scuffed-code/icu4c/source/common/normalizer2impl.cpp
2014-02-25 21:21:49 +00:00

2158 lines
77 KiB
C++

/*
*******************************************************************************
*
* Copyright (C) 2009-2014, International Business Machines
* Corporation and others. All Rights Reserved.
*
*******************************************************************************
* file name: normalizer2impl.cpp
* encoding: US-ASCII
* tab size: 8 (not used)
* indentation:4
*
* created on: 2009nov22
* created by: Markus W. Scherer
*/
#include "unicode/utypes.h"
#if !UCONFIG_NO_NORMALIZATION
#include "unicode/normalizer2.h"
#include "unicode/udata.h"
#include "unicode/ustring.h"
#include "unicode/utf16.h"
#include "cmemory.h"
#include "mutex.h"
#include "normalizer2impl.h"
#include "putilimp.h"
#include "uassert.h"
#include "uset_imp.h"
#include "utrie2.h"
#include "uvector.h"
U_NAMESPACE_BEGIN
// ReorderingBuffer -------------------------------------------------------- ***
UBool ReorderingBuffer::init(int32_t destCapacity, UErrorCode &errorCode) {
int32_t length=str.length();
start=str.getBuffer(destCapacity);
if(start==NULL) {
// getBuffer() already did str.setToBogus()
errorCode=U_MEMORY_ALLOCATION_ERROR;
return FALSE;
}
limit=start+length;
remainingCapacity=str.getCapacity()-length;
reorderStart=start;
if(start==limit) {
lastCC=0;
} else {
setIterator();
lastCC=previousCC();
// Set reorderStart after the last code point with cc<=1 if there is one.
if(lastCC>1) {
while(previousCC()>1) {}
}
reorderStart=codePointLimit;
}
return TRUE;
}
UBool ReorderingBuffer::equals(const UChar *otherStart, const UChar *otherLimit) const {
int32_t length=(int32_t)(limit-start);
return
length==(int32_t)(otherLimit-otherStart) &&
0==u_memcmp(start, otherStart, length);
}
UBool ReorderingBuffer::appendSupplementary(UChar32 c, uint8_t cc, UErrorCode &errorCode) {
if(remainingCapacity<2 && !resize(2, errorCode)) {
return FALSE;
}
if(lastCC<=cc || cc==0) {
limit[0]=U16_LEAD(c);
limit[1]=U16_TRAIL(c);
limit+=2;
lastCC=cc;
if(cc<=1) {
reorderStart=limit;
}
} else {
insert(c, cc);
}
remainingCapacity-=2;
return TRUE;
}
UBool ReorderingBuffer::append(const UChar *s, int32_t length,
uint8_t leadCC, uint8_t trailCC,
UErrorCode &errorCode) {
if(length==0) {
return TRUE;
}
if(remainingCapacity<length && !resize(length, errorCode)) {
return FALSE;
}
remainingCapacity-=length;
if(lastCC<=leadCC || leadCC==0) {
if(trailCC<=1) {
reorderStart=limit+length;
} else if(leadCC<=1) {
reorderStart=limit+1; // Ok if not a code point boundary.
}
const UChar *sLimit=s+length;
do { *limit++=*s++; } while(s!=sLimit);
lastCC=trailCC;
} else {
int32_t i=0;
UChar32 c;
U16_NEXT(s, i, length, c);
insert(c, leadCC); // insert first code point
while(i<length) {
U16_NEXT(s, i, length, c);
if(i<length) {
// s must be in NFD, otherwise we need to use getCC().
leadCC=Normalizer2Impl::getCCFromYesOrMaybe(impl.getNorm16(c));
} else {
leadCC=trailCC;
}
append(c, leadCC, errorCode);
}
}
return TRUE;
}
UBool ReorderingBuffer::appendZeroCC(UChar32 c, UErrorCode &errorCode) {
int32_t cpLength=U16_LENGTH(c);
if(remainingCapacity<cpLength && !resize(cpLength, errorCode)) {
return FALSE;
}
remainingCapacity-=cpLength;
if(cpLength==1) {
*limit++=(UChar)c;
} else {
limit[0]=U16_LEAD(c);
limit[1]=U16_TRAIL(c);
limit+=2;
}
lastCC=0;
reorderStart=limit;
return TRUE;
}
UBool ReorderingBuffer::appendZeroCC(const UChar *s, const UChar *sLimit, UErrorCode &errorCode) {
if(s==sLimit) {
return TRUE;
}
int32_t length=(int32_t)(sLimit-s);
if(remainingCapacity<length && !resize(length, errorCode)) {
return FALSE;
}
u_memcpy(limit, s, length);
limit+=length;
remainingCapacity-=length;
lastCC=0;
reorderStart=limit;
return TRUE;
}
void ReorderingBuffer::remove() {
reorderStart=limit=start;
remainingCapacity=str.getCapacity();
lastCC=0;
}
void ReorderingBuffer::removeSuffix(int32_t suffixLength) {
if(suffixLength<(limit-start)) {
limit-=suffixLength;
remainingCapacity+=suffixLength;
} else {
limit=start;
remainingCapacity=str.getCapacity();
}
lastCC=0;
reorderStart=limit;
}
UBool ReorderingBuffer::resize(int32_t appendLength, UErrorCode &errorCode) {
int32_t reorderStartIndex=(int32_t)(reorderStart-start);
int32_t length=(int32_t)(limit-start);
str.releaseBuffer(length);
int32_t newCapacity=length+appendLength;
int32_t doubleCapacity=2*str.getCapacity();
if(newCapacity<doubleCapacity) {
newCapacity=doubleCapacity;
}
if(newCapacity<256) {
newCapacity=256;
}
start=str.getBuffer(newCapacity);
if(start==NULL) {
// getBuffer() already did str.setToBogus()
errorCode=U_MEMORY_ALLOCATION_ERROR;
return FALSE;
}
reorderStart=start+reorderStartIndex;
limit=start+length;
remainingCapacity=str.getCapacity()-length;
return TRUE;
}
void ReorderingBuffer::skipPrevious() {
codePointLimit=codePointStart;
UChar c=*--codePointStart;
if(U16_IS_TRAIL(c) && start<codePointStart && U16_IS_LEAD(*(codePointStart-1))) {
--codePointStart;
}
}
uint8_t ReorderingBuffer::previousCC() {
codePointLimit=codePointStart;
if(reorderStart>=codePointStart) {
return 0;
}
UChar32 c=*--codePointStart;
if(c<Normalizer2Impl::MIN_CCC_LCCC_CP) {
return 0;
}
UChar c2;
if(U16_IS_TRAIL(c) && start<codePointStart && U16_IS_LEAD(c2=*(codePointStart-1))) {
--codePointStart;
c=U16_GET_SUPPLEMENTARY(c2, c);
}
return Normalizer2Impl::getCCFromYesOrMaybe(impl.getNorm16(c));
}
// Inserts c somewhere before the last character.
// Requires 0<cc<lastCC which implies reorderStart<limit.
void ReorderingBuffer::insert(UChar32 c, uint8_t cc) {
for(setIterator(), skipPrevious(); previousCC()>cc;) {}
// insert c at codePointLimit, after the character with prevCC<=cc
UChar *q=limit;
UChar *r=limit+=U16_LENGTH(c);
do {
*--r=*--q;
} while(codePointLimit!=q);
writeCodePoint(q, c);
if(cc<=1) {
reorderStart=r;
}
}
// Normalizer2Impl --------------------------------------------------------- ***
struct CanonIterData : public UMemory {
CanonIterData(UErrorCode &errorCode);
~CanonIterData();
void addToStartSet(UChar32 origin, UChar32 decompLead, UErrorCode &errorCode);
UTrie2 *trie;
UVector canonStartSets; // contains UnicodeSet *
};
Normalizer2Impl::~Normalizer2Impl() {
udata_close(memory);
utrie2_close(normTrie);
delete fCanonIterData;
}
UBool U_CALLCONV
Normalizer2Impl::isAcceptable(void *context,
const char * /* type */, const char * /*name*/,
const UDataInfo *pInfo) {
if(
pInfo->size>=20 &&
pInfo->isBigEndian==U_IS_BIG_ENDIAN &&
pInfo->charsetFamily==U_CHARSET_FAMILY &&
pInfo->dataFormat[0]==0x4e && /* dataFormat="Nrm2" */
pInfo->dataFormat[1]==0x72 &&
pInfo->dataFormat[2]==0x6d &&
pInfo->dataFormat[3]==0x32 &&
pInfo->formatVersion[0]==2
) {
Normalizer2Impl *me=(Normalizer2Impl *)context;
uprv_memcpy(me->dataVersion, pInfo->dataVersion, 4);
return TRUE;
} else {
return FALSE;
}
}
void
Normalizer2Impl::load(const char *packageName, const char *name, UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) {
return;
}
memory=udata_openChoice(packageName, "nrm", name, isAcceptable, this, &errorCode);
if(U_FAILURE(errorCode)) {
return;
}
const uint8_t *inBytes=(const uint8_t *)udata_getMemory(memory);
const int32_t *inIndexes=(const int32_t *)inBytes;
int32_t indexesLength=inIndexes[IX_NORM_TRIE_OFFSET]/4;
if(indexesLength<=IX_MIN_MAYBE_YES) {
errorCode=U_INVALID_FORMAT_ERROR; // Not enough indexes.
return;
}
minDecompNoCP=inIndexes[IX_MIN_DECOMP_NO_CP];
minCompNoMaybeCP=inIndexes[IX_MIN_COMP_NO_MAYBE_CP];
minYesNo=inIndexes[IX_MIN_YES_NO];
minYesNoMappingsOnly=inIndexes[IX_MIN_YES_NO_MAPPINGS_ONLY];
minNoNo=inIndexes[IX_MIN_NO_NO];
limitNoNo=inIndexes[IX_LIMIT_NO_NO];
minMaybeYes=inIndexes[IX_MIN_MAYBE_YES];
int32_t offset=inIndexes[IX_NORM_TRIE_OFFSET];
int32_t nextOffset=inIndexes[IX_EXTRA_DATA_OFFSET];
normTrie=utrie2_openFromSerialized(UTRIE2_16_VALUE_BITS,
inBytes+offset, nextOffset-offset, NULL,
&errorCode);
if(U_FAILURE(errorCode)) {
return;
}
offset=nextOffset;
nextOffset=inIndexes[IX_SMALL_FCD_OFFSET];
maybeYesCompositions=(const uint16_t *)(inBytes+offset);
extraData=maybeYesCompositions+(MIN_NORMAL_MAYBE_YES-minMaybeYes);
// smallFCD: new in formatVersion 2
offset=nextOffset;
smallFCD=inBytes+offset;
// Build tccc180[].
// gennorm2 enforces lccc=0 for c<MIN_CCC_LCCC_CP=U+0300.
uint8_t bits=0;
for(UChar c=0; c<0x180; bits>>=1) {
if((c&0xff)==0) {
bits=smallFCD[c>>8]; // one byte per 0x100 code points
}
if(bits&1) {
for(int i=0; i<0x20; ++i, ++c) {
tccc180[c]=(uint8_t)getFCD16FromNormData(c);
}
} else {
uprv_memset(tccc180+c, 0, 0x20);
c+=0x20;
}
}
}
uint8_t Normalizer2Impl::getTrailCCFromCompYesAndZeroCC(const UChar *cpStart, const UChar *cpLimit) const {
UChar32 c;
if(cpStart==(cpLimit-1)) {
c=*cpStart;
} else {
c=U16_GET_SUPPLEMENTARY(cpStart[0], cpStart[1]);
}
uint16_t prevNorm16=getNorm16(c);
if(prevNorm16<=minYesNo) {
return 0; // yesYes and Hangul LV/LVT have ccc=tccc=0
} else {
return (uint8_t)(*getMapping(prevNorm16)>>8); // tccc from yesNo
}
}
namespace {
class LcccContext {
public:
LcccContext(const Normalizer2Impl &ni, UnicodeSet &s) : impl(ni), set(s) {}
void handleRange(UChar32 start, UChar32 end, uint16_t norm16) {
if(impl.isAlgorithmicNoNo(norm16)) {
// Range of code points with same-norm16-value algorithmic decompositions.
// They might have different non-zero FCD16 values.
do {
uint16_t fcd16=impl.getFCD16(start);
if(fcd16>0xff) { set.add(start); }
} while(++start<=end);
} else {
uint16_t fcd16=impl.getFCD16(start);
if(fcd16>0xff) { set.add(start, end); }
}
}
private:
const Normalizer2Impl &impl;
UnicodeSet &set;
};
struct PropertyStartsContext {
PropertyStartsContext(const Normalizer2Impl &ni, const USetAdder *adder)
: impl(ni), sa(adder) {}
const Normalizer2Impl &impl;
const USetAdder *sa;
};
} // namespace
U_CDECL_BEGIN
static UBool U_CALLCONV
enumLcccRange(const void *context, UChar32 start, UChar32 end, uint32_t value) {
((LcccContext *)context)->handleRange(start, end, (uint16_t)value);
return TRUE;
}
static UBool U_CALLCONV
enumNorm16PropertyStartsRange(const void *context, UChar32 start, UChar32 end, uint32_t value) {
/* add the start code point to the USet */
const PropertyStartsContext *ctx=(const PropertyStartsContext *)context;
const USetAdder *sa=ctx->sa;
sa->add(sa->set, start);
if(start!=end && ctx->impl.isAlgorithmicNoNo((uint16_t)value)) {
// Range of code points with same-norm16-value algorithmic decompositions.
// They might have different non-zero FCD16 values.
uint16_t prevFCD16=ctx->impl.getFCD16(start);
while(++start<=end) {
uint16_t fcd16=ctx->impl.getFCD16(start);
if(fcd16!=prevFCD16) {
sa->add(sa->set, start);
prevFCD16=fcd16;
}
}
}
return TRUE;
}
static UBool U_CALLCONV
enumPropertyStartsRange(const void *context, UChar32 start, UChar32 /*end*/, uint32_t /*value*/) {
/* add the start code point to the USet */
const USetAdder *sa=(const USetAdder *)context;
sa->add(sa->set, start);
return TRUE;
}
static uint32_t U_CALLCONV
segmentStarterMapper(const void * /*context*/, uint32_t value) {
return value&CANON_NOT_SEGMENT_STARTER;
}
U_CDECL_END
void
Normalizer2Impl::addLcccChars(UnicodeSet &set) const {
/* add the start code point of each same-value range of each trie */
LcccContext context(*this, set);
utrie2_enum(normTrie, NULL, enumLcccRange, &context);
}
void
Normalizer2Impl::addPropertyStarts(const USetAdder *sa, UErrorCode & /*errorCode*/) const {
/* add the start code point of each same-value range of each trie */
PropertyStartsContext context(*this, sa);
utrie2_enum(normTrie, NULL, enumNorm16PropertyStartsRange, &context);
/* add Hangul LV syllables and LV+1 because of skippables */
for(UChar c=Hangul::HANGUL_BASE; c<Hangul::HANGUL_LIMIT; c+=Hangul::JAMO_T_COUNT) {
sa->add(sa->set, c);
sa->add(sa->set, c+1);
}
sa->add(sa->set, Hangul::HANGUL_LIMIT); /* add Hangul+1 to continue with other properties */
}
void
Normalizer2Impl::addCanonIterPropertyStarts(const USetAdder *sa, UErrorCode &errorCode) const {
/* add the start code point of each same-value range of the canonical iterator data trie */
if(ensureCanonIterData(errorCode)) {
// currently only used for the SEGMENT_STARTER property
utrie2_enum(fCanonIterData->trie, segmentStarterMapper, enumPropertyStartsRange, sa);
}
}
const UChar *
Normalizer2Impl::copyLowPrefixFromNulTerminated(const UChar *src,
UChar32 minNeedDataCP,
ReorderingBuffer *buffer,
UErrorCode &errorCode) const {
// Make some effort to support NUL-terminated strings reasonably.
// Take the part of the fast quick check loop that does not look up
// data and check the first part of the string.
// After this prefix, determine the string length to simplify the rest
// of the code.
const UChar *prevSrc=src;
UChar c;
while((c=*src++)<minNeedDataCP && c!=0) {}
// Back out the last character for full processing.
// Copy this prefix.
if(--src!=prevSrc) {
if(buffer!=NULL) {
buffer->appendZeroCC(prevSrc, src, errorCode);
}
}
return src;
}
UnicodeString &
Normalizer2Impl::decompose(const UnicodeString &src, UnicodeString &dest,
UErrorCode &errorCode) const {
if(U_FAILURE(errorCode)) {
dest.setToBogus();
return dest;
}
const UChar *sArray=src.getBuffer();
if(&dest==&src || sArray==NULL) {
errorCode=U_ILLEGAL_ARGUMENT_ERROR;
dest.setToBogus();
return dest;
}
decompose(sArray, sArray+src.length(), dest, src.length(), errorCode);
return dest;
}
void
Normalizer2Impl::decompose(const UChar *src, const UChar *limit,
UnicodeString &dest,
int32_t destLengthEstimate,
UErrorCode &errorCode) const {
if(destLengthEstimate<0 && limit!=NULL) {
destLengthEstimate=(int32_t)(limit-src);
}
dest.remove();
ReorderingBuffer buffer(*this, dest);
if(buffer.init(destLengthEstimate, errorCode)) {
decompose(src, limit, &buffer, errorCode);
}
}
// Dual functionality:
// buffer!=NULL: normalize
// buffer==NULL: isNormalized/spanQuickCheckYes
const UChar *
Normalizer2Impl::decompose(const UChar *src, const UChar *limit,
ReorderingBuffer *buffer,
UErrorCode &errorCode) const {
UChar32 minNoCP=minDecompNoCP;
if(limit==NULL) {
src=copyLowPrefixFromNulTerminated(src, minNoCP, buffer, errorCode);
if(U_FAILURE(errorCode)) {
return src;
}
limit=u_strchr(src, 0);
}
const UChar *prevSrc;
UChar32 c=0;
uint16_t norm16=0;
// only for quick check
const UChar *prevBoundary=src;
uint8_t prevCC=0;
for(;;) {
// count code units below the minimum or with irrelevant data for the quick check
for(prevSrc=src; src!=limit;) {
if( (c=*src)<minNoCP ||
isMostDecompYesAndZeroCC(norm16=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(normTrie, c))
) {
++src;
} else if(!U16_IS_SURROGATE(c)) {
break;
} else {
UChar c2;
if(U16_IS_SURROGATE_LEAD(c)) {
if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) {
c=U16_GET_SUPPLEMENTARY(c, c2);
}
} else /* trail surrogate */ {
if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) {
--src;
c=U16_GET_SUPPLEMENTARY(c2, c);
}
}
if(isMostDecompYesAndZeroCC(norm16=getNorm16(c))) {
src+=U16_LENGTH(c);
} else {
break;
}
}
}
// copy these code units all at once
if(src!=prevSrc) {
if(buffer!=NULL) {
if(!buffer->appendZeroCC(prevSrc, src, errorCode)) {
break;
}
} else {
prevCC=0;
prevBoundary=src;
}
}
if(src==limit) {
break;
}
// Check one above-minimum, relevant code point.
src+=U16_LENGTH(c);
if(buffer!=NULL) {
if(!decompose(c, norm16, *buffer, errorCode)) {
break;
}
} else {
if(isDecompYes(norm16)) {
uint8_t cc=getCCFromYesOrMaybe(norm16);
if(prevCC<=cc || cc==0) {
prevCC=cc;
if(cc<=1) {
prevBoundary=src;
}
continue;
}
}
return prevBoundary; // "no" or cc out of order
}
}
return src;
}
// Decompose a short piece of text which is likely to contain characters that
// fail the quick check loop and/or where the quick check loop's overhead
// is unlikely to be amortized.
// Called by the compose() and makeFCD() implementations.
UBool Normalizer2Impl::decomposeShort(const UChar *src, const UChar *limit,
ReorderingBuffer &buffer,
UErrorCode &errorCode) const {
while(src<limit) {
UChar32 c;
uint16_t norm16;
UTRIE2_U16_NEXT16(normTrie, src, limit, c, norm16);
if(!decompose(c, norm16, buffer, errorCode)) {
return FALSE;
}
}
return TRUE;
}
UBool Normalizer2Impl::decompose(UChar32 c, uint16_t norm16,
ReorderingBuffer &buffer,
UErrorCode &errorCode) const {
// Only loops for 1:1 algorithmic mappings.
for(;;) {
// get the decomposition and the lead and trail cc's
if(isDecompYes(norm16)) {
// c does not decompose
return buffer.append(c, getCCFromYesOrMaybe(norm16), errorCode);
} else if(isHangul(norm16)) {
// Hangul syllable: decompose algorithmically
UChar jamos[3];
return buffer.appendZeroCC(jamos, jamos+Hangul::decompose(c, jamos), errorCode);
} else if(isDecompNoAlgorithmic(norm16)) {
c=mapAlgorithmic(c, norm16);
norm16=getNorm16(c);
} else {
// c decomposes, get everything from the variable-length extra data
const uint16_t *mapping=getMapping(norm16);
uint16_t firstUnit=*mapping;
int32_t length=firstUnit&MAPPING_LENGTH_MASK;
uint8_t leadCC, trailCC;
trailCC=(uint8_t)(firstUnit>>8);
if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) {
leadCC=(uint8_t)(*(mapping-1)>>8);
} else {
leadCC=0;
}
return buffer.append((const UChar *)mapping+1, length, leadCC, trailCC, errorCode);
}
}
}
const UChar *
Normalizer2Impl::getDecomposition(UChar32 c, UChar buffer[4], int32_t &length) const {
const UChar *decomp=NULL;
uint16_t norm16;
for(;;) {
if(c<minDecompNoCP || isDecompYes(norm16=getNorm16(c))) {
// c does not decompose
return decomp;
} else if(isHangul(norm16)) {
// Hangul syllable: decompose algorithmically
length=Hangul::decompose(c, buffer);
return buffer;
} else if(isDecompNoAlgorithmic(norm16)) {
c=mapAlgorithmic(c, norm16);
decomp=buffer;
length=0;
U16_APPEND_UNSAFE(buffer, length, c);
} else {
// c decomposes, get everything from the variable-length extra data
const uint16_t *mapping=getMapping(norm16);
length=*mapping&MAPPING_LENGTH_MASK;
return (const UChar *)mapping+1;
}
}
}
// The capacity of the buffer must be 30=MAPPING_LENGTH_MASK-1
// so that a raw mapping fits that consists of one unit ("rm0")
// plus all but the first two code units of the normal mapping.
// The maximum length of a normal mapping is 31=MAPPING_LENGTH_MASK.
const UChar *
Normalizer2Impl::getRawDecomposition(UChar32 c, UChar buffer[30], int32_t &length) const {
// We do not loop in this method because an algorithmic mapping itself
// becomes a final result rather than having to be decomposed recursively.
uint16_t norm16;
if(c<minDecompNoCP || isDecompYes(norm16=getNorm16(c))) {
// c does not decompose
return NULL;
} else if(isHangul(norm16)) {
// Hangul syllable: decompose algorithmically
Hangul::getRawDecomposition(c, buffer);
length=2;
return buffer;
} else if(isDecompNoAlgorithmic(norm16)) {
c=mapAlgorithmic(c, norm16);
length=0;
U16_APPEND_UNSAFE(buffer, length, c);
return buffer;
} else {
// c decomposes, get everything from the variable-length extra data
const uint16_t *mapping=getMapping(norm16);
uint16_t firstUnit=*mapping;
int32_t mLength=firstUnit&MAPPING_LENGTH_MASK; // length of normal mapping
if(firstUnit&MAPPING_HAS_RAW_MAPPING) {
// Read the raw mapping from before the firstUnit and before the optional ccc/lccc word.
// Bit 7=MAPPING_HAS_CCC_LCCC_WORD
const uint16_t *rawMapping=mapping-((firstUnit>>7)&1)-1;
uint16_t rm0=*rawMapping;
if(rm0<=MAPPING_LENGTH_MASK) {
length=rm0;
return (const UChar *)rawMapping-rm0;
} else {
// Copy the normal mapping and replace its first two code units with rm0.
buffer[0]=(UChar)rm0;
u_memcpy(buffer+1, (const UChar *)mapping+1+2, mLength-2);
length=mLength-1;
return buffer;
}
} else {
length=mLength;
return (const UChar *)mapping+1;
}
}
}
void Normalizer2Impl::decomposeAndAppend(const UChar *src, const UChar *limit,
UBool doDecompose,
UnicodeString &safeMiddle,
ReorderingBuffer &buffer,
UErrorCode &errorCode) const {
buffer.copyReorderableSuffixTo(safeMiddle);
if(doDecompose) {
decompose(src, limit, &buffer, errorCode);
return;
}
// Just merge the strings at the boundary.
ForwardUTrie2StringIterator iter(normTrie, src, limit);
uint8_t firstCC, prevCC, cc;
firstCC=prevCC=cc=getCC(iter.next16());
while(cc!=0) {
prevCC=cc;
cc=getCC(iter.next16());
};
if(limit==NULL) { // appendZeroCC() needs limit!=NULL
limit=u_strchr(iter.codePointStart, 0);
}
if (buffer.append(src, (int32_t)(iter.codePointStart-src), firstCC, prevCC, errorCode)) {
buffer.appendZeroCC(iter.codePointStart, limit, errorCode);
}
}
// Note: hasDecompBoundary() could be implemented as aliases to
// hasFCDBoundaryBefore() and hasFCDBoundaryAfter()
// at the cost of building the FCD trie for a decomposition normalizer.
UBool Normalizer2Impl::hasDecompBoundary(UChar32 c, UBool before) const {
for(;;) {
if(c<minDecompNoCP) {
return TRUE;
}
uint16_t norm16=getNorm16(c);
if(isHangul(norm16) || isDecompYesAndZeroCC(norm16)) {
return TRUE;
} else if(norm16>MIN_NORMAL_MAYBE_YES) {
return FALSE; // ccc!=0
} else if(isDecompNoAlgorithmic(norm16)) {
c=mapAlgorithmic(c, norm16);
} else {
// c decomposes, get everything from the variable-length extra data
const uint16_t *mapping=getMapping(norm16);
uint16_t firstUnit=*mapping;
if((firstUnit&MAPPING_LENGTH_MASK)==0) {
return FALSE;
}
if(!before) {
// decomp after-boundary: same as hasFCDBoundaryAfter(),
// fcd16<=1 || trailCC==0
if(firstUnit>0x1ff) {
return FALSE; // trailCC>1
}
if(firstUnit<=0xff) {
return TRUE; // trailCC==0
}
// if(trailCC==1) test leadCC==0, same as checking for before-boundary
}
// TRUE if leadCC==0 (hasFCDBoundaryBefore())
return (firstUnit&MAPPING_HAS_CCC_LCCC_WORD)==0 || (*(mapping-1)&0xff00)==0;
}
}
}
/*
* Finds the recomposition result for
* a forward-combining "lead" character,
* specified with a pointer to its compositions list,
* and a backward-combining "trail" character.
*
* If the lead and trail characters combine, then this function returns
* the following "compositeAndFwd" value:
* Bits 21..1 composite character
* Bit 0 set if the composite is a forward-combining starter
* otherwise it returns -1.
*
* The compositions list has (trail, compositeAndFwd) pair entries,
* encoded as either pairs or triples of 16-bit units.
* The last entry has the high bit of its first unit set.
*
* The list is sorted by ascending trail characters (there are no duplicates).
* A linear search is used.
*
* See normalizer2impl.h for a more detailed description
* of the compositions list format.
*/
int32_t Normalizer2Impl::combine(const uint16_t *list, UChar32 trail) {
uint16_t key1, firstUnit;
if(trail<COMP_1_TRAIL_LIMIT) {
// trail character is 0..33FF
// result entry may have 2 or 3 units
key1=(uint16_t)(trail<<1);
while(key1>(firstUnit=*list)) {
list+=2+(firstUnit&COMP_1_TRIPLE);
}
if(key1==(firstUnit&COMP_1_TRAIL_MASK)) {
if(firstUnit&COMP_1_TRIPLE) {
return ((int32_t)list[1]<<16)|list[2];
} else {
return list[1];
}
}
} else {
// trail character is 3400..10FFFF
// result entry has 3 units
key1=(uint16_t)(COMP_1_TRAIL_LIMIT+
(((trail>>COMP_1_TRAIL_SHIFT))&
~COMP_1_TRIPLE));
uint16_t key2=(uint16_t)(trail<<COMP_2_TRAIL_SHIFT);
uint16_t secondUnit;
for(;;) {
if(key1>(firstUnit=*list)) {
list+=2+(firstUnit&COMP_1_TRIPLE);
} else if(key1==(firstUnit&COMP_1_TRAIL_MASK)) {
if(key2>(secondUnit=list[1])) {
if(firstUnit&COMP_1_LAST_TUPLE) {
break;
} else {
list+=3;
}
} else if(key2==(secondUnit&COMP_2_TRAIL_MASK)) {
return ((int32_t)(secondUnit&~COMP_2_TRAIL_MASK)<<16)|list[2];
} else {
break;
}
} else {
break;
}
}
}
return -1;
}
/**
* @param list some character's compositions list
* @param set recursively receives the composites from these compositions
*/
void Normalizer2Impl::addComposites(const uint16_t *list, UnicodeSet &set) const {
uint16_t firstUnit;
int32_t compositeAndFwd;
do {
firstUnit=*list;
if((firstUnit&COMP_1_TRIPLE)==0) {
compositeAndFwd=list[1];
list+=2;
} else {
compositeAndFwd=(((int32_t)list[1]&~COMP_2_TRAIL_MASK)<<16)|list[2];
list+=3;
}
UChar32 composite=compositeAndFwd>>1;
if((compositeAndFwd&1)!=0) {
addComposites(getCompositionsListForComposite(getNorm16(composite)), set);
}
set.add(composite);
} while((firstUnit&COMP_1_LAST_TUPLE)==0);
}
/*
* Recomposes the buffer text starting at recomposeStartIndex
* (which is in NFD - decomposed and canonically ordered),
* and truncates the buffer contents.
*
* Note that recomposition never lengthens the text:
* Any character consists of either one or two code units;
* a composition may contain at most one more code unit than the original starter,
* while the combining mark that is removed has at least one code unit.
*/
void Normalizer2Impl::recompose(ReorderingBuffer &buffer, int32_t recomposeStartIndex,
UBool onlyContiguous) const {
UChar *p=buffer.getStart()+recomposeStartIndex;
UChar *limit=buffer.getLimit();
if(p==limit) {
return;
}
UChar *starter, *pRemove, *q, *r;
const uint16_t *compositionsList;
UChar32 c, compositeAndFwd;
uint16_t norm16;
uint8_t cc, prevCC;
UBool starterIsSupplementary;
// Some of the following variables are not used until we have a forward-combining starter
// and are only initialized now to avoid compiler warnings.
compositionsList=NULL; // used as indicator for whether we have a forward-combining starter
starter=NULL;
starterIsSupplementary=FALSE;
prevCC=0;
for(;;) {
UTRIE2_U16_NEXT16(normTrie, p, limit, c, norm16);
cc=getCCFromYesOrMaybe(norm16);
if( // this character combines backward and
isMaybe(norm16) &&
// we have seen a starter that combines forward and
compositionsList!=NULL &&
// the backward-combining character is not blocked
(prevCC<cc || prevCC==0)
) {
if(isJamoVT(norm16)) {
// c is a Jamo V/T, see if we can compose it with the previous character.
if(c<Hangul::JAMO_T_BASE) {
// c is a Jamo Vowel, compose with previous Jamo L and following Jamo T.
UChar prev=(UChar)(*starter-Hangul::JAMO_L_BASE);
if(prev<Hangul::JAMO_L_COUNT) {
pRemove=p-1;
UChar syllable=(UChar)
(Hangul::HANGUL_BASE+
(prev*Hangul::JAMO_V_COUNT+(c-Hangul::JAMO_V_BASE))*
Hangul::JAMO_T_COUNT);
UChar t;
if(p!=limit && (t=(UChar)(*p-Hangul::JAMO_T_BASE))<Hangul::JAMO_T_COUNT) {
++p;
syllable+=t; // The next character was a Jamo T.
}
*starter=syllable;
// remove the Jamo V/T
q=pRemove;
r=p;
while(r<limit) {
*q++=*r++;
}
limit=q;
p=pRemove;
}
}
/*
* No "else" for Jamo T:
* Since the input is in NFD, there are no Hangul LV syllables that
* a Jamo T could combine with.
* All Jamo Ts are combined above when handling Jamo Vs.
*/
if(p==limit) {
break;
}
compositionsList=NULL;
continue;
} else if((compositeAndFwd=combine(compositionsList, c))>=0) {
// The starter and the combining mark (c) do combine.
UChar32 composite=compositeAndFwd>>1;
// Replace the starter with the composite, remove the combining mark.
pRemove=p-U16_LENGTH(c); // pRemove & p: start & limit of the combining mark
if(starterIsSupplementary) {
if(U_IS_SUPPLEMENTARY(composite)) {
// both are supplementary
starter[0]=U16_LEAD(composite);
starter[1]=U16_TRAIL(composite);
} else {
*starter=(UChar)composite;
// The composite is shorter than the starter,
// move the intermediate characters forward one.
starterIsSupplementary=FALSE;
q=starter+1;
r=q+1;
while(r<pRemove) {
*q++=*r++;
}
--pRemove;
}
} else if(U_IS_SUPPLEMENTARY(composite)) {
// The composite is longer than the starter,
// move the intermediate characters back one.
starterIsSupplementary=TRUE;
++starter; // temporarily increment for the loop boundary
q=pRemove;
r=++pRemove;
while(starter<q) {
*--r=*--q;
}
*starter=U16_TRAIL(composite);
*--starter=U16_LEAD(composite); // undo the temporary increment
} else {
// both are on the BMP
*starter=(UChar)composite;
}
/* remove the combining mark by moving the following text over it */
if(pRemove<p) {
q=pRemove;
r=p;
while(r<limit) {
*q++=*r++;
}
limit=q;
p=pRemove;
}
// Keep prevCC because we removed the combining mark.
if(p==limit) {
break;
}
// Is the composite a starter that combines forward?
if(compositeAndFwd&1) {
compositionsList=
getCompositionsListForComposite(getNorm16(composite));
} else {
compositionsList=NULL;
}
// We combined; continue with looking for compositions.
continue;
}
}
// no combination this time
prevCC=cc;
if(p==limit) {
break;
}
// If c did not combine, then check if it is a starter.
if(cc==0) {
// Found a new starter.
if((compositionsList=getCompositionsListForDecompYes(norm16))!=NULL) {
// It may combine with something, prepare for it.
if(U_IS_BMP(c)) {
starterIsSupplementary=FALSE;
starter=p-1;
} else {
starterIsSupplementary=TRUE;
starter=p-2;
}
}
} else if(onlyContiguous) {
// FCC: no discontiguous compositions; any intervening character blocks.
compositionsList=NULL;
}
}
buffer.setReorderingLimit(limit);
}
UChar32
Normalizer2Impl::composePair(UChar32 a, UChar32 b) const {
uint16_t norm16=getNorm16(a); // maps an out-of-range 'a' to inert norm16=0
const uint16_t *list;
if(isInert(norm16)) {
return U_SENTINEL;
} else if(norm16<minYesNoMappingsOnly) {
if(isJamoL(norm16)) {
b-=Hangul::JAMO_V_BASE;
if(0<=b && b<Hangul::JAMO_V_COUNT) {
return
(Hangul::HANGUL_BASE+
((a-Hangul::JAMO_L_BASE)*Hangul::JAMO_V_COUNT+b)*
Hangul::JAMO_T_COUNT);
} else {
return U_SENTINEL;
}
} else if(isHangul(norm16)) {
b-=Hangul::JAMO_T_BASE;
if(Hangul::isHangulWithoutJamoT(a) && 0<b && b<Hangul::JAMO_T_COUNT) { // not b==0!
return a+b;
} else {
return U_SENTINEL;
}
} else {
// 'a' has a compositions list in extraData
list=extraData+norm16;
if(norm16>minYesNo) { // composite 'a' has both mapping & compositions list
list+= // mapping pointer
1+ // +1 to skip the first unit with the mapping lenth
(*list&MAPPING_LENGTH_MASK); // + mapping length
}
}
} else if(norm16<minMaybeYes || MIN_NORMAL_MAYBE_YES<=norm16) {
return U_SENTINEL;
} else {
list=maybeYesCompositions+norm16-minMaybeYes;
}
if(b<0 || 0x10ffff<b) { // combine(list, b) requires a valid code point b
return U_SENTINEL;
}
#if U_SIGNED_RIGHT_SHIFT_IS_ARITHMETIC
return combine(list, b)>>1;
#else
int32_t compositeAndFwd=combine(list, b);
return compositeAndFwd>=0 ? compositeAndFwd>>1 : U_SENTINEL;
#endif
}
// Very similar to composeQuickCheck(): Make the same changes in both places if relevant.
// doCompose: normalize
// !doCompose: isNormalized (buffer must be empty and initialized)
UBool
Normalizer2Impl::compose(const UChar *src, const UChar *limit,
UBool onlyContiguous,
UBool doCompose,
ReorderingBuffer &buffer,
UErrorCode &errorCode) const {
/*
* prevBoundary points to the last character before the current one
* that has a composition boundary before it with ccc==0 and quick check "yes".
* Keeping track of prevBoundary saves us looking for a composition boundary
* when we find a "no" or "maybe".
*
* When we back out from prevSrc back to prevBoundary,
* then we also remove those same characters (which had been simply copied
* or canonically-order-inserted) from the ReorderingBuffer.
* Therefore, at all times, the [prevBoundary..prevSrc[ source units
* must correspond 1:1 to destination units at the end of the destination buffer.
*/
const UChar *prevBoundary=src;
UChar32 minNoMaybeCP=minCompNoMaybeCP;
if(limit==NULL) {
src=copyLowPrefixFromNulTerminated(src, minNoMaybeCP,
doCompose ? &buffer : NULL,
errorCode);
if(U_FAILURE(errorCode)) {
return FALSE;
}
if(prevBoundary<src) {
// Set prevBoundary to the last character in the prefix.
prevBoundary=src-1;
}
limit=u_strchr(src, 0);
}
const UChar *prevSrc;
UChar32 c=0;
uint16_t norm16=0;
// only for isNormalized
uint8_t prevCC=0;
for(;;) {
// count code units below the minimum or with irrelevant data for the quick check
for(prevSrc=src; src!=limit;) {
if( (c=*src)<minNoMaybeCP ||
isCompYesAndZeroCC(norm16=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(normTrie, c))
) {
++src;
} else if(!U16_IS_SURROGATE(c)) {
break;
} else {
UChar c2;
if(U16_IS_SURROGATE_LEAD(c)) {
if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) {
c=U16_GET_SUPPLEMENTARY(c, c2);
}
} else /* trail surrogate */ {
if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) {
--src;
c=U16_GET_SUPPLEMENTARY(c2, c);
}
}
if(isCompYesAndZeroCC(norm16=getNorm16(c))) {
src+=U16_LENGTH(c);
} else {
break;
}
}
}
// copy these code units all at once
if(src!=prevSrc) {
if(doCompose) {
if(!buffer.appendZeroCC(prevSrc, src, errorCode)) {
break;
}
} else {
prevCC=0;
}
if(src==limit) {
break;
}
// Set prevBoundary to the last character in the quick check loop.
prevBoundary=src-1;
if( U16_IS_TRAIL(*prevBoundary) && prevSrc<prevBoundary &&
U16_IS_LEAD(*(prevBoundary-1))
) {
--prevBoundary;
}
// The start of the current character (c).
prevSrc=src;
} else if(src==limit) {
break;
}
src+=U16_LENGTH(c);
/*
* isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo.
* c is either a "noNo" (has a mapping) or a "maybeYes" (combines backward)
* or has ccc!=0.
* Check for Jamo V/T, then for regular characters.
* c is not a Hangul syllable or Jamo L because those have "yes" properties.
*/
if(isJamoVT(norm16) && prevBoundary!=prevSrc) {
UChar prev=*(prevSrc-1);
UBool needToDecompose=FALSE;
if(c<Hangul::JAMO_T_BASE) {
// c is a Jamo Vowel, compose with previous Jamo L and following Jamo T.
prev=(UChar)(prev-Hangul::JAMO_L_BASE);
if(prev<Hangul::JAMO_L_COUNT) {
if(!doCompose) {
return FALSE;
}
UChar syllable=(UChar)
(Hangul::HANGUL_BASE+
(prev*Hangul::JAMO_V_COUNT+(c-Hangul::JAMO_V_BASE))*
Hangul::JAMO_T_COUNT);
UChar t;
if(src!=limit && (t=(UChar)(*src-Hangul::JAMO_T_BASE))<Hangul::JAMO_T_COUNT) {
++src;
syllable+=t; // The next character was a Jamo T.
prevBoundary=src;
buffer.setLastChar(syllable);
continue;
}
// If we see L+V+x where x!=T then we drop to the slow path,
// decompose and recompose.
// This is to deal with NFKC finding normal L and V but a
// compatibility variant of a T. We need to either fully compose that
// combination here (which would complicate the code and may not work
// with strange custom data) or use the slow path -- or else our replacing
// two input characters (L+V) with one output character (LV syllable)
// would violate the invariant that [prevBoundary..prevSrc[ has the same
// length as what we appended to the buffer since prevBoundary.
needToDecompose=TRUE;
}
} else if(Hangul::isHangulWithoutJamoT(prev)) {
// c is a Jamo Trailing consonant,
// compose with previous Hangul LV that does not contain a Jamo T.
if(!doCompose) {
return FALSE;
}
buffer.setLastChar((UChar)(prev+c-Hangul::JAMO_T_BASE));
prevBoundary=src;
continue;
}
if(!needToDecompose) {
// The Jamo V/T did not compose into a Hangul syllable.
if(doCompose) {
if(!buffer.appendBMP((UChar)c, 0, errorCode)) {
break;
}
} else {
prevCC=0;
}
continue;
}
}
/*
* Source buffer pointers:
*
* all done quick check current char not yet
* "yes" but (c) processed
* may combine
* forward
* [-------------[-------------[-------------[-------------[
* | | | | |
* orig. src prevBoundary prevSrc src limit
*
*
* Destination buffer pointers inside the ReorderingBuffer:
*
* all done might take not filled yet
* characters for
* reordering
* [-------------[-------------[-------------[
* | | | |
* start reorderStart limit |
* +remainingCap.+
*/
if(norm16>=MIN_YES_YES_WITH_CC) {
uint8_t cc=(uint8_t)norm16; // cc!=0
if( onlyContiguous && // FCC
(doCompose ? buffer.getLastCC() : prevCC)==0 &&
prevBoundary<prevSrc &&
// buffer.getLastCC()==0 && prevBoundary<prevSrc tell us that
// [prevBoundary..prevSrc[ (which is exactly one character under these conditions)
// passed the quick check "yes && ccc==0" test.
// Check whether the last character was a "yesYes" or a "yesNo".
// If a "yesNo", then we get its trailing ccc from its
// mapping and check for canonical order.
// All other cases are ok.
getTrailCCFromCompYesAndZeroCC(prevBoundary, prevSrc)>cc
) {
// Fails FCD test, need to decompose and contiguously recompose.
if(!doCompose) {
return FALSE;
}
} else if(doCompose) {
if(!buffer.append(c, cc, errorCode)) {
break;
}
continue;
} else if(prevCC<=cc) {
prevCC=cc;
continue;
} else {
return FALSE;
}
} else if(!doCompose && !isMaybeOrNonZeroCC(norm16)) {
return FALSE;
}
/*
* Find appropriate boundaries around this character,
* decompose the source text from between the boundaries,
* and recompose it.
*
* We may need to remove the last few characters from the ReorderingBuffer
* to account for source text that was copied or appended
* but needs to take part in the recomposition.
*/
/*
* Find the last composition boundary in [prevBoundary..src[.
* It is either the decomposition of the current character (at prevSrc),
* or prevBoundary.
*/
if(hasCompBoundaryBefore(c, norm16)) {
prevBoundary=prevSrc;
} else if(doCompose) {
buffer.removeSuffix((int32_t)(prevSrc-prevBoundary));
}
// Find the next composition boundary in [src..limit[ -
// modifies src to point to the next starter.
src=(UChar *)findNextCompBoundary(src, limit);
// Decompose [prevBoundary..src[ into the buffer and then recompose that part of it.
int32_t recomposeStartIndex=buffer.length();
if(!decomposeShort(prevBoundary, src, buffer, errorCode)) {
break;
}
recompose(buffer, recomposeStartIndex, onlyContiguous);
if(!doCompose) {
if(!buffer.equals(prevBoundary, src)) {
return FALSE;
}
buffer.remove();
prevCC=0;
}
// Move to the next starter. We never need to look back before this point again.
prevBoundary=src;
}
return TRUE;
}
// Very similar to compose(): Make the same changes in both places if relevant.
// pQCResult==NULL: spanQuickCheckYes
// pQCResult!=NULL: quickCheck (*pQCResult must be UNORM_YES)
const UChar *
Normalizer2Impl::composeQuickCheck(const UChar *src, const UChar *limit,
UBool onlyContiguous,
UNormalizationCheckResult *pQCResult) const {
/*
* prevBoundary points to the last character before the current one
* that has a composition boundary before it with ccc==0 and quick check "yes".
*/
const UChar *prevBoundary=src;
UChar32 minNoMaybeCP=minCompNoMaybeCP;
if(limit==NULL) {
UErrorCode errorCode=U_ZERO_ERROR;
src=copyLowPrefixFromNulTerminated(src, minNoMaybeCP, NULL, errorCode);
if(prevBoundary<src) {
// Set prevBoundary to the last character in the prefix.
prevBoundary=src-1;
}
limit=u_strchr(src, 0);
}
const UChar *prevSrc;
UChar32 c=0;
uint16_t norm16=0;
uint8_t prevCC=0;
for(;;) {
// count code units below the minimum or with irrelevant data for the quick check
for(prevSrc=src;;) {
if(src==limit) {
return src;
}
if( (c=*src)<minNoMaybeCP ||
isCompYesAndZeroCC(norm16=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(normTrie, c))
) {
++src;
} else if(!U16_IS_SURROGATE(c)) {
break;
} else {
UChar c2;
if(U16_IS_SURROGATE_LEAD(c)) {
if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) {
c=U16_GET_SUPPLEMENTARY(c, c2);
}
} else /* trail surrogate */ {
if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) {
--src;
c=U16_GET_SUPPLEMENTARY(c2, c);
}
}
if(isCompYesAndZeroCC(norm16=getNorm16(c))) {
src+=U16_LENGTH(c);
} else {
break;
}
}
}
if(src!=prevSrc) {
// Set prevBoundary to the last character in the quick check loop.
prevBoundary=src-1;
if( U16_IS_TRAIL(*prevBoundary) && prevSrc<prevBoundary &&
U16_IS_LEAD(*(prevBoundary-1))
) {
--prevBoundary;
}
prevCC=0;
// The start of the current character (c).
prevSrc=src;
}
src+=U16_LENGTH(c);
/*
* isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo.
* c is either a "noNo" (has a mapping) or a "maybeYes" (combines backward)
* or has ccc!=0.
*/
if(isMaybeOrNonZeroCC(norm16)) {
uint8_t cc=getCCFromYesOrMaybe(norm16);
if( onlyContiguous && // FCC
cc!=0 &&
prevCC==0 &&
prevBoundary<prevSrc &&
// prevCC==0 && prevBoundary<prevSrc tell us that
// [prevBoundary..prevSrc[ (which is exactly one character under these conditions)
// passed the quick check "yes && ccc==0" test.
// Check whether the last character was a "yesYes" or a "yesNo".
// If a "yesNo", then we get its trailing ccc from its
// mapping and check for canonical order.
// All other cases are ok.
getTrailCCFromCompYesAndZeroCC(prevBoundary, prevSrc)>cc
) {
// Fails FCD test.
} else if(prevCC<=cc || cc==0) {
prevCC=cc;
if(norm16<MIN_YES_YES_WITH_CC) {
if(pQCResult!=NULL) {
*pQCResult=UNORM_MAYBE;
} else {
return prevBoundary;
}
}
continue;
}
}
if(pQCResult!=NULL) {
*pQCResult=UNORM_NO;
}
return prevBoundary;
}
}
void Normalizer2Impl::composeAndAppend(const UChar *src, const UChar *limit,
UBool doCompose,
UBool onlyContiguous,
UnicodeString &safeMiddle,
ReorderingBuffer &buffer,
UErrorCode &errorCode) const {
if(!buffer.isEmpty()) {
const UChar *firstStarterInSrc=findNextCompBoundary(src, limit);
if(src!=firstStarterInSrc) {
const UChar *lastStarterInDest=findPreviousCompBoundary(buffer.getStart(),
buffer.getLimit());
int32_t destSuffixLength=(int32_t)(buffer.getLimit()-lastStarterInDest);
UnicodeString middle(lastStarterInDest, destSuffixLength);
buffer.removeSuffix(destSuffixLength);
safeMiddle=middle;
middle.append(src, (int32_t)(firstStarterInSrc-src));
const UChar *middleStart=middle.getBuffer();
compose(middleStart, middleStart+middle.length(), onlyContiguous,
TRUE, buffer, errorCode);
if(U_FAILURE(errorCode)) {
return;
}
src=firstStarterInSrc;
}
}
if(doCompose) {
compose(src, limit, onlyContiguous, TRUE, buffer, errorCode);
} else {
if(limit==NULL) { // appendZeroCC() needs limit!=NULL
limit=u_strchr(src, 0);
}
buffer.appendZeroCC(src, limit, errorCode);
}
}
/**
* Does c have a composition boundary before it?
* True if its decomposition begins with a character that has
* ccc=0 && NFC_QC=Yes (isCompYesAndZeroCC()).
* As a shortcut, this is true if c itself has ccc=0 && NFC_QC=Yes
* (isCompYesAndZeroCC()) so we need not decompose.
*/
UBool Normalizer2Impl::hasCompBoundaryBefore(UChar32 c, uint16_t norm16) const {
for(;;) {
if(isCompYesAndZeroCC(norm16)) {
return TRUE;
} else if(isMaybeOrNonZeroCC(norm16)) {
return FALSE;
} else if(isDecompNoAlgorithmic(norm16)) {
c=mapAlgorithmic(c, norm16);
norm16=getNorm16(c);
} else {
// c decomposes, get everything from the variable-length extra data
const uint16_t *mapping=getMapping(norm16);
uint16_t firstUnit=*mapping;
if((firstUnit&MAPPING_LENGTH_MASK)==0) {
return FALSE;
}
if((firstUnit&MAPPING_HAS_CCC_LCCC_WORD) && (*(mapping-1)&0xff00)) {
return FALSE; // non-zero leadCC
}
int32_t i=1; // skip over the firstUnit
UChar32 c;
U16_NEXT_UNSAFE(mapping, i, c);
return isCompYesAndZeroCC(getNorm16(c));
}
}
}
UBool Normalizer2Impl::hasCompBoundaryAfter(UChar32 c, UBool onlyContiguous, UBool testInert) const {
for(;;) {
uint16_t norm16=getNorm16(c);
if(isInert(norm16)) {
return TRUE;
} else if(norm16<=minYesNo) {
// Hangul: norm16==minYesNo
// Hangul LVT has a boundary after it.
// Hangul LV and non-inert yesYes characters combine forward.
return isHangul(norm16) && !Hangul::isHangulWithoutJamoT((UChar)c);
} else if(norm16>= (testInert ? minNoNo : minMaybeYes)) {
return FALSE;
} else if(isDecompNoAlgorithmic(norm16)) {
c=mapAlgorithmic(c, norm16);
} else {
// c decomposes, get everything from the variable-length extra data.
// If testInert, then c must be a yesNo character which has lccc=0,
// otherwise it could be a noNo.
const uint16_t *mapping=getMapping(norm16);
uint16_t firstUnit=*mapping;
// TRUE if
// not MAPPING_NO_COMP_BOUNDARY_AFTER
// (which is set if
// c is not deleted, and
// it and its decomposition do not combine forward, and it has a starter)
// and if FCC then trailCC<=1
return
(firstUnit&MAPPING_NO_COMP_BOUNDARY_AFTER)==0 &&
(!onlyContiguous || firstUnit<=0x1ff);
}
}
}
const UChar *Normalizer2Impl::findPreviousCompBoundary(const UChar *start, const UChar *p) const {
BackwardUTrie2StringIterator iter(normTrie, start, p);
uint16_t norm16;
do {
norm16=iter.previous16();
} while(!hasCompBoundaryBefore(iter.codePoint, norm16));
// We could also test hasCompBoundaryAfter() and return iter.codePointLimit,
// but that's probably not worth the extra cost.
return iter.codePointStart;
}
const UChar *Normalizer2Impl::findNextCompBoundary(const UChar *p, const UChar *limit) const {
ForwardUTrie2StringIterator iter(normTrie, p, limit);
uint16_t norm16;
do {
norm16=iter.next16();
} while(!hasCompBoundaryBefore(iter.codePoint, norm16));
return iter.codePointStart;
}
// Note: normalizer2impl.cpp r30982 (2011-nov-27)
// still had getFCDTrie() which built and cached an FCD trie.
// That provided faster access to FCD data than getFCD16FromNormData()
// but required synchronization and consumed some 10kB of heap memory
// in any process that uses FCD (e.g., via collation).
// tccc180[] and smallFCD[] are intended to help with any loss of performance,
// at least for Latin & CJK.
// Gets the FCD value from the regular normalization data.
uint16_t Normalizer2Impl::getFCD16FromNormData(UChar32 c) const {
// Only loops for 1:1 algorithmic mappings.
for(;;) {
uint16_t norm16=getNorm16(c);
if(norm16<=minYesNo) {
// no decomposition or Hangul syllable, all zeros
return 0;
} else if(norm16>=MIN_NORMAL_MAYBE_YES) {
// combining mark
norm16&=0xff;
return norm16|(norm16<<8);
} else if(norm16>=minMaybeYes) {
return 0;
} else if(isDecompNoAlgorithmic(norm16)) {
c=mapAlgorithmic(c, norm16);
} else {
// c decomposes, get everything from the variable-length extra data
const uint16_t *mapping=getMapping(norm16);
uint16_t firstUnit=*mapping;
if((firstUnit&MAPPING_LENGTH_MASK)==0) {
// A character that is deleted (maps to an empty string) must
// get the worst-case lccc and tccc values because arbitrary
// characters on both sides will become adjacent.
return 0x1ff;
} else {
norm16=firstUnit>>8; // tccc
if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) {
norm16|=*(mapping-1)&0xff00; // lccc
}
return norm16;
}
}
}
}
// Dual functionality:
// buffer!=NULL: normalize
// buffer==NULL: isNormalized/quickCheck/spanQuickCheckYes
const UChar *
Normalizer2Impl::makeFCD(const UChar *src, const UChar *limit,
ReorderingBuffer *buffer,
UErrorCode &errorCode) const {
// Tracks the last FCD-safe boundary, before lccc=0 or after properly-ordered tccc<=1.
// Similar to the prevBoundary in the compose() implementation.
const UChar *prevBoundary=src;
int32_t prevFCD16=0;
if(limit==NULL) {
src=copyLowPrefixFromNulTerminated(src, MIN_CCC_LCCC_CP, buffer, errorCode);
if(U_FAILURE(errorCode)) {
return src;
}
if(prevBoundary<src) {
prevBoundary=src;
// We know that the previous character's lccc==0.
// Fetching the fcd16 value was deferred for this below-U+0300 code point.
prevFCD16=getFCD16(*(src-1));
if(prevFCD16>1) {
--prevBoundary;
}
}
limit=u_strchr(src, 0);
}
// Note: In this function we use buffer->appendZeroCC() because we track
// the lead and trail combining classes here, rather than leaving it to
// the ReorderingBuffer.
// The exception is the call to decomposeShort() which uses the buffer
// in the normal way.
const UChar *prevSrc;
UChar32 c=0;
uint16_t fcd16=0;
for(;;) {
// count code units with lccc==0
for(prevSrc=src; src!=limit;) {
if((c=*src)<MIN_CCC_LCCC_CP) {
prevFCD16=~c;
++src;
} else if(!singleLeadMightHaveNonZeroFCD16(c)) {
prevFCD16=0;
++src;
} else {
if(U16_IS_SURROGATE(c)) {
UChar c2;
if(U16_IS_SURROGATE_LEAD(c)) {
if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) {
c=U16_GET_SUPPLEMENTARY(c, c2);
}
} else /* trail surrogate */ {
if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) {
--src;
c=U16_GET_SUPPLEMENTARY(c2, c);
}
}
}
if((fcd16=getFCD16FromNormData(c))<=0xff) {
prevFCD16=fcd16;
src+=U16_LENGTH(c);
} else {
break;
}
}
}
// copy these code units all at once
if(src!=prevSrc) {
if(buffer!=NULL && !buffer->appendZeroCC(prevSrc, src, errorCode)) {
break;
}
if(src==limit) {
break;
}
prevBoundary=src;
// We know that the previous character's lccc==0.
if(prevFCD16<0) {
// Fetching the fcd16 value was deferred for this below-U+0300 code point.
UChar32 prev=~prevFCD16;
prevFCD16= prev<0x180 ? tccc180[prev] : getFCD16FromNormData(prev);
if(prevFCD16>1) {
--prevBoundary;
}
} else {
const UChar *p=src-1;
if(U16_IS_TRAIL(*p) && prevSrc<p && U16_IS_LEAD(*(p-1))) {
--p;
// Need to fetch the previous character's FCD value because
// prevFCD16 was just for the trail surrogate code point.
prevFCD16=getFCD16FromNormData(U16_GET_SUPPLEMENTARY(p[0], p[1]));
// Still known to have lccc==0 because its lead surrogate unit had lccc==0.
}
if(prevFCD16>1) {
prevBoundary=p;
}
}
// The start of the current character (c).
prevSrc=src;
} else if(src==limit) {
break;
}
src+=U16_LENGTH(c);
// The current character (c) at [prevSrc..src[ has a non-zero lead combining class.
// Check for proper order, and decompose locally if necessary.
if((prevFCD16&0xff)<=(fcd16>>8)) {
// proper order: prev tccc <= current lccc
if((fcd16&0xff)<=1) {
prevBoundary=src;
}
if(buffer!=NULL && !buffer->appendZeroCC(c, errorCode)) {
break;
}
prevFCD16=fcd16;
continue;
} else if(buffer==NULL) {
return prevBoundary; // quick check "no"
} else {
/*
* Back out the part of the source that we copied or appended
* already but is now going to be decomposed.
* prevSrc is set to after what was copied/appended.
*/
buffer->removeSuffix((int32_t)(prevSrc-prevBoundary));
/*
* Find the part of the source that needs to be decomposed,
* up to the next safe boundary.
*/
src=findNextFCDBoundary(src, limit);
/*
* The source text does not fulfill the conditions for FCD.
* Decompose and reorder a limited piece of the text.
*/
if(!decomposeShort(prevBoundary, src, *buffer, errorCode)) {
break;
}
prevBoundary=src;
prevFCD16=0;
}
}
return src;
}
void Normalizer2Impl::makeFCDAndAppend(const UChar *src, const UChar *limit,
UBool doMakeFCD,
UnicodeString &safeMiddle,
ReorderingBuffer &buffer,
UErrorCode &errorCode) const {
if(!buffer.isEmpty()) {
const UChar *firstBoundaryInSrc=findNextFCDBoundary(src, limit);
if(src!=firstBoundaryInSrc) {
const UChar *lastBoundaryInDest=findPreviousFCDBoundary(buffer.getStart(),
buffer.getLimit());
int32_t destSuffixLength=(int32_t)(buffer.getLimit()-lastBoundaryInDest);
UnicodeString middle(lastBoundaryInDest, destSuffixLength);
buffer.removeSuffix(destSuffixLength);
safeMiddle=middle;
middle.append(src, (int32_t)(firstBoundaryInSrc-src));
const UChar *middleStart=middle.getBuffer();
makeFCD(middleStart, middleStart+middle.length(), &buffer, errorCode);
if(U_FAILURE(errorCode)) {
return;
}
src=firstBoundaryInSrc;
}
}
if(doMakeFCD) {
makeFCD(src, limit, &buffer, errorCode);
} else {
if(limit==NULL) { // appendZeroCC() needs limit!=NULL
limit=u_strchr(src, 0);
}
buffer.appendZeroCC(src, limit, errorCode);
}
}
const UChar *Normalizer2Impl::findPreviousFCDBoundary(const UChar *start, const UChar *p) const {
while(start<p && previousFCD16(start, p)>0xff) {}
return p;
}
const UChar *Normalizer2Impl::findNextFCDBoundary(const UChar *p, const UChar *limit) const {
while(p<limit) {
const UChar *codePointStart=p;
if(nextFCD16(p, limit)<=0xff) {
return codePointStart;
}
}
return p;
}
// CanonicalIterator data -------------------------------------------------- ***
CanonIterData::CanonIterData(UErrorCode &errorCode) :
trie(utrie2_open(0, 0, &errorCode)),
canonStartSets(uprv_deleteUObject, NULL, errorCode) {}
CanonIterData::~CanonIterData() {
utrie2_close(trie);
}
void CanonIterData::addToStartSet(UChar32 origin, UChar32 decompLead, UErrorCode &errorCode) {
uint32_t canonValue=utrie2_get32(trie, decompLead);
if((canonValue&(CANON_HAS_SET|CANON_VALUE_MASK))==0 && origin!=0) {
// origin is the first character whose decomposition starts with
// the character for which we are setting the value.
utrie2_set32(trie, decompLead, canonValue|origin, &errorCode);
} else {
// origin is not the first character, or it is U+0000.
UnicodeSet *set;
if((canonValue&CANON_HAS_SET)==0) {
set=new UnicodeSet;
if(set==NULL) {
errorCode=U_MEMORY_ALLOCATION_ERROR;
return;
}
UChar32 firstOrigin=(UChar32)(canonValue&CANON_VALUE_MASK);
canonValue=(canonValue&~CANON_VALUE_MASK)|CANON_HAS_SET|(uint32_t)canonStartSets.size();
utrie2_set32(trie, decompLead, canonValue, &errorCode);
canonStartSets.addElement(set, errorCode);
if(firstOrigin!=0) {
set->add(firstOrigin);
}
} else {
set=(UnicodeSet *)canonStartSets[(int32_t)(canonValue&CANON_VALUE_MASK)];
}
set->add(origin);
}
}
U_CDECL_BEGIN
// Call Normalizer2Impl::makeCanonIterDataFromNorm16() for a range of same-norm16 characters.
// context: the Normalizer2Impl
static UBool U_CALLCONV
enumCIDRangeHandler(const void *context, UChar32 start, UChar32 end, uint32_t value) {
UErrorCode errorCode = U_ZERO_ERROR;
if (value != 0) {
Normalizer2Impl *impl = (Normalizer2Impl *)context;
impl->makeCanonIterDataFromNorm16(
start, end, (uint16_t)value, *impl->fCanonIterData, errorCode);
}
return U_SUCCESS(errorCode);
}
// UInitOnce instantiation function for CanonIterData
static void U_CALLCONV
initCanonIterData(Normalizer2Impl *impl, UErrorCode &errorCode) {
U_ASSERT(impl->fCanonIterData == NULL);
impl->fCanonIterData = new CanonIterData(errorCode);
if (impl->fCanonIterData == NULL) {
errorCode=U_MEMORY_ALLOCATION_ERROR;
}
if (U_SUCCESS(errorCode)) {
utrie2_enum(impl->getNormTrie(), NULL, enumCIDRangeHandler, impl);
utrie2_freeze(impl->fCanonIterData->trie, UTRIE2_32_VALUE_BITS, &errorCode);
}
if (U_FAILURE(errorCode)) {
delete impl->fCanonIterData;
impl->fCanonIterData = NULL;
}
}
U_CDECL_END
void Normalizer2Impl::makeCanonIterDataFromNorm16(UChar32 start, UChar32 end, uint16_t norm16,
CanonIterData &newData,
UErrorCode &errorCode) const {
if(norm16==0 || (minYesNo<=norm16 && norm16<minNoNo)) {
// Inert, or 2-way mapping (including Hangul syllable).
// We do not write a canonStartSet for any yesNo character.
// Composites from 2-way mappings are added at runtime from the
// starter's compositions list, and the other characters in
// 2-way mappings get CANON_NOT_SEGMENT_STARTER set because they are
// "maybe" characters.
return;
}
for(UChar32 c=start; c<=end; ++c) {
uint32_t oldValue=utrie2_get32(newData.trie, c);
uint32_t newValue=oldValue;
if(norm16>=minMaybeYes) {
// not a segment starter if it occurs in a decomposition or has cc!=0
newValue|=CANON_NOT_SEGMENT_STARTER;
if(norm16<MIN_NORMAL_MAYBE_YES) {
newValue|=CANON_HAS_COMPOSITIONS;
}
} else if(norm16<minYesNo) {
newValue|=CANON_HAS_COMPOSITIONS;
} else {
// c has a one-way decomposition
UChar32 c2=c;
uint16_t norm16_2=norm16;
while(limitNoNo<=norm16_2 && norm16_2<minMaybeYes) {
c2=mapAlgorithmic(c2, norm16_2);
norm16_2=getNorm16(c2);
}
if(minYesNo<=norm16_2 && norm16_2<limitNoNo) {
// c decomposes, get everything from the variable-length extra data
const uint16_t *mapping=getMapping(norm16_2);
uint16_t firstUnit=*mapping;
int32_t length=firstUnit&MAPPING_LENGTH_MASK;
if((firstUnit&MAPPING_HAS_CCC_LCCC_WORD)!=0) {
if(c==c2 && (*(mapping-1)&0xff)!=0) {
newValue|=CANON_NOT_SEGMENT_STARTER; // original c has cc!=0
}
}
// Skip empty mappings (no characters in the decomposition).
if(length!=0) {
++mapping; // skip over the firstUnit
// add c to first code point's start set
int32_t i=0;
U16_NEXT_UNSAFE(mapping, i, c2);
newData.addToStartSet(c, c2, errorCode);
// Set CANON_NOT_SEGMENT_STARTER for each remaining code point of a
// one-way mapping. A 2-way mapping is possible here after
// intermediate algorithmic mapping.
if(norm16_2>=minNoNo) {
while(i<length) {
U16_NEXT_UNSAFE(mapping, i, c2);
uint32_t c2Value=utrie2_get32(newData.trie, c2);
if((c2Value&CANON_NOT_SEGMENT_STARTER)==0) {
utrie2_set32(newData.trie, c2, c2Value|CANON_NOT_SEGMENT_STARTER,
&errorCode);
}
}
}
}
} else {
// c decomposed to c2 algorithmically; c has cc==0
newData.addToStartSet(c, c2, errorCode);
}
}
if(newValue!=oldValue) {
utrie2_set32(newData.trie, c, newValue, &errorCode);
}
}
}
UBool Normalizer2Impl::ensureCanonIterData(UErrorCode &errorCode) const {
// Logically const: Synchronized instantiation.
Normalizer2Impl *me=const_cast<Normalizer2Impl *>(this);
umtx_initOnce(me->fCanonIterDataInitOnce, &initCanonIterData, me, errorCode);
return U_SUCCESS(errorCode);
}
int32_t Normalizer2Impl::getCanonValue(UChar32 c) const {
return (int32_t)utrie2_get32(fCanonIterData->trie, c);
}
const UnicodeSet &Normalizer2Impl::getCanonStartSet(int32_t n) const {
return *(const UnicodeSet *)fCanonIterData->canonStartSets[n];
}
UBool Normalizer2Impl::isCanonSegmentStarter(UChar32 c) const {
return getCanonValue(c)>=0;
}
UBool Normalizer2Impl::getCanonStartSet(UChar32 c, UnicodeSet &set) const {
int32_t canonValue=getCanonValue(c)&~CANON_NOT_SEGMENT_STARTER;
if(canonValue==0) {
return FALSE;
}
set.clear();
int32_t value=canonValue&CANON_VALUE_MASK;
if((canonValue&CANON_HAS_SET)!=0) {
set.addAll(getCanonStartSet(value));
} else if(value!=0) {
set.add(value);
}
if((canonValue&CANON_HAS_COMPOSITIONS)!=0) {
uint16_t norm16=getNorm16(c);
if(norm16==JAMO_L) {
UChar32 syllable=
(UChar32)(Hangul::HANGUL_BASE+(c-Hangul::JAMO_L_BASE)*Hangul::JAMO_VT_COUNT);
set.add(syllable, syllable+Hangul::JAMO_VT_COUNT-1);
} else {
addComposites(getCompositionsList(norm16), set);
}
}
return TRUE;
}
U_NAMESPACE_END
// Normalizer2 data swapping ----------------------------------------------- ***
U_NAMESPACE_USE
U_CAPI int32_t U_EXPORT2
unorm2_swap(const UDataSwapper *ds,
const void *inData, int32_t length, void *outData,
UErrorCode *pErrorCode) {
const UDataInfo *pInfo;
int32_t headerSize;
const uint8_t *inBytes;
uint8_t *outBytes;
const int32_t *inIndexes;
int32_t indexes[Normalizer2Impl::IX_MIN_MAYBE_YES+1];
int32_t i, offset, nextOffset, size;
/* udata_swapDataHeader checks the arguments */
headerSize=udata_swapDataHeader(ds, inData, length, outData, pErrorCode);
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
return 0;
}
/* check data format and format version */
pInfo=(const UDataInfo *)((const char *)inData+4);
if(!(
pInfo->dataFormat[0]==0x4e && /* dataFormat="Nrm2" */
pInfo->dataFormat[1]==0x72 &&
pInfo->dataFormat[2]==0x6d &&
pInfo->dataFormat[3]==0x32 &&
(pInfo->formatVersion[0]==1 || pInfo->formatVersion[0]==2)
)) {
udata_printError(ds, "unorm2_swap(): data format %02x.%02x.%02x.%02x (format version %02x) is not recognized as Normalizer2 data\n",
pInfo->dataFormat[0], pInfo->dataFormat[1],
pInfo->dataFormat[2], pInfo->dataFormat[3],
pInfo->formatVersion[0]);
*pErrorCode=U_UNSUPPORTED_ERROR;
return 0;
}
inBytes=(const uint8_t *)inData+headerSize;
outBytes=(uint8_t *)outData+headerSize;
inIndexes=(const int32_t *)inBytes;
if(length>=0) {
length-=headerSize;
if(length<(int32_t)sizeof(indexes)) {
udata_printError(ds, "unorm2_swap(): too few bytes (%d after header) for Normalizer2 data\n",
length);
*pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
return 0;
}
}
/* read the first few indexes */
for(i=0; i<=Normalizer2Impl::IX_MIN_MAYBE_YES; ++i) {
indexes[i]=udata_readInt32(ds, inIndexes[i]);
}
/* get the total length of the data */
size=indexes[Normalizer2Impl::IX_TOTAL_SIZE];
if(length>=0) {
if(length<size) {
udata_printError(ds, "unorm2_swap(): too few bytes (%d after header) for all of Normalizer2 data\n",
length);
*pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
return 0;
}
/* copy the data for inaccessible bytes */
if(inBytes!=outBytes) {
uprv_memcpy(outBytes, inBytes, size);
}
offset=0;
/* swap the int32_t indexes[] */
nextOffset=indexes[Normalizer2Impl::IX_NORM_TRIE_OFFSET];
ds->swapArray32(ds, inBytes, nextOffset-offset, outBytes, pErrorCode);
offset=nextOffset;
/* swap the UTrie2 */
nextOffset=indexes[Normalizer2Impl::IX_EXTRA_DATA_OFFSET];
utrie2_swap(ds, inBytes+offset, nextOffset-offset, outBytes+offset, pErrorCode);
offset=nextOffset;
/* swap the uint16_t extraData[] */
nextOffset=indexes[Normalizer2Impl::IX_SMALL_FCD_OFFSET];
ds->swapArray16(ds, inBytes+offset, nextOffset-offset, outBytes+offset, pErrorCode);
offset=nextOffset;
/* no need to swap the uint8_t smallFCD[] (new in formatVersion 2) */
nextOffset=indexes[Normalizer2Impl::IX_SMALL_FCD_OFFSET+1];
offset=nextOffset;
U_ASSERT(offset==size);
}
return headerSize+size;
}
#endif // !UCONFIG_NO_NORMALIZATION