scuffed-code/icu4c/source/i18n/decimfmt.cpp
2006-01-09 23:03:31 +00:00

3724 lines
140 KiB
C++

/*
*******************************************************************************
* Copyright (C) 1997-2006, International Business Machines Corporation and *
* others. All Rights Reserved. *
*******************************************************************************
*
* File DECIMFMT.CPP
*
* Modification History:
*
* Date Name Description
* 02/19/97 aliu Converted from java.
* 03/20/97 clhuang Implemented with new APIs.
* 03/31/97 aliu Moved isLONG_MIN to DigitList, and fixed it.
* 04/3/97 aliu Rewrote parsing and formatting completely, and
* cleaned up and debugged. Actually works now.
* Implemented NAN and INF handling, for both parsing
* and formatting. Extensive testing & debugging.
* 04/10/97 aliu Modified to compile on AIX.
* 04/16/97 aliu Rewrote to use DigitList, which has been resurrected.
* Changed DigitCount to int per code review.
* 07/09/97 helena Made ParsePosition into a class.
* 08/26/97 aliu Extensive changes to applyPattern; completely
* rewritten from the Java.
* 09/09/97 aliu Ported over support for exponential formats.
* 07/20/98 stephen JDK 1.2 sync up.
* Various instances of '0' replaced with 'NULL'
* Check for grouping size in subFormat()
* Brought subParse() in line with Java 1.2
* Added method appendAffix()
* 08/24/1998 srl Removed Mutex calls. This is not a thread safe class!
* 02/22/99 stephen Removed character literals for EBCDIC safety
* 06/24/99 helena Integrated Alan's NF enhancements and Java2 bug fixes
* 06/28/99 stephen Fixed bugs in toPattern().
* 06/29/99 stephen Fixed operator= to copy fFormatWidth, fPad,
* fPadPosition
********************************************************************************
*/
#include "unicode/utypes.h"
#if !UCONFIG_NO_FORMATTING
#include "unicode/decimfmt.h"
#include "unicode/choicfmt.h"
#include "unicode/ucurr.h"
#include "unicode/ustring.h"
#include "unicode/dcfmtsym.h"
#include "unicode/ures.h"
#include "unicode/uchar.h"
#include "unicode/curramt.h"
#include "ucurrimp.h"
#include "util.h"
#include "digitlst.h"
#include "cmemory.h"
#include "cstring.h"
#include "umutex.h"
#include "uassert.h"
#include "putilimp.h"
U_NAMESPACE_BEGIN
//#define FMT_DEBUG
#ifdef FMT_DEBUG
#include <stdio.h>
static void debugout(UnicodeString s) {
char buf[2000];
s.extract((int32_t) 0, s.length(), buf);
printf("%s", buf);
}
#define debug(x) printf("%s", x);
#else
#define debugout(x)
#define debug(x)
#endif
// *****************************************************************************
// class DecimalFormat
// *****************************************************************************
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(DecimalFormat)
// Constants for characters used in programmatic (unlocalized) patterns.
#define kPatternZeroDigit ((UChar)0x0030) /*'0'*/
#define kPatternSignificantDigit ((UChar)0x0040) /*'@'*/
#define kPatternGroupingSeparator ((UChar)0x002C) /*','*/
#define kPatternDecimalSeparator ((UChar)0x002E) /*'.'*/
#define kPatternPerMill ((UChar)0x2030)
#define kPatternPercent ((UChar)0x0025) /*'%'*/
#define kPatternDigit ((UChar)0x0023) /*'#'*/
#define kPatternSeparator ((UChar)0x003B) /*';'*/
#define kPatternExponent ((UChar)0x0045) /*'E'*/
#define kPatternPlus ((UChar)0x002B) /*'+'*/
#define kPatternMinus ((UChar)0x002D) /*'-'*/
#define kPatternPadEscape ((UChar)0x002A) /*'*'*/
#define kQuote ((UChar)0x0027) /*'\''*/
/**
* The CURRENCY_SIGN is the standard Unicode symbol for currency. It
* is used in patterns and substitued with either the currency symbol,
* or if it is doubled, with the international currency symbol. If the
* CURRENCY_SIGN is seen in a pattern, then the decimal separator is
* replaced with the monetary decimal separator.
*/
#define kCurrencySign ((UChar)0x00A4)
#define kDefaultPad ((UChar)0x0020) /* */
const int32_t DecimalFormat::kDoubleIntegerDigits = 309;
const int32_t DecimalFormat::kDoubleFractionDigits = 340;
const int32_t DecimalFormat::kMaxScientificIntegerDigits = 8;
/**
* These are the tags we expect to see in normal resource bundle files associated
* with a locale.
*/
const char DecimalFormat::fgNumberPatterns[]="NumberPatterns";
inline int32_t _min(int32_t a, int32_t b) { return (a<b) ? a : b; }
inline int32_t _max(int32_t a, int32_t b) { return (a<b) ? b : a; }
//------------------------------------------------------------------------------
// Constructs a DecimalFormat instance in the default locale.
DecimalFormat::DecimalFormat(UErrorCode& status)
: NumberFormat(),
fPosPrefixPattern(0),
fPosSuffixPattern(0),
fNegPrefixPattern(0),
fNegSuffixPattern(0),
fCurrencyChoice(0),
fMultiplier(0),
fGroupingSize(0),
fGroupingSize2(0),
fSymbols(0),
fUseSignificantDigits(FALSE),
fMinSignificantDigits(1),
fMaxSignificantDigits(6),
fMinExponentDigits(0),
fRoundingIncrement(0),
fPad(0),
fFormatWidth(0)
{
UParseError parseError;
construct(status, parseError);
}
//------------------------------------------------------------------------------
// Constructs a DecimalFormat instance with the specified number format
// pattern in the default locale.
DecimalFormat::DecimalFormat(const UnicodeString& pattern,
UErrorCode& status)
: NumberFormat(),
fPosPrefixPattern(0),
fPosSuffixPattern(0),
fNegPrefixPattern(0),
fNegSuffixPattern(0),
fCurrencyChoice(0),
fMultiplier(0),
fGroupingSize(0),
fGroupingSize2(0),
fSymbols(0),
fUseSignificantDigits(FALSE),
fMinSignificantDigits(1),
fMaxSignificantDigits(6),
fMinExponentDigits(0),
fRoundingIncrement(0),
fPad(0),
fFormatWidth(0)
{
UParseError parseError;
construct(status, parseError, &pattern);
}
//------------------------------------------------------------------------------
// Constructs a DecimalFormat instance with the specified number format
// pattern and the number format symbols in the default locale. The
// created instance owns the symbols.
DecimalFormat::DecimalFormat(const UnicodeString& pattern,
DecimalFormatSymbols* symbolsToAdopt,
UErrorCode& status)
: NumberFormat(),
fPosPrefixPattern(0),
fPosSuffixPattern(0),
fNegPrefixPattern(0),
fNegSuffixPattern(0),
fCurrencyChoice(0),
fMultiplier(0),
fGroupingSize(0),
fGroupingSize2(0),
fSymbols(0),
fUseSignificantDigits(FALSE),
fMinSignificantDigits(1),
fMaxSignificantDigits(6),
fMinExponentDigits(0),
fRoundingIncrement(0),
fPad(0),
fFormatWidth(0)
{
UParseError parseError;
if (symbolsToAdopt == NULL)
status = U_ILLEGAL_ARGUMENT_ERROR;
construct(status, parseError, &pattern, symbolsToAdopt);
}
DecimalFormat::DecimalFormat( const UnicodeString& pattern,
DecimalFormatSymbols* symbolsToAdopt,
UParseError& parseErr,
UErrorCode& status)
: NumberFormat(),
fPosPrefixPattern(0),
fPosSuffixPattern(0),
fNegPrefixPattern(0),
fNegSuffixPattern(0),
fCurrencyChoice(0),
fMultiplier(0),
fGroupingSize(0),
fGroupingSize2(0),
fSymbols(0),
fUseSignificantDigits(FALSE),
fMinSignificantDigits(1),
fMaxSignificantDigits(6),
fMinExponentDigits(0),
fRoundingIncrement(0),
fPad(0),
fFormatWidth(0)
{
if (symbolsToAdopt == NULL)
status = U_ILLEGAL_ARGUMENT_ERROR;
construct(status,parseErr, &pattern, symbolsToAdopt);
}
//------------------------------------------------------------------------------
// Constructs a DecimalFormat instance with the specified number format
// pattern and the number format symbols in the default locale. The
// created instance owns the clone of the symbols.
DecimalFormat::DecimalFormat(const UnicodeString& pattern,
const DecimalFormatSymbols& symbols,
UErrorCode& status)
: NumberFormat(),
fPosPrefixPattern(0),
fPosSuffixPattern(0),
fNegPrefixPattern(0),
fNegSuffixPattern(0),
fCurrencyChoice(0),
fMultiplier(0),
fGroupingSize(0),
fGroupingSize2(0),
fSymbols(0),
fUseSignificantDigits(FALSE),
fMinSignificantDigits(1),
fMaxSignificantDigits(6),
fMinExponentDigits(0),
fRoundingIncrement(0),
fPad(0),
fFormatWidth(0)
{
UParseError parseError;
construct(status, parseError, &pattern, new DecimalFormatSymbols(symbols));
}
//------------------------------------------------------------------------------
// Constructs a DecimalFormat instance with the specified number format
// pattern and the number format symbols in the desired locale. The
// created instance owns the symbols.
void
DecimalFormat::construct(UErrorCode& status,
UParseError& parseErr,
const UnicodeString* pattern,
DecimalFormatSymbols* symbolsToAdopt)
{
fSymbols = symbolsToAdopt; // Do this BEFORE aborting on status failure!!!
// fDigitList = new DigitList(); // Do this BEFORE aborting on status failure!!!
fRoundingIncrement = NULL;
fRoundingDouble = 0.0;
fRoundingMode = kRoundHalfEven;
fPad = kPatternPadEscape;
fPadPosition = kPadBeforePrefix;
if (U_FAILURE(status))
return;
fPosPrefixPattern = fPosSuffixPattern = NULL;
fNegPrefixPattern = fNegSuffixPattern = NULL;
fMultiplier = 1;
fGroupingSize = 3;
fGroupingSize2 = 0;
fDecimalSeparatorAlwaysShown = FALSE;
fIsCurrencyFormat = FALSE;
fUseExponentialNotation = FALSE;
fMinExponentDigits = 0;
if (fSymbols == NULL)
{
fSymbols = new DecimalFormatSymbols(Locale::getDefault(), status);
/* test for NULL */
if (fSymbols == 0) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
}
UnicodeString str;
// Uses the default locale's number format pattern if there isn't
// one specified.
if (pattern == NULL)
{
int32_t len = 0;
UResourceBundle *resource = ures_open(NULL, Locale::getDefault().getName(), &status);
resource = ures_getByKey(resource, fgNumberPatterns, resource, &status);
const UChar *resStr = ures_getStringByIndex(resource, (int32_t)0, &len, &status);
str.setTo(TRUE, resStr, len);
pattern = &str;
ures_close(resource);
}
if (U_FAILURE(status))
{
return;
}
if (pattern->indexOf((UChar)kCurrencySign) >= 0) {
// If it looks like we are going to use a currency pattern
// then do the time consuming lookup.
if (symbolsToAdopt == NULL) {
setCurrencyForLocale(uloc_getDefault(), status);
} else {
setCurrencyForSymbols();
}
} else {
setCurrency(NULL, status);
}
applyPattern(*pattern, FALSE /*not localized*/,parseErr, status);
}
/**
* Sets our currency to be the default currency for the given locale.
*/
void DecimalFormat::setCurrencyForLocale(const char* locale, UErrorCode& ec) {
const UChar* c = NULL;
if (U_SUCCESS(ec)) {
// Trap an error in mapping locale to currency. If we can't
// map, then don't fail and set the currency to "".
UErrorCode ec2 = U_ZERO_ERROR;
UChar c[4];
ucurr_forLocale(locale, c, 4, &ec2);
}
setCurrency(c, ec);
}
//------------------------------------------------------------------------------
DecimalFormat::~DecimalFormat()
{
// delete fDigitList;
delete fPosPrefixPattern;
delete fPosSuffixPattern;
delete fNegPrefixPattern;
delete fNegSuffixPattern;
delete fCurrencyChoice;
delete fSymbols;
delete fRoundingIncrement;
}
//------------------------------------------------------------------------------
// copy constructor
DecimalFormat::DecimalFormat(const DecimalFormat &source)
: NumberFormat(source),
// fDigitList(NULL),
fPosPrefixPattern(NULL),
fPosSuffixPattern(NULL),
fNegPrefixPattern(NULL),
fNegSuffixPattern(NULL),
fCurrencyChoice(NULL),
fSymbols(NULL),
fRoundingIncrement(NULL)
{
*this = source;
}
//------------------------------------------------------------------------------
// assignment operator
// Note that fDigitList is not considered a significant part of the
// DecimalFormat because it's used as a buffer to process the numbers.
static void _copy_us_ptr(UnicodeString** pdest, const UnicodeString* source) {
if (source == NULL) {
delete *pdest;
*pdest = NULL;
} else if (*pdest == NULL) {
*pdest = new UnicodeString(*source);
} else {
**pdest = *source;
}
}
DecimalFormat&
DecimalFormat::operator=(const DecimalFormat& rhs)
{
if(this != &rhs) {
NumberFormat::operator=(rhs);
fPositivePrefix = rhs.fPositivePrefix;
fPositiveSuffix = rhs.fPositiveSuffix;
fNegativePrefix = rhs.fNegativePrefix;
fNegativeSuffix = rhs.fNegativeSuffix;
_copy_us_ptr(&fPosPrefixPattern, rhs.fPosPrefixPattern);
_copy_us_ptr(&fPosSuffixPattern, rhs.fPosSuffixPattern);
_copy_us_ptr(&fNegPrefixPattern, rhs.fNegPrefixPattern);
_copy_us_ptr(&fNegSuffixPattern, rhs.fNegSuffixPattern);
if (rhs.fCurrencyChoice == 0) {
delete fCurrencyChoice;
fCurrencyChoice = 0;
} else {
fCurrencyChoice = (ChoiceFormat*) rhs.fCurrencyChoice->clone();
}
if(rhs.fRoundingIncrement == NULL) {
delete fRoundingIncrement;
fRoundingIncrement = NULL;
}
else if(fRoundingIncrement == NULL) {
fRoundingIncrement = new DigitList(*rhs.fRoundingIncrement);
}
else {
*fRoundingIncrement = *rhs.fRoundingIncrement;
}
fRoundingDouble = rhs.fRoundingDouble;
fMultiplier = rhs.fMultiplier;
fGroupingSize = rhs.fGroupingSize;
fGroupingSize2 = rhs.fGroupingSize2;
fDecimalSeparatorAlwaysShown = rhs.fDecimalSeparatorAlwaysShown;
if(fSymbols == NULL) {
fSymbols = new DecimalFormatSymbols(*rhs.fSymbols);
} else {
*fSymbols = *rhs.fSymbols;
}
fUseExponentialNotation = rhs.fUseExponentialNotation;
fExponentSignAlwaysShown = rhs.fExponentSignAlwaysShown;
/*Bertrand A. D. Update 98.03.17*/
fIsCurrencyFormat = rhs.fIsCurrencyFormat;
/*end of Update*/
fMinExponentDigits = rhs.fMinExponentDigits;
// if (fDigitList == NULL)
// fDigitList = new DigitList();
/* sfb 990629 */
fFormatWidth = rhs.fFormatWidth;
fPad = rhs.fPad;
fPadPosition = rhs.fPadPosition;
/* end sfb */
fMinSignificantDigits = rhs.fMinSignificantDigits;
fMaxSignificantDigits = rhs.fMaxSignificantDigits;
fUseSignificantDigits = rhs.fUseSignificantDigits;
}
return *this;
}
//------------------------------------------------------------------------------
UBool
DecimalFormat::operator==(const Format& that) const
{
if (this == &that)
return TRUE;
// NumberFormat::operator== guarantees this cast is safe
const DecimalFormat* other = (DecimalFormat*)&that;
#ifdef FMT_DEBUG
// This code makes it easy to determine why two format objects that should
// be equal aren't.
UBool first = TRUE;
if (!NumberFormat::operator==(that)) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
debug("NumberFormat::!=");
}
if (!((fPosPrefixPattern == other->fPosPrefixPattern && // both null
fPositivePrefix == other->fPositivePrefix)
|| (fPosPrefixPattern != 0 && other->fPosPrefixPattern != 0 &&
*fPosPrefixPattern == *other->fPosPrefixPattern))) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
debug("Pos Prefix !=");
}
if (!((fPosSuffixPattern == other->fPosSuffixPattern && // both null
fPositiveSuffix == other->fPositiveSuffix)
|| (fPosSuffixPattern != 0 && other->fPosSuffixPattern != 0 &&
*fPosSuffixPattern == *other->fPosSuffixPattern))) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
debug("Pos Suffix !=");
}
if (!((fNegPrefixPattern == other->fNegPrefixPattern && // both null
fNegativePrefix == other->fNegativePrefix)
|| (fNegPrefixPattern != 0 && other->fNegPrefixPattern != 0 &&
*fNegPrefixPattern == *other->fNegPrefixPattern))) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
debug("Neg Prefix ");
if (fNegPrefixPattern == NULL) {
debug("NULL(");
debugout(fNegativePrefix);
debug(")");
} else {
debugout(*fNegPrefixPattern);
}
debug(" != ");
if (other->fNegPrefixPattern == NULL) {
debug("NULL(");
debugout(other->fNegativePrefix);
debug(")");
} else {
debugout(*other->fNegPrefixPattern);
}
}
if (!((fNegSuffixPattern == other->fNegSuffixPattern && // both null
fNegativeSuffix == other->fNegativeSuffix)
|| (fNegSuffixPattern != 0 && other->fNegSuffixPattern != 0 &&
*fNegSuffixPattern == *other->fNegSuffixPattern))) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
debug("Neg Suffix ");
if (fNegSuffixPattern == NULL) {
debug("NULL(");
debugout(fNegativeSuffix);
debug(")");
} else {
debugout(*fNegSuffixPattern);
}
debug(" != ");
if (other->fNegSuffixPattern == NULL) {
debug("NULL(");
debugout(other->fNegativeSuffix);
debug(")");
} else {
debugout(*other->fNegSuffixPattern);
}
}
if (!((fRoundingIncrement == other->fRoundingIncrement) // both null
|| (fRoundingIncrement != NULL &&
other->fRoundingIncrement != NULL &&
*fRoundingIncrement == *other->fRoundingIncrement))) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
debug("Rounding Increment !=");
}
if (fMultiplier != other->fMultiplier) {
if (first) { printf("[ "); first = FALSE; }
printf("Multiplier %ld != %ld", fMultiplier, other->fMultiplier);
}
if (fGroupingSize != other->fGroupingSize) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
printf("Grouping Size %ld != %ld", fGroupingSize, other->fGroupingSize);
}
if (fGroupingSize2 != other->fGroupingSize2) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
printf("Secondary Grouping Size %ld != %ld", fGroupingSize2, other->fGroupingSize2);
}
if (fDecimalSeparatorAlwaysShown != other->fDecimalSeparatorAlwaysShown) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
printf("Dec Sep Always %d != %d", fDecimalSeparatorAlwaysShown, other->fDecimalSeparatorAlwaysShown);
}
if (fUseExponentialNotation != other->fUseExponentialNotation) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
debug("Use Exp !=");
}
if (!(!fUseExponentialNotation ||
fMinExponentDigits != other->fMinExponentDigits)) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
debug("Exp Digits !=");
}
if (*fSymbols != *(other->fSymbols)) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
debug("Symbols !=");
}
// TODO Add debug stuff for significant digits here
if (!first) { printf(" ]"); }
#endif
return (NumberFormat::operator==(that) &&
((fPosPrefixPattern == other->fPosPrefixPattern && // both null
fPositivePrefix == other->fPositivePrefix)
|| (fPosPrefixPattern != 0 && other->fPosPrefixPattern != 0 &&
*fPosPrefixPattern == *other->fPosPrefixPattern)) &&
((fPosSuffixPattern == other->fPosSuffixPattern && // both null
fPositiveSuffix == other->fPositiveSuffix)
|| (fPosSuffixPattern != 0 && other->fPosSuffixPattern != 0 &&
*fPosSuffixPattern == *other->fPosSuffixPattern)) &&
((fNegPrefixPattern == other->fNegPrefixPattern && // both null
fNegativePrefix == other->fNegativePrefix)
|| (fNegPrefixPattern != 0 && other->fNegPrefixPattern != 0 &&
*fNegPrefixPattern == *other->fNegPrefixPattern)) &&
((fNegSuffixPattern == other->fNegSuffixPattern && // both null
fNegativeSuffix == other->fNegativeSuffix)
|| (fNegSuffixPattern != 0 && other->fNegSuffixPattern != 0 &&
*fNegSuffixPattern == *other->fNegSuffixPattern)) &&
((fRoundingIncrement == other->fRoundingIncrement) // both null
|| (fRoundingIncrement != NULL &&
other->fRoundingIncrement != NULL &&
*fRoundingIncrement == *other->fRoundingIncrement)) &&
fMultiplier == other->fMultiplier &&
fGroupingSize == other->fGroupingSize &&
fGroupingSize2 == other->fGroupingSize2 &&
fDecimalSeparatorAlwaysShown == other->fDecimalSeparatorAlwaysShown &&
fUseExponentialNotation == other->fUseExponentialNotation &&
(!fUseExponentialNotation ||
fMinExponentDigits == other->fMinExponentDigits) &&
*fSymbols == *(other->fSymbols) &&
fUseSignificantDigits == other->fUseSignificantDigits &&
(!fUseSignificantDigits ||
(fMinSignificantDigits == other->fMinSignificantDigits &&
fMaxSignificantDigits == other->fMaxSignificantDigits)));
}
//------------------------------------------------------------------------------
Format*
DecimalFormat::clone() const
{
return new DecimalFormat(*this);
}
//------------------------------------------------------------------------------
UnicodeString&
DecimalFormat::format(int32_t number,
UnicodeString& appendTo,
FieldPosition& fieldPosition) const
{
return format((int64_t)number, appendTo, fieldPosition);
}
//------------------------------------------------------------------------------
UnicodeString&
DecimalFormat::format(int64_t number,
UnicodeString& appendTo,
FieldPosition& fieldPosition) const
{
DigitList digits;
// Clears field positions.
fieldPosition.setBeginIndex(0);
fieldPosition.setEndIndex(0);
// If we are to do rounding, we need to move into the BigDecimal
// domain in order to do divide/multiply correctly.
// ||
// In general, long values always represent real finite numbers, so
// we don't have to check for +/- Infinity or NaN. However, there
// is one case we have to be careful of: The multiplier can push
// a number near MIN_VALUE or MAX_VALUE outside the legal range. We
// check for this before multiplying, and if it happens we use doubles
// instead, trading off accuracy for range.
if (fRoundingIncrement != NULL
|| (fMultiplier != 0 && (number > (U_INT64_MAX / fMultiplier)
|| number < (U_INT64_MIN / fMultiplier))))
{
digits.set(((double)number) * fMultiplier,
precision(FALSE),
!fUseExponentialNotation && !areSignificantDigitsUsed());
}
else
{
digits.set(number * fMultiplier, precision(TRUE));
}
return subformat(appendTo, fieldPosition, digits, TRUE);
}
//------------------------------------------------------------------------------
UnicodeString&
DecimalFormat::format( double number,
UnicodeString& appendTo,
FieldPosition& fieldPosition) const
{
// Clears field positions.
fieldPosition.setBeginIndex(0);
fieldPosition.setEndIndex(0);
// Special case for NaN, sets the begin and end index to be the
// the string length of localized name of NaN.
if (uprv_isNaN(number))
{
if (fieldPosition.getField() == NumberFormat::kIntegerField)
fieldPosition.setBeginIndex(appendTo.length());
appendTo += getConstSymbol(DecimalFormatSymbols::kNaNSymbol);
if (fieldPosition.getField() == NumberFormat::kIntegerField)
fieldPosition.setEndIndex(appendTo.length());
addPadding(appendTo, fieldPosition, 0, 0);
return appendTo;
}
/* Detecting whether a double is negative is easy with the exception of
* the value -0.0. This is a double which has a zero mantissa (and
* exponent), but a negative sign bit. It is semantically distinct from
* a zero with a positive sign bit, and this distinction is important
* to certain kinds of computations. However, it's a little tricky to
* detect, since (-0.0 == 0.0) and !(-0.0 < 0.0). How then, you may
* ask, does it behave distinctly from +0.0? Well, 1/(-0.0) ==
* -Infinity. Proper detection of -0.0 is needed to deal with the
* issues raised by bugs 4106658, 4106667, and 4147706. Liu 7/6/98.
*/
UBool isNegative = uprv_isNegative(number);
// Do this BEFORE checking to see if value is infinite! Sets the
// begin and end index to be length of the string composed of
// localized name of Infinite and the positive/negative localized
// signs.
number *= fMultiplier;
// Apply rounding after multiplier
if (fRoundingIncrement != NULL) {
if (isNegative) // For rounding in the correct direction
number = -number;
number = fRoundingDouble
* round(number / fRoundingDouble, fRoundingMode, isNegative);
if (isNegative)
number = -number;
}
// Special case for INFINITE,
if (uprv_isInfinite(number))
{
int32_t prefixLen = appendAffix(appendTo, number, isNegative, TRUE);
if (fieldPosition.getField() == NumberFormat::kIntegerField)
fieldPosition.setBeginIndex(appendTo.length());
appendTo += getConstSymbol(DecimalFormatSymbols::kInfinitySymbol);
if (fieldPosition.getField() == NumberFormat::kIntegerField)
fieldPosition.setEndIndex(appendTo.length());
int32_t suffixLen = appendAffix(appendTo, number, isNegative, FALSE);
addPadding(appendTo, fieldPosition, prefixLen, suffixLen);
return appendTo;
}
DigitList digits;
// This detects negativity too.
digits.set(number, precision(FALSE),
!fUseExponentialNotation && !areSignificantDigitsUsed());
return subformat(appendTo, fieldPosition, digits, FALSE);
}
/**
* Round a double value to the nearest integer according to the
* given mode.
* @param a the absolute value of the number to be rounded
* @param mode a BigDecimal rounding mode
* @param isNegative true if the number to be rounded is negative
* @return the absolute value of the rounded result
*/
double DecimalFormat::round(double a, ERoundingMode mode, UBool isNegative) {
switch (mode) {
case kRoundCeiling:
return isNegative ? uprv_floor(a) : uprv_ceil(a);
case kRoundFloor:
return isNegative ? uprv_ceil(a) : uprv_floor(a);
case kRoundDown:
return uprv_floor(a);
case kRoundUp:
return uprv_ceil(a);
case kRoundHalfEven:
{
double f = uprv_floor(a);
if ((a - f) != 0.5) {
return uprv_floor(a + 0.5);
}
double g = f / 2.0;
return (g == uprv_floor(g)) ? f : (f + 1.0);
}
case kRoundHalfDown:
return ((a - uprv_floor(a)) <= 0.5) ? uprv_floor(a) : uprv_ceil(a);
case kRoundHalfUp:
return ((a - uprv_floor(a)) < 0.5) ? uprv_floor(a) : uprv_ceil(a);
}
return 1.0;
}
UnicodeString&
DecimalFormat::format( const Formattable& obj,
UnicodeString& appendTo,
FieldPosition& fieldPosition,
UErrorCode& status) const
{
return NumberFormat::format(obj, appendTo, fieldPosition, status);
}
/**
* Return true if a grouping separator belongs at the given
* position, based on whether grouping is in use and the values of
* the primary and secondary grouping interval.
* @param pos the number of integer digits to the right of
* the current position. Zero indicates the position after the
* rightmost integer digit.
* @return true if a grouping character belongs at the current
* position.
*/
UBool DecimalFormat::isGroupingPosition(int32_t pos) const {
UBool result = FALSE;
if (isGroupingUsed() && (pos > 0) && (fGroupingSize > 0)) {
if ((fGroupingSize2 > 0) && (pos > fGroupingSize)) {
result = ((pos - fGroupingSize) % fGroupingSize2) == 0;
} else {
result = pos % fGroupingSize == 0;
}
}
return result;
}
//------------------------------------------------------------------------------
/**
* Complete the formatting of a finite number. On entry, the fDigitList must
* be filled in with the correct digits.
*/
UnicodeString&
DecimalFormat::subformat(UnicodeString& appendTo,
FieldPosition& fieldPosition,
DigitList& digits,
UBool isInteger) const
{
// Gets the localized zero Unicode character.
UChar32 zero = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
int32_t zeroDelta = zero - '0'; // '0' is the DigitList representation of zero
const UnicodeString *grouping ;
if(fIsCurrencyFormat) {
grouping = &getConstSymbol(DecimalFormatSymbols::kMonetaryGroupingSeparatorSymbol);
}else{
grouping = &getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol);
}
const UnicodeString *decimal;
if(fIsCurrencyFormat) {
decimal = &getConstSymbol(DecimalFormatSymbols::kMonetarySeparatorSymbol);
} else {
decimal = &getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
}
UBool useSigDig = areSignificantDigitsUsed();
int32_t maxIntDig = getMaximumIntegerDigits();
int32_t minIntDig = getMinimumIntegerDigits();
/* Per bug 4147706, DecimalFormat must respect the sign of numbers which
* format as zero. This allows sensible computations and preserves
* relations such as signum(1/x) = signum(x), where x is +Infinity or
* -Infinity. Prior to this fix, we always formatted zero values as if
* they were positive. Liu 7/6/98.
*/
if (digits.isZero())
{
digits.fDecimalAt = digits.fCount = 0; // Normalize
}
// Appends the prefix.
double doubleValue = digits.getDouble();
int32_t prefixLen = appendAffix(appendTo, doubleValue, !digits.fIsPositive, TRUE);
if (fUseExponentialNotation)
{
// Record field information for caller.
if (fieldPosition.getField() == NumberFormat::kIntegerField)
{
fieldPosition.setBeginIndex(appendTo.length());
fieldPosition.setEndIndex(-1);
}
else if (fieldPosition.getField() == NumberFormat::kFractionField)
{
fieldPosition.setBeginIndex(-1);
}
int32_t minFracDig = 0;
if (useSigDig) {
maxIntDig = minIntDig = 1;
minFracDig = getMinimumSignificantDigits() - 1;
} else {
minFracDig = getMinimumFractionDigits();
if (maxIntDig > kMaxScientificIntegerDigits) {
maxIntDig = 1;
if (maxIntDig < minIntDig) {
maxIntDig = minIntDig;
}
}
if (maxIntDig > minIntDig) {
minIntDig = 1;
}
}
// Minimum integer digits are handled in exponential format by
// adjusting the exponent. For example, 0.01234 with 3 minimum
// integer digits is "123.4E-4".
// Maximum integer digits are interpreted as indicating the
// repeating range. This is useful for engineering notation, in
// which the exponent is restricted to a multiple of 3. For
// example, 0.01234 with 3 maximum integer digits is "12.34e-3".
// If maximum integer digits are defined and are larger than
// minimum integer digits, then minimum integer digits are
// ignored.
int32_t exponent = digits.fDecimalAt;
if (maxIntDig > 1 && maxIntDig != minIntDig) {
// A exponent increment is defined; adjust to it.
exponent = (exponent > 0) ? (exponent - 1) / maxIntDig
: (exponent / maxIntDig) - 1;
exponent *= maxIntDig;
} else {
// No exponent increment is defined; use minimum integer digits.
// If none is specified, as in "#E0", generate 1 integer digit.
exponent -= (minIntDig > 0 || minFracDig > 0)
? minIntDig : 1;
}
// We now output a minimum number of digits, and more if there
// are more digits, up to the maximum number of digits. We
// place the decimal point after the "integer" digits, which
// are the first (decimalAt - exponent) digits.
int32_t minimumDigits = minIntDig + minFracDig;
// The number of integer digits is handled specially if the number
// is zero, since then there may be no digits.
int32_t integerDigits = digits.isZero() ? minIntDig :
digits.fDecimalAt - exponent;
int32_t totalDigits = digits.fCount;
if (minimumDigits > totalDigits)
totalDigits = minimumDigits;
if (integerDigits > totalDigits)
totalDigits = integerDigits;
// totalDigits records total number of digits needs to be processed
int32_t i;
for (i=0; i<totalDigits; ++i)
{
if (i == integerDigits)
{
// Record field information for caller.
if (fieldPosition.getField() == NumberFormat::kIntegerField)
fieldPosition.setEndIndex(appendTo.length());
appendTo += *decimal;
// Record field information for caller.
if (fieldPosition.getField() == NumberFormat::kFractionField)
fieldPosition.setBeginIndex(appendTo.length());
}
// Restores the digit character or pads the buffer with zeros.
UChar32 c = (UChar32)((i < digits.fCount) ?
(digits.fDigits[i] + zeroDelta) :
zero);
appendTo += c;
}
// Record field information
if (fieldPosition.getField() == NumberFormat::kIntegerField)
{
if (fieldPosition.getEndIndex() < 0)
fieldPosition.setEndIndex(appendTo.length());
}
else if (fieldPosition.getField() == NumberFormat::kFractionField)
{
if (fieldPosition.getBeginIndex() < 0)
fieldPosition.setBeginIndex(appendTo.length());
fieldPosition.setEndIndex(appendTo.length());
}
// The exponent is output using the pattern-specified minimum
// exponent digits. There is no maximum limit to the exponent
// digits, since truncating the exponent would appendTo in an
// unacceptable inaccuracy.
appendTo += getConstSymbol(DecimalFormatSymbols::kExponentialSymbol);
// For zero values, we force the exponent to zero. We
// must do this here, and not earlier, because the value
// is used to determine integer digit count above.
if (digits.isZero())
exponent = 0;
if (exponent < 0) {
appendTo += getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
} else if (fExponentSignAlwaysShown) {
appendTo += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
}
DigitList expDigits;
expDigits.set(exponent);
{
int expDig = fMinExponentDigits;
if (fUseExponentialNotation && expDig < 1) {
expDig = 1;
}
for (i=expDigits.fDecimalAt; i<expDig; ++i)
appendTo += (zero);
}
for (i=0; i<expDigits.fDecimalAt; ++i)
{
UChar32 c = (UChar32)((i < expDigits.fCount) ?
(expDigits.fDigits[i] + zeroDelta) : zero);
appendTo += c;
}
}
else // Not using exponential notation
{
// Record field information for caller.
if (fieldPosition.getField() == NumberFormat::kIntegerField)
fieldPosition.setBeginIndex(appendTo.length());
int32_t sigCount = 0;
int32_t minSigDig = getMinimumSignificantDigits();
int32_t maxSigDig = getMaximumSignificantDigits();
if (!useSigDig) {
minSigDig = 0;
maxSigDig = INT32_MAX;
}
// Output the integer portion. Here 'count' is the total
// number of integer digits we will display, including both
// leading zeros required to satisfy getMinimumIntegerDigits,
// and actual digits present in the number.
int32_t count = useSigDig ?
_max(1, digits.fDecimalAt) : minIntDig;
if (digits.fDecimalAt > 0 && count < digits.fDecimalAt) {
count = digits.fDecimalAt;
}
// Handle the case where getMaximumIntegerDigits() is smaller
// than the real number of integer digits. If this is so, we
// output the least significant max integer digits. For example,
// the value 1997 printed with 2 max integer digits is just "97".
int32_t digitIndex = 0; // Index into digitList.fDigits[]
if (count > maxIntDig && maxIntDig >= 0) {
count = maxIntDig;
digitIndex = digits.fDecimalAt - count;
}
int32_t sizeBeforeIntegerPart = appendTo.length();
int32_t i;
for (i=count-1; i>=0; --i)
{
if (i < digits.fDecimalAt && digitIndex < digits.fCount &&
sigCount < maxSigDig) {
// Output a real digit
appendTo += ((UChar32)(digits.fDigits[digitIndex++] + zeroDelta));
++sigCount;
}
else
{
// Output a zero (leading or trailing)
appendTo += (zero);
if (sigCount > 0) {
++sigCount;
}
}
// Output grouping separator if necessary.
if (isGroupingPosition(i)) {
appendTo.append(*grouping);
}
}
// Record field information for caller.
if (fieldPosition.getField() == NumberFormat::kIntegerField)
fieldPosition.setEndIndex(appendTo.length());
// Determine whether or not there are any printable fractional
// digits. If we've used up the digits we know there aren't.
UBool fractionPresent = (!isInteger && digitIndex < digits.fCount) ||
(useSigDig ? (sigCount < minSigDig) : (getMinimumFractionDigits() > 0));
// If there is no fraction present, and we haven't printed any
// integer digits, then print a zero. Otherwise we won't print
// _any_ digits, and we won't be able to parse this string.
if (!fractionPresent && appendTo.length() == sizeBeforeIntegerPart)
appendTo += (zero);
// Output the decimal separator if we always do so.
if (fDecimalSeparatorAlwaysShown || fractionPresent)
appendTo += *decimal;
// Record field information for caller.
if (fieldPosition.getField() == NumberFormat::kFractionField)
fieldPosition.setBeginIndex(appendTo.length());
count = useSigDig ? INT32_MAX : getMaximumFractionDigits();
if (useSigDig && (sigCount == maxSigDig ||
(sigCount >= minSigDig && digitIndex == digits.fCount))) {
count = 0;
}
for (i=0; i < count; ++i) {
// Here is where we escape from the loop. We escape
// if we've output the maximum fraction digits
// (specified in the for expression above). We also
// stop when we've output the minimum digits and
// either: we have an integer, so there is no
// fractional stuff to display, or we're out of
// significant digits.
if (!useSigDig && i >= getMinimumFractionDigits() &&
(isInteger || digitIndex >= digits.fCount)) {
break;
}
// Output leading fractional zeros. These are zeros
// that come after the decimal but before any
// significant digits. These are only output if
// abs(number being formatted) < 1.0.
if (-1-i > (digits.fDecimalAt-1)) {
appendTo += zero;
continue;
}
// Output a digit, if we have any precision left, or a
// zero if we don't. We don't want to output noise digits.
if (!isInteger && digitIndex < digits.fCount) {
appendTo += ((UChar32)(digits.fDigits[digitIndex++] + zeroDelta));
} else {
appendTo += zero;
}
// If we reach the maximum number of significant
// digits, or if we output all the real digits and
// reach the minimum, then we are done.
++sigCount;
if (useSigDig &&
(sigCount == maxSigDig ||
(digitIndex == digits.fCount && sigCount >= minSigDig))) {
break;
}
}
// Record field information for caller.
if (fieldPosition.getField() == NumberFormat::kFractionField)
fieldPosition.setEndIndex(appendTo.length());
}
int32_t suffixLen = appendAffix(appendTo, doubleValue, !digits.fIsPositive, FALSE);
addPadding(appendTo, fieldPosition, prefixLen, suffixLen);
return appendTo;
}
/**
* Inserts the character fPad as needed to expand result to fFormatWidth.
* @param result the string to be padded
*/
void DecimalFormat::addPadding(UnicodeString& appendTo,
FieldPosition& fieldPosition,
int32_t prefixLen,
int32_t suffixLen) const
{
if (fFormatWidth > 0) {
int32_t len = fFormatWidth - appendTo.length();
if (len > 0) {
UnicodeString padding;
for (int32_t i=0; i<len; ++i) {
padding += fPad;
}
switch (fPadPosition) {
case kPadAfterPrefix:
appendTo.insert(prefixLen, padding);
break;
case kPadBeforePrefix:
appendTo.insert(0, padding);
break;
case kPadBeforeSuffix:
appendTo.insert(appendTo.length() - suffixLen, padding);
break;
case kPadAfterSuffix:
appendTo += padding;
break;
}
if (fPadPosition == kPadBeforePrefix ||
fPadPosition == kPadAfterPrefix) {
fieldPosition.setBeginIndex(len + fieldPosition.getBeginIndex());
fieldPosition.setEndIndex(len + fieldPosition.getEndIndex());
}
}
}
}
//------------------------------------------------------------------------------
void
DecimalFormat::parse(const UnicodeString& text,
Formattable& result,
UErrorCode& status) const
{
NumberFormat::parse(text, result, status);
}
void
DecimalFormat::parse(const UnicodeString& text,
Formattable& result,
ParsePosition& parsePosition) const {
parse(text, result, parsePosition, FALSE);
}
Formattable& DecimalFormat::parseCurrency(const UnicodeString& text,
Formattable& result,
ParsePosition& pos) const {
parse(text, result, pos, TRUE);
return result;
}
/**
* Parses the given text as either a number or a currency amount.
* @param text the string to parse
* @param result output parameter for the result
* @param parsePosition input-output position; on input, the
* position within text to match; must have 0 <= pos.getIndex() <
* text.length(); on output, the position after the last matched
* character. If the parse fails, the position in unchanged upon
* output.
* @param parseCurrency if true, a currency amount is parsed;
* otherwise a Number is parsed
*/
void DecimalFormat::parse(const UnicodeString& text,
Formattable& result,
ParsePosition& parsePosition,
UBool parseCurrency) const {
int32_t backup;
int32_t i = backup = parsePosition.getIndex();
// Handle NaN as a special case:
// Skip padding characters, if around prefix
if (fFormatWidth > 0 && (fPadPosition == kPadBeforePrefix ||
fPadPosition == kPadAfterPrefix)) {
i = skipPadding(text, i);
}
// If the text is composed of the representation of NaN, returns NaN.length
const UnicodeString *nan = &getConstSymbol(DecimalFormatSymbols::kNaNSymbol);
int32_t nanLen = (text.compare(i, nan->length(), *nan)
? 0 : nan->length());
if (nanLen) {
i += nanLen;
if (fFormatWidth > 0 && (fPadPosition == kPadBeforeSuffix ||
fPadPosition == kPadAfterSuffix)) {
i = skipPadding(text, i);
}
parsePosition.setIndex(i);
result.setDouble(uprv_getNaN());
return;
}
// NaN parse failed; start over
i = backup;
// status is used to record whether a number is infinite.
UBool status[fgStatusLength];
UChar curbuf[4];
UChar* currency = parseCurrency ? curbuf : NULL;
DigitList digits;
if (!subparse(text, parsePosition, digits, status, currency)) {
parsePosition.setIndex(backup);
return;
}
// Handle infinity
if (status[fgStatusInfinite]) {
double inf = uprv_getInfinity();
result.setDouble(digits.fIsPositive ? inf : -inf);
}
else {
// Do as much of the multiplier conversion as possible without
// losing accuracy.
int32_t mult = fMultiplier; // Don't modify this.multiplier
while (mult % 10 == 0) {
mult /= 10;
--digits.fDecimalAt;
}
// Handle integral values. We want to return the most
// parsimonious type that will accommodate all of the result's
// precision. We therefore only return a long if the result fits
// entirely within a long (taking into account the multiplier) --
// otherwise we fall through and return a double. When more
// numeric types are supported by Formattable (e.g., 64-bit
// integers, bignums) we will extend this logic to include them.
if (digits.fitsIntoLong(isParseIntegerOnly())) {
int32_t n = digits.getLong();
if (n % mult == 0) {
result.setLong(n / mult);
}
else { // else handle the remainder
result.setDouble(((double)n) / mult);
}
}
else if (digits.fitsIntoInt64(isParseIntegerOnly())) {
int64_t n = digits.getInt64();
if (n % mult == 0) {
result.setInt64(n / mult);
}
else { // else handle the remainder
result.setDouble(((double)n) / mult);
}
}
else {
// Handle non-integral or very large values
// Dividing by one is okay and not that costly.
result.setDouble(digits.getDouble() / mult);
}
}
if (parseCurrency) {
UErrorCode ec = U_ZERO_ERROR;
Formattable n(result);
result.adoptObject(new CurrencyAmount(n, curbuf, ec));
U_ASSERT(U_SUCCESS(ec)); // should always succeed
}
}
/*
This is an old implimentation that was preparing for 64-bit numbers in ICU.
It is very slow, and 64-bit numbers are not ANSI-C compatible. This code
is here if we change our minds.
^^^ what is this referring to? remove? ^^^ [alan]
*/
/**
* Parse the given text into a number. The text is parsed beginning at
* parsePosition, until an unparseable character is seen.
* @param text the string to parse.
* @param parsePosition The position at which to being parsing. Upon
* return, the first unparsed character.
* @param digits the DigitList to set to the parsed value.
* @param status output param containing boolean status flags indicating
* whether the value was infinite and whether it was positive.
* @param currency return value for parsed currency, for generic
* currency parsing mode, or NULL for normal parsing. In generic
* currency parsing mode, any currency is parsed, not just the
* currency that this formatter is set to.
*/
UBool DecimalFormat::subparse(const UnicodeString& text, ParsePosition& parsePosition,
DigitList& digits, UBool* status,
UChar* currency) const
{
int32_t position = parsePosition.getIndex();
int32_t oldStart = position;
// Match padding before prefix
if (fFormatWidth > 0 && fPadPosition == kPadBeforePrefix) {
position = skipPadding(text, position);
}
// Match positive and negative prefixes; prefer longest match.
int32_t posMatch = compareAffix(text, position, FALSE, TRUE, currency);
int32_t negMatch = compareAffix(text, position, TRUE, TRUE, currency);
if (posMatch >= 0 && negMatch >= 0) {
if (posMatch > negMatch) {
negMatch = -1;
} else if (negMatch > posMatch) {
posMatch = -1;
}
}
if (posMatch >= 0) {
position += posMatch;
} else if (negMatch >= 0) {
position += negMatch;
} else {
parsePosition.setErrorIndex(position);
return FALSE;
}
// Match padding before prefix
if (fFormatWidth > 0 && fPadPosition == kPadAfterPrefix) {
position = skipPadding(text, position);
}
// process digits or Inf, find decimal position
const UnicodeString *inf = &getConstSymbol(DecimalFormatSymbols::kInfinitySymbol);
int32_t infLen = (text.compare(position, inf->length(), *inf)
? 0 : inf->length());
position += infLen; // infLen is non-zero when it does equal to infinity
status[fgStatusInfinite] = (UBool)infLen;
if (!infLen)
{
// We now have a string of digits, possibly with grouping symbols,
// and decimal points. We want to process these into a DigitList.
// We don't want to put a bunch of leading zeros into the DigitList
// though, so we keep track of the location of the decimal point,
// put only significant digits into the DigitList, and adjust the
// exponent as needed.
digits.fDecimalAt = digits.fCount = 0;
UChar32 zero = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
const UnicodeString *decimal;
if(fIsCurrencyFormat) {
decimal = &getConstSymbol(DecimalFormatSymbols::kMonetarySeparatorSymbol);
} else {
decimal = &getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
}
const UnicodeString *grouping = &getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol);
UBool sawDecimal = FALSE;
UBool sawDigit = FALSE;
int32_t backup = -1;
int32_t digit;
int32_t textLength = text.length(); // One less pointer to follow
int32_t groupingLen = grouping->length();
int32_t decimalLen = decimal->length();
// We have to track digitCount ourselves, because digits.fCount will
// pin when the maximum allowable digits is reached.
int32_t digitCount = 0;
for (; position < textLength; )
{
UChar32 ch = text.char32At(position);
/* We recognize all digit ranges, not only the Latin digit range
* '0'..'9'. We do so by using the Character.digit() method,
* which converts a valid Unicode digit to the range 0..9.
*
* The character 'ch' may be a digit. If so, place its value
* from 0 to 9 in 'digit'. First try using the locale digit,
* which may or MAY NOT be a standard Unicode digit range. If
* this fails, try using the standard Unicode digit ranges by
* calling Character.digit(). If this also fails, digit will
* have a value outside the range 0..9.
*/
digit = ch - zero;
if (digit < 0 || digit > 9)
{
digit = u_charDigitValue(ch);
}
if (digit > 0 && digit <= 9)
{
// Cancel out backup setting (see grouping handler below)
backup = -1;
sawDigit = TRUE;
// output a regular non-zero digit.
++digitCount;
digits.append((char)(digit + '0'));
position += U16_LENGTH(ch);
}
else if (digit == 0)
{
// Cancel out backup setting (see grouping handler below)
backup = -1;
sawDigit = TRUE;
// Check for leading zeros
if (digits.fCount != 0)
{
// output a regular zero digit.
++digitCount;
digits.append((char)(digit + '0'));
}
else if (sawDecimal)
{
// If we have seen the decimal, but no significant digits yet,
// then we account for leading zeros by decrementing the
// digits.fDecimalAt into negative values.
--digits.fDecimalAt;
}
// else ignore leading zeros in integer part of number.
position += U16_LENGTH(ch);
}
else if (!text.compare(position, groupingLen, *grouping) && isGroupingUsed())
{
// Ignore grouping characters, if we are using them, but require
// that they be followed by a digit. Otherwise we backup and
// reprocess them.
backup = position;
position += groupingLen;
}
else if (!text.compare(position, decimalLen, *decimal) && !isParseIntegerOnly() && !sawDecimal)
{
// If we're only parsing integers, or if we ALREADY saw the
// decimal, then don't parse this one.
digits.fDecimalAt = digitCount; // Not digits.fCount!
sawDecimal = TRUE;
position += decimalLen;
}
else {
const UnicodeString *tmp;
tmp = &getConstSymbol(DecimalFormatSymbols::kExponentialSymbol);
if (!text.caseCompare(position, tmp->length(), *tmp, U_FOLD_CASE_DEFAULT)) // error code is set below if !sawDigit
{
// Parse sign, if present
int32_t pos = position + tmp->length();
DigitList exponentDigits;
if (pos < textLength)
{
tmp = &getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
if (!text.compare(pos, tmp->length(), *tmp))
{
pos += tmp->length();
}
else {
tmp = &getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
if (!text.compare(pos, tmp->length(), *tmp))
{
pos += tmp->length();
exponentDigits.fIsPositive = FALSE;
}
}
}
while (pos < textLength) {
ch = text[(int32_t)pos];
digit = ch - zero;
if (digit < 0 || digit > 9) {
digit = u_charDigitValue(ch);
}
if (0 <= digit && digit <= 9) {
++pos;
exponentDigits.append((char)(digit + '0'));
} else {
break;
}
}
if (exponentDigits.fCount > 0) {
exponentDigits.fDecimalAt = exponentDigits.fCount;
digits.fDecimalAt += exponentDigits.getLong();
position = pos; // Advance past the exponent
}
break; // Whether we fail or succeed, we exit this loop
}
else {
break;
}
}
}
if (backup != -1)
{
position = backup;
}
// If there was no decimal point we have an integer
if (!sawDecimal)
{
digits.fDecimalAt += digitCount; // Not digits.fCount!
}
// If none of the text string was recognized. For example, parse
// "x" with pattern "#0.00" (return index and error index both 0)
// parse "$" with pattern "$#0.00". (return index 0 and error index
// 1).
if (!sawDigit && digitCount == 0) {
parsePosition.setIndex(oldStart);
parsePosition.setErrorIndex(oldStart);
return FALSE;
}
}
// Match padding before suffix
if (fFormatWidth > 0 && fPadPosition == kPadBeforeSuffix) {
position = skipPadding(text, position);
}
// Match positive and negative suffixes; prefer longest match.
if (posMatch >= 0) {
posMatch = compareAffix(text, position, FALSE, FALSE, currency);
}
if (negMatch >= 0) {
negMatch = compareAffix(text, position, TRUE, FALSE, currency);
}
if (posMatch >= 0 && negMatch >= 0) {
if (posMatch > negMatch) {
negMatch = -1;
} else if (negMatch > posMatch) {
posMatch = -1;
}
}
// Fail if neither or both
if ((posMatch >= 0) == (negMatch >= 0)) {
parsePosition.setErrorIndex(position);
return FALSE;
}
position += (posMatch>=0 ? posMatch : negMatch);
// Match padding before suffix
if (fFormatWidth > 0 && fPadPosition == kPadAfterSuffix) {
position = skipPadding(text, position);
}
parsePosition.setIndex(position);
digits.fIsPositive = (posMatch >= 0);
if(parsePosition.getIndex() == oldStart)
{
parsePosition.setErrorIndex(position);
return FALSE;
}
return TRUE;
}
/**
* Starting at position, advance past a run of pad characters, if any.
* Return the index of the first character after position that is not a pad
* character. Result is >= position.
*/
int32_t DecimalFormat::skipPadding(const UnicodeString& text, int32_t position) const {
int32_t padLen = U16_LENGTH(fPad);
while (position < text.length() &&
text.char32At(position) == fPad) {
position += padLen;
}
return position;
}
/**
* Return the length matched by the given affix, or -1 if none.
* Runs of white space in the affix, match runs of white space in
* the input. Pattern white space and input white space are
* determined differently; see code.
* @param text input text
* @param pos offset into input at which to begin matching
* @param isNegative
* @param isPrefix
* @param currency return value for parsed currency, for generic
* currency parsing mode, or null for normal parsing. In generic
* currency parsing mode, any currency is parsed, not just the
* currency that this formatter is set to.
* @return length of input that matches, or -1 if match failure
*/
int32_t DecimalFormat::compareAffix(const UnicodeString& text,
int32_t pos,
UBool isNegative,
UBool isPrefix,
UChar* currency) const {
if (fCurrencyChoice != NULL || currency != NULL) {
if (isPrefix) {
return compareComplexAffix(isNegative ? *fNegPrefixPattern : *fPosPrefixPattern,
text, pos, currency);
} else {
return compareComplexAffix(isNegative ? *fNegSuffixPattern : *fPosSuffixPattern,
text, pos, currency);
}
}
if (isPrefix) {
return compareSimpleAffix(isNegative ? fNegativePrefix : fPositivePrefix,
text, pos);
} else {
return compareSimpleAffix(isNegative ? fNegativeSuffix : fPositiveSuffix,
text, pos);
}
}
/**
* Return the length matched by the given affix, or -1 if none.
* Runs of white space in the affix, match runs of white space in
* the input. Pattern white space and input white space are
* determined differently; see code.
* @param affix pattern string, taken as a literal
* @param input input text
* @param pos offset into input at which to begin matching
* @return length of input that matches, or -1 if match failure
*/
int32_t DecimalFormat::compareSimpleAffix(const UnicodeString& affix,
const UnicodeString& input,
int32_t pos) {
int32_t start = pos;
for (int32_t i=0; i<affix.length(); ) {
UChar32 c = affix.char32At(i);
int32_t len = U16_LENGTH(c);
if (uprv_isRuleWhiteSpace(c)) {
// We may have a pattern like: \u200F \u0020
// and input text like: \u200F \u0020
// Note that U+200F and U+0020 are RuleWhiteSpace but only
// U+0020 is UWhiteSpace. So we have to first do a direct
// match of the run of RULE whitespace in the pattern,
// then match any extra characters.
UBool literalMatch = FALSE;
while (pos < input.length() &&
input.char32At(pos) == c) {
literalMatch = TRUE;
i += len;
pos += len;
if (i == affix.length()) {
break;
}
c = affix.char32At(i);
len = U16_LENGTH(c);
if (!uprv_isRuleWhiteSpace(c)) {
break;
}
}
// Advance over run in pattern
i = skipRuleWhiteSpace(affix, i);
// Advance over run in input text
// Must see at least one white space char in input,
// unless we've already matched some characters literally.
int32_t s = pos;
pos = skipUWhiteSpace(input, pos);
if (pos == s && !literalMatch) {
return -1;
}
} else {
if (pos < input.length() &&
input.char32At(pos) == c) {
i += len;
pos += len;
} else {
return -1;
}
}
}
return pos - start;
}
/**
* Skip over a run of zero or more isRuleWhiteSpace() characters at
* pos in text.
*/
int32_t DecimalFormat::skipRuleWhiteSpace(const UnicodeString& text, int32_t pos) {
while (pos < text.length()) {
UChar32 c = text.char32At(pos);
if (!uprv_isRuleWhiteSpace(c)) {
break;
}
pos += U16_LENGTH(c);
}
return pos;
}
/**
* Skip over a run of zero or more isUWhiteSpace() characters at pos
* in text.
*/
int32_t DecimalFormat::skipUWhiteSpace(const UnicodeString& text, int32_t pos) {
while (pos < text.length()) {
UChar32 c = text.char32At(pos);
if (!u_isUWhiteSpace(c)) {
break;
}
pos += U16_LENGTH(c);
}
return pos;
}
/**
* Return the length matched by the given affix, or -1 if none.
* @param affixPat pattern string
* @param input input text
* @param pos offset into input at which to begin matching
* @param currency return value for parsed currency, for generic
* currency parsing mode, or null for normal parsing. In generic
* currency parsing mode, any currency is parsed, not just the
* currency that this formatter is set to.
* @return length of input that matches, or -1 if match failure
*/
int32_t DecimalFormat::compareComplexAffix(const UnicodeString& affixPat,
const UnicodeString& text,
int32_t pos,
UChar* currency) const {
U_ASSERT(currency != NULL ||
(fCurrencyChoice != NULL && *getCurrency() != 0));
for (int32_t i=0; i<affixPat.length() && pos >= 0; ) {
UChar32 c = affixPat.char32At(i);
i += U16_LENGTH(c);
if (c == kQuote) {
U_ASSERT(i <= affixPat.length());
c = affixPat.char32At(i);
i += U16_LENGTH(c);
const UnicodeString* affix = NULL;
switch (c) {
case kCurrencySign: {
// If currency != null, then perform generic currency matching.
// Otherwise, do currency choice parsing.
UBool intl = i<affixPat.length() &&
affixPat.char32At(i) == kCurrencySign;
// Parse generic currency -- anything for which we
// have a display name, or any 3-letter ISO code.
if (currency != NULL) {
// Try to parse display name for our locale; first
// determine our locale.
UErrorCode ec = U_ZERO_ERROR;
const char* loc = getLocaleID(ULOC_VALID_LOCALE, ec);
if (U_FAILURE(ec) || loc == NULL || *loc == 0) {
// applyPattern has been called; use the symbols
loc = fSymbols->getLocale().getName();
ec = U_ZERO_ERROR;
}
// Delegate parse of display name => ISO code to Currency
ParsePosition ppos(pos);
UChar curr[4];
uprv_parseCurrency(loc, text, ppos, curr, ec);
// If parse succeeds, populate currency[0]
if (U_SUCCESS(ec) && ppos.getIndex() != pos) {
u_strcpy(currency, curr);
pos = ppos.getIndex();
} else {
pos = -1;
}
} else {
if (intl) {
++i;
pos = match(text, pos, getCurrency());
} else {
ParsePosition ppos(pos);
Formattable result;
fCurrencyChoice->parse(text, result, ppos);
pos = (ppos.getIndex() == pos) ? -1 : ppos.getIndex();
}
}
continue;
}
case kPatternPercent:
affix = &getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
break;
case kPatternPerMill:
affix = &getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
break;
case kPatternPlus:
affix = &getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
break;
case kPatternMinus:
affix = &getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
break;
default:
// fall through to affix!=0 test, which will fail
break;
}
if (affix != NULL) {
pos = match(text, pos, *affix);
continue;
}
}
pos = match(text, pos, c);
if (uprv_isRuleWhiteSpace(c)) {
i = skipRuleWhiteSpace(affixPat, i);
}
}
return pos;
}
/**
* Match a single character at text[pos] and return the index of the
* next character upon success. Return -1 on failure. If
* isRuleWhiteSpace(ch) then match a run of white space in text.
*/
int32_t DecimalFormat::match(const UnicodeString& text, int32_t pos, UChar32 ch) {
if (uprv_isRuleWhiteSpace(ch)) {
// Advance over run of white space in input text
// Must see at least one white space char in input
int32_t s = pos;
pos = skipUWhiteSpace(text, pos);
if (pos == s) {
return -1;
}
return pos;
}
return (pos >= 0 && text.char32At(pos) == ch) ?
(pos + U16_LENGTH(ch)) : -1;
}
/**
* Match a string at text[pos] and return the index of the next
* character upon success. Return -1 on failure. Match a run of
* white space in str with a run of white space in text.
*/
int32_t DecimalFormat::match(const UnicodeString& text, int32_t pos, const UnicodeString& str) {
for (int32_t i=0; i<str.length() && pos >= 0; ) {
UChar32 ch = str.char32At(i);
i += U16_LENGTH(ch);
if (uprv_isRuleWhiteSpace(ch)) {
i = skipRuleWhiteSpace(str, i);
}
pos = match(text, pos, ch);
}
return pos;
}
//------------------------------------------------------------------------------
// Gets the pointer to the localized decimal format symbols
const DecimalFormatSymbols*
DecimalFormat::getDecimalFormatSymbols() const
{
return fSymbols;
}
//------------------------------------------------------------------------------
// De-owning the current localized symbols and adopt the new symbols.
void
DecimalFormat::adoptDecimalFormatSymbols(DecimalFormatSymbols* symbolsToAdopt)
{
if (symbolsToAdopt == NULL) {
return; // do not allow caller to set fSymbols to NULL
}
UBool sameSymbols = FALSE;
if (fSymbols != NULL) {
sameSymbols = (UBool)(getConstSymbol(DecimalFormatSymbols::kCurrencySymbol) ==
symbolsToAdopt->getConstSymbol(DecimalFormatSymbols::kCurrencySymbol) &&
getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol) ==
symbolsToAdopt->getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol));
delete fSymbols;
}
fSymbols = symbolsToAdopt;
if (!sameSymbols) {
// If the currency symbols are the same, there is no need to recalculate.
setCurrencyForSymbols();
}
expandAffixes();
}
//------------------------------------------------------------------------------
// Setting the symbols is equlivalent to adopting a newly created localized
// symbols.
void
DecimalFormat::setDecimalFormatSymbols(const DecimalFormatSymbols& symbols)
{
adoptDecimalFormatSymbols(new DecimalFormatSymbols(symbols));
}
/**
* Update the currency object to match the symbols. This method
* is used only when the caller has passed in a symbols object
* that may not be the default object for its locale.
*/
void
DecimalFormat::setCurrencyForSymbols() {
/*Bug 4212072
Update the affix strings accroding to symbols in order to keep
the affix strings up to date.
[Richard/GCL]
*/
// With the introduction of the Currency object, the currency
// symbols in the DFS object are ignored. For backward
// compatibility, we check any explicitly set DFS object. If it
// is a default symbols object for its locale, we change the
// currency object to one for that locale. If it is custom,
// we set the currency to null.
UErrorCode ec = U_ZERO_ERROR;
const UChar* c = NULL;
const char* loc = fSymbols->getLocale().getName();
UChar intlCurrencySymbol[4];
ucurr_forLocale(loc, intlCurrencySymbol, 4, &ec);
UnicodeString currencySymbol;
uprv_getStaticCurrencyName(intlCurrencySymbol, loc, currencySymbol, ec);
if (U_SUCCESS(ec)
&& getConstSymbol(DecimalFormatSymbols::kCurrencySymbol) == currencySymbol
&& getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol) == intlCurrencySymbol)
{
// Trap an error in mapping locale to currency. If we can't
// map, then don't fail and set the currency to "".
c = intlCurrencySymbol;
}
ec = U_ZERO_ERROR; // reset local error code!
setCurrency(c, ec);
}
//------------------------------------------------------------------------------
// Gets the positive prefix of the number pattern.
UnicodeString&
DecimalFormat::getPositivePrefix(UnicodeString& result) const
{
result = fPositivePrefix;
return result;
}
//------------------------------------------------------------------------------
// Sets the positive prefix of the number pattern.
void
DecimalFormat::setPositivePrefix(const UnicodeString& newValue)
{
fPositivePrefix = newValue;
delete fPosPrefixPattern;
fPosPrefixPattern = 0;
}
//------------------------------------------------------------------------------
// Gets the negative prefix of the number pattern.
UnicodeString&
DecimalFormat::getNegativePrefix(UnicodeString& result) const
{
result = fNegativePrefix;
return result;
}
//------------------------------------------------------------------------------
// Gets the negative prefix of the number pattern.
void
DecimalFormat::setNegativePrefix(const UnicodeString& newValue)
{
fNegativePrefix = newValue;
delete fNegPrefixPattern;
fNegPrefixPattern = 0;
}
//------------------------------------------------------------------------------
// Gets the positive suffix of the number pattern.
UnicodeString&
DecimalFormat::getPositiveSuffix(UnicodeString& result) const
{
result = fPositiveSuffix;
return result;
}
//------------------------------------------------------------------------------
// Sets the positive suffix of the number pattern.
void
DecimalFormat::setPositiveSuffix(const UnicodeString& newValue)
{
fPositiveSuffix = newValue;
delete fPosSuffixPattern;
fPosSuffixPattern = 0;
}
//------------------------------------------------------------------------------
// Gets the negative suffix of the number pattern.
UnicodeString&
DecimalFormat::getNegativeSuffix(UnicodeString& result) const
{
result = fNegativeSuffix;
return result;
}
//------------------------------------------------------------------------------
// Sets the negative suffix of the number pattern.
void
DecimalFormat::setNegativeSuffix(const UnicodeString& newValue)
{
fNegativeSuffix = newValue;
delete fNegSuffixPattern;
fNegSuffixPattern = 0;
}
//------------------------------------------------------------------------------
// Gets the multiplier of the number pattern.
int32_t DecimalFormat::getMultiplier() const
{
return fMultiplier;
}
//------------------------------------------------------------------------------
// Sets the multiplier of the number pattern.
void
DecimalFormat::setMultiplier(int32_t newValue)
{
// This shouldn't be set to 0.
// Due to compatibility with ICU4J we cannot set an error code and refuse 0.
// So the rest of the code should ignore fMultiplier when it's 0. [grhoten]
fMultiplier = newValue;
}
/**
* Get the rounding increment.
* @return A positive rounding increment, or 0.0 if rounding
* is not in effect.
* @see #setRoundingIncrement
* @see #getRoundingMode
* @see #setRoundingMode
*/
double DecimalFormat::getRoundingIncrement() const {
return fRoundingDouble;
}
/**
* Set the rounding increment. This method also controls whether
* rounding is enabled.
* @param newValue A positive rounding increment, or 0.0 to disable rounding.
* Negative increments are equivalent to 0.0.
* @see #getRoundingIncrement
* @see #getRoundingMode
* @see #setRoundingMode
*/
void DecimalFormat::setRoundingIncrement(double newValue) {
if (newValue > 0.0) {
if (fRoundingIncrement == NULL) {
fRoundingIncrement = new DigitList();
}
fRoundingIncrement->set((int32_t)newValue);
fRoundingDouble = newValue;
} else {
delete fRoundingIncrement;
fRoundingIncrement = NULL;
fRoundingDouble = 0.0;
}
}
/**
* Get the rounding mode.
* @return A rounding mode
* @see #setRoundingIncrement
* @see #getRoundingIncrement
* @see #setRoundingMode
*/
DecimalFormat::ERoundingMode DecimalFormat::getRoundingMode() const {
return fRoundingMode;
}
/**
* Set the rounding mode. This has no effect unless the rounding
* increment is greater than zero.
* @param roundingMode A rounding mode
* @see #setRoundingIncrement
* @see #getRoundingIncrement
* @see #getRoundingMode
*/
void DecimalFormat::setRoundingMode(ERoundingMode roundingMode) {
fRoundingMode = roundingMode;
}
/**
* Get the width to which the output of <code>format()</code> is padded.
* @return the format width, or zero if no padding is in effect
* @see #setFormatWidth
* @see #getPadCharacter
* @see #setPadCharacter
* @see #getPadPosition
* @see #setPadPosition
*/
int32_t DecimalFormat::getFormatWidth() const {
return fFormatWidth;
}
/**
* Set the width to which the output of <code>format()</code> is padded.
* This method also controls whether padding is enabled.
* @param width the width to which to pad the result of
* <code>format()</code>, or zero to disable padding. A negative
* width is equivalent to 0.
* @see #getFormatWidth
* @see #getPadCharacter
* @see #setPadCharacter
* @see #getPadPosition
* @see #setPadPosition
*/
void DecimalFormat::setFormatWidth(int32_t width) {
fFormatWidth = (width > 0) ? width : 0;
}
UnicodeString DecimalFormat::getPadCharacterString() const {
return fPad;
}
void DecimalFormat::setPadCharacter(const UnicodeString &padChar) {
if (padChar.length() > 0) {
fPad = padChar.char32At(0);
}
else {
fPad = kDefaultPad;
}
}
/**
* Get the position at which padding will take place. This is the location
* at which padding will be inserted if the result of <code>format()</code>
* is shorter than the format width.
* @return the pad position, one of <code>kPadBeforePrefix</code>,
* <code>kPadAfterPrefix</code>, <code>kPadBeforeSuffix</code>, or
* <code>kPadAfterSuffix</code>.
* @see #setFormatWidth
* @see #getFormatWidth
* @see #setPadCharacter
* @see #getPadCharacter
* @see #setPadPosition
* @see #kPadBeforePrefix
* @see #kPadAfterPrefix
* @see #kPadBeforeSuffix
* @see #kPadAfterSuffix
*/
DecimalFormat::EPadPosition DecimalFormat::getPadPosition() const {
return fPadPosition;
}
/**
* <strong><font face=helvetica color=red>NEW</font></strong>
* Set the position at which padding will take place. This is the location
* at which padding will be inserted if the result of <code>format()</code>
* is shorter than the format width. This has no effect unless padding is
* enabled.
* @param padPos the pad position, one of <code>kPadBeforePrefix</code>,
* <code>kPadAfterPrefix</code>, <code>kPadBeforeSuffix</code>, or
* <code>kPadAfterSuffix</code>.
* @see #setFormatWidth
* @see #getFormatWidth
* @see #setPadCharacter
* @see #getPadCharacter
* @see #getPadPosition
* @see #kPadBeforePrefix
* @see #kPadAfterPrefix
* @see #kPadBeforeSuffix
* @see #kPadAfterSuffix
*/
void DecimalFormat::setPadPosition(EPadPosition padPos) {
fPadPosition = padPos;
}
/**
* Return whether or not scientific notation is used.
* @return TRUE if this object formats and parses scientific notation
* @see #setScientificNotation
* @see #getMinimumExponentDigits
* @see #setMinimumExponentDigits
* @see #isExponentSignAlwaysShown
* @see #setExponentSignAlwaysShown
*/
UBool DecimalFormat::isScientificNotation() {
return fUseExponentialNotation;
}
/**
* Set whether or not scientific notation is used.
* @param useScientific TRUE if this object formats and parses scientific
* notation
* @see #isScientificNotation
* @see #getMinimumExponentDigits
* @see #setMinimumExponentDigits
* @see #isExponentSignAlwaysShown
* @see #setExponentSignAlwaysShown
*/
void DecimalFormat::setScientificNotation(UBool useScientific) {
fUseExponentialNotation = useScientific;
}
/**
* Return the minimum exponent digits that will be shown.
* @return the minimum exponent digits that will be shown
* @see #setScientificNotation
* @see #isScientificNotation
* @see #setMinimumExponentDigits
* @see #isExponentSignAlwaysShown
* @see #setExponentSignAlwaysShown
*/
int8_t DecimalFormat::getMinimumExponentDigits() const {
return fMinExponentDigits;
}
/**
* Set the minimum exponent digits that will be shown. This has no
* effect unless scientific notation is in use.
* @param minExpDig a value >= 1 indicating the fewest exponent digits
* that will be shown. Values less than 1 will be treated as 1.
* @see #setScientificNotation
* @see #isScientificNotation
* @see #getMinimumExponentDigits
* @see #isExponentSignAlwaysShown
* @see #setExponentSignAlwaysShown
*/
void DecimalFormat::setMinimumExponentDigits(int8_t minExpDig) {
fMinExponentDigits = (int8_t)((minExpDig > 0) ? minExpDig : 1);
}
/**
* Return whether the exponent sign is always shown.
* @return TRUE if the exponent is always prefixed with either the
* localized minus sign or the localized plus sign, false if only negative
* exponents are prefixed with the localized minus sign.
* @see #setScientificNotation
* @see #isScientificNotation
* @see #setMinimumExponentDigits
* @see #getMinimumExponentDigits
* @see #setExponentSignAlwaysShown
*/
UBool DecimalFormat::isExponentSignAlwaysShown() {
return fExponentSignAlwaysShown;
}
/**
* Set whether the exponent sign is always shown. This has no effect
* unless scientific notation is in use.
* @param expSignAlways TRUE if the exponent is always prefixed with either
* the localized minus sign or the localized plus sign, false if only
* negative exponents are prefixed with the localized minus sign.
* @see #setScientificNotation
* @see #isScientificNotation
* @see #setMinimumExponentDigits
* @see #getMinimumExponentDigits
* @see #isExponentSignAlwaysShown
*/
void DecimalFormat::setExponentSignAlwaysShown(UBool expSignAlways) {
fExponentSignAlwaysShown = expSignAlways;
}
//------------------------------------------------------------------------------
// Gets the grouping size of the number pattern. For example, thousand or 10
// thousand groupings.
int32_t
DecimalFormat::getGroupingSize() const
{
return fGroupingSize;
}
//------------------------------------------------------------------------------
// Gets the grouping size of the number pattern.
void
DecimalFormat::setGroupingSize(int32_t newValue)
{
fGroupingSize = newValue;
}
//------------------------------------------------------------------------------
int32_t
DecimalFormat::getSecondaryGroupingSize() const
{
return fGroupingSize2;
}
//------------------------------------------------------------------------------
void
DecimalFormat::setSecondaryGroupingSize(int32_t newValue)
{
fGroupingSize2 = newValue;
}
//------------------------------------------------------------------------------
// Checks if to show the decimal separator.
UBool
DecimalFormat::isDecimalSeparatorAlwaysShown() const
{
return fDecimalSeparatorAlwaysShown;
}
//------------------------------------------------------------------------------
// Sets to always show the decimal separator.
void
DecimalFormat::setDecimalSeparatorAlwaysShown(UBool newValue)
{
fDecimalSeparatorAlwaysShown = newValue;
}
//------------------------------------------------------------------------------
// Emits the pattern of this DecimalFormat instance.
UnicodeString&
DecimalFormat::toPattern(UnicodeString& result) const
{
return toPattern(result, FALSE);
}
//------------------------------------------------------------------------------
// Emits the localized pattern this DecimalFormat instance.
UnicodeString&
DecimalFormat::toLocalizedPattern(UnicodeString& result) const
{
return toPattern(result, TRUE);
}
//------------------------------------------------------------------------------
/**
* Expand the affix pattern strings into the expanded affix strings. If any
* affix pattern string is null, do not expand it. This method should be
* called any time the symbols or the affix patterns change in order to keep
* the expanded affix strings up to date.
*/
void DecimalFormat::expandAffixes() {
if (fPosPrefixPattern != 0) {
expandAffix(*fPosPrefixPattern, fPositivePrefix, 0, FALSE);
}
if (fPosSuffixPattern != 0) {
expandAffix(*fPosSuffixPattern, fPositiveSuffix, 0, FALSE);
}
if (fNegPrefixPattern != 0) {
expandAffix(*fNegPrefixPattern, fNegativePrefix, 0, FALSE);
}
if (fNegSuffixPattern != 0) {
expandAffix(*fNegSuffixPattern, fNegativeSuffix, 0, FALSE);
}
#ifdef FMT_DEBUG
UnicodeString s;
s.append("[")
.append(*fPosPrefixPattern).append("|").append(*fPosSuffixPattern)
.append(";") .append(*fNegPrefixPattern).append("|").append(*fNegSuffixPattern)
.append("]->[")
.append(fPositivePrefix).append("|").append(fPositiveSuffix)
.append(";") .append(fNegativePrefix).append("|").append(fNegativeSuffix)
.append("]\n");
debugout(s);
#endif
}
/**
* Expand an affix pattern into an affix string. All characters in the
* pattern are literal unless prefixed by kQuote. The following characters
* after kQuote are recognized: PATTERN_PERCENT, PATTERN_PER_MILLE,
* PATTERN_MINUS, and kCurrencySign. If kCurrencySign is doubled (kQuote +
* kCurrencySign + kCurrencySign), it is interpreted as an international
* currency sign. Any other character after a kQuote represents itself.
* kQuote must be followed by another character; kQuote may not occur by
* itself at the end of the pattern.
*
* This method is used in two distinct ways. First, it is used to expand
* the stored affix patterns into actual affixes. For this usage, doFormat
* must be false. Second, it is used to expand the stored affix patterns
* given a specific number (doFormat == true), for those rare cases in
* which a currency format references a ChoiceFormat (e.g., en_IN display
* name for INR). The number itself is taken from digitList.
*
* When used in the first way, this method has a side effect: It sets
* currencyChoice to a ChoiceFormat object, if the currency's display name
* in this locale is a ChoiceFormat pattern (very rare). It only does this
* if currencyChoice is null to start with.
*
* @param pattern the non-null, fPossibly empty pattern
* @param affix string to receive the expanded equivalent of pattern.
* Previous contents are deleted.
* @param doFormat if false, then the pattern will be expanded, and if a
* currency symbol is encountered that expands to a ChoiceFormat, the
* currencyChoice member variable will be initialized if it is null. If
* doFormat is true, then it is assumed that the currencyChoice has been
* created, and it will be used to format the value in digitList.
*/
void DecimalFormat::expandAffix(const UnicodeString& pattern,
UnicodeString& affix,
double number,
UBool doFormat) const {
affix.remove();
for (int i=0; i<pattern.length(); ) {
UChar32 c = pattern.char32At(i);
i += U16_LENGTH(c);
if (c == kQuote) {
c = pattern.char32At(i);
i += U16_LENGTH(c);
switch (c) {
case kCurrencySign: {
// As of ICU 2.2 we use the currency object, and
// ignore the currency symbols in the DFS, unless
// we have a null currency object. This occurs if
// resurrecting a pre-2.2 object or if the user
// sets a custom DFS.
UBool intl = i<pattern.length() &&
pattern.char32At(i) == kCurrencySign;
if (intl) {
++i;
}
const UChar* currencyUChars = getCurrency();
if (currencyUChars[0] != 0) {
UErrorCode ec = U_ZERO_ERROR;
if(intl) {
affix += currencyUChars;
} else {
int32_t len;
UBool isChoiceFormat;
const UChar* s = ucurr_getName(currencyUChars, fSymbols->getLocale().getName(),
UCURR_SYMBOL_NAME, &isChoiceFormat, &len, &ec);
if (isChoiceFormat) {
// Two modes here: If doFormat is false, we set up
// currencyChoice. If doFormat is true, we use the
// previously created currencyChoice to format the
// value in digitList.
if (!doFormat) {
// If the currency is handled by a ChoiceFormat,
// then we're not going to use the expanded
// patterns. Instantiate the ChoiceFormat and
// return.
if (fCurrencyChoice == NULL) {
// TODO Replace double-check with proper thread-safe code
ChoiceFormat* fmt = new ChoiceFormat(s, ec);
if (U_SUCCESS(ec)) {
umtx_lock(NULL);
if (fCurrencyChoice == NULL) {
// Cast away const
((DecimalFormat*)this)->fCurrencyChoice = fmt;
fmt = NULL;
}
umtx_unlock(NULL);
delete fmt;
}
}
// We could almost return null or "" here, since the
// expanded affixes are almost not used at all
// in this situation. However, one method --
// toPattern() -- still does use the expanded
// affixes, in order to set up a padding
// pattern. We use the CURRENCY_SIGN as a
// placeholder.
affix.append(kCurrencySign);
} else {
if (fCurrencyChoice != NULL) {
FieldPosition pos(0); // ignored
if (number < 0) {
number = -number;
}
fCurrencyChoice->format(number, affix, pos);
} else {
// We only arrive here if the currency choice
// format in the locale data is INVALID.
affix += currencyUChars;
}
}
continue;
}
affix += UnicodeString(s, len);
}
} else {
if(intl) {
affix += getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol);
} else {
affix += getConstSymbol(DecimalFormatSymbols::kCurrencySymbol);
}
}
break;
}
case kPatternPercent:
affix += getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
break;
case kPatternPerMill:
affix += getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
break;
case kPatternPlus:
affix += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
break;
case kPatternMinus:
affix += getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
break;
default:
affix.append(c);
break;
}
}
else {
affix.append(c);
}
}
}
/**
* Append an affix to the given StringBuffer.
* @param buf buffer to append to
* @param isNegative
* @param isPrefix
*/
int32_t DecimalFormat::appendAffix(UnicodeString& buf, double number,
UBool isNegative, UBool isPrefix) const {
if (fCurrencyChoice != 0) {
const UnicodeString* affixPat = 0;
if (isPrefix) {
affixPat = isNegative ? fNegPrefixPattern : fPosPrefixPattern;
} else {
affixPat = isNegative ? fNegSuffixPattern : fPosSuffixPattern;
}
UnicodeString affixBuf;
expandAffix(*affixPat, affixBuf, number, TRUE);
buf.append(affixBuf);
return affixBuf.length();
}
const UnicodeString* affix = NULL;
if (isPrefix) {
affix = isNegative ? &fNegativePrefix : &fPositivePrefix;
} else {
affix = isNegative ? &fNegativeSuffix : &fPositiveSuffix;
}
buf.append(*affix);
return affix->length();
}
/**
* Appends an affix pattern to the given StringBuffer, quoting special
* characters as needed. Uses the internal affix pattern, if that exists,
* or the literal affix, if the internal affix pattern is null. The
* appended string will generate the same affix pattern (or literal affix)
* when passed to toPattern().
*
* @param appendTo the affix string is appended to this
* @param affixPattern a pattern such as fPosPrefixPattern; may be null
* @param expAffix a corresponding expanded affix, such as fPositivePrefix.
* Ignored unless affixPattern is null. If affixPattern is null, then
* expAffix is appended as a literal affix.
* @param localized true if the appended pattern should contain localized
* pattern characters; otherwise, non-localized pattern chars are appended
*/
void DecimalFormat::appendAffixPattern(UnicodeString& appendTo,
const UnicodeString* affixPattern,
const UnicodeString& expAffix,
UBool localized) const {
if (affixPattern == 0) {
appendAffixPattern(appendTo, expAffix, localized);
} else {
int i;
for (int pos=0; pos<affixPattern->length(); pos=i) {
i = affixPattern->indexOf(kQuote, pos);
if (i < 0) {
UnicodeString s;
affixPattern->extractBetween(pos, affixPattern->length(), s);
appendAffixPattern(appendTo, s, localized);
break;
}
if (i > pos) {
UnicodeString s;
affixPattern->extractBetween(pos, i, s);
appendAffixPattern(appendTo, s, localized);
}
UChar32 c = affixPattern->char32At(++i);
++i;
if (c == kQuote) {
appendTo.append(c).append(c);
// Fall through and append another kQuote below
} else if (c == kCurrencySign &&
i<affixPattern->length() &&
affixPattern->char32At(i) == kCurrencySign) {
++i;
appendTo.append(c).append(c);
} else if (localized) {
switch (c) {
case kPatternPercent:
appendTo += getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
break;
case kPatternPerMill:
appendTo += getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
break;
case kPatternPlus:
appendTo += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
break;
case kPatternMinus:
appendTo += getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
break;
default:
appendTo.append(c);
}
} else {
appendTo.append(c);
}
}
}
}
/**
* Append an affix to the given StringBuffer, using quotes if
* there are special characters. Single quotes themselves must be
* escaped in either case.
*/
void
DecimalFormat::appendAffixPattern(UnicodeString& appendTo,
const UnicodeString& affix,
UBool localized) const {
UBool needQuote;
if(localized) {
needQuote = affix.indexOf(getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol)) >= 0
|| affix.indexOf(getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol)) >= 0
|| affix.indexOf(getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol)) >= 0
|| affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPercentSymbol)) >= 0
|| affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPerMillSymbol)) >= 0
|| affix.indexOf(getConstSymbol(DecimalFormatSymbols::kDigitSymbol)) >= 0
|| affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol)) >= 0
|| affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol)) >= 0
|| affix.indexOf(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol)) >= 0
|| affix.indexOf(kCurrencySign) >= 0;
}
else {
needQuote = affix.indexOf(kPatternZeroDigit) >= 0
|| affix.indexOf(kPatternGroupingSeparator) >= 0
|| affix.indexOf(kPatternDecimalSeparator) >= 0
|| affix.indexOf(kPatternPercent) >= 0
|| affix.indexOf(kPatternPerMill) >= 0
|| affix.indexOf(kPatternDigit) >= 0
|| affix.indexOf(kPatternSeparator) >= 0
|| affix.indexOf(kPatternExponent) >= 0
|| affix.indexOf(kPatternPlus) >= 0
|| affix.indexOf(kPatternMinus) >= 0
|| affix.indexOf(kCurrencySign) >= 0;
}
if (needQuote)
appendTo += (UChar)0x0027 /*'\''*/;
if (affix.indexOf((UChar)0x0027 /*'\''*/) < 0)
appendTo += affix;
else {
for (int32_t j = 0; j < affix.length(); ) {
UChar32 c = affix.char32At(j);
j += U16_LENGTH(c);
appendTo += c;
if (c == 0x0027 /*'\''*/)
appendTo += c;
}
}
if (needQuote)
appendTo += (UChar)0x0027 /*'\''*/;
}
//------------------------------------------------------------------------------
UnicodeString&
DecimalFormat::toPattern(UnicodeString& result, UBool localized) const
{
result.remove();
UChar32 zero, sigDigit = kPatternSignificantDigit;
UnicodeString digit, group;
int32_t i;
int32_t roundingDecimalPos = 0; // Pos of decimal in roundingDigits
UnicodeString roundingDigits;
int32_t padPos = (fFormatWidth > 0) ? fPadPosition : -1;
UnicodeString padSpec;
UBool useSigDig = areSignificantDigitsUsed();
if (localized) {
digit.append(getConstSymbol(DecimalFormatSymbols::kDigitSymbol));
group.append(getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol));
zero = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
if (useSigDig) {
sigDigit = getConstSymbol(DecimalFormatSymbols::kSignificantDigitSymbol).char32At(0);
}
}
else {
digit.append((UChar)kPatternDigit);
group.append((UChar)kPatternGroupingSeparator);
zero = (UChar32)kPatternZeroDigit;
}
if (fFormatWidth > 0) {
if (localized) {
padSpec.append(getConstSymbol(DecimalFormatSymbols::kPadEscapeSymbol));
}
else {
padSpec.append((UChar)kPatternPadEscape);
}
padSpec.append(fPad);
}
if (fRoundingIncrement != NULL) {
for(i=0; i<fRoundingIncrement->fCount; ++i) {
roundingDigits.append((UChar)fRoundingIncrement->fDigits[i]);
}
roundingDecimalPos = fRoundingIncrement->fDecimalAt;
}
for (int32_t part=0; part<2; ++part) {
if (padPos == kPadBeforePrefix) {
result.append(padSpec);
}
appendAffixPattern(result,
(part==0 ? fPosPrefixPattern : fNegPrefixPattern),
(part==0 ? fPositivePrefix : fNegativePrefix),
localized);
if (padPos == kPadAfterPrefix && ! padSpec.isEmpty()) {
result.append(padSpec);
}
int32_t sub0Start = result.length();
int32_t g = isGroupingUsed() ? _max(0, fGroupingSize) : 0;
if (g > 0 && fGroupingSize2 > 0 && fGroupingSize2 != fGroupingSize) {
g += fGroupingSize2;
}
int32_t maxDig = 0, minDig = 0, maxSigDig = 0;
if (useSigDig) {
minDig = getMinimumSignificantDigits();
maxDig = maxSigDig = getMaximumSignificantDigits();
} else {
minDig = getMinimumIntegerDigits();
maxDig = getMaximumIntegerDigits();
}
if (fUseExponentialNotation) {
if (maxDig > kMaxScientificIntegerDigits) {
maxDig = 1;
}
} else if (useSigDig) {
maxDig = _max(maxDig, g+1);
} else {
maxDig = _max(_max(g, getMinimumIntegerDigits()),
roundingDecimalPos) + 1;
}
for (i = maxDig; i > 0; --i) {
if (!fUseExponentialNotation && i<maxDig &&
isGroupingPosition(i)) {
result.append(group);
}
if (useSigDig) {
// #@,@### (maxSigDig == 5, minSigDig == 2)
// 65 4321 (1-based pos, count from the right)
// Use # if pos > maxSigDig or 1 <= pos <= (maxSigDig - minSigDig)
// Use @ if (maxSigDig - minSigDig) < pos <= maxSigDig
if (maxSigDig >= i && i > (maxSigDig - minDig)) {
result.append(sigDigit);
} else {
result.append(digit);
}
} else {
if (! roundingDigits.isEmpty()) {
int32_t pos = roundingDecimalPos - i;
if (pos >= 0 && pos < roundingDigits.length()) {
result.append((UChar) (roundingDigits.char32At(pos) - kPatternZeroDigit + zero));
continue;
}
}
if (i<=minDig) {
result.append(zero);
} else {
result.append(digit);
}
}
}
if (!useSigDig) {
if (getMaximumFractionDigits() > 0 || fDecimalSeparatorAlwaysShown) {
if (localized) {
result += getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
}
else {
result.append((UChar)kPatternDecimalSeparator);
}
}
int32_t pos = roundingDecimalPos;
for (i = 0; i < getMaximumFractionDigits(); ++i) {
if (! roundingDigits.isEmpty() && pos < roundingDigits.length()) {
if (pos < 0) {
result.append(zero);
}
else {
result.append((UChar)(roundingDigits.char32At(pos) - kPatternZeroDigit + zero));
}
++pos;
continue;
}
if (i<getMinimumFractionDigits()) {
result.append(zero);
}
else {
result.append(digit);
}
}
}
if (fUseExponentialNotation) {
if (localized) {
result += getConstSymbol(DecimalFormatSymbols::kExponentialSymbol);
}
else {
result.append((UChar)kPatternExponent);
}
if (fExponentSignAlwaysShown) {
if (localized) {
result += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
}
else {
result.append((UChar)kPatternPlus);
}
}
for (i=0; i<fMinExponentDigits; ++i) {
result.append(zero);
}
}
if (! padSpec.isEmpty() && !fUseExponentialNotation) {
int32_t add = fFormatWidth - result.length() + sub0Start
- ((part == 0)
? fPositivePrefix.length() + fPositiveSuffix.length()
: fNegativePrefix.length() + fNegativeSuffix.length());
while (add > 0) {
result.insert(sub0Start, digit);
++maxDig;
--add;
// Only add a grouping separator if we have at least
// 2 additional characters to be added, so we don't
// end up with ",###".
if (add>1 && isGroupingPosition(maxDig)) {
result.insert(sub0Start, group);
--add;
}
}
}
if (fPadPosition == kPadBeforeSuffix && ! padSpec.isEmpty()) {
result.append(padSpec);
}
if (part == 0) {
appendAffixPattern(result, fPosSuffixPattern, fPositiveSuffix, localized);
if (fPadPosition == kPadAfterSuffix && ! padSpec.isEmpty()) {
result.append(padSpec);
}
UBool isDefault = FALSE;
if ((fNegSuffixPattern == fPosSuffixPattern && // both null
fNegativeSuffix == fPositiveSuffix)
|| (fNegSuffixPattern != 0 && fPosSuffixPattern != 0 &&
*fNegSuffixPattern == *fPosSuffixPattern))
{
if (fNegPrefixPattern != NULL && fPosPrefixPattern != NULL)
{
int32_t length = fPosPrefixPattern->length();
isDefault = fNegPrefixPattern->length() == (length+2) &&
(*fNegPrefixPattern)[(int32_t)0] == kQuote &&
(*fNegPrefixPattern)[(int32_t)1] == kPatternMinus &&
fNegPrefixPattern->compare(2, length, *fPosPrefixPattern, 0, length) == 0;
}
if (!isDefault &&
fNegPrefixPattern == NULL && fPosPrefixPattern == NULL)
{
int32_t length = fPositivePrefix.length();
isDefault = fNegativePrefix.length() == (length+1) &&
fNegativePrefix.compare(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol)) == 0 &&
fNegativePrefix.compare(1, length, fPositivePrefix, 0, length) == 0;
}
}
if (isDefault) {
break; // Don't output default negative subpattern
} else {
if (localized) {
result += getConstSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol);
}
else {
result.append((UChar)kPatternSeparator);
}
}
} else {
appendAffixPattern(result, fNegSuffixPattern, fNegativeSuffix, localized);
if (fPadPosition == kPadAfterSuffix && ! padSpec.isEmpty()) {
result.append(padSpec);
}
}
}
return result;
}
//------------------------------------------------------------------------------
void
DecimalFormat::applyPattern(const UnicodeString& pattern, UErrorCode& status)
{
UParseError parseError;
applyPattern(pattern, FALSE, parseError, status);
}
//------------------------------------------------------------------------------
void
DecimalFormat::applyPattern(const UnicodeString& pattern,
UParseError& parseError,
UErrorCode& status)
{
applyPattern(pattern, FALSE, parseError, status);
}
//------------------------------------------------------------------------------
void
DecimalFormat::applyLocalizedPattern(const UnicodeString& pattern, UErrorCode& status)
{
UParseError parseError;
applyPattern(pattern, TRUE,parseError,status);
}
//------------------------------------------------------------------------------
void
DecimalFormat::applyLocalizedPattern(const UnicodeString& pattern,
UParseError& parseError,
UErrorCode& status)
{
applyPattern(pattern, TRUE,parseError,status);
}
//------------------------------------------------------------------------------
void
DecimalFormat::applyPattern(const UnicodeString& pattern,
UBool localized,
UParseError& parseError,
UErrorCode& status)
{
if (U_FAILURE(status))
{
return;
}
// Clear error struct
parseError.offset = -1;
parseError.preContext[0] = parseError.postContext[0] = (UChar)0;
// Set the significant pattern symbols
UChar32 zeroDigit = kPatternZeroDigit; // '0'
UChar32 sigDigit = kPatternSignificantDigit; // '@'
UnicodeString groupingSeparator ((UChar)kPatternGroupingSeparator);
UnicodeString decimalSeparator ((UChar)kPatternDecimalSeparator);
UnicodeString percent ((UChar)kPatternPercent);
UnicodeString perMill ((UChar)kPatternPerMill);
UnicodeString digit ((UChar)kPatternDigit); // '#'
UnicodeString separator ((UChar)kPatternSeparator);
UnicodeString exponent ((UChar)kPatternExponent);
UnicodeString plus ((UChar)kPatternPlus);
UnicodeString minus ((UChar)kPatternMinus);
UnicodeString padEscape ((UChar)kPatternPadEscape);
// Substitute with the localized symbols if necessary
if (localized) {
zeroDigit = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
sigDigit = getConstSymbol(DecimalFormatSymbols::kSignificantDigitSymbol).char32At(0);
groupingSeparator. remove().append(getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol));
decimalSeparator. remove().append(getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol));
percent. remove().append(getConstSymbol(DecimalFormatSymbols::kPercentSymbol));
perMill. remove().append(getConstSymbol(DecimalFormatSymbols::kPerMillSymbol));
digit. remove().append(getConstSymbol(DecimalFormatSymbols::kDigitSymbol));
separator. remove().append(getConstSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol));
exponent. remove().append(getConstSymbol(DecimalFormatSymbols::kExponentialSymbol));
plus. remove().append(getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol));
minus. remove().append(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol));
padEscape. remove().append(getConstSymbol(DecimalFormatSymbols::kPadEscapeSymbol));
}
UChar nineDigit = (UChar)(zeroDigit + 9);
int32_t digitLen = digit.length();
int32_t groupSepLen = groupingSeparator.length();
int32_t decimalSepLen = decimalSeparator.length();
int32_t pos = 0;
int32_t patLen = pattern.length();
// Part 0 is the positive pattern. Part 1, if present, is the negative
// pattern.
for (int32_t part=0; part<2 && pos<patLen; ++part) {
// The subpart ranges from 0 to 4: 0=pattern proper, 1=prefix,
// 2=suffix, 3=prefix in quote, 4=suffix in quote. Subpart 0 is
// between the prefix and suffix, and consists of pattern
// characters. In the prefix and suffix, percent, perMill, and
// currency symbols are recognized and translated.
int32_t subpart = 1, sub0Start = 0, sub0Limit = 0, sub2Limit = 0;
// It's important that we don't change any fields of this object
// prematurely. We set the following variables for the multiplier,
// grouping, etc., and then only change the actual object fields if
// everything parses correctly. This also lets us register
// the data from part 0 and ignore the part 1, except for the
// prefix and suffix.
UnicodeString prefix;
UnicodeString suffix;
int32_t decimalPos = -1;
int32_t multiplier = 1;
int32_t digitLeftCount = 0, zeroDigitCount = 0, digitRightCount = 0, sigDigitCount = 0;
int8_t groupingCount = -1;
int8_t groupingCount2 = -1;
int32_t padPos = -1;
UChar32 padChar = 0;
int32_t roundingPos = -1;
DigitList roundingInc;
int8_t expDigits = -1;
UBool expSignAlways = FALSE;
UBool isCurrency = FALSE;
// The affix is either the prefix or the suffix.
UnicodeString* affix = &prefix;
int32_t start = pos;
UBool isPartDone = FALSE;
UChar32 ch;
for (; !isPartDone && pos < patLen; ) {
// Todo: account for surrogate pairs
ch = pattern.char32At(pos);
switch (subpart) {
case 0: // Pattern proper subpart (between prefix & suffix)
// Process the digits, decimal, and grouping characters. We
// record five pieces of information. We expect the digits
// to occur in the pattern ####00.00####, and we record the
// number of left digits, zero (central) digits, and right
// digits. The position of the last grouping character is
// recorded (should be somewhere within the first two blocks
// of characters), as is the position of the decimal point,
// if any (should be in the zero digits). If there is no
// decimal point, then there should be no right digits.
if (pattern.compare(pos, digitLen, digit) == 0) {
if (zeroDigitCount > 0 || sigDigitCount > 0) {
++digitRightCount;
} else {
++digitLeftCount;
}
if (groupingCount >= 0 && decimalPos < 0) {
++groupingCount;
}
pos += digitLen;
} else if ((ch >= zeroDigit && ch <= nineDigit) ||
ch == sigDigit) {
if (digitRightCount > 0) {
// Unexpected '0'
debug("Unexpected '0'")
status = U_UNEXPECTED_TOKEN;
syntaxError(pattern,pos,parseError);
return;
}
if (ch == sigDigit) {
++sigDigitCount;
} else {
++zeroDigitCount;
if (ch != zeroDigit && roundingPos < 0) {
roundingPos = digitLeftCount + zeroDigitCount;
}
if (roundingPos >= 0) {
roundingInc.append((char)(ch - zeroDigit + '0'));
}
}
if (groupingCount >= 0 && decimalPos < 0) {
++groupingCount;
}
pos += U16_LENGTH(ch);
} else if (pattern.compare(pos, groupSepLen, groupingSeparator) == 0) {
if (decimalPos >= 0) {
// Grouping separator after decimal
debug("Grouping separator after decimal")
status = U_UNEXPECTED_TOKEN;
syntaxError(pattern,pos,parseError);
return;
}
groupingCount2 = groupingCount;
groupingCount = 0;
pos += groupSepLen;
} else if (pattern.compare(pos, decimalSepLen, decimalSeparator) == 0) {
if (decimalPos >= 0) {
// Multiple decimal separators
debug("Multiple decimal separators")
status = U_MULTIPLE_DECIMAL_SEPARATORS;
syntaxError(pattern,pos,parseError);
return;
}
// Intentionally incorporate the digitRightCount,
// even though it is illegal for this to be > 0
// at this point. We check pattern syntax below.
decimalPos = digitLeftCount + zeroDigitCount + digitRightCount;
pos += decimalSepLen;
} else {
if (pattern.compare(pos, exponent.length(), exponent) == 0) {
if (expDigits >= 0) {
// Multiple exponential symbols
debug("Multiple exponential symbols")
status = U_MULTIPLE_EXPONENTIAL_SYMBOLS;
syntaxError(pattern,pos,parseError);
return;
}
if (groupingCount >= 0) {
// Grouping separator in exponential pattern
debug("Grouping separator in exponential pattern")
status = U_MALFORMED_EXPONENTIAL_PATTERN;
syntaxError(pattern,pos,parseError);
return;
}
pos += exponent.length();
// Check for positive prefix
if (pos < patLen
&& pattern.compare(pos, plus.length(), plus) == 0) {
expSignAlways = TRUE;
pos += plus.length();
}
// Use lookahead to parse out the exponential part of the
// pattern, then jump into suffix subpart.
expDigits = 0;
while (pos < patLen &&
pattern.char32At(pos) == zeroDigit) {
++expDigits;
pos += U16_LENGTH(zeroDigit);
}
// 1. Require at least one mantissa pattern digit
// 2. Disallow "#+ @" in mantissa
// 3. Require at least one exponent pattern digit
if (((digitLeftCount + zeroDigitCount) < 1 &&
(sigDigitCount + digitRightCount) < 1) ||
(sigDigitCount > 0 && digitLeftCount > 0) ||
expDigits < 1) {
// Malformed exponential pattern
debug("Malformed exponential pattern")
status = U_MALFORMED_EXPONENTIAL_PATTERN;
syntaxError(pattern,pos,parseError);
return;
}
}
// Transition to suffix subpart
subpart = 2; // suffix subpart
affix = &suffix;
sub0Limit = pos;
continue;
}
break;
case 1: // Prefix subpart
case 2: // Suffix subpart
// Process the prefix / suffix characters
// Process unquoted characters seen in prefix or suffix
// subpart.
// Several syntax characters implicitly begins the
// next subpart if we are in the prefix; otherwise
// they are illegal if unquoted.
if (!pattern.compare(pos, digitLen, digit) ||
!pattern.compare(pos, groupSepLen, groupingSeparator) ||
!pattern.compare(pos, decimalSepLen, decimalSeparator) ||
(ch >= zeroDigit && ch <= nineDigit) ||
ch == sigDigit) {
if (subpart == 1) { // prefix subpart
subpart = 0; // pattern proper subpart
sub0Start = pos; // Reprocess this character
continue;
} else {
status = U_UNQUOTED_SPECIAL;
syntaxError(pattern,pos,parseError);
return;
}
} else if (ch == kCurrencySign) {
affix->append(kQuote); // Encode currency
// Use lookahead to determine if the currency sign is
// doubled or not.
U_ASSERT(U16_LENGTH(kCurrencySign) == 1);
if ((pos+1) < pattern.length() && pattern[pos+1] == kCurrencySign) {
affix->append(kCurrencySign);
++pos; // Skip over the doubled character
}
isCurrency = TRUE;
// Fall through to append(ch)
} else if (ch == kQuote) {
// A quote outside quotes indicates either the opening
// quote or two quotes, which is a quote literal. That is,
// we have the first quote in 'do' or o''clock.
U_ASSERT(U16_LENGTH(kQuote) == 1);
++pos;
if (pos < pattern.length() && pattern[pos] == kQuote) {
affix->append(kQuote); // Encode quote
// Fall through to append(ch)
} else {
subpart += 2; // open quote
continue;
}
} else if (pattern.compare(pos, separator.length(), separator) == 0) {
// Don't allow separators in the prefix, and don't allow
// separators in the second pattern (part == 1).
if (subpart == 1 || part == 1) {
// Unexpected separator
debug("Unexpected separator")
status = U_UNEXPECTED_TOKEN;
syntaxError(pattern,pos,parseError);
return;
}
sub2Limit = pos;
isPartDone = TRUE; // Go to next part
pos += separator.length();
break;
} else if (pattern.compare(pos, percent.length(), percent) == 0) {
// Next handle characters which are appended directly.
if (multiplier != 1) {
// Too many percent/perMill characters
debug("Too many percent characters")
status = U_MULTIPLE_PERCENT_SYMBOLS;
syntaxError(pattern,pos,parseError);
return;
}
affix->append(kQuote); // Encode percent/perMill
affix->append(kPatternPercent); // Use unlocalized pattern char
multiplier = 100;
pos += percent.length();
break;
} else if (pattern.compare(pos, perMill.length(), perMill) == 0) {
// Next handle characters which are appended directly.
if (multiplier != 1) {
// Too many percent/perMill characters
debug("Too many perMill characters")
status = U_MULTIPLE_PERMILL_SYMBOLS;
syntaxError(pattern,pos,parseError);
return;
}
affix->append(kQuote); // Encode percent/perMill
affix->append(kPatternPerMill); // Use unlocalized pattern char
multiplier = 1000;
pos += perMill.length();
break;
} else if (pattern.compare(pos, padEscape.length(), padEscape) == 0) {
if (padPos >= 0 || // Multiple pad specifiers
(pos+1) == pattern.length()) { // Nothing after padEscape
debug("Multiple pad specifiers")
status = U_MULTIPLE_PAD_SPECIFIERS;
syntaxError(pattern,pos,parseError);
return;
}
padPos = pos;
pos += padEscape.length();
padChar = pattern.char32At(pos);
pos += U16_LENGTH(padChar);
break;
} else if (pattern.compare(pos, minus.length(), minus) == 0) {
affix->append(kQuote); // Encode minus
affix->append(kPatternMinus);
pos += minus.length();
break;
} else if (pattern.compare(pos, plus.length(), plus) == 0) {
affix->append(kQuote); // Encode plus
affix->append(kPatternPlus);
pos += plus.length();
break;
}
// Unquoted, non-special characters fall through to here, as
// well as other code which needs to append something to the
// affix.
affix->append(ch);
pos += U16_LENGTH(ch);
break;
case 3: // Prefix subpart, in quote
case 4: // Suffix subpart, in quote
// A quote within quotes indicates either the closing
// quote or two quotes, which is a quote literal. That is,
// we have the second quote in 'do' or 'don''t'.
if (ch == kQuote) {
++pos;
if (pos < pattern.length() && pattern[pos] == kQuote) {
affix->append(kQuote); // Encode quote
// Fall through to append(ch)
} else {
subpart -= 2; // close quote
continue;
}
}
affix->append(ch);
pos += U16_LENGTH(ch);
break;
}
}
if (sub0Limit == 0) {
sub0Limit = pattern.length();
}
if (sub2Limit == 0) {
sub2Limit = pattern.length();
}
/* Handle patterns with no '0' pattern character. These patterns
* are legal, but must be recodified to make sense. "##.###" ->
* "#0.###". ".###" -> ".0##".
*
* We allow patterns of the form "####" to produce a zeroDigitCount
* of zero (got that?); although this seems like it might make it
* possible for format() to produce empty strings, format() checks
* for this condition and outputs a zero digit in this situation.
* Having a zeroDigitCount of zero yields a minimum integer digits
* of zero, which allows proper round-trip patterns. We don't want
* "#" to become "#0" when toPattern() is called (even though that's
* what it really is, semantically).
*/
if (zeroDigitCount == 0 && sigDigitCount == 0 &&
digitLeftCount > 0 && decimalPos >= 0) {
// Handle "###.###" and "###." and ".###"
int n = decimalPos;
if (n == 0)
++n; // Handle ".###"
digitRightCount = digitLeftCount - n;
digitLeftCount = n - 1;
zeroDigitCount = 1;
}
// Do syntax checking on the digits, decimal points, and quotes.
if ((decimalPos < 0 && digitRightCount > 0 && sigDigitCount == 0) ||
(decimalPos >= 0 &&
(sigDigitCount > 0 ||
decimalPos < digitLeftCount ||
decimalPos > (digitLeftCount + zeroDigitCount))) ||
groupingCount == 0 || groupingCount2 == 0 ||
(sigDigitCount > 0 && zeroDigitCount > 0) ||
subpart > 2)
{ // subpart > 2 == unmatched quote
debug("Syntax error")
status = U_PATTERN_SYNTAX_ERROR;
syntaxError(pattern,pos,parseError);
return;
}
// Make sure pad is at legal position before or after affix.
if (padPos >= 0) {
if (padPos == start) {
padPos = kPadBeforePrefix;
} else if (padPos+2 == sub0Start) {
padPos = kPadAfterPrefix;
} else if (padPos == sub0Limit) {
padPos = kPadBeforeSuffix;
} else if (padPos+2 == sub2Limit) {
padPos = kPadAfterSuffix;
} else {
// Illegal pad position
debug("Illegal pad position")
status = U_ILLEGAL_PAD_POSITION;
syntaxError(pattern,pos,parseError);
return;
}
}
if (part == 0) {
delete fPosPrefixPattern;
delete fPosSuffixPattern;
delete fNegPrefixPattern;
delete fNegSuffixPattern;
fPosPrefixPattern = new UnicodeString(prefix);
/* test for NULL */
if (fPosPrefixPattern == 0) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
fPosSuffixPattern = new UnicodeString(suffix);
/* test for NULL */
if (fPosSuffixPattern == 0) {
status = U_MEMORY_ALLOCATION_ERROR;
delete fPosPrefixPattern;
return;
}
fNegPrefixPattern = 0;
fNegSuffixPattern = 0;
fUseExponentialNotation = (expDigits >= 0);
if (fUseExponentialNotation) {
fMinExponentDigits = expDigits;
}
fExponentSignAlwaysShown = expSignAlways;
fIsCurrencyFormat = isCurrency;
int32_t digitTotalCount = digitLeftCount + zeroDigitCount + digitRightCount;
// The effectiveDecimalPos is the position the decimal is at or
// would be at if there is no decimal. Note that if
// decimalPos<0, then digitTotalCount == digitLeftCount +
// zeroDigitCount.
int32_t effectiveDecimalPos = decimalPos >= 0 ? decimalPos : digitTotalCount;
UBool isSigDig = (sigDigitCount > 0);
setSignificantDigitsUsed(isSigDig);
if (isSigDig) {
setMinimumSignificantDigits(sigDigitCount);
setMaximumSignificantDigits(sigDigitCount + digitRightCount);
} else {
int32_t minInt = effectiveDecimalPos - digitLeftCount;
setMinimumIntegerDigits(minInt);
setMaximumIntegerDigits(fUseExponentialNotation
? digitLeftCount + getMinimumIntegerDigits()
: kDoubleIntegerDigits);
setMaximumFractionDigits(decimalPos >= 0
? (digitTotalCount - decimalPos) : 0);
setMinimumFractionDigits(decimalPos >= 0
? (digitLeftCount + zeroDigitCount - decimalPos) : 0);
}
setGroupingUsed(groupingCount > 0);
fGroupingSize = (groupingCount > 0) ? groupingCount : 0;
fGroupingSize2 = (groupingCount2 > 0 && groupingCount2 != groupingCount)
? groupingCount2 : 0;
fMultiplier = multiplier;
setDecimalSeparatorAlwaysShown(decimalPos == 0
|| decimalPos == digitTotalCount);
if (padPos >= 0) {
fPadPosition = (EPadPosition) padPos;
// To compute the format width, first set up sub0Limit -
// sub0Start. Add in prefix/suffix length later.
// fFormatWidth = prefix.length() + suffix.length() +
// sub0Limit - sub0Start;
fFormatWidth = sub0Limit - sub0Start;
fPad = padChar;
} else {
fFormatWidth = 0;
}
if (roundingPos >= 0) {
roundingInc.fDecimalAt = effectiveDecimalPos - roundingPos;
if (fRoundingIncrement != NULL) {
*fRoundingIncrement = roundingInc;
} else {
fRoundingIncrement = new DigitList(roundingInc);
/* test for NULL */
if (fRoundingIncrement == 0) {
status = U_MEMORY_ALLOCATION_ERROR;
delete fPosPrefixPattern;
delete fPosSuffixPattern;
return;
}
}
fRoundingDouble = fRoundingIncrement->getDouble();
fRoundingMode = kRoundHalfEven;
} else {
setRoundingIncrement(0.0);
}
} else {
fNegPrefixPattern = new UnicodeString(prefix);
/* test for NULL */
if (fNegPrefixPattern == 0) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
fNegSuffixPattern = new UnicodeString(suffix);
/* test for NULL */
if (fNegSuffixPattern == 0) {
delete fNegPrefixPattern;
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
}
}
if (pattern.length() == 0) {
delete fNegPrefixPattern;
delete fNegSuffixPattern;
fNegPrefixPattern = NULL;
fNegSuffixPattern = NULL;
if (fPosPrefixPattern != NULL) {
fPosPrefixPattern->remove();
} else {
fPosPrefixPattern = new UnicodeString();
/* test for NULL */
if (fPosPrefixPattern == 0) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
}
if (fPosSuffixPattern != NULL) {
fPosSuffixPattern->remove();
} else {
fPosSuffixPattern = new UnicodeString();
/* test for NULL */
if (fPosSuffixPattern == 0) {
delete fPosPrefixPattern;
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
}
setMinimumIntegerDigits(0);
setMaximumIntegerDigits(kDoubleIntegerDigits);
setMinimumFractionDigits(0);
setMaximumFractionDigits(kDoubleFractionDigits);
fUseExponentialNotation = FALSE;
fIsCurrencyFormat = FALSE;
setGroupingUsed(FALSE);
fGroupingSize = 0;
fGroupingSize2 = 0;
fMultiplier = 1;
setDecimalSeparatorAlwaysShown(FALSE);
fFormatWidth = 0;
setRoundingIncrement(0.0);
}
// If there was no negative pattern, or if the negative pattern is
// identical to the positive pattern, then prepend the minus sign to the
// positive pattern to form the negative pattern.
if (fNegPrefixPattern == NULL ||
(*fNegPrefixPattern == *fPosPrefixPattern
&& *fNegSuffixPattern == *fPosSuffixPattern)) {
_copy_us_ptr(&fNegSuffixPattern, fPosSuffixPattern);
if (fNegPrefixPattern == NULL) {
fNegPrefixPattern = new UnicodeString();
/* test for NULL */
if (fNegPrefixPattern == 0) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
} else {
fNegPrefixPattern->remove();
}
fNegPrefixPattern->append(kQuote).append(kPatternMinus)
.append(*fPosPrefixPattern);
}
#ifdef FMT_DEBUG
UnicodeString s;
s.append("\"").append(pattern).append("\"->");
debugout(s);
#endif
expandAffixes();
if (fFormatWidth > 0) {
// Finish computing format width (see above)
fFormatWidth += fPositivePrefix.length() + fPositiveSuffix.length();
}
}
/**
* Sets the maximum number of digits allowed in the integer portion of a
* number. This override limits the integer digit count to 309.
* @see NumberFormat#setMaximumIntegerDigits
*/
void DecimalFormat::setMaximumIntegerDigits(int32_t newValue) {
NumberFormat::setMaximumIntegerDigits(_min(newValue, kDoubleIntegerDigits));
}
/**
* Sets the minimum number of digits allowed in the integer portion of a
* number. This override limits the integer digit count to 309.
* @see NumberFormat#setMinimumIntegerDigits
*/
void DecimalFormat::setMinimumIntegerDigits(int32_t newValue) {
NumberFormat::setMinimumIntegerDigits(_min(newValue, kDoubleIntegerDigits));
}
/**
* Sets the maximum number of digits allowed in the fraction portion of a
* number. This override limits the fraction digit count to 340.
* @see NumberFormat#setMaximumFractionDigits
*/
void DecimalFormat::setMaximumFractionDigits(int32_t newValue) {
NumberFormat::setMaximumFractionDigits(_min(newValue, kDoubleFractionDigits));
}
/**
* Sets the minimum number of digits allowed in the fraction portion of a
* number. This override limits the fraction digit count to 340.
* @see NumberFormat#setMinimumFractionDigits
*/
void DecimalFormat::setMinimumFractionDigits(int32_t newValue) {
NumberFormat::setMinimumFractionDigits(_min(newValue, kDoubleFractionDigits));
}
int32_t DecimalFormat::getMinimumSignificantDigits() const {
return fMinSignificantDigits;
}
int32_t DecimalFormat::getMaximumSignificantDigits() const {
return fMaxSignificantDigits;
}
void DecimalFormat::setMinimumSignificantDigits(int32_t min) {
if (min < 1) {
min = 1;
}
// pin max sig dig to >= min
int32_t max = _max(fMaxSignificantDigits, min);
fMinSignificantDigits = min;
fMaxSignificantDigits = max;
}
void DecimalFormat::setMaximumSignificantDigits(int32_t max) {
if (max < 1) {
max = 1;
}
// pin min sig dig to 1..max
U_ASSERT(fMinSignificantDigits >= 1);
int32_t min = _min(fMinSignificantDigits, max);
fMinSignificantDigits = min;
fMaxSignificantDigits = max;
}
UBool DecimalFormat::areSignificantDigitsUsed() const {
return fUseSignificantDigits;
}
void DecimalFormat::setSignificantDigitsUsed(UBool useSignificantDigits) {
fUseSignificantDigits = useSignificantDigits;
}
void DecimalFormat::setCurrency(const UChar* theCurrency, UErrorCode& ec) {
// If we are a currency format, then modify our affixes to
// encode the currency symbol for the given currency in our
// locale, and adjust the decimal digits and rounding for the
// given currency.
// Note: The code is ordered so that this object is *not changed*
// until we are sure we are going to succeed.
// NULL or empty currency is *legal* and indicates no currency.
UBool isCurr = (theCurrency && *theCurrency);
double rounding = 0.0;
int32_t frac = 0;
if (fIsCurrencyFormat && isCurr) {
rounding = ucurr_getRoundingIncrement(theCurrency, &ec);
frac = ucurr_getDefaultFractionDigits(theCurrency, &ec);
}
NumberFormat::setCurrency(theCurrency, ec);
if (U_FAILURE(ec)) return;
if (fIsCurrencyFormat) {
// NULL or empty currency is *legal* and indicates no currency.
if (isCurr) {
setRoundingIncrement(rounding);
setMinimumFractionDigits(frac);
setMaximumFractionDigits(frac);
}
expandAffixes();
}
}
// Deprecated variant with no UErrorCode parameter
void DecimalFormat::setCurrency(const UChar* theCurrency) {
UErrorCode ec = U_ZERO_ERROR;
setCurrency(theCurrency, ec);
}
void DecimalFormat::getEffectiveCurrency(UChar* result, UErrorCode& /*ec*/) const {
const UChar* c = getCurrency();
if (*c == 0) {
const UnicodeString &intl =
fSymbols->getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol);
c = intl.getBuffer(); // ok for intl to go out of scope
}
u_strncpy(result, c, 3);
result[3] = 0;
}
/**
* Return the number of fraction digits to display, or the total
* number of digits for significant digit formats and exponential
* formats.
*/
int32_t
DecimalFormat::precision(UBool isIntegral) const {
if (areSignificantDigitsUsed()) {
return getMaximumSignificantDigits();
} else if (fUseExponentialNotation) {
return getMinimumIntegerDigits() + getMaximumFractionDigits();
} else {
return isIntegral ? 0 : getMaximumFractionDigits();
}
}
U_NAMESPACE_END
#endif /* #if !UCONFIG_NO_FORMATTING */
//eof