;
}
/* now length>0 */
if (this->list[length-1]<=0xffff) {
/* all BMP */
bmpLength=length;
} else if (this->list[0]>=0x10000) {
/* all supplementary */
bmpLength=0;
length*=2;
} else {
/* some BMP, some supplementary */
for (bmpLength=0; bmpLength<length && this->list[bmpLength]<=0xffff; ++bmpLength) {}
length=bmpLength+2*(length-bmpLength);
}
/* length: number of 16-bit array units */
if (length>0x7fff) {
/* there are only 15 bits for the length in the first serialized word */
ec=U_INDEX_OUTOFBOUNDS_ERROR;
return 0;
}
/*
* total serialized length:
* number of 16-bit array units (length) +
* 1 length unit (always) +
* 1 bmpLength unit (if there are supplementary values)
*/
destLength=length+((length>bmpLength)?2:1);
if (destLength<=destCapacity) {
const UChar32 *p;
int32_t i;
*dest=(uint16_t)length;
if (length>bmpLength) {
*dest|=0x8000;
*++dest=(uint16_t)bmpLength;
}
++dest;
/* write the BMP part of the array */
p=this->list;
for (i=0; i<bmpLength; ++i) {
*dest++=(uint16_t)*p++;
}
/* write the supplementary part of the array */
for (; i<length; i+=2) {
*dest++=(uint16_t)(*p>>16);
*dest++=(uint16_t)*p++;
}
} else {
ec=U_BUFFER_OVERFLOW_ERROR;
}
return destLength;
}
//----------------------------------------------------------------
// Implementation: Pattern parsing
//----------------------------------------------------------------
/**
* Parses the given pattern, starting at the given position. The
* character at pattern.charAt(pos.getIndex()) must be '[', or the
* parse fails. Parsing continues until the corresponding closing
* ']'. If a syntax error is encountered between the opening and
* closing brace, the parse fails. Upon return from a successful
* parse, the ParsePosition is updated to point to the character
* following the closing ']', and a StringBuffer containing a
* pairs list for the parsed pattern is returned. This method calls
* itself recursively to parse embedded subpatterns.
*
* @param pattern the string containing the pattern to be parsed.
* The portion of the string from pos.getIndex(), which must be a
* '[', to the corresponding closing ']', is parsed.
* @param pos upon entry, the position at which to being parsing.
* The character at pattern.charAt(pos.getIndex()) must be a '['.
* Upon return from a U_SUCCESSful parse, pos.getIndex() is either
* the character after the closing ']' of the parsed pattern, or
* pattern.length() if the closing ']' is the last character of
* the pattern string.
* @return a StringBuffer containing a pairs list for the parsed
* substring of <code>pattern</code>
* @exception IllegalArgumentException if the parse fails.
*/
void UnicodeSet::applyPattern(const UnicodeString& pattern,
ParsePosition& pos,
uint32_t options,
const SymbolTable* symbols,
UErrorCode& status) {
if (U_FAILURE(status)) {
return;
}
// Need to build the pattern in a temporary string because
// _applyPattern calls add() etc., which set pat to empty.
UnicodeString rebuiltPat;
_applyPattern(pattern, pos, options, symbols, rebuiltPat, status);
pat = rebuiltPat;
}
void UnicodeSet::_applyPattern(const UnicodeString& pattern,
ParsePosition& pos,
uint32_t options,
const SymbolTable* symbols,
UnicodeString& rebuiltPat,
UErrorCode& status) {
if (U_FAILURE(status)) {
return;
}
// If the pattern contains any of the following, we save a
// rebuilt (variable-substituted) copy of the source pattern:
// - a category
// - an intersection or subtraction operator
// - an anchor (trailing '$', indicating RBT ether)
UBool rebuildPattern = FALSE;
UnicodeString newPat(SET_OPEN);
int32_t nestedPatStart = - 1; // see below for usage
UBool nestedPatDone = FALSE; // see below for usage
UnicodeString multiCharBuffer;
UBool invert = FALSE;
clear();
const UChar32 NONE = (UChar32) -1;
UChar32 lastChar = NONE; // This is either a char (0..10FFFF) or NONE
UBool isLastLiteral = FALSE; // TRUE if lastChar was a literal
UChar lastOp = 0;
/* This loop iterates over the characters in the pattern. We start at
* the position specified by pos. We exit the loop when either a
* matching closing ']' is seen, or we read all characters of the
* pattern. In the latter case an error will be thrown.
*/
/* Pattern syntax:
* pat := '[' '^'? elem* ']'
* elem := a | a '-' a | set | set op set
* set := pat | (a set variable)
* op := '&' | '-'
* a := (a character, possibly defined by a var)
*/
// mode 0: No chars parsed yet; next must be '['
// mode 1: '[' seen; if next is '^' or ':' then special
// mode 2: '[' '^'? seen; parse pattern and close with ']'
// mode 3: '[:' seen; parse category and close with ':]'
// mode 4: ']' seen; parse complete
// mode 5: Top-level property pattern seen
int8_t mode = 0;
int32_t i = pos.getIndex();
int32_t limit = pattern.length();
UnicodeSet nestedAux;
const UnicodeSet* nestedSet; // never owned
UnicodeString scratch;
/* In the case of an embedded SymbolTable variable, we look it up and
* then take characters from the resultant char[] array. These chars
* are subjected to an extra level of lookup in the SymbolTable in case
* they are stand-ins for a nested UnicodeSet. */
const UnicodeString* varValueBuffer = NULL;
int32_t ivarValueBuffer = 0;
int32_t anchor = 0;
UChar32 c;
while (i<limit) {
/* If the next element is a single character, c will be set to it,
* and nestedSet will be null. In this case isLiteral indicates
* whether the character should assume special meaning if it has
* one. If the next element is a nested set, either via a variable
* reference, or via an embedded "[..]" or "[:..:]" pattern, then
* nestedSet will be set to the pairs list for the nested set, and
* c's value should be ignored.
*/
nestedSet = NULL;
UBool isLiteral = FALSE;
if (varValueBuffer != NULL) {
if (ivarValueBuffer < varValueBuffer->length()) {
c = varValueBuffer->char32At(ivarValueBuffer);
ivarValueBuffer += UTF_CHAR_LENGTH(c);
const UnicodeFunctor *m = symbols->lookupMatcher(c); // may be NULL
if (m != NULL && m->getDynamicClassID() != UnicodeSet::getStaticClassID()) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
nestedSet = (UnicodeSet*) m;
nestedPatDone = FALSE;
} else {
varValueBuffer = NULL;
c = pattern.char32At(i);
i += UTF_CHAR_LENGTH(c);
}
} else {
c = pattern.char32At(i);
i += UTF_CHAR_LENGTH(c);
}
if ((options & USET_IGNORE_SPACE) && uprv_isRuleWhiteSpace(c)) {
continue;
}
// Keep track of the count of characters after an alleged anchor
if (anchor > 0) {
++anchor;
}
// Parse the opening '[' and optional following '^'
switch (mode) {
case 0:
if (resemblesPropertyPattern(pattern, i-1)) {
mode = 3;
break; // Fall through
} else if (c == SET_OPEN) {
mode = 1; // Next look for '^' or ':'
continue;
} else {
// throw new IllegalArgumentException("Missing opening '['");
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
case 1:
mode = 2;
switch (c) {
case COMPLEMENT:
invert = TRUE;
newPat.append(c);
continue; // Back to top to fetch next character
case HYPHEN:
isLiteral = TRUE; // Treat leading '-' as a literal
break; // Fall through
}
// else fall through and parse this character normally
}
// After opening matter is parsed ("[", "[^", or "[:"), the mode
// will be 2 if we want a closing ']', or 3 if we should parse a
// category and close with ":]".
// Only process escapes, variable references, and nested sets
// if we are _not_ retrieving characters from the variable
// buffer. Characters in the variable buffer have already
// benn through escape and variable reference processing.
if (varValueBuffer == NULL) {
/**
* Handle property set patterns.
*/
if (resemblesPropertyPattern(pattern, i-1)) {
ParsePosition pp(i-1);
nestedAux.applyPropertyPattern(pattern, pp, status);
if (U_FAILURE(status)) {
U_ASSERT(pp.getIndex() == i-1);
//throw new IllegalArgumentException("Invalid property pattern " +
// pattern.substring(i-1));
return;
}
nestedSet = &nestedAux;
nestedPatStart = newPat.length();
nestedPatDone = TRUE; // we're going to do it just below
switch (lastOp) {
case HYPHEN:
case INTERSECTION:
newPat.append(lastOp);
break;
}
// If we have a top-level property pattern, then trim
// off the opening '[' and use the property pattern
// as the entire pattern.
if (mode == 3) {
newPat.truncate(0);
}
UnicodeString str;
pattern.extractBetween(i-1, pp.getIndex(), str);
newPat.append(str);
rebuildPattern = TRUE;
i = pp.getIndex(); // advance past property pattern
if (mode == 3) {
// Entire pattern is a category; leave parse
// loop. This is one of 2 ways we leave this
// loop if the pattern is well-formed.
*this = nestedAux;
mode = 5;
break;
}
}
/* Handle escapes. If a character is escaped, then it assumes its
* literal value. This is true for all characters, both special
* characters and characters with no special meaning. We also
* interpret '\\uxxxx' Unicode escapes here (as literals).
*/
else if (c == BACKSLASH) {
UChar32 escaped = pattern.unescapeAt(i);
if (escaped == (UChar32) -1) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
isLiteral = TRUE;
c = escaped;
}
/* Parse variable references. These are treated as literals. If a
* variable refers to a UnicodeSet, its stand in character is
* returned in the UChar[] buffer.
* Variable names are only parsed if varNameToChar is not null.
* Set variables are only looked up if varCharToSet is not null.
*/
else if (symbols != NULL && !isLiteral && c == SymbolTable::SYMBOL_REF) {
pos.setIndex(i);
UnicodeString name = symbols->parseReference(pattern, pos, limit);
if (name.length() != 0) {
varValueBuffer = symbols->lookup(name);
if (varValueBuffer == NULL) {
//throw new IllegalArgumentException("Undefined variable: "
// + name);
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
ivarValueBuffer = 0;
i = pos.getIndex(); // Make i point PAST last char of var name
} else {
// Got a null; this means we have an isolated $.
// Tentatively assume this is an anchor.
anchor = 1;
}
continue; // Back to the top to get varValueBuffer[0]
}
/* An opening bracket indicates the first bracket of a nested
* subpattern.
*/
else if (!isLiteral && c == SET_OPEN) {
// Record position before nested pattern
nestedPatStart = newPat.length();
// Recurse to get the pairs for this nested set.
// Backup i to '['.
pos.setIndex(--i);
switch (lastOp) {
case HYPHEN:
case INTERSECTION:
newPat.append(lastOp);
break;
}
nestedAux._applyPattern(pattern, pos, options, symbols, newPat, status);
nestedSet = &nestedAux;
nestedPatDone = TRUE;
if (U_FAILURE(status)) {
return;
}
i = pos.getIndex();
}
else if (!isLiteral && c == OPEN_BRACE) {
// start of a string. find the rest.
int32_t length = 0;
int32_t st = i;
multiCharBuffer.truncate(0);
while (i < pattern.length()) {
UChar32 ch = pattern.char32At(i);
i += UTF_CHAR_LENGTH(ch);
if (ch == CLOSE_BRACE) {
length = -length; // signal that we saw '}'
break;
} else if (ch == BACKSLASH) {
ch = pattern.unescapeAt(i);
if (ch == (UChar32) -1) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
}
--length; // sic; see above
multiCharBuffer.append(ch);
}
if (length < 1) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
// We have new string. Add it to set and continue;
// we don't need to drop through to the further
// processing
add(multiCharBuffer);
pattern.extractBetween(st, i, multiCharBuffer);
newPat.append(OPEN_BRACE).append(multiCharBuffer);
rebuildPattern = TRUE;
continue;
}
}
/* At this point we have either a character c, or a nested set. If
* we have encountered a nested set, either embedded in the pattern,
* or as a variable, we have a non-null nestedSet, and c should be
* ignored. Otherwise c is the current character, and isLiteral
* indicates whether it is an escaped literal (or variable) or a
* normal unescaped character. Unescaped characters '-', '&', and
* ']' have special meanings.
*/
if (nestedSet != NULL) {
if (lastChar != NONE) {
if (lastOp != 0) {
// throw new IllegalArgumentException("Illegal rhs for " + lastChar + lastOp);
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
add(lastChar, lastChar);
if (nestedPatDone) {
// If there was a character before the nested set,
// then we need to insert it in newPat before the
// pattern for the nested set. This position was
// recorded in nestedPatStart.
UnicodeString s;
_appendToPat(s, lastChar, FALSE);
newPat.insert(nestedPatStart, s);
} else {
_appendToPat(newPat, lastChar, FALSE);
}
lastChar = NONE;
}
switch (lastOp) {
case HYPHEN:
removeAll(*nestedSet);
break;
case INTERSECTION:
retainAll(*nestedSet);
break;
case 0:
addAll(*nestedSet);
break;
}
// Get the pattern for the nested set, if we haven't done so
// already.
if (!nestedPatDone) {
if (lastOp != 0) {
newPat.append(lastOp);
}
nestedSet->_toPattern(newPat, FALSE);
}
rebuildPattern = TRUE;
lastOp = 0;
} else if (!isLiteral && c == SET_CLOSE) {
// Final closing delimiter. This is one of 2 ways we
// leave this loop if the pattern is well-formed.
if (anchor > 2 || anchor == 1) {
//throw new IllegalArgumentException("Syntax error near $" + pattern);
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
if (anchor == 2) {
rebuildPattern = TRUE;
newPat.append((UChar)SymbolTable::SYMBOL_REF);
add(U_ETHER);
}
mode = 4;
break;
} else if (lastOp == 0 && !isLiteral && (c == HYPHEN || c == INTERSECTION)) {
// assert(c <= 0xFFFF);
lastOp = (UChar) c;
} else if (lastOp == HYPHEN) {
if (lastChar >= c || lastChar == NONE) {
// Don't allow redundant (a-a) or empty (b-a) ranges;
// these are most likely typos.
//throw new IllegalArgumentException("Invalid range " + lastChar +
// '-' + c);
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
add(lastChar, c);
_appendToPat(newPat, lastChar, FALSE);
newPat.append(HYPHEN);
_appendToPat(newPat, c, FALSE);
lastOp = 0;
lastChar = NONE;
} else if (lastOp != 0) {
// We have <set>&<char> or <char>&<char>
// throw new IllegalArgumentException("Unquoted " + lastOp);
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
} else {
if (lastChar != NONE) {
// We have <char><char>
add(lastChar, lastChar);
_appendToPat(newPat, lastChar, FALSE);
}
lastChar = c;
isLastLiteral = isLiteral;
}
}
if (mode < 4) {
// throw new IllegalArgumentException("Missing ']'");
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
// Treat a trailing '$' as indicating U_ETHER. This code is only
// executed if symbols == NULL; otherwise other code parses the
// anchor.
if (lastChar == (UChar)SymbolTable::SYMBOL_REF && !isLastLiteral) {
rebuildPattern = TRUE;
newPat.append(lastChar);
add(U_ETHER);
}
else if (lastChar != NONE) {
add(lastChar, lastChar);
_appendToPat(newPat, lastChar, FALSE);
}
// Handle unprocessed stuff preceding the closing ']'
if (lastOp == HYPHEN) {
// Trailing '-' is treated as literal
add(lastOp, lastOp);
newPat.append(HYPHEN);
} else if (lastOp == INTERSECTION) {
// throw new IllegalArgumentException("Unquoted trailing " + lastOp);
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
if (mode == 4) {
newPat.append(SET_CLOSE);
}
/**
* If this pattern should be compiled case-insensitive, then
* we need to close over case BEFORE complementing. This
* makes patterns like /[^abc]/i work.
*/
if ((options & USET_CASE_INSENSITIVE) != 0) {
closeOver(USET_CASE);
}
/**
* If we saw a '^' after the initial '[' of this pattern, then perform
* the complement. (Inversion after '[:' is handled elsewhere.)
*/
if (invert) {
complement();
}
pos.setIndex(i);
// Use the rebuilt pattern (newPat) only if necessary. Prefer the
// generated pattern.
if (rebuildPattern) {
rebuiltPat.append(newPat);
} else {
_generatePattern(rebuiltPat, FALSE);
}
}
//----------------------------------------------------------------
// Implementation: Utility methods
//----------------------------------------------------------------
/**
* Allocate our strings vector and return TRUE if successful.
*/
UBool UnicodeSet::allocateStrings() {
UErrorCode ec = U_ZERO_ERROR;
strings = new UVector(uhash_deleteUnicodeString,
uhash_compareUnicodeString, ec);
if (U_FAILURE(ec)) {
delete strings;
strings = NULL;
return FALSE;
}
return TRUE;
}
void UnicodeSet::ensureCapacity(int32_t newLen) {
if (newLen <= capacity)
return;
capacity = newLen + GROW_EXTRA;
UChar32* temp = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity);
uprv_memcpy(temp, list, len*sizeof(UChar32));
uprv_free(list);
list = temp;
}
void UnicodeSet::ensureBufferCapacity(int32_t newLen) {
if (buffer != NULL && newLen <= bufferCapacity)
return;
if (buffer) {
uprv_free(buffer);
}
bufferCapacity = newLen + GROW_EXTRA;
buffer = (UChar32*) uprv_malloc(sizeof(UChar32) * bufferCapacity);
}
/**
* Swap list and buffer.
*/
void UnicodeSet::swapBuffers(void) {
// swap list and buffer
UChar32* temp = list;
list = buffer;
buffer = temp;
int32_t c = capacity;
capacity = bufferCapacity;
bufferCapacity = c;
}
//----------------------------------------------------------------
// Implementation: Fundamental operators
//----------------------------------------------------------------
static inline UChar32 max(UChar32 a, UChar32 b) {
return (a > b) ? a : b;
}
// polarity = 0, 3 is normal: x xor y
// polarity = 1, 2: x xor ~y == x === y
void UnicodeSet::exclusiveOr(const UChar32* other, int32_t otherLen, int8_t polarity) {
ensureBufferCapacity(len + otherLen);
int32_t i = 0, j = 0, k = 0;
UChar32 a = list[i++];
UChar32 b;
if (polarity == 1 || polarity == 2) {
b = UNICODESET_LOW;
if (other[j] == UNICODESET_LOW) { // skip base if already LOW
++j;
b = other[j];
}
} else {
b = other[j++];
}
// simplest of all the routines
// sort the values, discarding identicals!
for (;;) {
if (a < b) {
buffer[k++] = a;
a = list[i++];
} else if (b < a) {
buffer[k++] = b;
b = other[j++];
} else if (a != UNICODESET_HIGH) { // at this point, a == b
// discard both values!
a = list[i++];
b = other[j++];
} else { // DONE!
buffer[k++] = UNICODESET_HIGH;
len = k;
break;
}
}
swapBuffers();
pat.truncate(0);
}
// polarity = 0 is normal: x union y
// polarity = 2: x union ~y
// polarity = 1: ~x union y
// polarity = 3: ~x union ~y
void UnicodeSet::add(const UChar32* other, int32_t otherLen, int8_t polarity) {
ensureBufferCapacity(len + otherLen);
int32_t i = 0, j = 0, k = 0;
UChar32 a = list[i++];
UChar32 b = other[j++];
// change from xor is that we have to check overlapping pairs
// polarity bit 1 means a is second, bit 2 means b is.
for (;;) {
switch (polarity) {
case 0: // both first; take lower if unequal
if (a < b) { // take a
// Back up over overlapping ranges in buffer[]
if (k > 0 && a <= buffer[k-1]) {
// Pick latter end value in buffer[] vs. list[]
a = max(list[i], buffer[--k]);
} else {
// No overlap
buffer[k++] = a;
a = list[i];
}
i++; // Common if/else code factored out
polarity ^= 1;
} else if (b < a) { // take b
if (k > 0 && b <= buffer[k-1]) {
b = max(other[j], buffer[--k]);
} else {
buffer[k++] = b;
b = other[j];
}
j++;
polarity ^= 2;
} else { // a == b, take a, drop b
if (a == UNICODESET_HIGH) goto loop_end;
// This is symmetrical; it doesn't matter if
// we backtrack with a or b. - liu
if (k > 0 && a <= buffer[k-1]) {
a = max(list[i], buffer[--k]);
} else {
// No overlap
buffer[k++] = a;
a = list[i];
}
i++;
polarity ^= 1;
b = other[j++];
polarity ^= 2;
}
break;
case 3: // both second; take higher if unequal, and drop other
if (b <= a) { // take a
if (a == UNICODESET_HIGH) goto loop_end;
buffer[k++] = a;
} else { // take b
if (b == UNICODESET_HIGH) goto loop_end;
buffer[k++] = b;
}
a = list[i++];
polarity ^= 1; // factored common code
b = other[j++];
polarity ^= 2;
break;
case 1: // a second, b first; if b < a, overlap
if (a < b) { // no overlap, take a
buffer[k++] = a; a = list[i++]; polarity ^= 1;
} else if (b < a) { // OVERLAP, drop b
b = other[j++];
polarity ^= 2;
} else { // a == b, drop both!
if (a == UNICODESET_HIGH) goto loop_end;
a = list[i++];
polarity ^= 1;
b = other[j++];
polarity ^= 2;
}
break;
case 2: // a first, b second; if a < b, overlap
if (b < a) { // no overlap, take b
buffer[k++] = b;
b = other[j++];
polarity ^= 2;
} else if (a < b) { // OVERLAP, drop a
a = list[i++];
polarity ^= 1;
} else { // a == b, drop both!
if (a == UNICODESET_HIGH) goto loop_end;
a = list[i++];
polarity ^= 1;
b = other[j++];
polarity ^= 2;
}
break;
}
}
loop_end:
buffer[k++] = UNICODESET_HIGH; // terminate
len = k;
swapBuffers();
pat.truncate(0);
}
// polarity = 0 is normal: x intersect y
// polarity = 2: x intersect ~y == set-minus
// polarity = 1: ~x intersect y
// polarity = 3: ~x intersect ~y
void UnicodeSet::retain(const UChar32* other, int32_t otherLen, int8_t polarity) {
ensureBufferCapacity(len + otherLen);
int32_t i = 0, j = 0, k = 0;
UChar32 a = list[i++];
UChar32 b = other[j++];
// change from xor is that we have to check overlapping pairs
// polarity bit 1 means a is second, bit 2 means b is.
for (;;) {
switch (polarity) {
case 0: // both first; drop the smaller
if (a < b) { // drop a
a = list[i++];
polarity ^= 1;
} else if (b < a) { // drop b
b = other[j++];
polarity ^= 2;
} else { // a == b, take one, drop other
if (a == UNICODESET_HIGH) goto loop_end;
buffer[k++] = a;
a = list[i++];
polarity ^= 1;
b = other[j++];
polarity ^= 2;
}
break;
case 3: // both second; take lower if unequal
if (a < b) { // take a
buffer[k++] = a;
a = list[i++];
polarity ^= 1;
} else if (b < a) { // take b
buffer[k++] = b;
b = other[j++];
polarity ^= 2;
} else { // a == b, take one, drop other
if (a == UNICODESET_HIGH) goto loop_end;
buffer[k++] = a;
a = list[i++];
polarity ^= 1;
b = other[j++];
polarity ^= 2;
}
break;
case 1: // a second, b first;
if (a < b) { // NO OVERLAP, drop a
a = list[i++];
polarity ^= 1;
} else if (b < a) { // OVERLAP, take b
buffer[k++] = b;
b = other[j++];
polarity ^= 2;
} else { // a == b, drop both!
if (a == UNICODESET_HIGH) goto loop_end;
a = list[i++];
polarity ^= 1;
b = other[j++];
polarity ^= 2;
}
break;
case 2: // a first, b second; if a < b, overlap
if (b < a) { // no overlap, drop b
b = other[j++];
polarity ^= 2;
} else if (a < b) { // OVERLAP, take a
buffer[k++] = a;
a = list[i++];
polarity ^= 1;
} else { // a == b, drop both!
if (a == UNICODESET_HIGH) goto loop_end;
a = list[i++];
polarity ^= 1;
b = other[j++];
polarity ^= 2;
}
break;
}
}
loop_end:
buffer[k++] = UNICODESET_HIGH; // terminate
len = k;
swapBuffers();
pat.truncate(0);
}
//----------------------------------------------------------------
// Property set implementation
//----------------------------------------------------------------
static UBool numericValueFilter(UChar32 ch, void* context) {
return u_getNumericValue(ch) == *(double*)context;
}
static UBool generalCategoryMaskFilter(UChar32 ch, void* context) {
int32_t value = *(int32_t*)context;
return (U_GET_GC_MASK((UChar32) ch) & value) != 0;
}
static UBool versionFilter(UChar32 ch, void* context) {
UVersionInfo v, none = { 0, 0, 0, 0};
UVersionInfo* version = (UVersionInfo*)context;
u_charAge(ch, v);
return uprv_memcmp(&v, &none, sizeof(v)) > 0 && uprv_memcmp(&v, version, sizeof(v)) <= 0;
}
typedef struct {
UProperty prop;
int32_t value;
} IntPropertyContext;
static UBool intPropertyFilter(UChar32 ch, void* context) {
IntPropertyContext* c = (IntPropertyContext*)context;
return u_getIntPropertyValue((UChar32) ch, c->prop) == c->value;
}
/**
* Generic filter-based scanning code for UCD property UnicodeSets.
*/
void UnicodeSet::applyFilter(UnicodeSet::Filter filter,
void* context,
UErrorCode &status) {
// Walk through all Unicode characters, noting the start
// and end of each range for which filter.contain(c) is
// true. Add each range to a set.
//
// To improve performance, use the INCLUSIONS set, which
// encodes information about character ranges that are known
// to have identical properties. INCLUSIONS contains
// only the first characters of such ranges.
//
// TODO Where possible, instead of scanning over code points,
// use internal property data to initialize UnicodeSets for
// those properties. Scanning code points is slow.
if (U_FAILURE(status)) return;
const UnicodeSet* inclusions = getInclusions(status);
if (U_FAILURE(status)) {
return;
}
clear();
UChar32 startHasProperty = -1;
int limitRange = inclusions->getRangeCount();
for (int j=0; j<limitRange; ++j) {
// get current range
UChar32 start = inclusions->getRangeStart(j);
UChar32 end = inclusions->getRangeEnd(j);
// for all the code points in the range, process
for (UChar32 ch = start; ch <= end; ++ch) {
// only add to this UnicodeSet on inflection points --
// where the hasProperty value changes to false
if ((*filter)(ch, context)) {
if (startHasProperty < 0) {
startHasProperty = ch;
}
} else if (startHasProperty >= 0) {
add(startHasProperty, ch-1);
startHasProperty = -1;
}
}
}
if (startHasProperty >= 0) {
add((UChar32)startHasProperty, (UChar32)0x10FFFF);
}
}
static UBool mungeCharName(char* dst, const char* src, int32_t dstCapacity) {
/* Note: we use ' ' in compiler code page */
int32_t j = 0;
char ch;
--dstCapacity; /* make room for term. zero */
while ((ch = *src++) != 0) {
if (ch == ' ' && (j==0 || (j>0 && dst[j-1]==' '))) {
continue;
}
if (j >= dstCapacity) return FALSE;
dst[j++] = ch;
}
if (j > 0 && dst[j-1] == ' ') --j;
dst[j] = 0;
return TRUE;
}
//----------------------------------------------------------------
// Property set API
//----------------------------------------------------------------
#define FAIL(ec) {ec=U_ILLEGAL_ARGUMENT_ERROR; return *this;}
UnicodeSet&
UnicodeSet::applyIntPropertyValue(UProperty prop, int32_t value, UErrorCode& ec) {
if (U_FAILURE(ec)) return *this;
if (prop == UCHAR_GENERAL_CATEGORY_MASK) {
applyFilter(generalCategoryMaskFilter, &value, ec);
} else {
IntPropertyContext c = {prop, value};
applyFilter(intPropertyFilter, &c, ec);
}
return *this;
}
UnicodeSet&
UnicodeSet::applyPropertyAlias(const UnicodeString& prop,
const UnicodeString& value,
UErrorCode& ec) {
if (U_FAILURE(ec)) return *this;
UProperty p;
int32_t v;
CharString pname(prop);
CharString vname(value);
UBool mustNotBeEmpty = FALSE;
if (value.length() > 0) {
p = u_getPropertyEnum(pname);
if (p == UCHAR_INVALID_CODE) FAIL(ec);
// Treat gc as gcm
if (p == UCHAR_GENERAL_CATEGORY) {
p = UCHAR_GENERAL_CATEGORY_MASK;
}
if ((p >= UCHAR_BINARY_START && p < UCHAR_BINARY_LIMIT) ||
(p >= UCHAR_INT_START && p < UCHAR_INT_LIMIT) ||
(p >= UCHAR_MASK_START && p < UCHAR_MASK_LIMIT)) {
v = u_getPropertyValueEnum(p, vname);
if (v == UCHAR_INVALID_CODE) {
// Handle numeric CCC
if (p == UCHAR_CANONICAL_COMBINING_CLASS) {
char* end;
double value = uprv_strtod(vname, &end);
v = (int32_t) value;
if (v != value || v < 0 || *end != 0) {
// non-integral or negative value, or trailing junk
FAIL(ec);
}
// If the resultant set is empty then the numeric value
// was invalid.
mustNotBeEmpty = TRUE;
} else {
FAIL(ec);
}
}
}
else {
switch (p) {
case UCHAR_NUMERIC_VALUE:
{
char* end;
double value = uprv_strtod(vname, &end);
if (*end != 0) {
FAIL(ec);
}
applyFilter(numericValueFilter, &value, ec);
return *this;
}
break;
case UCHAR_NAME:
case UCHAR_UNICODE_1_NAME:
{
// Must munge name, since u_charFromName() does not do
// 'loose' matching.
char buf[128]; // it suffices that this be > uprv_getMaxCharNameLength
if (!mungeCharName(buf, vname, sizeof(buf))) FAIL(ec);
UCharNameChoice choice = (p == UCHAR_NAME) ?
U_EXTENDED_CHAR_NAME : U_UNICODE_10_CHAR_NAME;
UChar32 ch = u_charFromName(choice, buf, &ec);
if (U_SUCCESS(ec)) {
clear();
add(ch);
return *this;
} else {
FAIL(ec);
}
}
break;
case UCHAR_AGE:
{
// Must munge name, since u_versionFromString() does not do
// 'loose' matching.
char buf[128];
if (!mungeCharName(buf, vname, sizeof(buf))) FAIL(ec);
UVersionInfo version;
u_versionFromString(version, buf);
applyFilter(versionFilter, &version, ec);
return *this;
}
break;
default:
// p is a non-binary, non-enumerated property that we
// don't support (yet).
FAIL(ec);
}
}
}
else {
// value is empty. Interpret as General Category, Script, or
// Binary property.
p = UCHAR_GENERAL_CATEGORY_MASK;
v = u_getPropertyValueEnum(p, pname);
if (v == UCHAR_INVALID_CODE) {
p = UCHAR_SCRIPT;
v = u_getPropertyValueEnum(p, pname);
if (v == UCHAR_INVALID_CODE) {
p = u_getPropertyEnum(pname);
if (p >= UCHAR_BINARY_START && p < UCHAR_BINARY_LIMIT) {
v = 1;
} else if (0 == uprv_comparePropertyNames(ANY, pname)) {
set(MIN_VALUE, MAX_VALUE);
return *this;
} else if (0 == uprv_comparePropertyNames(ASCII, pname)) {
set(0, 0x7F);
return *this;
} else {
FAIL(ec);
}
}
}
}
applyIntPropertyValue(p, v, ec);
if (U_SUCCESS(ec) && (mustNotBeEmpty && isEmpty())) {
// mustNotBeEmpty is set to true if an empty set indicates
// invalid input.
ec = U_ILLEGAL_ARGUMENT_ERROR;
}
return *this;
}
//----------------------------------------------------------------
// Property set patterns
//----------------------------------------------------------------
/**
* Return true if the given position, in the given pattern, appears
* to be the start of a property set pattern.
*/
UBool UnicodeSet::resemblesPropertyPattern(const UnicodeString& pattern,
int32_t pos) {
// Patterns are at least 5 characters long
if ((pos+5) > pattern.length()) {
return FALSE;
}
// Look for an opening [:, [:^, \p, or \P
return (0 == pattern.compare(pos, 2, POSIX_OPEN)) ||
(0 == pattern.caseCompare(pos, 2, PERL_OPEN, U_FOLD_CASE_DEFAULT)) ||
(0 == pattern.compare(pos, 2, NAME_OPEN));
}
/**
* Parse the given property pattern at the given parse position.
*/
UnicodeSet& UnicodeSet::applyPropertyPattern(const UnicodeString& pattern,
ParsePosition& ppos,
UErrorCode &ec) {
int32_t pos = ppos.getIndex();
UBool posix = FALSE; // true for [:pat:], false for \p{pat} \P{pat} \N{pat}
UBool isName = FALSE; // true for \N{pat}, o/w false
UBool invert = FALSE;
if (U_FAILURE(ec)) return *this;
// Minimum length is 5 characters, e.g. \p{L}
if ((pos+5) > pattern.length()) {
FAIL(ec);
}
// On entry, ppos should point to one of the following locations:
// Look for an opening [:, [:^, \p, or \P
if (0 == pattern.compare(pos, 2, POSIX_OPEN)) {
posix = TRUE;
pos += 2;
pos = ICU_Utility::skipWhitespace(pattern, pos);
if (pos < pattern.length() && pattern.charAt(pos) == COMPLEMENT) {
++pos;
invert = TRUE;
}
} else if (0 == pattern.caseCompare(pos, 2, PERL_OPEN, U_FOLD_CASE_DEFAULT) ||
0 == pattern.compare(pos, 2, NAME_OPEN)) {
UChar c = pattern.charAt(pos+1);
invert = (c == UPPER_P);
isName = (c == UPPER_N);
pos += 2;
pos = ICU_Utility::skipWhitespace(pattern, pos);
if (pos == pattern.length() || pattern.charAt(pos++) != OPEN_BRACE) {
// Syntax error; "\p" or "\P" not followed by "{"
FAIL(ec);
}
} else {
// Open delimiter not seen
FAIL(ec);
}
// Look for the matching close delimiter, either :] or }
int32_t close = pattern.indexOf(posix ? POSIX_CLOSE : PERL_CLOSE, pos);
if (close < 0) {
// Syntax error; close delimiter missing
FAIL(ec);
}
// Look for an '=' sign. If this is present, we will parse a
// medium \p{gc=Cf} or long \p{GeneralCategory=Format}
// pattern.
int32_t equals = pattern.indexOf(EQUALS, pos);
UnicodeString propName, valueName;
if (equals >= 0 && equals < close && !isName) {
// Equals seen; parse medium/long pattern
pattern.extractBetween(pos, equals, propName);
pattern.extractBetween(equals+1, close, valueName);
}
else {
// Handle case where no '=' is seen, and \N{}
pattern.extractBetween(pos, close, propName);
// Handle \N{name}
if (isName) {
// This is a little inefficient since it means we have to
// parse NAME_PROP back to UCHAR_NAME even though we already
// know it's UCHAR_NAME. If we refactor the API to
// support args of (UProperty, char*) then we can remove
// NAME_PROP and make this a little more efficient.
valueName = propName;
propName = NAME_PROP;
}
}
applyPropertyAlias(propName, valueName, ec);
if (U_SUCCESS(ec)) {
if (invert) {
complement();
}
// Move to the limit position after the close delimiter if the
// parse succeeded.
ppos.setIndex(close + (posix ? 2 : 1));
}
return *this;
}
//----------------------------------------------------------------
// Inclusions list
//----------------------------------------------------------------
const UnicodeSet* UnicodeSet::getInclusions(UErrorCode &errorCode) {
if (INCLUSIONS == NULL) {
UnicodeSet *incl = new UnicodeSet();
if(incl == NULL) {
errorCode = U_MEMORY_ALLOCATION_ERROR;
return NULL;
}
uprv_getInclusions((USet *)incl, &errorCode);
if(U_FAILURE(errorCode)) {
delete incl;
return NULL;
}
umtx_lock(NULL);
if (INCLUSIONS == NULL) {
INCLUSIONS = incl;
incl = NULL;
}
umtx_unlock(NULL);
if(incl != NULL) {
delete incl;
}
}
return INCLUSIONS;
}
/**
* Cleanup function for UnicodeSet
*/
U_CFUNC UBool uset_cleanup(void) {
if (INCLUSIONS != NULL) {
delete INCLUSIONS;
INCLUSIONS = NULL;
}
if (CASE_EQUIV_HASH != NULL) {
delete CASE_EQUIV_HASH;
CASE_EQUIV_HASH = NULL;
}
if (CASE_EQUIV_CBA != NULL) {
ucmp8_close(CASE_EQUIV_CBA);
CASE_EQUIV_CBA = NULL;
}
return TRUE;
}
//----------------------------------------------------------------
// Case folding API
//----------------------------------------------------------------
UnicodeSet& UnicodeSet::closeOver(int32_t attribute) {
if ((attribute & USET_CASE) != 0) {
UnicodeSet foldSet;
UnicodeString str;
int32_t n = getRangeCount();
for (int32_t i=0; i<n; ++i) {
UChar32 start = getRangeStart(i);
UChar32 end = getRangeEnd(i);
for (UChar32 cp=start; cp<=end; ++cp) {
str.truncate(0);
str.append(u_foldCase(cp, U_FOLD_CASE_DEFAULT));
foldSet.caseCloseOne(str);
}
}
if (strings != NULL && strings->size() > 0) {
for (int32_t j=0; j<strings->size(); ++j) {
str = * (const UnicodeString*) strings->elementAt(j);
foldSet.caseCloseOne(str.foldCase());
}
}
*this = foldSet;
}
return *this;
}
//----------------------------------------------------------------
// Case folding implementation
//----------------------------------------------------------------
/**
* Data structure representing a case-fold equivalency class. It is a
* SET containing 0 or more code units, and 0 or more strings of
* length 2 code units or longer.
*
* This class is implemented as a 8-UChar buffer with a few
* convenience methods on it. The format of the buffer:
* - All single code units in this set, followed by a terminating
* zero. If none, then just a terminating zero.
* - Zero or more 0-terminated strings, each of length >= 2
* code units.
* - A single terminating (UChar)0.
*
* Usage:
*
* const CaseEquivClass& c = ...;
* const UChar* p;
* for (c.getStrings(p); *p; c.nextString(p)) {
* foo(p);
* }
*/
class CaseEquivClass {
public:
UChar data[8];
/**
* Return the string of single code units. May be "". Will never
* be NULL.
*/
const UChar* getSingles() const {
return data;
}
/**
* Return the first multi-code-unit string. May be "" if there
* are none. Will never be NULL.
* @param p pointer to be set to point to the first string.
*/
void getStrings(const UChar*& p) const {
p = data;
nextString(p);
}
/**
* Advance a pointer from one multi-code-unit string to the next.
* May advance 'p' to point to "" if there are no more.
* Do NOT call if *p == 0.
* @param p pointer to be advanced to point to the next string.
*/
static void nextString(const UChar*& p) {
while (*p++) {}
}
};
/**
* IMPORTANT: The following two static data arrays represent the
* information used to do case closure. The first array is an array
* of pairs. That is, for each even index e, entries [e] and [e+1]
* form a pair of case equivalent code units. The entry at [e] is the
* folded one, that is, the one for which u_foldCase(x)==x.
*
* The second static array is an array of CaseEquivClass objects.
* Since these objects are just adorned UChar[] arrays, they can be
* initialized in place in the array, and all of them can live in a
* single piece of static memory, with no heap allocation.
*/
// MACHINE-GENERATED: Do not edit (see com.ibm.icu.dev.tools.translit.UnicodeSetCloseOver)
static const UChar CASE_PAIRS[] = {
0x0061,0x0041,0x0062,0x0042,0x0063,0x0043,0x0064,0x0044,0x0065,0x0045,
0x0066,0x0046,0x0067,0x0047,0x0068,0x0048,0x0069,0x0049,0x006A,0x004A,
0x006C,0x004C,0x006D,0x004D,0x006E,0x004E,0x006F,0x004F,0x0070,0x0050,
0x0071,0x0051,0x0072,0x0052,0x0074,0x0054,0x0075,0x0055,0x0076,0x0056,
0x0077,0x0057,0x0078,0x0058,0x0079,0x0059,0x007A,0x005A,0x00E0,0x00C0,
0x00E1,0x00C1,0x00E2,0x00C2,0x00E3,0x00C3,0x00E4,0x00C4,0x00E6,0x00C6,
0x00E7,0x00C7,0x00E8,0x00C8,0x00E9,0x00C9,0x00EA,0x00CA,0x00EB,0x00CB,
0x00EC,0x00CC,0x00ED,0x00CD,0x00EE,0x00CE,0x00EF,0x00CF,0x00F0,0x00D0,
0x00F1,0x00D1,0x00F2,0x00D2,0x00F3,0x00D3,0x00F4,0x00D4,0x00F5,0x00D5,
0x00F6,0x00D6,0x00F8,0x00D8,0x00F9,0x00D9,0x00FA,0x00DA,0x00FB,0x00DB,
0x00FC,0x00DC,0x00FD,0x00DD,0x00FE,0x00DE,0x00FF,0x0178,0x0101,0x0100,
0x0103,0x0102,0x0105,0x0104,0x0107,0x0106,0x0109,0x0108,0x010B,0x010A,
0x010D,0x010C,0x010F,0x010E,0x0111,0x0110,0x0113,0x0112,0x0115,0x0114,
0x0117,0x0116,0x0119,0x0118,0x011B,0x011A,0x011D,0x011C,0x011F,0x011E,
0x0121,0x0120,0x0123,0x0122,0x0125,0x0124,0x0127,0x0126,0x0129,0x0128,
0x012B,0x012A,0x012D,0x012C,0x012F,0x012E,0x0133,0x0132,0x0135,0x0134,
0x0137,0x0136,0x013A,0x0139,0x013C,0x013B,0x013E,0x013D,0x0140,0x013F,
0x0142,0x0141,0x0144,0x0143,0x0146,0x0145,0x0148,0x0147,0x014B,0x014A,
0x014D,0x014C,0x014F,0x014E,0x0151,0x0150,0x0153,0x0152,0x0155,0x0154,
0x0157,0x0156,0x0159,0x0158,0x015B,0x015A,0x015D,0x015C,0x015F,0x015E,
0x0161,0x0160,0x0163,0x0162,0x0165,0x0164,0x0167,0x0166,0x0169,0x0168,
0x016B,0x016A,0x016D,0x016C,0x016F,0x016E,0x0171,0x0170,0x0173,0x0172,
0x0175,0x0174,0x0177,0x0176,0x017A,0x0179,0x017C,0x017B,0x017E,0x017D,
0x0183,0x0182,0x0185,0x0184,0x0188,0x0187,0x018C,0x018B,0x0192,0x0191,
0x0195,0x01F6,0x0199,0x0198,0x019E,0x0220,0x01A1,0x01A0,0x01A3,0x01A2,
0x01A5,0x01A4,0x01A8,0x01A7,0x01AD,0x01AC,0x01B0,0x01AF,0x01B4,0x01B3,
0x01B6,0x01B5,0x01B9,0x01B8,0x01BD,0x01BC,0x01BF,0x01F7,0x01CE,0x01CD,
0x01D0,0x01CF,0x01D2,0x01D1,0x01D4,0x01D3,0x01D6,0x01D5,0x01D8,0x01D7,
0x01DA,0x01D9,0x01DC,0x01DB,0x01DD,0x018E,0x01DF,0x01DE,0x01E1,0x01E0,
0x01E3,0x01E2,0x01E5,0x01E4,0x01E7,0x01E6,0x01E9,0x01E8,0x01EB,0x01EA,
0x01ED,0x01EC,0x01EF,0x01EE,0x01F5,0x01F4,0x01F9,0x01F8,0x01FB,0x01FA,
0x01FD,0x01FC,0x01FF,0x01FE,0x0201,0x0200,0x0203,0x0202,0x0205,0x0204,
0x0207,0x0206,0x0209,0x0208,0x020B,0x020A,0x020D,0x020C,0x020F,0x020E,
0x0211,0x0210,0x0213,0x0212,0x0215,0x0214,0x0217,0x0216,0x0219,0x0218,
0x021B,0x021A,0x021D,0x021C,0x021F,0x021E,0x0223,0x0222,0x0225,0x0224,
0x0227,0x0226,0x0229,0x0228,0x022B,0x022A,0x022D,0x022C,0x022F,0x022E,
0x0231,0x0230,0x0233,0x0232,0x0253,0x0181,0x0254,0x0186,0x0256,0x0189,
0x0257,0x018A,0x0259,0x018F,0x025B,0x0190,0x0260,0x0193,0x0263,0x0194,
0x0268,0x0197,0x0269,0x0196,0x026F,0x019C,0x0272,0x019D,0x0275,0x019F,
0x0280,0x01A6,0x0283,0x01A9,0x0288,0x01AE,0x028A,0x01B1,0x028B,0x01B2,
0x0292,0x01B7,0x03AC,0x0386,0x03AD,0x0388,0x03AE,0x0389,0x03AF,0x038A,
0x03B1,0x0391,0x03B3,0x0393,0x03B4,0x0394,0x03B6,0x0396,0x03B7,0x0397,
0x03BB,0x039B,0x03BD,0x039D,0x03BE,0x039E,0x03BF,0x039F,0x03C4,0x03A4,
0x03C5,0x03A5,0x03C7,0x03A7,0x03C8,0x03A8,0x03CA,0x03AA,0x03CB,0x03AB,
0x03CC,0x038C,0x03CD,0x038E,0x03CE,0x038F,0x03D9,0x03D8,0x03DB,0x03DA,
0x03DD,0x03DC,0x03DF,0x03DE,0x03E1,0x03E0,0x03E3,0x03E2,0x03E5,0x03E4,
0x03E7,0x03E6,0x03E9,0x03E8,0x03EB,0x03EA,0x03ED,0x03EC,0x03EF,0x03EE,
0x0430,0x0410,0x0431,0x0411,0x0432,0x0412,0x0433,0x0413,0x0434,0x0414,
0x0435,0x0415,0x0436,0x0416,0x0437,0x0417,0x0438,0x0418,0x0439,0x0419,
0x043A,0x041A,0x043B,0x041B,0x043C,0x041C,0x043D,0x041D,0x043E,0x041E,
0x043F,0x041F,0x0440,0x0420,0x0441,0x0421,0x0442,0x0422,0x0443,0x0423,
0x0444,0x0424,0x0445,0x0425,0x0446,0x0426,0x0447,0x0427,0x0448,0x0428,
0x0449,0x0429,0x044A,0x042A,0x044B,0x042B,0x044C,0x042C,0x044D,0x042D,
0x044E,0x042E,0x044F,0x042F,0x0450,0x0400,0x0451,0x0401,0x0452,0x0402,
0x0453,0x0403,0x0454,0x0404,0x0455,0x0405,0x0456,0x0406,0x0457,0x0407,
0x0458,0x0408,0x0459,0x0409,0x045A,0x040A,0x045B,0x040B,0x045C,0x040C,
0x045D,0x040D,0x045E,0x040E,0x045F,0x040F,0x0461,0x0460,0x0463,0x0462,
0x0465,0x0464,0x0467,0x0466,0x0469,0x0468,0x046B,0x046A,0x046D,0x046C,
0x046F,0x046E,0x0471,0x0470,0x0473,0x0472,0x0475,0x0474,0x0477,0x0476,
0x0479,0x0478,0x047B,0x047A,0x047D,0x047C,0x047F,0x047E,0x0481,0x0480,
0x048B,0x048A,0x048D,0x048C,0x048F,0x048E,0x0491,0x0490,0x0493,0x0492,
0x0495,0x0494,0x0497,0x0496,0x0499,0x0498,0x049B,0x049A,0x049D,0x049C,
0x049F,0x049E,0x04A1,0x04A0,0x04A3,0x04A2,0x04A5,0x04A4,0x04A7,0x04A6,
0x04A9,0x04A8,0x04AB,0x04AA,0x04AD,0x04AC,0x04AF,0x04AE,0x04B1,0x04B0,
0x04B3,0x04B2,0x04B5,0x04B4,0x04B7,0x04B6,0x04B9,0x04B8,0x04BB,0x04BA,
0x04BD,0x04BC,0x04BF,0x04BE,0x04C2,0x04C1,0x04C4,0x04C3,0x04C6,0x04C5,
0x04C8,0x04C7,0x04CA,0x04C9,0x04CC,0x04CB,0x04CE,0x04CD,0x04D1,0x04D0,
0x04D3,0x04D2,0x04D5,0x04D4,0x04D7,0x04D6,0x04D9,0x04D8,0x04DB,0x04DA,
0x04DD,0x04DC,0x04DF,0x04DE,0x04E1,0x04E0,0x04E3,0x04E2,0x04E5,0x04E4,
0x04E7,0x04E6,0x04E9,0x04E8,0x04EB,0x04EA,0x04ED,0x04EC,0x04EF,0x04EE,
0x04F1,0x04F0,0x04F3,0x04F2,0x04F5,0x04F4,0x04F9,0x04F8,0x0501,0x0500,
0x0503,0x0502,0x0505,0x0504,0x0507,0x0506,0x0509,0x0508,0x050B,0x050A,
0x050D,0x050C,0x050F,0x050E,0x0561,0x0531,0x0562,0x0532,0x0563,0x0533,
0x0564,0x0534,0x0565,0x0535,0x0566,0x0536,0x0567,0x0537,0x0568,0x0538,
0x0569,0x0539,0x056A,0x053A,0x056B,0x053B,0x056C,0x053C,0x056D,0x053D,
0x056E,0x053E,0x056F,0x053F,0x0570,0x0540,0x0571,0x0541,0x0572,0x0542,
0x0573,0x0543,0x0574,0x0544,0x0575,0x0545,0x0576,0x0546,0x0577,0x0547,
0x0578,0x0548,0x0579,0x0549,0x057A,0x054A,0x057B,0x054B,0x057C,0x054C,
0x057D,0x054D,0x057E,0x054E,0x057F,0x054F,0x0580,0x0550,0x0581,0x0551,
0x0582,0x0552,0x0583,0x0553,0x0584,0x0554,0x0585,0x0555,0x0586,0x0556,
0x1E01,0x1E00,0x1E03,0x1E02,0x1E05,0x1E04,0x1E07,0x1E06,0x1E09,0x1E08,
0x1E0B,0x1E0A,0x1E0D,0x1E0C,0x1E0F,0x1E0E,0x1E11,0x1E10,0x1E13,0x1E12,
0x1E15,0x1E14,0x1E17,0x1E16,0x1E19,0x1E18,0x1E1B,0x1E1A,0x1E1D,0x1E1C,
0x1E1F,0x1E1E,0x1E21,0x1E20,0x1E23,0x1E22,0x1E25,0x1E24,0x1E27,0x1E26,
0x1E29,0x1E28,0x1E2B,0x1E2A,0x1E2D,0x1E2C,0x1E2F,0x1E2E,0x1E31,0x1E30,
0x1E33,0x1E32,0x1E35,0x1E34,0x1E37,0x1E36,0x1E39,0x1E38,0x1E3B,0x1E3A,
0x1E3D,0x1E3C,0x1E3F,0x1E3E,0x1E41,0x1E40,0x1E43,0x1E42,0x1E45,0x1E44,
0x1E47,0x1E46,0x1E49,0x1E48,0x1E4B,0x1E4A,0x1E4D,0x1E4C,0x1E4F,0x1E4E,
0x1E51,0x1E50,0x1E53,0x1E52,0x1E55,0x1E54,0x1E57,0x1E56,0x1E59,0x1E58,
0x1E5B,0x1E5A,0x1E5D,0x1E5C,0x1E5F,0x1E5E,0x1E63,0x1E62,0x1E65,0x1E64,
0x1E67,0x1E66,0x1E69,0x1E68,0x1E6B,0x1E6A,0x1E6D,0x1E6C,0x1E6F,0x1E6E,
0x1E71,0x1E70,0x1E73,0x1E72,0x1E75,0x1E74,0x1E77,0x1E76,0x1E79,0x1E78,
0x1E7B,0x1E7A,0x1E7D,0x1E7C,0x1E7F,0x1E7E,0x1E81,0x1E80,0x1E83,0x1E82,
0x1E85,0x1E84,0x1E87,0x1E86,0x1E89,0x1E88,0x1E8B,0x1E8A,0x1E8D,0x1E8C,
0x1E8F,0x1E8E,0x1E91,0x1E90,0x1E93,0x1E92,0x1E95,0x1E94,0x1EA1,0x1EA0,
0x1EA3,0x1EA2,0x1EA5,0x1EA4,0x1EA7,0x1EA6,0x1EA9,0x1EA8,0x1EAB,0x1EAA,
0x1EAD,0x1EAC,0x1EAF,0x1EAE,0x1EB1,0x1EB0,0x1EB3,0x1EB2,0x1EB5,0x1EB4,
0x1EB7,0x1EB6,0x1EB9,0x1EB8,0x1EBB,0x1EBA,0x1EBD,0x1EBC,0x1EBF,0x1EBE,
0x1EC1,0x1EC0,0x1EC3,0x1EC2,0x1EC5,0x1EC4,0x1EC7,0x1EC6,0x1EC9,0x1EC8,
0x1ECB,0x1ECA,0x1ECD,0x1ECC,0x1ECF,0x1ECE,0x1ED1,0x1ED0,0x1ED3,0x1ED2,
0x1ED5,0x1ED4,0x1ED7,0x1ED6,0x1ED9,0x1ED8,0x1EDB,0x1EDA,0x1EDD,0x1EDC,
0x1EDF,0x1EDE,0x1EE1,0x1EE0,0x1EE3,0x1EE2,0x1EE5,0x1EE4,0x1EE7,0x1EE6,
0x1EE9,0x1EE8,0x1EEB,0x1EEA,0x1EED,0x1EEC,0x1EEF,0x1EEE,0x1EF1,0x1EF0,
0x1EF3,0x1EF2,0x1EF5,0x1EF4,0x1EF7,0x1EF6,0x1EF9,0x1EF8,0x1F00,0x1F08,
0x1F01,0x1F09,0x1F02,0x1F0A,0x1F03,0x1F0B,0x1F04,0x1F0C,0x1F05,0x1F0D,
0x1F06,0x1F0E,0x1F07,0x1F0F,0x1F10,0x1F18,0x1F11,0x1F19,0x1F12,0x1F1A,
0x1F13,0x1F1B,0x1F14,0x1F1C,0x1F15,0x1F1D,0x1F20,0x1F28,0x1F21,0x1F29,
0x1F22,0x1F2A,0x1F23,0x1F2B,0x1F24,0x1F2C,0x1F25,0x1F2D,0x1F26,0x1F2E,
0x1F27,0x1F2F,0x1F30,0x1F38,0x1F31,0x1F39,0x1F32,0x1F3A,0x1F33,0x1F3B,
0x1F34,0x1F3C,0x1F35,0x1F3D,0x1F36,0x1F3E,0x1F37,0x1F3F,0x1F40,0x1F48,
0x1F41,0x1F49,0x1F42,0x1F4A,0x1F43,0x1F4B,0x1F44,0x1F4C,0x1F45,0x1F4D,
0x1F51,0x1F59,0x1F53,0x1F5B,0x1F55,0x1F5D,0x1F57,0x1F5F,0x1F60,0x1F68,
0x1F61,0x1F69,0x1F62,0x1F6A,0x1F63,0x1F6B,0x1F64,0x1F6C,0x1F65,0x1F6D,
0x1F66,0x1F6E,0x1F67,0x1F6F,0x1F70,0x1FBA,0x1F71,0x1FBB,0x1F72,0x1FC8,
0x1F73,0x1FC9,0x1F74,0x1FCA,0x1F75,0x1FCB,0x1F76,0x1FDA,0x1F77,0x1FDB,
0x1F78,0x1FF8,0x1F79,0x1FF9,0x1F7A,0x1FEA,0x1F7B,0x1FEB,0x1F7C,0x1FFA,
0x1F7D,0x1FFB,0x1FB0,0x1FB8,0x1FB1,0x1FB9,0x1FD0,0x1FD8,0x1FD1,0x1FD9,
0x1FE0,0x1FE8,0x1FE1,0x1FE9,0x1FE5,0x1FEC,0x2170,0x2160,0x2171,0x2161,
0x2172,0x2162,0x2173,0x2163,0x2174,0x2164,0x2175,0x2165,0x2176,0x2166,
0x2177,0x2167,0x2178,0x2168,0x2179,0x2169,0x217A,0x216A,0x217B,0x216B,
0x217C,0x216C,0x217D,0x216D,0x217E,0x216E,0x217F,0x216F,0x24D0,0x24B6,
0x24D1,0x24B7,0x24D2,0x24B8,0x24D3,0x24B9,0x24D4,0x24BA,0x24D5,0x24BB,
0x24D6,0x24BC,0x24D7,0x24BD,0x24D8,0x24BE,0x24D9,0x24BF,0x24DA,0x24C0,
0x24DB,0x24C1,0x24DC,0x24C2,0x24DD,0x24C3,0x24DE,0x24C4,0x24DF,0x24C5,
0x24E0,0x24C6,0x24E1,0x24C7,0x24E2,0x24C8,0x24E3,0x24C9,0x24E4,0x24CA,
0x24E5,0x24CB,0x24E6,0x24CC,0x24E7,0x24CD,0x24E8,0x24CE,0x24E9,0x24CF,
0xFF41,0xFF21,0xFF42,0xFF22,0xFF43,0xFF23,0xFF44,0xFF24,0xFF45,0xFF25,
0xFF46,0xFF26,0xFF47,0xFF27,0xFF48,0xFF28,0xFF49,0xFF29,0xFF4A,0xFF2A,
0xFF4B,0xFF2B,0xFF4C,0xFF2C,0xFF4D,0xFF2D,0xFF4E,0xFF2E,0xFF4F,0xFF2F,
0xFF50,0xFF30,0xFF51,0xFF31,0xFF52,0xFF32,0xFF53,0xFF33,0xFF54,0xFF34,
0xFF55,0xFF35,0xFF56,0xFF36,0xFF57,0xFF37,0xFF58,0xFF38,0xFF59,0xFF39,
0xFF5A,0xFF3A,
};
// MACHINE-GENERATED: Do not edit (see com.ibm.icu.dev.tools.translit.UnicodeSetCloseOver)
static const CaseEquivClass CASE_NONPAIRS[] = {
{0x1E9A,0, 0x0061,0x02BE,0, 0},
{0xFB00,0, 0x0066,0x0066,0, 0},
{0xFB03,0, 0x0066,0x0066,0x0069,0, 0},
{0xFB04,0, 0x0066,0x0066,0x006C,0, 0},
{0xFB01,0, 0x0066,0x0069,0, 0},
{0xFB02,0, 0x0066,0x006C,0, 0},
{0x1E96,0, 0x0068,0x0331,0, 0},
{0x0130,0, 0x0069,0x0307,0, 0},
{0x01F0,0, 0x006A,0x030C,0, 0},
{0x004B,0x006B,0x212A,0, 0},
{0x0053,0x0073,0x017F,0, 0},
{0x00DF,0, 0x0073,0x0073,0, 0},
{0xFB05,0xFB06,0, 0x0073,0x0074,0, 0},
{0x1E97,0, 0x0074,0x0308,0, 0},
{0x1E98,0, 0x0077,0x030A,0, 0},
{0x1E99,0, 0x0079,0x030A,0, 0},
{0x00C5,0x00E5,0x212B,0, 0},
{0x01C4,0x01C5,0x01C6,0, 0},
{0x01C7,0x01C8,0x01C9,0, 0},
{0x01CA,0x01CB,0x01CC,0, 0},
{0x01F1,0x01F2,0x01F3,0, 0},
{0x0149,0, 0x02BC,0x006E,0, 0},
{0x1FB4,0, 0x03AC,0x03B9,0, 0},
{0x1FC4,0, 0x03AE,0x03B9,0, 0},
{0x1FB6,0, 0x03B1,0x0342,0, 0},
{0x1FB7,0, 0x03B1,0x0342,0x03B9,0, 0},
{0x1FB3,0x1FBC,0, 0x03B1,0x03B9,0, 0},
{0x0392,0x03B2,0x03D0,0, 0},
{0x0395,0x03B5,0x03F5,0, 0},
{0x1FC6,0, 0x03B7,0x0342,0, 0},
{0x1FC7,0, 0x03B7,0x0342,0x03B9,0, 0},
{0x1FC3,0x1FCC,0, 0x03B7,0x03B9,0, 0},
{0x0398,0x03B8,0x03D1,0x03F4,0, 0},
{0x0345,0x0399,0x03B9,0x1FBE,0, 0},
{0x1FD2,0, 0x03B9,0x0308,0x0300,0, 0},
{0x0390,0x1FD3,0, 0x03B9,0x0308,0x0301,0, 0},
{0x1FD7,0, 0x03B9,0x0308,0x0342,0, 0},
{0x1FD6,0, 0x03B9,0x0342,0, 0},
{0x039A,0x03BA,0x03F0,0, 0},
{0x00B5,0x039C,0x03BC,0, 0},
{0x03A0,0x03C0,0x03D6,0, 0},
{0x03A1,0x03C1,0x03F1,0, 0},
{0x1FE4,0, 0x03C1,0x0313,0, 0},
{0x03A3,0x03C2,0x03C3,0x03F2,0, 0},
{0x1FE2,0, 0x03C5,0x0308,0x0300,0, 0},
{0x03B0,0x1FE3,0, 0x03C5,0x0308,0x0301,0, 0},
{0x1FE7,0, 0x03C5,0x0308,0x0342,0, 0},
{0x1F50,0, 0x03C5,0x0313,0, 0},
{0x1F52,0, 0x03C5,0x0313,0x0300,0, 0},
{0x1F54,0, 0x03C5,0x0313,0x0301,0, 0},
{0x1F56,0, 0x03C5,0x0313,0x0342,0, 0},
{0x1FE6,0, 0x03C5,0x0342,0, 0},
{0x03A6,0x03C6,0x03D5,0, 0},
{0x03A9,0x03C9,0x2126,0, 0},
{0x1FF6,0, 0x03C9,0x0342,0, 0},
{0x1FF7,0, 0x03C9,0x0342,0x03B9,0, 0},
{0x1FF3,0x1FFC,0, 0x03C9,0x03B9,0, 0},
{0x1FF4,0, 0x03CE,0x03B9,0, 0},
{0x0587,0, 0x0565,0x0582,0, 0},
{0xFB14,0, 0x0574,0x0565,0, 0},
{0xFB15,0, 0x0574,0x056B,0, 0},
{0xFB17,0, 0x0574,0x056D,0, 0},
{0xFB13,0, 0x0574,0x0576,0, 0},
{0xFB16,0, 0x057E,0x0576,0, 0},
{0x1E60,0x1E61,0x1E9B,0, 0},
{0x1F80,0x1F88,0, 0x1F00,0x03B9,0, 0},
{0x1F81,0x1F89,0, 0x1F01,0x03B9,0, 0},
{0x1F82,0x1F8A,0, 0x1F02,0x03B9,0, 0},
{0x1F83,0x1F8B,0, 0x1F03,0x03B9,0, 0},
{0x1F84,0x1F8C,0, 0x1F04,0x03B9,0, 0},
{0x1F85,0x1F8D,0, 0x1F05,0x03B9,0, 0},
{0x1F86,0x1F8E,0, 0x1F06,0x03B9,0, 0},
{0x1F87,0x1F8F,0, 0x1F07,0x03B9,0, 0},
{0x1F90,0x1F98,0, 0x1F20,0x03B9,0, 0},
{0x1F91,0x1F99,0, 0x1F21,0x03B9,0, 0},
{0x1F92,0x1F9A,0, 0x1F22,0x03B9,0, 0},
{0x1F93,0x1F9B,0, 0x1F23,0x03B9,0, 0},
{0x1F94,0x1F9C,0, 0x1F24,0x03B9,0, 0},
{0x1F95,0x1F9D,0, 0x1F25,0x03B9,0, 0},
{0x1F96,0x1F9E,0, 0x1F26,0x03B9,0, 0},
{0x1F97,0x1F9F,0, 0x1F27,0x03B9,0, 0},
{0x1FA0,0x1FA8,0, 0x1F60,0x03B9,0, 0},
{0x1FA1,0x1FA9,0, 0x1F61,0x03B9,0, 0},
{0x1FA2,0x1FAA,0, 0x1F62,0x03B9,0, 0},
{0x1FA3,0x1FAB,0, 0x1F63,0x03B9,0, 0},
{0x1FA4,0x1FAC,0, 0x1F64,0x03B9,0, 0},
{0x1FA5,0x1FAD,0, 0x1F65,0x03B9,0, 0},
{0x1FA6,0x1FAE,0, 0x1F66,0x03B9,0, 0},
{0x1FA7,0x1FAF,0, 0x1F67,0x03B9,0, 0},
{0x1FB2,0, 0x1F70,0x03B9,0, 0},
{0x1FC2,0, 0x1F74,0x03B9,0, 0},
{0x1FF2,0, 0x1F7C,0x03B9,0, 0},
{0, 0xD801,0xDC00,0, 0xD801,0xDC28,0, 0},
{0, 0xD801,0xDC01,0, 0xD801,0xDC29,0, 0},
{0, 0xD801,0xDC02,0, 0xD801,0xDC2A,0, 0},
{0, 0xD801,0xDC03,0, 0xD801,0xDC2B,0, 0},
{0, 0xD801,0xDC04,0, 0xD801,0xDC2C,0, 0},
{0, 0xD801,0xDC05,0, 0xD801,0xDC2D,0, 0},
{0, 0xD801,0xDC06,0, 0xD801,0xDC2E,0, 0},
{0, 0xD801,0xDC07,0, 0xD801,0xDC2F,0, 0},
{0, 0xD801,0xDC08,0, 0xD801,0xDC30,0, 0},
{0, 0xD801,0xDC09,0, 0xD801,0xDC31,0, 0},
{0, 0xD801,0xDC0A,0, 0xD801,0xDC32,0, 0},
{0, 0xD801,0xDC0B,0, 0xD801,0xDC33,0, 0},
{0, 0xD801,0xDC0C,0, 0xD801,0xDC34,0, 0},
{0, 0xD801,0xDC0D,0, 0xD801,0xDC35,0, 0},
{0, 0xD801,0xDC0E,0, 0xD801,0xDC36,0, 0},
{0, 0xD801,0xDC0F,0, 0xD801,0xDC37,0, 0},
{0, 0xD801,0xDC10,0, 0xD801,0xDC38,0, 0},
{0, 0xD801,0xDC11,0, 0xD801,0xDC39,0, 0},
{0, 0xD801,0xDC12,0, 0xD801,0xDC3A,0, 0},
{0, 0xD801,0xDC13,0, 0xD801,0xDC3B,0, 0},
{0, 0xD801,0xDC14,0, 0xD801,0xDC3C,0, 0},
{0, 0xD801,0xDC15,0, 0xD801,0xDC3D,0, 0},
{0, 0xD801,0xDC16,0, 0xD801,0xDC3E,0, 0},
{0, 0xD801,0xDC17,0, 0xD801,0xDC3F,0, 0},
{0, 0xD801,0xDC18,0, 0xD801,0xDC40,0, 0},
{0, 0xD801,0xDC19,0, 0xD801,0xDC41,0, 0},
{0, 0xD801,0xDC1A,0, 0xD801,0xDC42,0, 0},
{0, 0xD801,0xDC1B,0, 0xD801,0xDC43,0, 0},
{0, 0xD801,0xDC1C,0, 0xD801,0xDC44,0, 0},
{0, 0xD801,0xDC1D,0, 0xD801,0xDC45,0, 0},
{0, 0xD801,0xDC1E,0, 0xD801,0xDC46,0, 0},
{0, 0xD801,0xDC1F,0, 0xD801,0xDC47,0, 0},
{0, 0xD801,0xDC20,0, 0xD801,0xDC48,0, 0},
{0, 0xD801,0xDC21,0, 0xD801,0xDC49,0, 0},
{0, 0xD801,0xDC22,0, 0xD801,0xDC4A,0, 0},
{0, 0xD801,0xDC23,0, 0xD801,0xDC4B,0, 0},
{0, 0xD801,0xDC24,0, 0xD801,0xDC4C,0, 0},
{0, 0xD801,0xDC25,0, 0xD801,0xDC4D,0, 0},
};
#define CASE_PAIRS_LENGTH (sizeof(CASE_PAIRS)/sizeof(CASE_PAIRS[0]))
#define CASE_NONPAIRS_LENGTH (sizeof(CASE_NONPAIRS)/sizeof(CASE_NONPAIRS[0]))
/**
* Add to this set all members of the case fold equivalency class
* that contains 'folded'.
* @param folded a string within a case fold equivalency class.
* It must have the property that UCharacter.foldCase(folded,
* DEFAULT_CASE_MAP).equals(folded).
*/
void UnicodeSet::caseCloseOne(const UnicodeString& folded) {
if (folded.length() == 1) {
caseCloseOne(folded.charAt(0));
return;
}
const CaseEquivClass* c = getCaseMapOf(folded);
if (c != NULL) {
caseCloseOne(*c);
return;
}
// Add 'folded' itself; it belongs to no equivalency class.
add(folded);
}
/**
* Add to this set all members of the case fold equivalency class
* that contains 'folded'.
* @param folded a code UNIT within a case fold equivalency class.
* It must have the property that uchar_foldCase(folded,
* DEFAULT_CASE_MAP) == folded.
*/
void UnicodeSet::caseCloseOne(UChar folded) {
// We must do a DOUBLE LOOKUP, first in the CompactByteArray that
// indexes into CASE_NONPAIRS[] and then into the CASE_PAIRS[]
// sorted array. A character will occur in one or the other, or
// neither, but not both.
// Look in the CompactByteArray.
const CaseEquivClass* c = getCaseMapOf(folded);
if (c != NULL) {
caseCloseOne(*c);
return;
}
// Binary search in pairs array, looking at only even entries.
// The indices low, high, and x will be halved with respect to
// CASE_PAIRS[]; that is, they must be doubled before indexing.
// CASE_PAIRS has 1312 elements, of 656 pairs, so the search
// takes no more than 10 passes.
int32_t low = 0;
int32_t high = (CASE_PAIRS_LENGTH >> 1) - 1;
int32_t x;
do {
x = (low + high) >> 1;
UChar ch = CASE_PAIRS[x << 1];
if (folded < ch) {
high = x - 1;
} else if (folded > ch) {
low = x + 1;
} else {
break;
}
} while (low < high);
x = (low + high) & ~1; // ((low + high) >> 1) << 1
if (folded == CASE_PAIRS[x]) {
add(CASE_PAIRS[x]);
add(CASE_PAIRS[x+1]);
} else {
// If the search fails, then add folded itself; it is a
// case-unique code unit.
add(folded);
}
}
/**
* Add to this set all members of the given CaseEquivClass object.
*/
void UnicodeSet::caseCloseOne(const CaseEquivClass& c) {
const UChar* p = c.getSingles();
while (*p) {
add(*p++); // add all single code units
}
for (c.getStrings(p); *p; c.nextString(p)) {
add(p); // add all strings
}
}
/**
* Given a folded string of length >= 2 code units, return the
* CaseEquivClass containing this string, or NULL if none.
*/
const CaseEquivClass* UnicodeSet::getCaseMapOf(const UnicodeString& folded) {
if (CASE_EQUIV_HASH == NULL) {
// Create the Hashtable, which maps UnicodeStrings to index
// values into CASE_NONPAIRS.
UErrorCode ec = U_ZERO_ERROR;
Hashtable* hash = new Hashtable();
int32_t i;
for (i=0; i<CASE_NONPAIRS_LENGTH; ++i) {
const CaseEquivClass* c = &CASE_NONPAIRS[i];
const UChar* p;
for (c->getStrings(p); *p; c->nextString(p)) {
hash->put(UnicodeString(p), (void*) c, ec);
}
}
if (U_SUCCESS(ec)) {
umtx_lock(NULL);
if (CASE_EQUIV_HASH == NULL) {
CASE_EQUIV_HASH = hash;
hash = NULL;
}
umtx_unlock(NULL);
}
delete hash;
}
return (CASE_EQUIV_HASH != NULL) ?
(const CaseEquivClass*) CASE_EQUIV_HASH->get(folded) : NULL;
}
/**
* Given a folded code unit, return the CaseEquivClass containing it,
* or NULL if none.
*/
const CaseEquivClass* UnicodeSet::getCaseMapOf(UChar folded) {
if (CASE_EQUIV_CBA == NULL) {
// Create the CompactByteArray, which maps single code units
// to index values into CASE_NONPAIRS.
CompactByteArray* cba = ucmp8_open(-1);
if (ucmp8_isBogus(cba)) {
ucmp8_close(cba);
cba = NULL;
} else {
int32_t i;
for (i=0; i<CASE_NONPAIRS_LENGTH; ++i) {
const UChar* p = CASE_NONPAIRS[i].getSingles();
UChar ch;
while ((ch = *p++) != 0) {
ucmp8_set(cba, ch, (int8_t) i);
}
}
ucmp8_compact(cba, 256);
}
umtx_lock(NULL);
if (CASE_EQUIV_CBA == NULL) {
CASE_EQUIV_CBA = cba;
cba = NULL;
}
umtx_unlock(NULL);
if (cba != NULL) {
ucmp8_close(cba);
}
}
if (CASE_EQUIV_CBA != NULL) {
int32_t index = ucmp8_getu(CASE_EQUIV_CBA, folded);
if (index != 255) {
return &CASE_NONPAIRS[index];
}
}
return NULL;
}
U_NAMESPACE_END