scuffed-code/icu4c/source/common/normalizer2impl.cpp
Daniel Ju 7453181fff ICU-20074 Define UPRV_UNREACHABLE macro for unreachable code
Replaced occurrences of U_ASSERT(FALSE) with new UPRV_UNREACHABLE macro.
2019-01-14 14:16:26 -08:00

2661 lines
100 KiB
C++

// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
*******************************************************************************
*
* Copyright (C) 2009-2014, International Business Machines
* Corporation and others. All Rights Reserved.
*
*******************************************************************************
* file name: normalizer2impl.cpp
* encoding: UTF-8
* tab size: 8 (not used)
* indentation:4
*
* created on: 2009nov22
* created by: Markus W. Scherer
*/
// #define UCPTRIE_DEBUG
#include "unicode/utypes.h"
#if !UCONFIG_NO_NORMALIZATION
#include "unicode/bytestream.h"
#include "unicode/edits.h"
#include "unicode/normalizer2.h"
#include "unicode/stringoptions.h"
#include "unicode/ucptrie.h"
#include "unicode/udata.h"
#include "unicode/umutablecptrie.h"
#include "unicode/ustring.h"
#include "unicode/utf16.h"
#include "unicode/utf8.h"
#include "bytesinkutil.h"
#include "cmemory.h"
#include "mutex.h"
#include "normalizer2impl.h"
#include "putilimp.h"
#include "uassert.h"
#include "ucptrie_impl.h"
#include "uset_imp.h"
#include "uvector.h"
U_NAMESPACE_BEGIN
namespace {
/**
* UTF-8 lead byte for minNoMaybeCP.
* Can be lower than the actual lead byte for c.
* Typically U+0300 for NFC/NFD, U+00A0 for NFKC/NFKD, U+0041 for NFKC_Casefold.
*/
inline uint8_t leadByteForCP(UChar32 c) {
if (c <= 0x7f) {
return (uint8_t)c;
} else if (c <= 0x7ff) {
return (uint8_t)(0xc0+(c>>6));
} else {
// Should not occur because ccc(U+0300)!=0.
return 0xe0;
}
}
/**
* Returns the code point from one single well-formed UTF-8 byte sequence
* between cpStart and cpLimit.
*
* Trie UTF-8 macros do not assemble whole code points (for efficiency).
* When we do need the code point, we call this function.
* We should not need it for normalization-inert data (norm16==0).
* Illegal sequences yield the error value norm16==0 just like real normalization-inert code points.
*/
UChar32 codePointFromValidUTF8(const uint8_t *cpStart, const uint8_t *cpLimit) {
// Similar to U8_NEXT_UNSAFE(s, i, c).
U_ASSERT(cpStart < cpLimit);
uint8_t c = *cpStart;
switch(cpLimit-cpStart) {
case 1:
return c;
case 2:
return ((c&0x1f)<<6) | (cpStart[1]&0x3f);
case 3:
// no need for (c&0xf) because the upper bits are truncated after <<12 in the cast to (UChar)
return (UChar)((c<<12) | ((cpStart[1]&0x3f)<<6) | (cpStart[2]&0x3f));
case 4:
return ((c&7)<<18) | ((cpStart[1]&0x3f)<<12) | ((cpStart[2]&0x3f)<<6) | (cpStart[3]&0x3f);
default:
UPRV_UNREACHABLE; // Should not occur.
return U_SENTINEL;
}
}
/**
* Returns the last code point in [start, p[ if it is valid and in U+1000..U+D7FF.
* Otherwise returns a negative value.
*/
UChar32 previousHangulOrJamo(const uint8_t *start, const uint8_t *p) {
if ((p - start) >= 3) {
p -= 3;
uint8_t l = *p;
uint8_t t1, t2;
if (0xe1 <= l && l <= 0xed &&
(t1 = (uint8_t)(p[1] - 0x80)) <= 0x3f &&
(t2 = (uint8_t)(p[2] - 0x80)) <= 0x3f &&
(l < 0xed || t1 <= 0x1f)) {
return ((l & 0xf) << 12) | (t1 << 6) | t2;
}
}
return U_SENTINEL;
}
/**
* Returns the offset from the Jamo T base if [src, limit[ starts with a single Jamo T code point.
* Otherwise returns a negative value.
*/
int32_t getJamoTMinusBase(const uint8_t *src, const uint8_t *limit) {
// Jamo T: E1 86 A8..E1 87 82
if ((limit - src) >= 3 && *src == 0xe1) {
if (src[1] == 0x86) {
uint8_t t = src[2];
// The first Jamo T is U+11A8 but JAMO_T_BASE is 11A7.
// Offset 0 does not correspond to any conjoining Jamo.
if (0xa8 <= t && t <= 0xbf) {
return t - 0xa7;
}
} else if (src[1] == 0x87) {
uint8_t t = src[2];
if ((int8_t)t <= (int8_t)0x82u) {
return t - (0xa7 - 0x40);
}
}
}
return -1;
}
void
appendCodePointDelta(const uint8_t *cpStart, const uint8_t *cpLimit, int32_t delta,
ByteSink &sink, Edits *edits) {
char buffer[U8_MAX_LENGTH];
int32_t length;
int32_t cpLength = (int32_t)(cpLimit - cpStart);
if (cpLength == 1) {
// The builder makes ASCII map to ASCII.
buffer[0] = (uint8_t)(*cpStart + delta);
length = 1;
} else {
int32_t trail = *(cpLimit-1) + delta;
if (0x80 <= trail && trail <= 0xbf) {
// The delta only changes the last trail byte.
--cpLimit;
length = 0;
do { buffer[length++] = *cpStart++; } while (cpStart < cpLimit);
buffer[length++] = (uint8_t)trail;
} else {
// Decode the code point, add the delta, re-encode.
UChar32 c = codePointFromValidUTF8(cpStart, cpLimit) + delta;
length = 0;
U8_APPEND_UNSAFE(buffer, length, c);
}
}
if (edits != nullptr) {
edits->addReplace(cpLength, length);
}
sink.Append(buffer, length);
}
} // namespace
// ReorderingBuffer -------------------------------------------------------- ***
ReorderingBuffer::ReorderingBuffer(const Normalizer2Impl &ni, UnicodeString &dest,
UErrorCode &errorCode) :
impl(ni), str(dest),
start(str.getBuffer(8)), reorderStart(start), limit(start),
remainingCapacity(str.getCapacity()), lastCC(0) {
if (start == nullptr && U_SUCCESS(errorCode)) {
// getBuffer() already did str.setToBogus()
errorCode = U_MEMORY_ALLOCATION_ERROR;
}
}
UBool ReorderingBuffer::init(int32_t destCapacity, UErrorCode &errorCode) {
int32_t length=str.length();
start=str.getBuffer(destCapacity);
if(start==NULL) {
// getBuffer() already did str.setToBogus()
errorCode=U_MEMORY_ALLOCATION_ERROR;
return FALSE;
}
limit=start+length;
remainingCapacity=str.getCapacity()-length;
reorderStart=start;
if(start==limit) {
lastCC=0;
} else {
setIterator();
lastCC=previousCC();
// Set reorderStart after the last code point with cc<=1 if there is one.
if(lastCC>1) {
while(previousCC()>1) {}
}
reorderStart=codePointLimit;
}
return TRUE;
}
UBool ReorderingBuffer::equals(const UChar *otherStart, const UChar *otherLimit) const {
int32_t length=(int32_t)(limit-start);
return
length==(int32_t)(otherLimit-otherStart) &&
0==u_memcmp(start, otherStart, length);
}
UBool ReorderingBuffer::equals(const uint8_t *otherStart, const uint8_t *otherLimit) const {
U_ASSERT((otherLimit - otherStart) <= INT32_MAX); // ensured by caller
int32_t length = (int32_t)(limit - start);
int32_t otherLength = (int32_t)(otherLimit - otherStart);
// For equal strings, UTF-8 is at least as long as UTF-16, and at most three times as long.
if (otherLength < length || (otherLength / 3) > length) {
return FALSE;
}
// Compare valid strings from between normalization boundaries.
// (Invalid sequences are normalization-inert.)
for (int32_t i = 0, j = 0;;) {
if (i >= length) {
return j >= otherLength;
} else if (j >= otherLength) {
return FALSE;
}
// Not at the end of either string yet.
UChar32 c, other;
U16_NEXT_UNSAFE(start, i, c);
U8_NEXT_UNSAFE(otherStart, j, other);
if (c != other) {
return FALSE;
}
}
}
UBool ReorderingBuffer::appendSupplementary(UChar32 c, uint8_t cc, UErrorCode &errorCode) {
if(remainingCapacity<2 && !resize(2, errorCode)) {
return FALSE;
}
if(lastCC<=cc || cc==0) {
limit[0]=U16_LEAD(c);
limit[1]=U16_TRAIL(c);
limit+=2;
lastCC=cc;
if(cc<=1) {
reorderStart=limit;
}
} else {
insert(c, cc);
}
remainingCapacity-=2;
return TRUE;
}
UBool ReorderingBuffer::append(const UChar *s, int32_t length, UBool isNFD,
uint8_t leadCC, uint8_t trailCC,
UErrorCode &errorCode) {
if(length==0) {
return TRUE;
}
if(remainingCapacity<length && !resize(length, errorCode)) {
return FALSE;
}
remainingCapacity-=length;
if(lastCC<=leadCC || leadCC==0) {
if(trailCC<=1) {
reorderStart=limit+length;
} else if(leadCC<=1) {
reorderStart=limit+1; // Ok if not a code point boundary.
}
const UChar *sLimit=s+length;
do { *limit++=*s++; } while(s!=sLimit);
lastCC=trailCC;
} else {
int32_t i=0;
UChar32 c;
U16_NEXT(s, i, length, c);
insert(c, leadCC); // insert first code point
while(i<length) {
U16_NEXT(s, i, length, c);
if(i<length) {
if (isNFD) {
leadCC = Normalizer2Impl::getCCFromYesOrMaybe(impl.getRawNorm16(c));
} else {
leadCC = impl.getCC(impl.getNorm16(c));
}
} else {
leadCC=trailCC;
}
append(c, leadCC, errorCode);
}
}
return TRUE;
}
UBool ReorderingBuffer::appendZeroCC(UChar32 c, UErrorCode &errorCode) {
int32_t cpLength=U16_LENGTH(c);
if(remainingCapacity<cpLength && !resize(cpLength, errorCode)) {
return FALSE;
}
remainingCapacity-=cpLength;
if(cpLength==1) {
*limit++=(UChar)c;
} else {
limit[0]=U16_LEAD(c);
limit[1]=U16_TRAIL(c);
limit+=2;
}
lastCC=0;
reorderStart=limit;
return TRUE;
}
UBool ReorderingBuffer::appendZeroCC(const UChar *s, const UChar *sLimit, UErrorCode &errorCode) {
if(s==sLimit) {
return TRUE;
}
int32_t length=(int32_t)(sLimit-s);
if(remainingCapacity<length && !resize(length, errorCode)) {
return FALSE;
}
u_memcpy(limit, s, length);
limit+=length;
remainingCapacity-=length;
lastCC=0;
reorderStart=limit;
return TRUE;
}
void ReorderingBuffer::remove() {
reorderStart=limit=start;
remainingCapacity=str.getCapacity();
lastCC=0;
}
void ReorderingBuffer::removeSuffix(int32_t suffixLength) {
if(suffixLength<(limit-start)) {
limit-=suffixLength;
remainingCapacity+=suffixLength;
} else {
limit=start;
remainingCapacity=str.getCapacity();
}
lastCC=0;
reorderStart=limit;
}
UBool ReorderingBuffer::resize(int32_t appendLength, UErrorCode &errorCode) {
int32_t reorderStartIndex=(int32_t)(reorderStart-start);
int32_t length=(int32_t)(limit-start);
str.releaseBuffer(length);
int32_t newCapacity=length+appendLength;
int32_t doubleCapacity=2*str.getCapacity();
if(newCapacity<doubleCapacity) {
newCapacity=doubleCapacity;
}
if(newCapacity<256) {
newCapacity=256;
}
start=str.getBuffer(newCapacity);
if(start==NULL) {
// getBuffer() already did str.setToBogus()
errorCode=U_MEMORY_ALLOCATION_ERROR;
return FALSE;
}
reorderStart=start+reorderStartIndex;
limit=start+length;
remainingCapacity=str.getCapacity()-length;
return TRUE;
}
void ReorderingBuffer::skipPrevious() {
codePointLimit=codePointStart;
UChar c=*--codePointStart;
if(U16_IS_TRAIL(c) && start<codePointStart && U16_IS_LEAD(*(codePointStart-1))) {
--codePointStart;
}
}
uint8_t ReorderingBuffer::previousCC() {
codePointLimit=codePointStart;
if(reorderStart>=codePointStart) {
return 0;
}
UChar32 c=*--codePointStart;
UChar c2;
if(U16_IS_TRAIL(c) && start<codePointStart && U16_IS_LEAD(c2=*(codePointStart-1))) {
--codePointStart;
c=U16_GET_SUPPLEMENTARY(c2, c);
}
return impl.getCCFromYesOrMaybeCP(c);
}
// Inserts c somewhere before the last character.
// Requires 0<cc<lastCC which implies reorderStart<limit.
void ReorderingBuffer::insert(UChar32 c, uint8_t cc) {
for(setIterator(), skipPrevious(); previousCC()>cc;) {}
// insert c at codePointLimit, after the character with prevCC<=cc
UChar *q=limit;
UChar *r=limit+=U16_LENGTH(c);
do {
*--r=*--q;
} while(codePointLimit!=q);
writeCodePoint(q, c);
if(cc<=1) {
reorderStart=r;
}
}
// Normalizer2Impl --------------------------------------------------------- ***
struct CanonIterData : public UMemory {
CanonIterData(UErrorCode &errorCode);
~CanonIterData();
void addToStartSet(UChar32 origin, UChar32 decompLead, UErrorCode &errorCode);
UMutableCPTrie *mutableTrie;
UCPTrie *trie;
UVector canonStartSets; // contains UnicodeSet *
};
Normalizer2Impl::~Normalizer2Impl() {
delete fCanonIterData;
}
void
Normalizer2Impl::init(const int32_t *inIndexes, const UCPTrie *inTrie,
const uint16_t *inExtraData, const uint8_t *inSmallFCD) {
minDecompNoCP = static_cast<UChar>(inIndexes[IX_MIN_DECOMP_NO_CP]);
minCompNoMaybeCP = static_cast<UChar>(inIndexes[IX_MIN_COMP_NO_MAYBE_CP]);
minLcccCP = static_cast<UChar>(inIndexes[IX_MIN_LCCC_CP]);
minYesNo = static_cast<uint16_t>(inIndexes[IX_MIN_YES_NO]);
minYesNoMappingsOnly = static_cast<uint16_t>(inIndexes[IX_MIN_YES_NO_MAPPINGS_ONLY]);
minNoNo = static_cast<uint16_t>(inIndexes[IX_MIN_NO_NO]);
minNoNoCompBoundaryBefore = static_cast<uint16_t>(inIndexes[IX_MIN_NO_NO_COMP_BOUNDARY_BEFORE]);
minNoNoCompNoMaybeCC = static_cast<uint16_t>(inIndexes[IX_MIN_NO_NO_COMP_NO_MAYBE_CC]);
minNoNoEmpty = static_cast<uint16_t>(inIndexes[IX_MIN_NO_NO_EMPTY]);
limitNoNo = static_cast<uint16_t>(inIndexes[IX_LIMIT_NO_NO]);
minMaybeYes = static_cast<uint16_t>(inIndexes[IX_MIN_MAYBE_YES]);
U_ASSERT((minMaybeYes & 7) == 0); // 8-aligned for noNoDelta bit fields
centerNoNoDelta = (minMaybeYes >> DELTA_SHIFT) - MAX_DELTA - 1;
normTrie=inTrie;
maybeYesCompositions=inExtraData;
extraData=maybeYesCompositions+((MIN_NORMAL_MAYBE_YES-minMaybeYes)>>OFFSET_SHIFT);
smallFCD=inSmallFCD;
}
U_CDECL_BEGIN
static uint32_t U_CALLCONV
segmentStarterMapper(const void * /*context*/, uint32_t value) {
return value&CANON_NOT_SEGMENT_STARTER;
}
U_CDECL_END
void
Normalizer2Impl::addLcccChars(UnicodeSet &set) const {
UChar32 start = 0, end;
uint32_t norm16;
while ((end = ucptrie_getRange(normTrie, start, UCPMAP_RANGE_FIXED_LEAD_SURROGATES, INERT,
nullptr, nullptr, &norm16)) >= 0) {
if (norm16 > Normalizer2Impl::MIN_NORMAL_MAYBE_YES &&
norm16 != Normalizer2Impl::JAMO_VT) {
set.add(start, end);
} else if (minNoNoCompNoMaybeCC <= norm16 && norm16 < limitNoNo) {
uint16_t fcd16 = getFCD16(start);
if (fcd16 > 0xff) { set.add(start, end); }
}
start = end + 1;
}
}
void
Normalizer2Impl::addPropertyStarts(const USetAdder *sa, UErrorCode & /*errorCode*/) const {
// Add the start code point of each same-value range of the trie.
UChar32 start = 0, end;
uint32_t value;
while ((end = ucptrie_getRange(normTrie, start, UCPMAP_RANGE_FIXED_LEAD_SURROGATES, INERT,
nullptr, nullptr, &value)) >= 0) {
sa->add(sa->set, start);
if (start != end && isAlgorithmicNoNo((uint16_t)value) &&
(value & Normalizer2Impl::DELTA_TCCC_MASK) > Normalizer2Impl::DELTA_TCCC_1) {
// Range of code points with same-norm16-value algorithmic decompositions.
// They might have different non-zero FCD16 values.
uint16_t prevFCD16 = getFCD16(start);
while (++start <= end) {
uint16_t fcd16 = getFCD16(start);
if (fcd16 != prevFCD16) {
sa->add(sa->set, start);
prevFCD16 = fcd16;
}
}
}
start = end + 1;
}
/* add Hangul LV syllables and LV+1 because of skippables */
for(UChar c=Hangul::HANGUL_BASE; c<Hangul::HANGUL_LIMIT; c+=Hangul::JAMO_T_COUNT) {
sa->add(sa->set, c);
sa->add(sa->set, c+1);
}
sa->add(sa->set, Hangul::HANGUL_LIMIT); /* add Hangul+1 to continue with other properties */
}
void
Normalizer2Impl::addCanonIterPropertyStarts(const USetAdder *sa, UErrorCode &errorCode) const {
// Add the start code point of each same-value range of the canonical iterator data trie.
if (!ensureCanonIterData(errorCode)) { return; }
// Currently only used for the SEGMENT_STARTER property.
UChar32 start = 0, end;
uint32_t value;
while ((end = ucptrie_getRange(fCanonIterData->trie, start, UCPMAP_RANGE_NORMAL, 0,
segmentStarterMapper, nullptr, &value)) >= 0) {
sa->add(sa->set, start);
start = end + 1;
}
}
const UChar *
Normalizer2Impl::copyLowPrefixFromNulTerminated(const UChar *src,
UChar32 minNeedDataCP,
ReorderingBuffer *buffer,
UErrorCode &errorCode) const {
// Make some effort to support NUL-terminated strings reasonably.
// Take the part of the fast quick check loop that does not look up
// data and check the first part of the string.
// After this prefix, determine the string length to simplify the rest
// of the code.
const UChar *prevSrc=src;
UChar c;
while((c=*src++)<minNeedDataCP && c!=0) {}
// Back out the last character for full processing.
// Copy this prefix.
if(--src!=prevSrc) {
if(buffer!=NULL) {
buffer->appendZeroCC(prevSrc, src, errorCode);
}
}
return src;
}
UnicodeString &
Normalizer2Impl::decompose(const UnicodeString &src, UnicodeString &dest,
UErrorCode &errorCode) const {
if(U_FAILURE(errorCode)) {
dest.setToBogus();
return dest;
}
const UChar *sArray=src.getBuffer();
if(&dest==&src || sArray==NULL) {
errorCode=U_ILLEGAL_ARGUMENT_ERROR;
dest.setToBogus();
return dest;
}
decompose(sArray, sArray+src.length(), dest, src.length(), errorCode);
return dest;
}
void
Normalizer2Impl::decompose(const UChar *src, const UChar *limit,
UnicodeString &dest,
int32_t destLengthEstimate,
UErrorCode &errorCode) const {
if(destLengthEstimate<0 && limit!=NULL) {
destLengthEstimate=(int32_t)(limit-src);
}
dest.remove();
ReorderingBuffer buffer(*this, dest);
if(buffer.init(destLengthEstimate, errorCode)) {
decompose(src, limit, &buffer, errorCode);
}
}
// Dual functionality:
// buffer!=NULL: normalize
// buffer==NULL: isNormalized/spanQuickCheckYes
const UChar *
Normalizer2Impl::decompose(const UChar *src, const UChar *limit,
ReorderingBuffer *buffer,
UErrorCode &errorCode) const {
UChar32 minNoCP=minDecompNoCP;
if(limit==NULL) {
src=copyLowPrefixFromNulTerminated(src, minNoCP, buffer, errorCode);
if(U_FAILURE(errorCode)) {
return src;
}
limit=u_strchr(src, 0);
}
const UChar *prevSrc;
UChar32 c=0;
uint16_t norm16=0;
// only for quick check
const UChar *prevBoundary=src;
uint8_t prevCC=0;
for(;;) {
// count code units below the minimum or with irrelevant data for the quick check
for(prevSrc=src; src!=limit;) {
if( (c=*src)<minNoCP ||
isMostDecompYesAndZeroCC(norm16=UCPTRIE_FAST_BMP_GET(normTrie, UCPTRIE_16, c))
) {
++src;
} else if(!U16_IS_LEAD(c)) {
break;
} else {
UChar c2;
if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) {
c=U16_GET_SUPPLEMENTARY(c, c2);
norm16=UCPTRIE_FAST_SUPP_GET(normTrie, UCPTRIE_16, c);
if(isMostDecompYesAndZeroCC(norm16)) {
src+=2;
} else {
break;
}
} else {
++src; // unpaired lead surrogate: inert
}
}
}
// copy these code units all at once
if(src!=prevSrc) {
if(buffer!=NULL) {
if(!buffer->appendZeroCC(prevSrc, src, errorCode)) {
break;
}
} else {
prevCC=0;
prevBoundary=src;
}
}
if(src==limit) {
break;
}
// Check one above-minimum, relevant code point.
src+=U16_LENGTH(c);
if(buffer!=NULL) {
if(!decompose(c, norm16, *buffer, errorCode)) {
break;
}
} else {
if(isDecompYes(norm16)) {
uint8_t cc=getCCFromYesOrMaybe(norm16);
if(prevCC<=cc || cc==0) {
prevCC=cc;
if(cc<=1) {
prevBoundary=src;
}
continue;
}
}
return prevBoundary; // "no" or cc out of order
}
}
return src;
}
// Decompose a short piece of text which is likely to contain characters that
// fail the quick check loop and/or where the quick check loop's overhead
// is unlikely to be amortized.
// Called by the compose() and makeFCD() implementations.
const UChar *
Normalizer2Impl::decomposeShort(const UChar *src, const UChar *limit,
UBool stopAtCompBoundary, UBool onlyContiguous,
ReorderingBuffer &buffer, UErrorCode &errorCode) const {
if (U_FAILURE(errorCode)) {
return nullptr;
}
while(src<limit) {
if (stopAtCompBoundary && *src < minCompNoMaybeCP) {
return src;
}
const UChar *prevSrc = src;
UChar32 c;
uint16_t norm16;
UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, src, limit, c, norm16);
if (stopAtCompBoundary && norm16HasCompBoundaryBefore(norm16)) {
return prevSrc;
}
if(!decompose(c, norm16, buffer, errorCode)) {
return nullptr;
}
if (stopAtCompBoundary && norm16HasCompBoundaryAfter(norm16, onlyContiguous)) {
return src;
}
}
return src;
}
UBool Normalizer2Impl::decompose(UChar32 c, uint16_t norm16,
ReorderingBuffer &buffer,
UErrorCode &errorCode) const {
// get the decomposition and the lead and trail cc's
if (norm16 >= limitNoNo) {
if (isMaybeOrNonZeroCC(norm16)) {
return buffer.append(c, getCCFromYesOrMaybe(norm16), errorCode);
}
// Maps to an isCompYesAndZeroCC.
c=mapAlgorithmic(c, norm16);
norm16=getRawNorm16(c);
}
if (norm16 < minYesNo) {
// c does not decompose
return buffer.append(c, 0, errorCode);
} else if(isHangulLV(norm16) || isHangulLVT(norm16)) {
// Hangul syllable: decompose algorithmically
UChar jamos[3];
return buffer.appendZeroCC(jamos, jamos+Hangul::decompose(c, jamos), errorCode);
}
// c decomposes, get everything from the variable-length extra data
const uint16_t *mapping=getMapping(norm16);
uint16_t firstUnit=*mapping;
int32_t length=firstUnit&MAPPING_LENGTH_MASK;
uint8_t leadCC, trailCC;
trailCC=(uint8_t)(firstUnit>>8);
if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) {
leadCC=(uint8_t)(*(mapping-1)>>8);
} else {
leadCC=0;
}
return buffer.append((const UChar *)mapping+1, length, TRUE, leadCC, trailCC, errorCode);
}
const uint8_t *
Normalizer2Impl::decomposeShort(const uint8_t *src, const uint8_t *limit,
UBool stopAtCompBoundary, UBool onlyContiguous,
ReorderingBuffer &buffer, UErrorCode &errorCode) const {
if (U_FAILURE(errorCode)) {
return nullptr;
}
while (src < limit) {
const uint8_t *prevSrc = src;
uint16_t norm16;
UCPTRIE_FAST_U8_NEXT(normTrie, UCPTRIE_16, src, limit, norm16);
// Get the decomposition and the lead and trail cc's.
UChar32 c = U_SENTINEL;
if (norm16 >= limitNoNo) {
if (isMaybeOrNonZeroCC(norm16)) {
// No boundaries around this character.
c = codePointFromValidUTF8(prevSrc, src);
if (!buffer.append(c, getCCFromYesOrMaybe(norm16), errorCode)) {
return nullptr;
}
continue;
}
// Maps to an isCompYesAndZeroCC.
if (stopAtCompBoundary) {
return prevSrc;
}
c = codePointFromValidUTF8(prevSrc, src);
c = mapAlgorithmic(c, norm16);
norm16 = getRawNorm16(c);
} else if (stopAtCompBoundary && norm16 < minNoNoCompNoMaybeCC) {
return prevSrc;
}
// norm16!=INERT guarantees that [prevSrc, src[ is valid UTF-8.
// We do not see invalid UTF-8 here because
// its norm16==INERT is normalization-inert,
// so it gets copied unchanged in the fast path,
// and we stop the slow path where invalid UTF-8 begins.
U_ASSERT(norm16 != INERT);
if (norm16 < minYesNo) {
if (c < 0) {
c = codePointFromValidUTF8(prevSrc, src);
}
// does not decompose
if (!buffer.append(c, 0, errorCode)) {
return nullptr;
}
} else if (isHangulLV(norm16) || isHangulLVT(norm16)) {
// Hangul syllable: decompose algorithmically
if (c < 0) {
c = codePointFromValidUTF8(prevSrc, src);
}
char16_t jamos[3];
if (!buffer.appendZeroCC(jamos, jamos+Hangul::decompose(c, jamos), errorCode)) {
return nullptr;
}
} else {
// The character decomposes, get everything from the variable-length extra data.
const uint16_t *mapping = getMapping(norm16);
uint16_t firstUnit = *mapping;
int32_t length = firstUnit & MAPPING_LENGTH_MASK;
uint8_t trailCC = (uint8_t)(firstUnit >> 8);
uint8_t leadCC;
if (firstUnit & MAPPING_HAS_CCC_LCCC_WORD) {
leadCC = (uint8_t)(*(mapping-1) >> 8);
} else {
leadCC = 0;
}
if (!buffer.append((const char16_t *)mapping+1, length, TRUE, leadCC, trailCC, errorCode)) {
return nullptr;
}
}
if (stopAtCompBoundary && norm16HasCompBoundaryAfter(norm16, onlyContiguous)) {
return src;
}
}
return src;
}
const UChar *
Normalizer2Impl::getDecomposition(UChar32 c, UChar buffer[4], int32_t &length) const {
uint16_t norm16;
if(c<minDecompNoCP || isMaybeOrNonZeroCC(norm16=getNorm16(c))) {
// c does not decompose
return nullptr;
}
const UChar *decomp = nullptr;
if(isDecompNoAlgorithmic(norm16)) {
// Maps to an isCompYesAndZeroCC.
c=mapAlgorithmic(c, norm16);
decomp=buffer;
length=0;
U16_APPEND_UNSAFE(buffer, length, c);
// The mapping might decompose further.
norm16 = getRawNorm16(c);
}
if (norm16 < minYesNo) {
return decomp;
} else if(isHangulLV(norm16) || isHangulLVT(norm16)) {
// Hangul syllable: decompose algorithmically
length=Hangul::decompose(c, buffer);
return buffer;
}
// c decomposes, get everything from the variable-length extra data
const uint16_t *mapping=getMapping(norm16);
length=*mapping&MAPPING_LENGTH_MASK;
return (const UChar *)mapping+1;
}
// The capacity of the buffer must be 30=MAPPING_LENGTH_MASK-1
// so that a raw mapping fits that consists of one unit ("rm0")
// plus all but the first two code units of the normal mapping.
// The maximum length of a normal mapping is 31=MAPPING_LENGTH_MASK.
const UChar *
Normalizer2Impl::getRawDecomposition(UChar32 c, UChar buffer[30], int32_t &length) const {
uint16_t norm16;
if(c<minDecompNoCP || isDecompYes(norm16=getNorm16(c))) {
// c does not decompose
return NULL;
} else if(isHangulLV(norm16) || isHangulLVT(norm16)) {
// Hangul syllable: decompose algorithmically
Hangul::getRawDecomposition(c, buffer);
length=2;
return buffer;
} else if(isDecompNoAlgorithmic(norm16)) {
c=mapAlgorithmic(c, norm16);
length=0;
U16_APPEND_UNSAFE(buffer, length, c);
return buffer;
}
// c decomposes, get everything from the variable-length extra data
const uint16_t *mapping=getMapping(norm16);
uint16_t firstUnit=*mapping;
int32_t mLength=firstUnit&MAPPING_LENGTH_MASK; // length of normal mapping
if(firstUnit&MAPPING_HAS_RAW_MAPPING) {
// Read the raw mapping from before the firstUnit and before the optional ccc/lccc word.
// Bit 7=MAPPING_HAS_CCC_LCCC_WORD
const uint16_t *rawMapping=mapping-((firstUnit>>7)&1)-1;
uint16_t rm0=*rawMapping;
if(rm0<=MAPPING_LENGTH_MASK) {
length=rm0;
return (const UChar *)rawMapping-rm0;
} else {
// Copy the normal mapping and replace its first two code units with rm0.
buffer[0]=(UChar)rm0;
u_memcpy(buffer+1, (const UChar *)mapping+1+2, mLength-2);
length=mLength-1;
return buffer;
}
} else {
length=mLength;
return (const UChar *)mapping+1;
}
}
void Normalizer2Impl::decomposeAndAppend(const UChar *src, const UChar *limit,
UBool doDecompose,
UnicodeString &safeMiddle,
ReorderingBuffer &buffer,
UErrorCode &errorCode) const {
buffer.copyReorderableSuffixTo(safeMiddle);
if(doDecompose) {
decompose(src, limit, &buffer, errorCode);
return;
}
// Just merge the strings at the boundary.
bool isFirst = true;
uint8_t firstCC = 0, prevCC = 0, cc;
const UChar *p = src;
while (p != limit) {
const UChar *codePointStart = p;
UChar32 c;
uint16_t norm16;
UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, p, limit, c, norm16);
if ((cc = getCC(norm16)) == 0) {
p = codePointStart;
break;
}
if (isFirst) {
firstCC = cc;
isFirst = false;
}
prevCC = cc;
}
if(limit==NULL) { // appendZeroCC() needs limit!=NULL
limit=u_strchr(p, 0);
}
if (buffer.append(src, (int32_t)(p - src), FALSE, firstCC, prevCC, errorCode)) {
buffer.appendZeroCC(p, limit, errorCode);
}
}
UBool Normalizer2Impl::hasDecompBoundaryBefore(UChar32 c) const {
return c < minLcccCP || (c <= 0xffff && !singleLeadMightHaveNonZeroFCD16(c)) ||
norm16HasDecompBoundaryBefore(getNorm16(c));
}
UBool Normalizer2Impl::norm16HasDecompBoundaryBefore(uint16_t norm16) const {
if (norm16 < minNoNoCompNoMaybeCC) {
return TRUE;
}
if (norm16 >= limitNoNo) {
return norm16 <= MIN_NORMAL_MAYBE_YES || norm16 == JAMO_VT;
}
// c decomposes, get everything from the variable-length extra data
const uint16_t *mapping=getMapping(norm16);
uint16_t firstUnit=*mapping;
// TRUE if leadCC==0 (hasFCDBoundaryBefore())
return (firstUnit&MAPPING_HAS_CCC_LCCC_WORD)==0 || (*(mapping-1)&0xff00)==0;
}
UBool Normalizer2Impl::hasDecompBoundaryAfter(UChar32 c) const {
if (c < minDecompNoCP) {
return TRUE;
}
if (c <= 0xffff && !singleLeadMightHaveNonZeroFCD16(c)) {
return TRUE;
}
return norm16HasDecompBoundaryAfter(getNorm16(c));
}
UBool Normalizer2Impl::norm16HasDecompBoundaryAfter(uint16_t norm16) const {
if(norm16 <= minYesNo || isHangulLVT(norm16)) {
return TRUE;
}
if (norm16 >= limitNoNo) {
if (isMaybeOrNonZeroCC(norm16)) {
return norm16 <= MIN_NORMAL_MAYBE_YES || norm16 == JAMO_VT;
}
// Maps to an isCompYesAndZeroCC.
return (norm16 & DELTA_TCCC_MASK) <= DELTA_TCCC_1;
}
// c decomposes, get everything from the variable-length extra data
const uint16_t *mapping=getMapping(norm16);
uint16_t firstUnit=*mapping;
// decomp after-boundary: same as hasFCDBoundaryAfter(),
// fcd16<=1 || trailCC==0
if(firstUnit>0x1ff) {
return FALSE; // trailCC>1
}
if(firstUnit<=0xff) {
return TRUE; // trailCC==0
}
// if(trailCC==1) test leadCC==0, same as checking for before-boundary
// TRUE if leadCC==0 (hasFCDBoundaryBefore())
return (firstUnit&MAPPING_HAS_CCC_LCCC_WORD)==0 || (*(mapping-1)&0xff00)==0;
}
/*
* Finds the recomposition result for
* a forward-combining "lead" character,
* specified with a pointer to its compositions list,
* and a backward-combining "trail" character.
*
* If the lead and trail characters combine, then this function returns
* the following "compositeAndFwd" value:
* Bits 21..1 composite character
* Bit 0 set if the composite is a forward-combining starter
* otherwise it returns -1.
*
* The compositions list has (trail, compositeAndFwd) pair entries,
* encoded as either pairs or triples of 16-bit units.
* The last entry has the high bit of its first unit set.
*
* The list is sorted by ascending trail characters (there are no duplicates).
* A linear search is used.
*
* See normalizer2impl.h for a more detailed description
* of the compositions list format.
*/
int32_t Normalizer2Impl::combine(const uint16_t *list, UChar32 trail) {
uint16_t key1, firstUnit;
if(trail<COMP_1_TRAIL_LIMIT) {
// trail character is 0..33FF
// result entry may have 2 or 3 units
key1=(uint16_t)(trail<<1);
while(key1>(firstUnit=*list)) {
list+=2+(firstUnit&COMP_1_TRIPLE);
}
if(key1==(firstUnit&COMP_1_TRAIL_MASK)) {
if(firstUnit&COMP_1_TRIPLE) {
return ((int32_t)list[1]<<16)|list[2];
} else {
return list[1];
}
}
} else {
// trail character is 3400..10FFFF
// result entry has 3 units
key1=(uint16_t)(COMP_1_TRAIL_LIMIT+
(((trail>>COMP_1_TRAIL_SHIFT))&
~COMP_1_TRIPLE));
uint16_t key2=(uint16_t)(trail<<COMP_2_TRAIL_SHIFT);
uint16_t secondUnit;
for(;;) {
if(key1>(firstUnit=*list)) {
list+=2+(firstUnit&COMP_1_TRIPLE);
} else if(key1==(firstUnit&COMP_1_TRAIL_MASK)) {
if(key2>(secondUnit=list[1])) {
if(firstUnit&COMP_1_LAST_TUPLE) {
break;
} else {
list+=3;
}
} else if(key2==(secondUnit&COMP_2_TRAIL_MASK)) {
return ((int32_t)(secondUnit&~COMP_2_TRAIL_MASK)<<16)|list[2];
} else {
break;
}
} else {
break;
}
}
}
return -1;
}
/**
* @param list some character's compositions list
* @param set recursively receives the composites from these compositions
*/
void Normalizer2Impl::addComposites(const uint16_t *list, UnicodeSet &set) const {
uint16_t firstUnit;
int32_t compositeAndFwd;
do {
firstUnit=*list;
if((firstUnit&COMP_1_TRIPLE)==0) {
compositeAndFwd=list[1];
list+=2;
} else {
compositeAndFwd=(((int32_t)list[1]&~COMP_2_TRAIL_MASK)<<16)|list[2];
list+=3;
}
UChar32 composite=compositeAndFwd>>1;
if((compositeAndFwd&1)!=0) {
addComposites(getCompositionsListForComposite(getRawNorm16(composite)), set);
}
set.add(composite);
} while((firstUnit&COMP_1_LAST_TUPLE)==0);
}
/*
* Recomposes the buffer text starting at recomposeStartIndex
* (which is in NFD - decomposed and canonically ordered),
* and truncates the buffer contents.
*
* Note that recomposition never lengthens the text:
* Any character consists of either one or two code units;
* a composition may contain at most one more code unit than the original starter,
* while the combining mark that is removed has at least one code unit.
*/
void Normalizer2Impl::recompose(ReorderingBuffer &buffer, int32_t recomposeStartIndex,
UBool onlyContiguous) const {
UChar *p=buffer.getStart()+recomposeStartIndex;
UChar *limit=buffer.getLimit();
if(p==limit) {
return;
}
UChar *starter, *pRemove, *q, *r;
const uint16_t *compositionsList;
UChar32 c, compositeAndFwd;
uint16_t norm16;
uint8_t cc, prevCC;
UBool starterIsSupplementary;
// Some of the following variables are not used until we have a forward-combining starter
// and are only initialized now to avoid compiler warnings.
compositionsList=NULL; // used as indicator for whether we have a forward-combining starter
starter=NULL;
starterIsSupplementary=FALSE;
prevCC=0;
for(;;) {
UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, p, limit, c, norm16);
cc=getCCFromYesOrMaybe(norm16);
if( // this character combines backward and
isMaybe(norm16) &&
// we have seen a starter that combines forward and
compositionsList!=NULL &&
// the backward-combining character is not blocked
(prevCC<cc || prevCC==0)
) {
if(isJamoVT(norm16)) {
// c is a Jamo V/T, see if we can compose it with the previous character.
if(c<Hangul::JAMO_T_BASE) {
// c is a Jamo Vowel, compose with previous Jamo L and following Jamo T.
UChar prev=(UChar)(*starter-Hangul::JAMO_L_BASE);
if(prev<Hangul::JAMO_L_COUNT) {
pRemove=p-1;
UChar syllable=(UChar)
(Hangul::HANGUL_BASE+
(prev*Hangul::JAMO_V_COUNT+(c-Hangul::JAMO_V_BASE))*
Hangul::JAMO_T_COUNT);
UChar t;
if(p!=limit && (t=(UChar)(*p-Hangul::JAMO_T_BASE))<Hangul::JAMO_T_COUNT) {
++p;
syllable+=t; // The next character was a Jamo T.
}
*starter=syllable;
// remove the Jamo V/T
q=pRemove;
r=p;
while(r<limit) {
*q++=*r++;
}
limit=q;
p=pRemove;
}
}
/*
* No "else" for Jamo T:
* Since the input is in NFD, there are no Hangul LV syllables that
* a Jamo T could combine with.
* All Jamo Ts are combined above when handling Jamo Vs.
*/
if(p==limit) {
break;
}
compositionsList=NULL;
continue;
} else if((compositeAndFwd=combine(compositionsList, c))>=0) {
// The starter and the combining mark (c) do combine.
UChar32 composite=compositeAndFwd>>1;
// Replace the starter with the composite, remove the combining mark.
pRemove=p-U16_LENGTH(c); // pRemove & p: start & limit of the combining mark
if(starterIsSupplementary) {
if(U_IS_SUPPLEMENTARY(composite)) {
// both are supplementary
starter[0]=U16_LEAD(composite);
starter[1]=U16_TRAIL(composite);
} else {
*starter=(UChar)composite;
// The composite is shorter than the starter,
// move the intermediate characters forward one.
starterIsSupplementary=FALSE;
q=starter+1;
r=q+1;
while(r<pRemove) {
*q++=*r++;
}
--pRemove;
}
} else if(U_IS_SUPPLEMENTARY(composite)) {
// The composite is longer than the starter,
// move the intermediate characters back one.
starterIsSupplementary=TRUE;
++starter; // temporarily increment for the loop boundary
q=pRemove;
r=++pRemove;
while(starter<q) {
*--r=*--q;
}
*starter=U16_TRAIL(composite);
*--starter=U16_LEAD(composite); // undo the temporary increment
} else {
// both are on the BMP
*starter=(UChar)composite;
}
/* remove the combining mark by moving the following text over it */
if(pRemove<p) {
q=pRemove;
r=p;
while(r<limit) {
*q++=*r++;
}
limit=q;
p=pRemove;
}
// Keep prevCC because we removed the combining mark.
if(p==limit) {
break;
}
// Is the composite a starter that combines forward?
if(compositeAndFwd&1) {
compositionsList=
getCompositionsListForComposite(getRawNorm16(composite));
} else {
compositionsList=NULL;
}
// We combined; continue with looking for compositions.
continue;
}
}
// no combination this time
prevCC=cc;
if(p==limit) {
break;
}
// If c did not combine, then check if it is a starter.
if(cc==0) {
// Found a new starter.
if((compositionsList=getCompositionsListForDecompYes(norm16))!=NULL) {
// It may combine with something, prepare for it.
if(U_IS_BMP(c)) {
starterIsSupplementary=FALSE;
starter=p-1;
} else {
starterIsSupplementary=TRUE;
starter=p-2;
}
}
} else if(onlyContiguous) {
// FCC: no discontiguous compositions; any intervening character blocks.
compositionsList=NULL;
}
}
buffer.setReorderingLimit(limit);
}
UChar32
Normalizer2Impl::composePair(UChar32 a, UChar32 b) const {
uint16_t norm16=getNorm16(a); // maps an out-of-range 'a' to inert norm16
const uint16_t *list;
if(isInert(norm16)) {
return U_SENTINEL;
} else if(norm16<minYesNoMappingsOnly) {
// a combines forward.
if(isJamoL(norm16)) {
b-=Hangul::JAMO_V_BASE;
if(0<=b && b<Hangul::JAMO_V_COUNT) {
return
(Hangul::HANGUL_BASE+
((a-Hangul::JAMO_L_BASE)*Hangul::JAMO_V_COUNT+b)*
Hangul::JAMO_T_COUNT);
} else {
return U_SENTINEL;
}
} else if(isHangulLV(norm16)) {
b-=Hangul::JAMO_T_BASE;
if(0<b && b<Hangul::JAMO_T_COUNT) { // not b==0!
return a+b;
} else {
return U_SENTINEL;
}
} else {
// 'a' has a compositions list in extraData
list=getMapping(norm16);
if(norm16>minYesNo) { // composite 'a' has both mapping & compositions list
list+= // mapping pointer
1+ // +1 to skip the first unit with the mapping length
(*list&MAPPING_LENGTH_MASK); // + mapping length
}
}
} else if(norm16<minMaybeYes || MIN_NORMAL_MAYBE_YES<=norm16) {
return U_SENTINEL;
} else {
list=getCompositionsListForMaybe(norm16);
}
if(b<0 || 0x10ffff<b) { // combine(list, b) requires a valid code point b
return U_SENTINEL;
}
#if U_SIGNED_RIGHT_SHIFT_IS_ARITHMETIC
return combine(list, b)>>1;
#else
int32_t compositeAndFwd=combine(list, b);
return compositeAndFwd>=0 ? compositeAndFwd>>1 : U_SENTINEL;
#endif
}
// Very similar to composeQuickCheck(): Make the same changes in both places if relevant.
// doCompose: normalize
// !doCompose: isNormalized (buffer must be empty and initialized)
UBool
Normalizer2Impl::compose(const UChar *src, const UChar *limit,
UBool onlyContiguous,
UBool doCompose,
ReorderingBuffer &buffer,
UErrorCode &errorCode) const {
const UChar *prevBoundary=src;
UChar32 minNoMaybeCP=minCompNoMaybeCP;
if(limit==NULL) {
src=copyLowPrefixFromNulTerminated(src, minNoMaybeCP,
doCompose ? &buffer : NULL,
errorCode);
if(U_FAILURE(errorCode)) {
return FALSE;
}
limit=u_strchr(src, 0);
if (prevBoundary != src) {
if (hasCompBoundaryAfter(*(src-1), onlyContiguous)) {
prevBoundary = src;
} else {
buffer.removeSuffix(1);
prevBoundary = --src;
}
}
}
for (;;) {
// Fast path: Scan over a sequence of characters below the minimum "no or maybe" code point,
// or with (compYes && ccc==0) properties.
const UChar *prevSrc;
UChar32 c = 0;
uint16_t norm16 = 0;
for (;;) {
if (src == limit) {
if (prevBoundary != limit && doCompose) {
buffer.appendZeroCC(prevBoundary, limit, errorCode);
}
return TRUE;
}
if( (c=*src)<minNoMaybeCP ||
isCompYesAndZeroCC(norm16=UCPTRIE_FAST_BMP_GET(normTrie, UCPTRIE_16, c))
) {
++src;
} else {
prevSrc = src++;
if(!U16_IS_LEAD(c)) {
break;
} else {
UChar c2;
if(src!=limit && U16_IS_TRAIL(c2=*src)) {
++src;
c=U16_GET_SUPPLEMENTARY(c, c2);
norm16=UCPTRIE_FAST_SUPP_GET(normTrie, UCPTRIE_16, c);
if(!isCompYesAndZeroCC(norm16)) {
break;
}
}
}
}
}
// isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo.
// The current character is either a "noNo" (has a mapping)
// or a "maybeYes" (combines backward)
// or a "yesYes" with ccc!=0.
// It is not a Hangul syllable or Jamo L because those have "yes" properties.
// Medium-fast path: Handle cases that do not require full decomposition and recomposition.
if (!isMaybeOrNonZeroCC(norm16)) { // minNoNo <= norm16 < minMaybeYes
if (!doCompose) {
return FALSE;
}
// Fast path for mapping a character that is immediately surrounded by boundaries.
// In this case, we need not decompose around the current character.
if (isDecompNoAlgorithmic(norm16)) {
// Maps to a single isCompYesAndZeroCC character
// which also implies hasCompBoundaryBefore.
if (norm16HasCompBoundaryAfter(norm16, onlyContiguous) ||
hasCompBoundaryBefore(src, limit)) {
if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) {
break;
}
if(!buffer.append(mapAlgorithmic(c, norm16), 0, errorCode)) {
break;
}
prevBoundary = src;
continue;
}
} else if (norm16 < minNoNoCompBoundaryBefore) {
// The mapping is comp-normalized which also implies hasCompBoundaryBefore.
if (norm16HasCompBoundaryAfter(norm16, onlyContiguous) ||
hasCompBoundaryBefore(src, limit)) {
if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) {
break;
}
const UChar *mapping = reinterpret_cast<const UChar *>(getMapping(norm16));
int32_t length = *mapping++ & MAPPING_LENGTH_MASK;
if(!buffer.appendZeroCC(mapping, mapping + length, errorCode)) {
break;
}
prevBoundary = src;
continue;
}
} else if (norm16 >= minNoNoEmpty) {
// The current character maps to nothing.
// Simply omit it from the output if there is a boundary before _or_ after it.
// The character itself implies no boundaries.
if (hasCompBoundaryBefore(src, limit) ||
hasCompBoundaryAfter(prevBoundary, prevSrc, onlyContiguous)) {
if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) {
break;
}
prevBoundary = src;
continue;
}
}
// Other "noNo" type, or need to examine more text around this character:
// Fall through to the slow path.
} else if (isJamoVT(norm16) && prevBoundary != prevSrc) {
UChar prev=*(prevSrc-1);
if(c<Hangul::JAMO_T_BASE) {
// The current character is a Jamo Vowel,
// compose with previous Jamo L and following Jamo T.
UChar l = (UChar)(prev-Hangul::JAMO_L_BASE);
if(l<Hangul::JAMO_L_COUNT) {
if (!doCompose) {
return FALSE;
}
int32_t t;
if (src != limit &&
0 < (t = ((int32_t)*src - Hangul::JAMO_T_BASE)) &&
t < Hangul::JAMO_T_COUNT) {
// The next character is a Jamo T.
++src;
} else if (hasCompBoundaryBefore(src, limit)) {
// No Jamo T follows, not even via decomposition.
t = 0;
} else {
t = -1;
}
if (t >= 0) {
UChar32 syllable = Hangul::HANGUL_BASE +
(l*Hangul::JAMO_V_COUNT + (c-Hangul::JAMO_V_BASE)) *
Hangul::JAMO_T_COUNT + t;
--prevSrc; // Replace the Jamo L as well.
if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) {
break;
}
if(!buffer.appendBMP((UChar)syllable, 0, errorCode)) {
break;
}
prevBoundary = src;
continue;
}
// If we see L+V+x where x!=T then we drop to the slow path,
// decompose and recompose.
// This is to deal with NFKC finding normal L and V but a
// compatibility variant of a T.
// We need to either fully compose that combination here
// (which would complicate the code and may not work with strange custom data)
// or use the slow path.
}
} else if (Hangul::isHangulLV(prev)) {
// The current character is a Jamo Trailing consonant,
// compose with previous Hangul LV that does not contain a Jamo T.
if (!doCompose) {
return FALSE;
}
UChar32 syllable = prev + c - Hangul::JAMO_T_BASE;
--prevSrc; // Replace the Hangul LV as well.
if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) {
break;
}
if(!buffer.appendBMP((UChar)syllable, 0, errorCode)) {
break;
}
prevBoundary = src;
continue;
}
// No matching context, or may need to decompose surrounding text first:
// Fall through to the slow path.
} else if (norm16 > JAMO_VT) { // norm16 >= MIN_YES_YES_WITH_CC
// One or more combining marks that do not combine-back:
// Check for canonical order, copy unchanged if ok and
// if followed by a character with a boundary-before.
uint8_t cc = getCCFromNormalYesOrMaybe(norm16); // cc!=0
if (onlyContiguous /* FCC */ && getPreviousTrailCC(prevBoundary, prevSrc) > cc) {
// Fails FCD test, need to decompose and contiguously recompose.
if (!doCompose) {
return FALSE;
}
} else {
// If !onlyContiguous (not FCC), then we ignore the tccc of
// the previous character which passed the quick check "yes && ccc==0" test.
const UChar *nextSrc;
uint16_t n16;
for (;;) {
if (src == limit) {
if (doCompose) {
buffer.appendZeroCC(prevBoundary, limit, errorCode);
}
return TRUE;
}
uint8_t prevCC = cc;
nextSrc = src;
UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, nextSrc, limit, c, n16);
if (n16 >= MIN_YES_YES_WITH_CC) {
cc = getCCFromNormalYesOrMaybe(n16);
if (prevCC > cc) {
if (!doCompose) {
return FALSE;
}
break;
}
} else {
break;
}
src = nextSrc;
}
// src is after the last in-order combining mark.
// If there is a boundary here, then we continue with no change.
if (norm16HasCompBoundaryBefore(n16)) {
if (isCompYesAndZeroCC(n16)) {
src = nextSrc;
}
continue;
}
// Use the slow path. There is no boundary in [prevSrc, src[.
}
}
// Slow path: Find the nearest boundaries around the current character,
// decompose and recompose.
if (prevBoundary != prevSrc && !norm16HasCompBoundaryBefore(norm16)) {
const UChar *p = prevSrc;
UCPTRIE_FAST_U16_PREV(normTrie, UCPTRIE_16, prevBoundary, p, c, norm16);
if (!norm16HasCompBoundaryAfter(norm16, onlyContiguous)) {
prevSrc = p;
}
}
if (doCompose && prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) {
break;
}
int32_t recomposeStartIndex=buffer.length();
// We know there is not a boundary here.
decomposeShort(prevSrc, src, FALSE /* !stopAtCompBoundary */, onlyContiguous,
buffer, errorCode);
// Decompose until the next boundary.
src = decomposeShort(src, limit, TRUE /* stopAtCompBoundary */, onlyContiguous,
buffer, errorCode);
if (U_FAILURE(errorCode)) {
break;
}
if ((src - prevSrc) > INT32_MAX) { // guard before buffer.equals()
errorCode = U_INDEX_OUTOFBOUNDS_ERROR;
return TRUE;
}
recompose(buffer, recomposeStartIndex, onlyContiguous);
if(!doCompose) {
if(!buffer.equals(prevSrc, src)) {
return FALSE;
}
buffer.remove();
}
prevBoundary=src;
}
return TRUE;
}
// Very similar to compose(): Make the same changes in both places if relevant.
// pQCResult==NULL: spanQuickCheckYes
// pQCResult!=NULL: quickCheck (*pQCResult must be UNORM_YES)
const UChar *
Normalizer2Impl::composeQuickCheck(const UChar *src, const UChar *limit,
UBool onlyContiguous,
UNormalizationCheckResult *pQCResult) const {
const UChar *prevBoundary=src;
UChar32 minNoMaybeCP=minCompNoMaybeCP;
if(limit==NULL) {
UErrorCode errorCode=U_ZERO_ERROR;
src=copyLowPrefixFromNulTerminated(src, minNoMaybeCP, NULL, errorCode);
limit=u_strchr(src, 0);
if (prevBoundary != src) {
if (hasCompBoundaryAfter(*(src-1), onlyContiguous)) {
prevBoundary = src;
} else {
prevBoundary = --src;
}
}
}
for(;;) {
// Fast path: Scan over a sequence of characters below the minimum "no or maybe" code point,
// or with (compYes && ccc==0) properties.
const UChar *prevSrc;
UChar32 c = 0;
uint16_t norm16 = 0;
for (;;) {
if(src==limit) {
return src;
}
if( (c=*src)<minNoMaybeCP ||
isCompYesAndZeroCC(norm16=UCPTRIE_FAST_BMP_GET(normTrie, UCPTRIE_16, c))
) {
++src;
} else {
prevSrc = src++;
if(!U16_IS_LEAD(c)) {
break;
} else {
UChar c2;
if(src!=limit && U16_IS_TRAIL(c2=*src)) {
++src;
c=U16_GET_SUPPLEMENTARY(c, c2);
norm16=UCPTRIE_FAST_SUPP_GET(normTrie, UCPTRIE_16, c);
if(!isCompYesAndZeroCC(norm16)) {
break;
}
}
}
}
}
// isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo.
// The current character is either a "noNo" (has a mapping)
// or a "maybeYes" (combines backward)
// or a "yesYes" with ccc!=0.
// It is not a Hangul syllable or Jamo L because those have "yes" properties.
uint16_t prevNorm16 = INERT;
if (prevBoundary != prevSrc) {
if (norm16HasCompBoundaryBefore(norm16)) {
prevBoundary = prevSrc;
} else {
const UChar *p = prevSrc;
uint16_t n16;
UCPTRIE_FAST_U16_PREV(normTrie, UCPTRIE_16, prevBoundary, p, c, n16);
if (norm16HasCompBoundaryAfter(n16, onlyContiguous)) {
prevBoundary = prevSrc;
} else {
prevBoundary = p;
prevNorm16 = n16;
}
}
}
if(isMaybeOrNonZeroCC(norm16)) {
uint8_t cc=getCCFromYesOrMaybe(norm16);
if (onlyContiguous /* FCC */ && cc != 0 &&
getTrailCCFromCompYesAndZeroCC(prevNorm16) > cc) {
// The [prevBoundary..prevSrc[ character
// passed the quick check "yes && ccc==0" test
// but is out of canonical order with the current combining mark.
} else {
// If !onlyContiguous (not FCC), then we ignore the tccc of
// the previous character which passed the quick check "yes && ccc==0" test.
const UChar *nextSrc;
for (;;) {
if (norm16 < MIN_YES_YES_WITH_CC) {
if (pQCResult != nullptr) {
*pQCResult = UNORM_MAYBE;
} else {
return prevBoundary;
}
}
if (src == limit) {
return src;
}
uint8_t prevCC = cc;
nextSrc = src;
UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, nextSrc, limit, c, norm16);
if (isMaybeOrNonZeroCC(norm16)) {
cc = getCCFromYesOrMaybe(norm16);
if (!(prevCC <= cc || cc == 0)) {
break;
}
} else {
break;
}
src = nextSrc;
}
// src is after the last in-order combining mark.
if (isCompYesAndZeroCC(norm16)) {
prevBoundary = src;
src = nextSrc;
continue;
}
}
}
if(pQCResult!=NULL) {
*pQCResult=UNORM_NO;
}
return prevBoundary;
}
}
void Normalizer2Impl::composeAndAppend(const UChar *src, const UChar *limit,
UBool doCompose,
UBool onlyContiguous,
UnicodeString &safeMiddle,
ReorderingBuffer &buffer,
UErrorCode &errorCode) const {
if(!buffer.isEmpty()) {
const UChar *firstStarterInSrc=findNextCompBoundary(src, limit, onlyContiguous);
if(src!=firstStarterInSrc) {
const UChar *lastStarterInDest=findPreviousCompBoundary(buffer.getStart(),
buffer.getLimit(), onlyContiguous);
int32_t destSuffixLength=(int32_t)(buffer.getLimit()-lastStarterInDest);
UnicodeString middle(lastStarterInDest, destSuffixLength);
buffer.removeSuffix(destSuffixLength);
safeMiddle=middle;
middle.append(src, (int32_t)(firstStarterInSrc-src));
const UChar *middleStart=middle.getBuffer();
compose(middleStart, middleStart+middle.length(), onlyContiguous,
TRUE, buffer, errorCode);
if(U_FAILURE(errorCode)) {
return;
}
src=firstStarterInSrc;
}
}
if(doCompose) {
compose(src, limit, onlyContiguous, TRUE, buffer, errorCode);
} else {
if(limit==NULL) { // appendZeroCC() needs limit!=NULL
limit=u_strchr(src, 0);
}
buffer.appendZeroCC(src, limit, errorCode);
}
}
UBool
Normalizer2Impl::composeUTF8(uint32_t options, UBool onlyContiguous,
const uint8_t *src, const uint8_t *limit,
ByteSink *sink, Edits *edits, UErrorCode &errorCode) const {
U_ASSERT(limit != nullptr);
UnicodeString s16;
uint8_t minNoMaybeLead = leadByteForCP(minCompNoMaybeCP);
const uint8_t *prevBoundary = src;
for (;;) {
// Fast path: Scan over a sequence of characters below the minimum "no or maybe" code point,
// or with (compYes && ccc==0) properties.
const uint8_t *prevSrc;
uint16_t norm16 = 0;
for (;;) {
if (src == limit) {
if (prevBoundary != limit && sink != nullptr) {
ByteSinkUtil::appendUnchanged(prevBoundary, limit,
*sink, options, edits, errorCode);
}
return TRUE;
}
if (*src < minNoMaybeLead) {
++src;
} else {
prevSrc = src;
UCPTRIE_FAST_U8_NEXT(normTrie, UCPTRIE_16, src, limit, norm16);
if (!isCompYesAndZeroCC(norm16)) {
break;
}
}
}
// isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo.
// The current character is either a "noNo" (has a mapping)
// or a "maybeYes" (combines backward)
// or a "yesYes" with ccc!=0.
// It is not a Hangul syllable or Jamo L because those have "yes" properties.
// Medium-fast path: Handle cases that do not require full decomposition and recomposition.
if (!isMaybeOrNonZeroCC(norm16)) { // minNoNo <= norm16 < minMaybeYes
if (sink == nullptr) {
return FALSE;
}
// Fast path for mapping a character that is immediately surrounded by boundaries.
// In this case, we need not decompose around the current character.
if (isDecompNoAlgorithmic(norm16)) {
// Maps to a single isCompYesAndZeroCC character
// which also implies hasCompBoundaryBefore.
if (norm16HasCompBoundaryAfter(norm16, onlyContiguous) ||
hasCompBoundaryBefore(src, limit)) {
if (prevBoundary != prevSrc &&
!ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
*sink, options, edits, errorCode)) {
break;
}
appendCodePointDelta(prevSrc, src, getAlgorithmicDelta(norm16), *sink, edits);
prevBoundary = src;
continue;
}
} else if (norm16 < minNoNoCompBoundaryBefore) {
// The mapping is comp-normalized which also implies hasCompBoundaryBefore.
if (norm16HasCompBoundaryAfter(norm16, onlyContiguous) ||
hasCompBoundaryBefore(src, limit)) {
if (prevBoundary != prevSrc &&
!ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
*sink, options, edits, errorCode)) {
break;
}
const uint16_t *mapping = getMapping(norm16);
int32_t length = *mapping++ & MAPPING_LENGTH_MASK;
if (!ByteSinkUtil::appendChange(prevSrc, src, (const UChar *)mapping, length,
*sink, edits, errorCode)) {
break;
}
prevBoundary = src;
continue;
}
} else if (norm16 >= minNoNoEmpty) {
// The current character maps to nothing.
// Simply omit it from the output if there is a boundary before _or_ after it.
// The character itself implies no boundaries.
if (hasCompBoundaryBefore(src, limit) ||
hasCompBoundaryAfter(prevBoundary, prevSrc, onlyContiguous)) {
if (prevBoundary != prevSrc &&
!ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
*sink, options, edits, errorCode)) {
break;
}
if (edits != nullptr) {
edits->addReplace((int32_t)(src - prevSrc), 0);
}
prevBoundary = src;
continue;
}
}
// Other "noNo" type, or need to examine more text around this character:
// Fall through to the slow path.
} else if (isJamoVT(norm16)) {
// Jamo L: E1 84 80..92
// Jamo V: E1 85 A1..B5
// Jamo T: E1 86 A8..E1 87 82
U_ASSERT((src - prevSrc) == 3 && *prevSrc == 0xe1);
UChar32 prev = previousHangulOrJamo(prevBoundary, prevSrc);
if (prevSrc[1] == 0x85) {
// The current character is a Jamo Vowel,
// compose with previous Jamo L and following Jamo T.
UChar32 l = prev - Hangul::JAMO_L_BASE;
if ((uint32_t)l < Hangul::JAMO_L_COUNT) {
if (sink == nullptr) {
return FALSE;
}
int32_t t = getJamoTMinusBase(src, limit);
if (t >= 0) {
// The next character is a Jamo T.
src += 3;
} else if (hasCompBoundaryBefore(src, limit)) {
// No Jamo T follows, not even via decomposition.
t = 0;
}
if (t >= 0) {
UChar32 syllable = Hangul::HANGUL_BASE +
(l*Hangul::JAMO_V_COUNT + (prevSrc[2]-0xa1)) *
Hangul::JAMO_T_COUNT + t;
prevSrc -= 3; // Replace the Jamo L as well.
if (prevBoundary != prevSrc &&
!ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
*sink, options, edits, errorCode)) {
break;
}
ByteSinkUtil::appendCodePoint(prevSrc, src, syllable, *sink, edits);
prevBoundary = src;
continue;
}
// If we see L+V+x where x!=T then we drop to the slow path,
// decompose and recompose.
// This is to deal with NFKC finding normal L and V but a
// compatibility variant of a T.
// We need to either fully compose that combination here
// (which would complicate the code and may not work with strange custom data)
// or use the slow path.
}
} else if (Hangul::isHangulLV(prev)) {
// The current character is a Jamo Trailing consonant,
// compose with previous Hangul LV that does not contain a Jamo T.
if (sink == nullptr) {
return FALSE;
}
UChar32 syllable = prev + getJamoTMinusBase(prevSrc, src);
prevSrc -= 3; // Replace the Hangul LV as well.
if (prevBoundary != prevSrc &&
!ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
*sink, options, edits, errorCode)) {
break;
}
ByteSinkUtil::appendCodePoint(prevSrc, src, syllable, *sink, edits);
prevBoundary = src;
continue;
}
// No matching context, or may need to decompose surrounding text first:
// Fall through to the slow path.
} else if (norm16 > JAMO_VT) { // norm16 >= MIN_YES_YES_WITH_CC
// One or more combining marks that do not combine-back:
// Check for canonical order, copy unchanged if ok and
// if followed by a character with a boundary-before.
uint8_t cc = getCCFromNormalYesOrMaybe(norm16); // cc!=0
if (onlyContiguous /* FCC */ && getPreviousTrailCC(prevBoundary, prevSrc) > cc) {
// Fails FCD test, need to decompose and contiguously recompose.
if (sink == nullptr) {
return FALSE;
}
} else {
// If !onlyContiguous (not FCC), then we ignore the tccc of
// the previous character which passed the quick check "yes && ccc==0" test.
const uint8_t *nextSrc;
uint16_t n16;
for (;;) {
if (src == limit) {
if (sink != nullptr) {
ByteSinkUtil::appendUnchanged(prevBoundary, limit,
*sink, options, edits, errorCode);
}
return TRUE;
}
uint8_t prevCC = cc;
nextSrc = src;
UCPTRIE_FAST_U8_NEXT(normTrie, UCPTRIE_16, nextSrc, limit, n16);
if (n16 >= MIN_YES_YES_WITH_CC) {
cc = getCCFromNormalYesOrMaybe(n16);
if (prevCC > cc) {
if (sink == nullptr) {
return FALSE;
}
break;
}
} else {
break;
}
src = nextSrc;
}
// src is after the last in-order combining mark.
// If there is a boundary here, then we continue with no change.
if (norm16HasCompBoundaryBefore(n16)) {
if (isCompYesAndZeroCC(n16)) {
src = nextSrc;
}
continue;
}
// Use the slow path. There is no boundary in [prevSrc, src[.
}
}
// Slow path: Find the nearest boundaries around the current character,
// decompose and recompose.
if (prevBoundary != prevSrc && !norm16HasCompBoundaryBefore(norm16)) {
const uint8_t *p = prevSrc;
UCPTRIE_FAST_U8_PREV(normTrie, UCPTRIE_16, prevBoundary, p, norm16);
if (!norm16HasCompBoundaryAfter(norm16, onlyContiguous)) {
prevSrc = p;
}
}
ReorderingBuffer buffer(*this, s16, errorCode);
if (U_FAILURE(errorCode)) {
break;
}
// We know there is not a boundary here.
decomposeShort(prevSrc, src, FALSE /* !stopAtCompBoundary */, onlyContiguous,
buffer, errorCode);
// Decompose until the next boundary.
src = decomposeShort(src, limit, TRUE /* stopAtCompBoundary */, onlyContiguous,
buffer, errorCode);
if (U_FAILURE(errorCode)) {
break;
}
if ((src - prevSrc) > INT32_MAX) { // guard before buffer.equals()
errorCode = U_INDEX_OUTOFBOUNDS_ERROR;
return TRUE;
}
recompose(buffer, 0, onlyContiguous);
if (!buffer.equals(prevSrc, src)) {
if (sink == nullptr) {
return FALSE;
}
if (prevBoundary != prevSrc &&
!ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
*sink, options, edits, errorCode)) {
break;
}
if (!ByteSinkUtil::appendChange(prevSrc, src, buffer.getStart(), buffer.length(),
*sink, edits, errorCode)) {
break;
}
prevBoundary = src;
}
}
return TRUE;
}
UBool Normalizer2Impl::hasCompBoundaryBefore(const UChar *src, const UChar *limit) const {
if (src == limit || *src < minCompNoMaybeCP) {
return TRUE;
}
UChar32 c;
uint16_t norm16;
UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, src, limit, c, norm16);
return norm16HasCompBoundaryBefore(norm16);
}
UBool Normalizer2Impl::hasCompBoundaryBefore(const uint8_t *src, const uint8_t *limit) const {
if (src == limit) {
return TRUE;
}
uint16_t norm16;
UCPTRIE_FAST_U8_NEXT(normTrie, UCPTRIE_16, src, limit, norm16);
return norm16HasCompBoundaryBefore(norm16);
}
UBool Normalizer2Impl::hasCompBoundaryAfter(const UChar *start, const UChar *p,
UBool onlyContiguous) const {
if (start == p) {
return TRUE;
}
UChar32 c;
uint16_t norm16;
UCPTRIE_FAST_U16_PREV(normTrie, UCPTRIE_16, start, p, c, norm16);
return norm16HasCompBoundaryAfter(norm16, onlyContiguous);
}
UBool Normalizer2Impl::hasCompBoundaryAfter(const uint8_t *start, const uint8_t *p,
UBool onlyContiguous) const {
if (start == p) {
return TRUE;
}
uint16_t norm16;
UCPTRIE_FAST_U8_PREV(normTrie, UCPTRIE_16, start, p, norm16);
return norm16HasCompBoundaryAfter(norm16, onlyContiguous);
}
const UChar *Normalizer2Impl::findPreviousCompBoundary(const UChar *start, const UChar *p,
UBool onlyContiguous) const {
while (p != start) {
const UChar *codePointLimit = p;
UChar32 c;
uint16_t norm16;
UCPTRIE_FAST_U16_PREV(normTrie, UCPTRIE_16, start, p, c, norm16);
if (norm16HasCompBoundaryAfter(norm16, onlyContiguous)) {
return codePointLimit;
}
if (hasCompBoundaryBefore(c, norm16)) {
return p;
}
}
return p;
}
const UChar *Normalizer2Impl::findNextCompBoundary(const UChar *p, const UChar *limit,
UBool onlyContiguous) const {
while (p != limit) {
const UChar *codePointStart = p;
UChar32 c;
uint16_t norm16;
UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, p, limit, c, norm16);
if (hasCompBoundaryBefore(c, norm16)) {
return codePointStart;
}
if (norm16HasCompBoundaryAfter(norm16, onlyContiguous)) {
return p;
}
}
return p;
}
uint8_t Normalizer2Impl::getPreviousTrailCC(const UChar *start, const UChar *p) const {
if (start == p) {
return 0;
}
int32_t i = (int32_t)(p - start);
UChar32 c;
U16_PREV(start, 0, i, c);
return (uint8_t)getFCD16(c);
}
uint8_t Normalizer2Impl::getPreviousTrailCC(const uint8_t *start, const uint8_t *p) const {
if (start == p) {
return 0;
}
int32_t i = (int32_t)(p - start);
UChar32 c;
U8_PREV(start, 0, i, c);
return (uint8_t)getFCD16(c);
}
// Note: normalizer2impl.cpp r30982 (2011-nov-27)
// still had getFCDTrie() which built and cached an FCD trie.
// That provided faster access to FCD data than getFCD16FromNormData()
// but required synchronization and consumed some 10kB of heap memory
// in any process that uses FCD (e.g., via collation).
// minDecompNoCP etc. and smallFCD[] are intended to help with any loss of performance,
// at least for ASCII & CJK.
// Gets the FCD value from the regular normalization data.
uint16_t Normalizer2Impl::getFCD16FromNormData(UChar32 c) const {
uint16_t norm16=getNorm16(c);
if (norm16 >= limitNoNo) {
if(norm16>=MIN_NORMAL_MAYBE_YES) {
// combining mark
norm16=getCCFromNormalYesOrMaybe(norm16);
return norm16|(norm16<<8);
} else if(norm16>=minMaybeYes) {
return 0;
} else { // isDecompNoAlgorithmic(norm16)
uint16_t deltaTrailCC = norm16 & DELTA_TCCC_MASK;
if (deltaTrailCC <= DELTA_TCCC_1) {
return deltaTrailCC >> OFFSET_SHIFT;
}
// Maps to an isCompYesAndZeroCC.
c=mapAlgorithmic(c, norm16);
norm16=getRawNorm16(c);
}
}
if(norm16<=minYesNo || isHangulLVT(norm16)) {
// no decomposition or Hangul syllable, all zeros
return 0;
}
// c decomposes, get everything from the variable-length extra data
const uint16_t *mapping=getMapping(norm16);
uint16_t firstUnit=*mapping;
norm16=firstUnit>>8; // tccc
if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) {
norm16|=*(mapping-1)&0xff00; // lccc
}
return norm16;
}
// Dual functionality:
// buffer!=NULL: normalize
// buffer==NULL: isNormalized/quickCheck/spanQuickCheckYes
const UChar *
Normalizer2Impl::makeFCD(const UChar *src, const UChar *limit,
ReorderingBuffer *buffer,
UErrorCode &errorCode) const {
// Tracks the last FCD-safe boundary, before lccc=0 or after properly-ordered tccc<=1.
// Similar to the prevBoundary in the compose() implementation.
const UChar *prevBoundary=src;
int32_t prevFCD16=0;
if(limit==NULL) {
src=copyLowPrefixFromNulTerminated(src, minLcccCP, buffer, errorCode);
if(U_FAILURE(errorCode)) {
return src;
}
if(prevBoundary<src) {
prevBoundary=src;
// We know that the previous character's lccc==0.
// Fetching the fcd16 value was deferred for this below-U+0300 code point.
prevFCD16=getFCD16(*(src-1));
if(prevFCD16>1) {
--prevBoundary;
}
}
limit=u_strchr(src, 0);
}
// Note: In this function we use buffer->appendZeroCC() because we track
// the lead and trail combining classes here, rather than leaving it to
// the ReorderingBuffer.
// The exception is the call to decomposeShort() which uses the buffer
// in the normal way.
const UChar *prevSrc;
UChar32 c=0;
uint16_t fcd16=0;
for(;;) {
// count code units with lccc==0
for(prevSrc=src; src!=limit;) {
if((c=*src)<minLcccCP) {
prevFCD16=~c;
++src;
} else if(!singleLeadMightHaveNonZeroFCD16(c)) {
prevFCD16=0;
++src;
} else {
if(U16_IS_LEAD(c)) {
UChar c2;
if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) {
c=U16_GET_SUPPLEMENTARY(c, c2);
}
}
if((fcd16=getFCD16FromNormData(c))<=0xff) {
prevFCD16=fcd16;
src+=U16_LENGTH(c);
} else {
break;
}
}
}
// copy these code units all at once
if(src!=prevSrc) {
if(buffer!=NULL && !buffer->appendZeroCC(prevSrc, src, errorCode)) {
break;
}
if(src==limit) {
break;
}
prevBoundary=src;
// We know that the previous character's lccc==0.
if(prevFCD16<0) {
// Fetching the fcd16 value was deferred for this below-minLcccCP code point.
UChar32 prev=~prevFCD16;
if(prev<minDecompNoCP) {
prevFCD16=0;
} else {
prevFCD16=getFCD16FromNormData(prev);
if(prevFCD16>1) {
--prevBoundary;
}
}
} else {
const UChar *p=src-1;
if(U16_IS_TRAIL(*p) && prevSrc<p && U16_IS_LEAD(*(p-1))) {
--p;
// Need to fetch the previous character's FCD value because
// prevFCD16 was just for the trail surrogate code point.
prevFCD16=getFCD16FromNormData(U16_GET_SUPPLEMENTARY(p[0], p[1]));
// Still known to have lccc==0 because its lead surrogate unit had lccc==0.
}
if(prevFCD16>1) {
prevBoundary=p;
}
}
// The start of the current character (c).
prevSrc=src;
} else if(src==limit) {
break;
}
src+=U16_LENGTH(c);
// The current character (c) at [prevSrc..src[ has a non-zero lead combining class.
// Check for proper order, and decompose locally if necessary.
if((prevFCD16&0xff)<=(fcd16>>8)) {
// proper order: prev tccc <= current lccc
if((fcd16&0xff)<=1) {
prevBoundary=src;
}
if(buffer!=NULL && !buffer->appendZeroCC(c, errorCode)) {
break;
}
prevFCD16=fcd16;
continue;
} else if(buffer==NULL) {
return prevBoundary; // quick check "no"
} else {
/*
* Back out the part of the source that we copied or appended
* already but is now going to be decomposed.
* prevSrc is set to after what was copied/appended.
*/
buffer->removeSuffix((int32_t)(prevSrc-prevBoundary));
/*
* Find the part of the source that needs to be decomposed,
* up to the next safe boundary.
*/
src=findNextFCDBoundary(src, limit);
/*
* The source text does not fulfill the conditions for FCD.
* Decompose and reorder a limited piece of the text.
*/
decomposeShort(prevBoundary, src, FALSE, FALSE, *buffer, errorCode);
if (U_FAILURE(errorCode)) {
break;
}
prevBoundary=src;
prevFCD16=0;
}
}
return src;
}
void Normalizer2Impl::makeFCDAndAppend(const UChar *src, const UChar *limit,
UBool doMakeFCD,
UnicodeString &safeMiddle,
ReorderingBuffer &buffer,
UErrorCode &errorCode) const {
if(!buffer.isEmpty()) {
const UChar *firstBoundaryInSrc=findNextFCDBoundary(src, limit);
if(src!=firstBoundaryInSrc) {
const UChar *lastBoundaryInDest=findPreviousFCDBoundary(buffer.getStart(),
buffer.getLimit());
int32_t destSuffixLength=(int32_t)(buffer.getLimit()-lastBoundaryInDest);
UnicodeString middle(lastBoundaryInDest, destSuffixLength);
buffer.removeSuffix(destSuffixLength);
safeMiddle=middle;
middle.append(src, (int32_t)(firstBoundaryInSrc-src));
const UChar *middleStart=middle.getBuffer();
makeFCD(middleStart, middleStart+middle.length(), &buffer, errorCode);
if(U_FAILURE(errorCode)) {
return;
}
src=firstBoundaryInSrc;
}
}
if(doMakeFCD) {
makeFCD(src, limit, &buffer, errorCode);
} else {
if(limit==NULL) { // appendZeroCC() needs limit!=NULL
limit=u_strchr(src, 0);
}
buffer.appendZeroCC(src, limit, errorCode);
}
}
const UChar *Normalizer2Impl::findPreviousFCDBoundary(const UChar *start, const UChar *p) const {
while(start<p) {
const UChar *codePointLimit = p;
UChar32 c;
uint16_t norm16;
UCPTRIE_FAST_U16_PREV(normTrie, UCPTRIE_16, start, p, c, norm16);
if (c < minDecompNoCP || norm16HasDecompBoundaryAfter(norm16)) {
return codePointLimit;
}
if (norm16HasDecompBoundaryBefore(norm16)) {
return p;
}
}
return p;
}
const UChar *Normalizer2Impl::findNextFCDBoundary(const UChar *p, const UChar *limit) const {
while(p<limit) {
const UChar *codePointStart=p;
UChar32 c;
uint16_t norm16;
UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, p, limit, c, norm16);
if (c < minLcccCP || norm16HasDecompBoundaryBefore(norm16)) {
return codePointStart;
}
if (norm16HasDecompBoundaryAfter(norm16)) {
return p;
}
}
return p;
}
// CanonicalIterator data -------------------------------------------------- ***
CanonIterData::CanonIterData(UErrorCode &errorCode) :
mutableTrie(umutablecptrie_open(0, 0, &errorCode)), trie(nullptr),
canonStartSets(uprv_deleteUObject, NULL, errorCode) {}
CanonIterData::~CanonIterData() {
umutablecptrie_close(mutableTrie);
ucptrie_close(trie);
}
void CanonIterData::addToStartSet(UChar32 origin, UChar32 decompLead, UErrorCode &errorCode) {
uint32_t canonValue = umutablecptrie_get(mutableTrie, decompLead);
if((canonValue&(CANON_HAS_SET|CANON_VALUE_MASK))==0 && origin!=0) {
// origin is the first character whose decomposition starts with
// the character for which we are setting the value.
umutablecptrie_set(mutableTrie, decompLead, canonValue|origin, &errorCode);
} else {
// origin is not the first character, or it is U+0000.
UnicodeSet *set;
if((canonValue&CANON_HAS_SET)==0) {
set=new UnicodeSet;
if(set==NULL) {
errorCode=U_MEMORY_ALLOCATION_ERROR;
return;
}
UChar32 firstOrigin=(UChar32)(canonValue&CANON_VALUE_MASK);
canonValue=(canonValue&~CANON_VALUE_MASK)|CANON_HAS_SET|(uint32_t)canonStartSets.size();
umutablecptrie_set(mutableTrie, decompLead, canonValue, &errorCode);
canonStartSets.addElement(set, errorCode);
if(firstOrigin!=0) {
set->add(firstOrigin);
}
} else {
set=(UnicodeSet *)canonStartSets[(int32_t)(canonValue&CANON_VALUE_MASK)];
}
set->add(origin);
}
}
// C++ class for friend access to private Normalizer2Impl members.
class InitCanonIterData {
public:
static void doInit(Normalizer2Impl *impl, UErrorCode &errorCode);
};
U_CDECL_BEGIN
// UInitOnce instantiation function for CanonIterData
static void U_CALLCONV
initCanonIterData(Normalizer2Impl *impl, UErrorCode &errorCode) {
InitCanonIterData::doInit(impl, errorCode);
}
U_CDECL_END
void InitCanonIterData::doInit(Normalizer2Impl *impl, UErrorCode &errorCode) {
U_ASSERT(impl->fCanonIterData == NULL);
impl->fCanonIterData = new CanonIterData(errorCode);
if (impl->fCanonIterData == NULL) {
errorCode=U_MEMORY_ALLOCATION_ERROR;
}
if (U_SUCCESS(errorCode)) {
UChar32 start = 0, end;
uint32_t value;
while ((end = ucptrie_getRange(impl->normTrie, start,
UCPMAP_RANGE_FIXED_LEAD_SURROGATES, Normalizer2Impl::INERT,
nullptr, nullptr, &value)) >= 0) {
// Call Normalizer2Impl::makeCanonIterDataFromNorm16() for a range of same-norm16 characters.
if (value != Normalizer2Impl::INERT) {
impl->makeCanonIterDataFromNorm16(start, end, value, *impl->fCanonIterData, errorCode);
}
start = end + 1;
}
#ifdef UCPTRIE_DEBUG
umutablecptrie_setName(impl->fCanonIterData->mutableTrie, "CanonIterData");
#endif
impl->fCanonIterData->trie = umutablecptrie_buildImmutable(
impl->fCanonIterData->mutableTrie, UCPTRIE_TYPE_SMALL, UCPTRIE_VALUE_BITS_32, &errorCode);
umutablecptrie_close(impl->fCanonIterData->mutableTrie);
impl->fCanonIterData->mutableTrie = nullptr;
}
if (U_FAILURE(errorCode)) {
delete impl->fCanonIterData;
impl->fCanonIterData = NULL;
}
}
void Normalizer2Impl::makeCanonIterDataFromNorm16(UChar32 start, UChar32 end, const uint16_t norm16,
CanonIterData &newData,
UErrorCode &errorCode) const {
if(isInert(norm16) || (minYesNo<=norm16 && norm16<minNoNo)) {
// Inert, or 2-way mapping (including Hangul syllable).
// We do not write a canonStartSet for any yesNo character.
// Composites from 2-way mappings are added at runtime from the
// starter's compositions list, and the other characters in
// 2-way mappings get CANON_NOT_SEGMENT_STARTER set because they are
// "maybe" characters.
return;
}
for(UChar32 c=start; c<=end; ++c) {
uint32_t oldValue = umutablecptrie_get(newData.mutableTrie, c);
uint32_t newValue=oldValue;
if(isMaybeOrNonZeroCC(norm16)) {
// not a segment starter if it occurs in a decomposition or has cc!=0
newValue|=CANON_NOT_SEGMENT_STARTER;
if(norm16<MIN_NORMAL_MAYBE_YES) {
newValue|=CANON_HAS_COMPOSITIONS;
}
} else if(norm16<minYesNo) {
newValue|=CANON_HAS_COMPOSITIONS;
} else {
// c has a one-way decomposition
UChar32 c2=c;
// Do not modify the whole-range norm16 value.
uint16_t norm16_2=norm16;
if (isDecompNoAlgorithmic(norm16_2)) {
// Maps to an isCompYesAndZeroCC.
c2 = mapAlgorithmic(c2, norm16_2);
norm16_2 = getRawNorm16(c2);
// No compatibility mappings for the CanonicalIterator.
U_ASSERT(!(isHangulLV(norm16_2) || isHangulLVT(norm16_2)));
}
if (norm16_2 > minYesNo) {
// c decomposes, get everything from the variable-length extra data
const uint16_t *mapping=getMapping(norm16_2);
uint16_t firstUnit=*mapping;
int32_t length=firstUnit&MAPPING_LENGTH_MASK;
if((firstUnit&MAPPING_HAS_CCC_LCCC_WORD)!=0) {
if(c==c2 && (*(mapping-1)&0xff)!=0) {
newValue|=CANON_NOT_SEGMENT_STARTER; // original c has cc!=0
}
}
// Skip empty mappings (no characters in the decomposition).
if(length!=0) {
++mapping; // skip over the firstUnit
// add c to first code point's start set
int32_t i=0;
U16_NEXT_UNSAFE(mapping, i, c2);
newData.addToStartSet(c, c2, errorCode);
// Set CANON_NOT_SEGMENT_STARTER for each remaining code point of a
// one-way mapping. A 2-way mapping is possible here after
// intermediate algorithmic mapping.
if(norm16_2>=minNoNo) {
while(i<length) {
U16_NEXT_UNSAFE(mapping, i, c2);
uint32_t c2Value = umutablecptrie_get(newData.mutableTrie, c2);
if((c2Value&CANON_NOT_SEGMENT_STARTER)==0) {
umutablecptrie_set(newData.mutableTrie, c2,
c2Value|CANON_NOT_SEGMENT_STARTER, &errorCode);
}
}
}
}
} else {
// c decomposed to c2 algorithmically; c has cc==0
newData.addToStartSet(c, c2, errorCode);
}
}
if(newValue!=oldValue) {
umutablecptrie_set(newData.mutableTrie, c, newValue, &errorCode);
}
}
}
UBool Normalizer2Impl::ensureCanonIterData(UErrorCode &errorCode) const {
// Logically const: Synchronized instantiation.
Normalizer2Impl *me=const_cast<Normalizer2Impl *>(this);
umtx_initOnce(me->fCanonIterDataInitOnce, &initCanonIterData, me, errorCode);
return U_SUCCESS(errorCode);
}
int32_t Normalizer2Impl::getCanonValue(UChar32 c) const {
return (int32_t)ucptrie_get(fCanonIterData->trie, c);
}
const UnicodeSet &Normalizer2Impl::getCanonStartSet(int32_t n) const {
return *(const UnicodeSet *)fCanonIterData->canonStartSets[n];
}
UBool Normalizer2Impl::isCanonSegmentStarter(UChar32 c) const {
return getCanonValue(c)>=0;
}
UBool Normalizer2Impl::getCanonStartSet(UChar32 c, UnicodeSet &set) const {
int32_t canonValue=getCanonValue(c)&~CANON_NOT_SEGMENT_STARTER;
if(canonValue==0) {
return FALSE;
}
set.clear();
int32_t value=canonValue&CANON_VALUE_MASK;
if((canonValue&CANON_HAS_SET)!=0) {
set.addAll(getCanonStartSet(value));
} else if(value!=0) {
set.add(value);
}
if((canonValue&CANON_HAS_COMPOSITIONS)!=0) {
uint16_t norm16=getRawNorm16(c);
if(norm16==JAMO_L) {
UChar32 syllable=
(UChar32)(Hangul::HANGUL_BASE+(c-Hangul::JAMO_L_BASE)*Hangul::JAMO_VT_COUNT);
set.add(syllable, syllable+Hangul::JAMO_VT_COUNT-1);
} else {
addComposites(getCompositionsList(norm16), set);
}
}
return TRUE;
}
U_NAMESPACE_END
// Normalizer2 data swapping ----------------------------------------------- ***
U_NAMESPACE_USE
U_CAPI int32_t U_EXPORT2
unorm2_swap(const UDataSwapper *ds,
const void *inData, int32_t length, void *outData,
UErrorCode *pErrorCode) {
const UDataInfo *pInfo;
int32_t headerSize;
const uint8_t *inBytes;
uint8_t *outBytes;
const int32_t *inIndexes;
int32_t indexes[Normalizer2Impl::IX_TOTAL_SIZE+1];
int32_t i, offset, nextOffset, size;
/* udata_swapDataHeader checks the arguments */
headerSize=udata_swapDataHeader(ds, inData, length, outData, pErrorCode);
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
return 0;
}
/* check data format and format version */
pInfo=(const UDataInfo *)((const char *)inData+4);
uint8_t formatVersion0=pInfo->formatVersion[0];
if(!(
pInfo->dataFormat[0]==0x4e && /* dataFormat="Nrm2" */
pInfo->dataFormat[1]==0x72 &&
pInfo->dataFormat[2]==0x6d &&
pInfo->dataFormat[3]==0x32 &&
(1<=formatVersion0 && formatVersion0<=4)
)) {
udata_printError(ds, "unorm2_swap(): data format %02x.%02x.%02x.%02x (format version %02x) is not recognized as Normalizer2 data\n",
pInfo->dataFormat[0], pInfo->dataFormat[1],
pInfo->dataFormat[2], pInfo->dataFormat[3],
pInfo->formatVersion[0]);
*pErrorCode=U_UNSUPPORTED_ERROR;
return 0;
}
inBytes=(const uint8_t *)inData+headerSize;
outBytes=(uint8_t *)outData+headerSize;
inIndexes=(const int32_t *)inBytes;
int32_t minIndexesLength;
if(formatVersion0==1) {
minIndexesLength=Normalizer2Impl::IX_MIN_MAYBE_YES+1;
} else if(formatVersion0==2) {
minIndexesLength=Normalizer2Impl::IX_MIN_YES_NO_MAPPINGS_ONLY+1;
} else {
minIndexesLength=Normalizer2Impl::IX_MIN_LCCC_CP+1;
}
if(length>=0) {
length-=headerSize;
if(length<minIndexesLength*4) {
udata_printError(ds, "unorm2_swap(): too few bytes (%d after header) for Normalizer2 data\n",
length);
*pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
return 0;
}
}
/* read the first few indexes */
for(i=0; i<UPRV_LENGTHOF(indexes); ++i) {
indexes[i]=udata_readInt32(ds, inIndexes[i]);
}
/* get the total length of the data */
size=indexes[Normalizer2Impl::IX_TOTAL_SIZE];
if(length>=0) {
if(length<size) {
udata_printError(ds, "unorm2_swap(): too few bytes (%d after header) for all of Normalizer2 data\n",
length);
*pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
return 0;
}
/* copy the data for inaccessible bytes */
if(inBytes!=outBytes) {
uprv_memcpy(outBytes, inBytes, size);
}
offset=0;
/* swap the int32_t indexes[] */
nextOffset=indexes[Normalizer2Impl::IX_NORM_TRIE_OFFSET];
ds->swapArray32(ds, inBytes, nextOffset-offset, outBytes, pErrorCode);
offset=nextOffset;
/* swap the trie */
nextOffset=indexes[Normalizer2Impl::IX_EXTRA_DATA_OFFSET];
utrie_swapAnyVersion(ds, inBytes+offset, nextOffset-offset, outBytes+offset, pErrorCode);
offset=nextOffset;
/* swap the uint16_t extraData[] */
nextOffset=indexes[Normalizer2Impl::IX_SMALL_FCD_OFFSET];
ds->swapArray16(ds, inBytes+offset, nextOffset-offset, outBytes+offset, pErrorCode);
offset=nextOffset;
/* no need to swap the uint8_t smallFCD[] (new in formatVersion 2) */
nextOffset=indexes[Normalizer2Impl::IX_SMALL_FCD_OFFSET+1];
offset=nextOffset;
U_ASSERT(offset==size);
}
return headerSize+size;
}
#endif // !UCONFIG_NO_NORMALIZATION