b72a1b75cc
X-SVN-Rev: 13638
3849 lines
138 KiB
C
3849 lines
138 KiB
C
/*
|
|
******************************************************************************
|
|
*
|
|
* Copyright (C) 2000-2003, International Business Machines
|
|
* Corporation and others. All Rights Reserved.
|
|
*
|
|
******************************************************************************
|
|
* file name: ucnvmbcs.c
|
|
* encoding: US-ASCII
|
|
* tab size: 8 (not used)
|
|
* indentation:4
|
|
*
|
|
* created on: 2000jul03
|
|
* created by: Markus W. Scherer
|
|
*
|
|
* The current code in this file replaces the previous implementation
|
|
* of conversion code from multi-byte codepages to Unicode and back.
|
|
* This implementation supports the following:
|
|
* - legacy variable-length codepages with up to 4 bytes per character
|
|
* - all Unicode code points (up to 0x10ffff)
|
|
* - efficient distinction of unassigned vs. illegal byte sequences
|
|
* - it is possible in fromUnicode() to directly deal with simple
|
|
* stateful encodings (used for EBCDIC_STATEFUL)
|
|
* - it is possible to convert Unicode code points other than U+0000
|
|
* to a single zero byte (but not as a fallback except for SBCS)
|
|
*
|
|
* Remaining limitations in fromUnicode:
|
|
* - byte sequences must not have leading zero bytes
|
|
* - except for SBCS codepages: no fallback mapping from Unicode to a zero byte
|
|
* - limitation to up to 4 bytes per character
|
|
*
|
|
* Change history:
|
|
*
|
|
* 5/6/2001 Ram Moved MBCS_SINGLE_RESULT_FROM_U,MBCS_STAGE_2_FROM_U,
|
|
* MBCS_VALUE_2_FROM_STAGE_2, MBCS_VALUE_4_FROM_STAGE_2
|
|
* macros to ucnvmbcs.h file
|
|
*/
|
|
|
|
#include "unicode/utypes.h"
|
|
|
|
#if !UCONFIG_NO_LEGACY_CONVERSION
|
|
|
|
#include "unicode/ucnv.h"
|
|
#include "unicode/ucnv_cb.h"
|
|
#include "unicode/udata.h"
|
|
#include "unicode/uset.h"
|
|
#include "ucnv_bld.h"
|
|
#include "ucnvmbcs.h"
|
|
#include "ucnv_ext.h"
|
|
#include "ucnv_cnv.h"
|
|
#include "umutex.h"
|
|
#include "cmemory.h"
|
|
#include "cstring.h"
|
|
|
|
/* control optimizations according to the platform */
|
|
#define MBCS_UNROLL_SINGLE_TO_BMP 1
|
|
#define MBCS_UNROLL_SINGLE_FROM_BMP 0
|
|
|
|
/*
|
|
* _MBCSHeader versions 4.2
|
|
* (Note that the _MBCSHeader version is in addition to the converter formatVersion.)
|
|
*
|
|
* Change from version 4.1:
|
|
* - Added an optional extension table structure at the end of the .cnv file.
|
|
* It is present if the upper bits of the header flags field contains a non-zero
|
|
* byte offset to it.
|
|
* Files that contain only a conversion table and no base table
|
|
* use the special outputType MBCS_OUTPUT_EXT_ONLY.
|
|
* These contain the base table name between the MBCS header and the extension
|
|
* data.
|
|
*
|
|
* Change from version 4.0:
|
|
* - Replace header.reserved with header.fromUBytesLength so that all
|
|
* fields in the data have length.
|
|
*
|
|
* Changes from version 3 (for performance improvements):
|
|
* - new bit distribution for state table entries
|
|
* - reordered action codes
|
|
* - new data structure for single-byte fromUnicode
|
|
* + stage 2 only contains indexes
|
|
* + stage 3 stores 16 bits per character with classification bits 15..8
|
|
* - no multiplier for stage 1 entries
|
|
* - stage 2 for non-single-byte codepages contains the index and the flags in
|
|
* one 32-bit value
|
|
* - 2-byte and 4-byte fromUnicode results are stored directly as 16/32-bit integers
|
|
*
|
|
* For more details about old versions of the MBCS data structure, see
|
|
* the corresponding versions of this file.
|
|
*
|
|
* Converting stateless codepage data ---------------------------------------***
|
|
* (or codepage data with simple states) to Unicode.
|
|
*
|
|
* Data structure and algorithm for converting from complex legacy codepages
|
|
* to Unicode. (Designed before 2000-may-22.)
|
|
*
|
|
* The basic idea is that the structure of legacy codepages can be described
|
|
* with state tables.
|
|
* When reading a byte stream, each input byte causes a state transition.
|
|
* Some transitions result in the output of a code point, some result in
|
|
* "unassigned" or "illegal" output.
|
|
* This is used here for character conversion.
|
|
*
|
|
* The data structure begins with a state table consisting of a row
|
|
* per state, with 256 entries (columns) per row for each possible input
|
|
* byte value.
|
|
* Each entry is 32 bits wide, with two formats distinguished by
|
|
* the sign bit (bit 31):
|
|
*
|
|
* One format for transitional entries (bit 31 not set) for non-final bytes, and
|
|
* one format for final entries (bit 31 set).
|
|
* Both formats contain the number of the next state in the same bit
|
|
* positions.
|
|
* State 0 is the initial state.
|
|
*
|
|
* Most of the time, the offset values of subsequent states are added
|
|
* up to a scalar value. This value will eventually be the index of
|
|
* the Unicode code point in a table that follows the state table.
|
|
* The effect is that the code points for final state table rows
|
|
* are contiguous. The code points of final state rows follow each other
|
|
* in the order of the references to those final states by previous
|
|
* states, etc.
|
|
*
|
|
* For some terminal states, the offset is itself the output Unicode
|
|
* code point (16 bits for a BMP code point or 20 bits for a supplementary
|
|
* code point (stored as code point minus 0x10000 so that 20 bits are enough).
|
|
* For others, the code point in the Unicode table is stored with either
|
|
* one or two code units: one for BMP code points, two for a pair of
|
|
* surrogates.
|
|
* All code points for a final state entry take up the same number of code
|
|
* units, regardless of whether they all actually _use_ the same number
|
|
* of code units. This is necessary for simple array access.
|
|
*
|
|
* An additional feature comes in with what in ICU is called "fallback"
|
|
* mappings:
|
|
*
|
|
* In addition to round-trippable, precise, 1:1 mappings, there are often
|
|
* mappings defined between similar, though not the same, characters.
|
|
* Typically, such mappings occur only in fromUnicode mapping tables because
|
|
* Unicode has a superset repertoire of most other codepages. However, it
|
|
* is possible to provide such mappings in the toUnicode tables, too.
|
|
* In this case, the fallback mappings are partly integrated into the
|
|
* general state tables because the structure of the encoding includes their
|
|
* byte sequences.
|
|
* For final entries in an initial state, fallback mappings are stored in
|
|
* the entry itself like with roundtrip mappings.
|
|
* For other final entries, they are stored in the code units table if
|
|
* the entry is for a pair of code units.
|
|
* For single-unit results in the code units table, there is no space to
|
|
* alternatively hold a fallback mapping; in this case, the code unit
|
|
* is stored as U+fffe (unassigned), and the fallback mapping needs to
|
|
* be looked up by the scalar offset value in a separate table.
|
|
*
|
|
* "Unassigned" state entries really mean "structurally unassigned",
|
|
* i.e., such a byte sequence will never have a mapping result.
|
|
*
|
|
* The interpretation of the bits in each entry is as follows:
|
|
*
|
|
* Bit 31 not set, not a terminal entry ("transitional"):
|
|
* 30..24 next state
|
|
* 23..0 offset delta, to be added up
|
|
*
|
|
* Bit 31 set, terminal ("final") entry:
|
|
* 30..24 next state (regardless of action code)
|
|
* 23..20 action code:
|
|
* action codes 0 and 1 result in precise-mapping Unicode code points
|
|
* 0 valid byte sequence
|
|
* 19..16 not used, 0
|
|
* 15..0 16-bit Unicode BMP code point
|
|
* never U+fffe or U+ffff
|
|
* 1 valid byte sequence
|
|
* 19..0 20-bit Unicode supplementary code point
|
|
* never U+fffe or U+ffff
|
|
*
|
|
* action codes 2 and 3 result in fallback (unidirectional-mapping) Unicode code points
|
|
* 2 valid byte sequence (fallback)
|
|
* 19..16 not used, 0
|
|
* 15..0 16-bit Unicode BMP code point as fallback result
|
|
* 3 valid byte sequence (fallback)
|
|
* 19..0 20-bit Unicode supplementary code point as fallback result
|
|
*
|
|
* action codes 4 and 5 may result in roundtrip/fallback/unassigned/illegal results
|
|
* depending on the code units they result in
|
|
* 4 valid byte sequence
|
|
* 19..9 not used, 0
|
|
* 8..0 final offset delta
|
|
* pointing to one 16-bit code unit which may be
|
|
* fffe unassigned -- look for a fallback for this offset
|
|
* ffff illegal
|
|
* 5 valid byte sequence
|
|
* 19..9 not used, 0
|
|
* 8..0 final offset delta
|
|
* pointing to two 16-bit code units
|
|
* (typically UTF-16 surrogates)
|
|
* the result depends on the first code unit as follows:
|
|
* 0000..d7ff roundtrip BMP code point (1st alone)
|
|
* d800..dbff roundtrip surrogate pair (1st, 2nd)
|
|
* dc00..dfff fallback surrogate pair (1st-400, 2nd)
|
|
* e000 roundtrip BMP code point (2nd alone)
|
|
* e001 fallback BMP code point (2nd alone)
|
|
* fffe unassigned
|
|
* ffff illegal
|
|
* (the final offset deltas are at most 255 * 2,
|
|
* times 2 because of storing code unit pairs)
|
|
*
|
|
* 6 unassigned byte sequence
|
|
* 19..16 not used, 0
|
|
* 15..0 16-bit Unicode BMP code point U+fffe (new with version 2)
|
|
* this does not contain a final offset delta because the main
|
|
* purpose of this action code is to save scalar offset values;
|
|
* therefore, fallback values cannot be assigned to byte
|
|
* sequences that result in this action code
|
|
* 7 illegal byte sequence
|
|
* 19..16 not used, 0
|
|
* 15..0 16-bit Unicode BMP code point U+ffff (new with version 2)
|
|
* 8 state change only
|
|
* 19..0 not used, 0
|
|
* useful for state changes in simple stateful encodings,
|
|
* at Shift-In/Shift-Out codes
|
|
*
|
|
*
|
|
* 9..15 reserved for future use
|
|
* current implementations will only perform a state change
|
|
* and ignore bits 19..0
|
|
*
|
|
* An encoding with contiguous ranges of unassigned byte sequences, like
|
|
* Shift-JIS and especially EUC-TW, can be stored efficiently by having
|
|
* at least two states for the trail bytes:
|
|
* One trail byte state that results in code points, and one that only
|
|
* has "unassigned" and "illegal" terminal states.
|
|
*
|
|
* Note: partly by accident, this data structure supports simple stateless
|
|
* encodings without any additional logic.
|
|
* Currently, only simple Shift-In/Shift-Out schemes are handled with
|
|
* appropriate state tables (especially EBCDIC_STATEFUL!).
|
|
*
|
|
* MBCS version 2 added:
|
|
* unassigned and illegal action codes have U+fffe and U+ffff
|
|
* instead of unused bits; this is useful for _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP()
|
|
*
|
|
* Converting from Unicode to codepage bytes --------------------------------***
|
|
*
|
|
* The conversion data structure for fromUnicode is designed for the known
|
|
* structure of Unicode. It maps from 21-bit code points (0..0x10ffff) to
|
|
* a sequence of 1..4 bytes, in addition to a flag that indicates if there is
|
|
* a roundtrip mapping.
|
|
*
|
|
* The lookup is done with a 3-stage trie, using 11/6/4 bits for stage 1/2/3
|
|
* like in the character properties table.
|
|
* The beginning of the trie is at offsetFromUTable, the beginning of stage 3
|
|
* with the resulting bytes is at offsetFromUBytes.
|
|
*
|
|
* Beginning with version 4, single-byte codepages have a significantly different
|
|
* trie compared to other codepages.
|
|
* In all cases, the entry in stage 1 is directly the index of the block of
|
|
* 64 entries in stage 2.
|
|
*
|
|
* Single-byte lookup:
|
|
*
|
|
* Stage 2 only contains 16-bit indexes directly to the 16-blocks in stage 3.
|
|
* Stage 3 contains one 16-bit word per result:
|
|
* Bits 15..8 indicate the kind of result:
|
|
* f roundtrip result
|
|
* c fallback result from private-use code point
|
|
* 8 fallback result from other code points
|
|
* 0 unassigned
|
|
* Bits 7..0 contain the codepage byte. A zero byte is always possible.
|
|
*
|
|
* Multi-byte lookup:
|
|
*
|
|
* Stage 2 contains a 32-bit word for each 16-block in stage 3:
|
|
* Bits 31..16 contain flags for which stage 3 entries contain roundtrip results
|
|
* test: MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)
|
|
* If this test is false, then a non-zero result will be interpreted as
|
|
* a fallback mapping.
|
|
* Bits 15..0 contain the index to stage 3, which must be multiplied by 16*(bytes per char)
|
|
*
|
|
* Stage 3 contains 2, 3, or 4 bytes per result.
|
|
* 2 or 4 bytes are stored as uint16_t/uint32_t in platform endianness,
|
|
* while 3 bytes are stored as bytes in big-endian order.
|
|
* Leading zero bytes are ignored, and the number of bytes is counted.
|
|
* A zero byte mapping result is possible as a roundtrip result.
|
|
* For some output types, the actual result is processed from this;
|
|
* see _MBCSFromUnicodeWithOffsets().
|
|
*
|
|
* Note that stage 1 always contains 0x440=1088 entries (0x440==0x110000>>10),
|
|
* or (version 3 and up) for BMP-only codepages, it contains 64 entries.
|
|
*
|
|
* In version 3, stage 2 blocks may overlap by multiples of the multiplier
|
|
* for compaction.
|
|
* In version 4, stage 2 blocks (and for single-byte codepages, stage 3 blocks)
|
|
* may overlap by any number of entries.
|
|
*
|
|
* MBCS version 2 added:
|
|
* the converter checks for known output types, which allows
|
|
* adding new ones without crashing an unaware converter
|
|
*/
|
|
|
|
|
|
/* GB 18030 data ------------------------------------------------------------ */
|
|
|
|
/* helper macros for linear values for GB 18030 four-byte sequences */
|
|
#define LINEAR_18030(a, b, c, d) ((((a)*10+(b))*126L+(c))*10L+(d))
|
|
|
|
#define LINEAR_18030_BASE LINEAR_18030(0x81, 0x30, 0x81, 0x30)
|
|
|
|
#define LINEAR(x) LINEAR_18030(x>>24, (x>>16)&0xff, (x>>8)&0xff, x&0xff)
|
|
|
|
/*
|
|
* Some ranges of GB 18030 where both the Unicode code points and the
|
|
* GB four-byte sequences are contiguous and are handled algorithmically by
|
|
* the special callback functions below.
|
|
* The values are start & end of Unicode & GB codes.
|
|
*
|
|
* Note that single surrogates are not mapped by GB 18030
|
|
* as of the re-released mapping tables from 2000-nov-30.
|
|
*/
|
|
static const uint32_t
|
|
gb18030Ranges[13][4]={
|
|
{0x10000, 0x10FFFF, LINEAR(0x90308130), LINEAR(0xE3329A35)},
|
|
{0x9FA6, 0xD7FF, LINEAR(0x82358F33), LINEAR(0x8336C738)},
|
|
{0x0452, 0x200F, LINEAR(0x8130D330), LINEAR(0x8136A531)},
|
|
{0xE865, 0xF92B, LINEAR(0x8336D030), LINEAR(0x84308534)},
|
|
{0x2643, 0x2E80, LINEAR(0x8137A839), LINEAR(0x8138FD38)},
|
|
{0xFA2A, 0xFE2F, LINEAR(0x84309C38), LINEAR(0x84318537)},
|
|
{0x3CE1, 0x4055, LINEAR(0x8231D438), LINEAR(0x8232AF32)},
|
|
{0x361B, 0x3917, LINEAR(0x8230A633), LINEAR(0x8230F237)},
|
|
{0x49B8, 0x4C76, LINEAR(0x8234A131), LINEAR(0x8234E733)},
|
|
{0x4160, 0x4336, LINEAR(0x8232C937), LINEAR(0x8232F837)},
|
|
{0x478E, 0x4946, LINEAR(0x8233E838), LINEAR(0x82349638)},
|
|
{0x44D7, 0x464B, LINEAR(0x8233A339), LINEAR(0x8233C931)},
|
|
{0xFFE6, 0xFFFF, LINEAR(0x8431A234), LINEAR(0x8431A439)}
|
|
};
|
|
|
|
/* bit flag for UConverter.options indicating GB 18030 special handling */
|
|
#define _MBCS_OPTION_GB18030 0x8000
|
|
|
|
/* Miscellaneous ------------------------------------------------------------ */
|
|
|
|
static uint32_t
|
|
_MBCSSizeofFromUBytes(UConverterMBCSTable *mbcsTable) {
|
|
const uint16_t *table;
|
|
|
|
uint32_t st3, maxStage3;
|
|
uint16_t st1, maxStage1, st2;
|
|
|
|
if(mbcsTable->fromUBytesLength>0) {
|
|
/*
|
|
* We _know_ the number of bytes in the fromUnicodeBytes array
|
|
* starting with header.version 4.1.
|
|
* Otherwise, below, we need to enumerate the fromUnicode
|
|
* trie and find the highest entry.
|
|
*/
|
|
return mbcsTable->fromUBytesLength;
|
|
}
|
|
|
|
/* Enumerate the from-Unicode trie table to find the highest stage 3 index. */
|
|
table=mbcsTable->fromUnicodeTable;
|
|
maxStage3=0;
|
|
if(mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY) {
|
|
maxStage1=0x440;
|
|
} else {
|
|
maxStage1=0x40;
|
|
}
|
|
|
|
|
|
if(mbcsTable->outputType==MBCS_OUTPUT_1) {
|
|
const uint16_t *stage2;
|
|
|
|
for(st1=0; st1<maxStage1; ++st1) {
|
|
st2=table[st1];
|
|
if(st2>maxStage1) {
|
|
stage2=table+st2;
|
|
for(st2=0; st2<64; ++st2) {
|
|
st3=stage2[st2];
|
|
if(st3>maxStage3) {
|
|
maxStage3=st3;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* add 16 to get the limit not start index of the last stage 3 block,
|
|
* times 2 for number of bytes
|
|
*/
|
|
return (maxStage3+16)*2;
|
|
} else {
|
|
const uint32_t *stage2;
|
|
|
|
for(st1=0; st1<maxStage1; ++st1) {
|
|
st2=table[st1];
|
|
if(st2>(maxStage1>>1)) {
|
|
stage2=(const uint32_t *)table+st2;
|
|
for(st2=0; st2<64; ++st2) {
|
|
st3=stage2[st2]&0xffff;
|
|
if(st3>maxStage3) {
|
|
maxStage3=st3;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* add 16 to get the limit not start index of the last stage 3 block,
|
|
* times 2..4 for number of bytes
|
|
*/
|
|
maxStage3=16*maxStage3+16;
|
|
switch(mbcsTable->outputType) {
|
|
case MBCS_OUTPUT_3:
|
|
case MBCS_OUTPUT_4_EUC:
|
|
maxStage3*=3;
|
|
break;
|
|
case MBCS_OUTPUT_4:
|
|
maxStage3*=4;
|
|
break;
|
|
default:
|
|
/* MBCS_OUTPUT_2... and MBCS_OUTPUT_3_EUC */
|
|
maxStage3*=2;
|
|
break;
|
|
}
|
|
return maxStage3;
|
|
}
|
|
}
|
|
|
|
static void
|
|
_MBCSGetUnicodeSet(const UConverter *cnv,
|
|
USet *set,
|
|
UConverterUnicodeSet which,
|
|
UErrorCode *pErrorCode) {
|
|
UConverterMBCSTable *mbcsTable;
|
|
const uint16_t *table;
|
|
|
|
uint32_t st3;
|
|
uint16_t st1, maxStage1, st2;
|
|
|
|
UChar32 c;
|
|
|
|
if(cnv->options&_MBCS_OPTION_GB18030) {
|
|
uset_addRange(set, 0, 0xd7ff);
|
|
uset_addRange(set, 0xe000, 0x10ffff);
|
|
return;
|
|
}
|
|
|
|
/* enumerate the from-Unicode trie table */
|
|
mbcsTable=&cnv->sharedData->mbcs;
|
|
table=mbcsTable->fromUnicodeTable;
|
|
if(mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY) {
|
|
maxStage1=0x440;
|
|
} else {
|
|
maxStage1=0x40;
|
|
}
|
|
|
|
c=0; /* keep track of the current code point while enumerating */
|
|
|
|
if(mbcsTable->outputType==MBCS_OUTPUT_1) {
|
|
const uint16_t *stage2, *stage3, *results;
|
|
|
|
results=(const uint16_t *)mbcsTable->fromUnicodeBytes;
|
|
|
|
for(st1=0; st1<maxStage1; ++st1) {
|
|
st2=table[st1];
|
|
if(st2>maxStage1) {
|
|
stage2=table+st2;
|
|
for(st2=0; st2<64; ++st2) {
|
|
if((st3=stage2[st2])!=0) {
|
|
/* read the stage 3 block */
|
|
stage3=results+st3;
|
|
|
|
/*
|
|
* Add code points for which the roundtrip flag is set.
|
|
* Once we get a set for fallback mappings, we have to use
|
|
* a threshold variable with a value of 0x800.
|
|
* See _MBCSSingleFromBMPWithOffsets() and
|
|
* MBCS_SINGLE_RESULT_FROM_U() for details.
|
|
*/
|
|
do {
|
|
if(*stage3++>=0xf00) {
|
|
uset_add(set, c);
|
|
}
|
|
} while((++c&0xf)!=0);
|
|
} else {
|
|
c+=16; /* empty stage 3 block */
|
|
}
|
|
}
|
|
} else {
|
|
c+=1024; /* empty stage 2 block */
|
|
}
|
|
}
|
|
} else if(mbcsTable->outputType==MBCS_OUTPUT_DBCS_ONLY) {
|
|
/* ignore single-byte results */
|
|
const uint32_t *stage2;
|
|
const uint16_t *stage3, *results;
|
|
|
|
results=(const uint16_t *)mbcsTable->fromUnicodeBytes;
|
|
|
|
for(st1=0; st1<maxStage1; ++st1) {
|
|
st2=table[st1];
|
|
if(st2>(maxStage1>>1)) {
|
|
stage2=(const uint32_t *)table+st2;
|
|
for(st2=0; st2<64; ++st2) {
|
|
if((st3=stage2[st2])!=0) {
|
|
/* read the stage 3 block */
|
|
stage3=results+16*(uint32_t)(uint16_t)st3;
|
|
|
|
/* get the roundtrip flags for the stage 3 block */
|
|
st3>>=16;
|
|
|
|
/*
|
|
* Add code points for which the roundtrip flag is set.
|
|
* Once we get a set for fallback mappings, we have to check
|
|
* non-roundtrip stage 3 results for whether they are 0.
|
|
* See _MBCSFromUnicodeWithOffsets() for details.
|
|
*
|
|
* Ignore single-byte results (<0x100).
|
|
*/
|
|
do {
|
|
if((st3&1)!=0 && *stage3>=0x100) {
|
|
uset_add(set, c);
|
|
}
|
|
st3>>=1;
|
|
++stage3;
|
|
} while((++c&0xf)!=0);
|
|
} else {
|
|
c+=16; /* empty stage 3 block */
|
|
}
|
|
}
|
|
} else {
|
|
c+=1024; /* empty stage 2 block */
|
|
}
|
|
}
|
|
} else {
|
|
const uint32_t *stage2;
|
|
|
|
for(st1=0; st1<maxStage1; ++st1) {
|
|
st2=table[st1];
|
|
if(st2>(maxStage1>>1)) {
|
|
stage2=(const uint32_t *)table+st2;
|
|
for(st2=0; st2<64; ++st2) {
|
|
if((st3=stage2[st2])!=0) {
|
|
/* get the roundtrip flags for the stage 3 block */
|
|
st3>>=16;
|
|
|
|
/*
|
|
* Add code points for which the roundtrip flag is set.
|
|
* Once we get a set for fallback mappings, we have to check
|
|
* non-roundtrip stage 3 results for whether they are 0.
|
|
* See _MBCSFromUnicodeWithOffsets() for details.
|
|
*/
|
|
do {
|
|
if(st3&1) {
|
|
uset_add(set, c);
|
|
}
|
|
st3>>=1;
|
|
} while((++c&0xf)!=0);
|
|
} else {
|
|
c+=16; /* empty stage 3 block */
|
|
}
|
|
}
|
|
} else {
|
|
c+=1024; /* empty stage 2 block */
|
|
}
|
|
}
|
|
}
|
|
|
|
ucnv_extGetUnicodeSet(cnv, set, which, pErrorCode);
|
|
}
|
|
|
|
/* conversion extensions for input not in the main table -------------------- */
|
|
|
|
/*
|
|
* Hardcoded extension handling for GB 18030.
|
|
* Definition of LINEAR macros and gb18030Ranges see near the beginning of the file.
|
|
*
|
|
* In the future, conversion extensions may handle m:n mappings and delta tables,
|
|
* see http://oss.software.ibm.com/cvs/icu/~checkout~/icuhtml/design/conversion/conversion_extensions.html
|
|
*
|
|
* If an input character cannot be mapped, then these functions set an error
|
|
* code. The framework will then call the callback function.
|
|
*/
|
|
|
|
/*
|
|
* @return if(U_FAILURE) return the code point for cnv->fromUChar32
|
|
* else return 0 after output has been written to the target
|
|
*/
|
|
static UChar32
|
|
_extFromU(UConverter *cnv, const UConverterSharedData *sharedData,
|
|
UChar32 cp,
|
|
const UChar **source, const UChar *sourceLimit,
|
|
char **target, const char *targetLimit,
|
|
int32_t **offsets, int32_t sourceIndex,
|
|
UBool flush,
|
|
UErrorCode *pErrorCode) {
|
|
const int32_t *cx;
|
|
|
|
cnv->useSubChar1=FALSE;
|
|
|
|
if( (cx=sharedData->mbcs.extIndexes)!=NULL &&
|
|
ucnv_extInitialMatchFromU(
|
|
cnv, cx,
|
|
cp, source, sourceLimit,
|
|
target, targetLimit,
|
|
offsets, sourceIndex,
|
|
flush,
|
|
pErrorCode)
|
|
) {
|
|
return 0; /* an extension mapping handled the input */
|
|
}
|
|
|
|
/* GB 18030 */
|
|
if((cnv->options&_MBCS_OPTION_GB18030)!=0) {
|
|
const uint32_t *range;
|
|
int32_t i;
|
|
|
|
range=gb18030Ranges[0];
|
|
for(i=0; i<sizeof(gb18030Ranges)/sizeof(gb18030Ranges[0]); range+=4, ++i) {
|
|
if(range[0]<=(uint32_t)cp && (uint32_t)cp<=range[1]) {
|
|
/* found the Unicode code point, output the four-byte sequence for it */
|
|
uint32_t linear;
|
|
char bytes[4];
|
|
|
|
/* get the linear value of the first GB 18030 code in this range */
|
|
linear=range[2]-LINEAR_18030_BASE;
|
|
|
|
/* add the offset from the beginning of the range */
|
|
linear+=((uint32_t)cp-range[0]);
|
|
|
|
/* turn this into a four-byte sequence */
|
|
bytes[3]=(char)(0x30+linear%10); linear/=10;
|
|
bytes[2]=(char)(0x81+linear%126); linear/=126;
|
|
bytes[1]=(char)(0x30+linear%10); linear/=10;
|
|
bytes[0]=(char)(0x81+linear);
|
|
|
|
/* output this sequence */
|
|
ucnv_fromUWriteBytes(cnv,
|
|
bytes, 4, target, targetLimit,
|
|
offsets, sourceIndex, pErrorCode);
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* no mapping */
|
|
*pErrorCode=U_INVALID_CHAR_FOUND;
|
|
return cp;
|
|
}
|
|
|
|
/*
|
|
* Input sequence: cnv->toUBytes[0..length[
|
|
* @return if(U_FAILURE) return the length (toULength, byteIndex) for the input
|
|
* else return 0 after output has been written to the target
|
|
*/
|
|
static int8_t
|
|
_extToU(UConverter *cnv, const UConverterSharedData *sharedData,
|
|
int8_t length,
|
|
const char **source, const char *sourceLimit,
|
|
UChar **target, const UChar *targetLimit,
|
|
int32_t **offsets, int32_t sourceIndex,
|
|
UBool flush,
|
|
UErrorCode *pErrorCode) {
|
|
const int32_t *cx;
|
|
|
|
if( (cx=sharedData->mbcs.extIndexes)!=NULL &&
|
|
ucnv_extInitialMatchToU(
|
|
cnv, cx,
|
|
length, source, sourceLimit,
|
|
target, targetLimit,
|
|
offsets, sourceIndex,
|
|
flush,
|
|
pErrorCode)
|
|
) {
|
|
return 0; /* an extension mapping handled the input */
|
|
}
|
|
|
|
/* GB 18030 */
|
|
if(length==4 && (cnv->options&_MBCS_OPTION_GB18030)!=0) {
|
|
const uint32_t *range;
|
|
uint32_t linear;
|
|
int32_t i;
|
|
|
|
linear=LINEAR_18030(cnv->toUBytes[0], cnv->toUBytes[1], cnv->toUBytes[2], cnv->toUBytes[3]);
|
|
range=gb18030Ranges[0];
|
|
for(i=0; i<sizeof(gb18030Ranges)/sizeof(gb18030Ranges[0]); range+=4, ++i) {
|
|
if(range[2]<=linear && linear<=range[3]) {
|
|
/* found the sequence, output the Unicode code point for it */
|
|
*pErrorCode=U_ZERO_ERROR;
|
|
|
|
/* add the linear difference between the input and start sequences to the start code point */
|
|
linear=range[0]+(linear-range[2]);
|
|
|
|
/* output this code point */
|
|
ucnv_toUWriteCodePoint(cnv, linear, target, targetLimit, offsets, sourceIndex, pErrorCode);
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* no mapping */
|
|
*pErrorCode=U_INVALID_CHAR_FOUND;
|
|
return length;
|
|
}
|
|
|
|
/* EBCDIC swap LF<->NL ------------------------------------------------------ */
|
|
|
|
/*
|
|
* This code modifies a standard EBCDIC<->Unicode mapping table for
|
|
* OS/390 (z/OS) Unix System Services (Open Edition).
|
|
* The difference is in the mapping of Line Feed and New Line control codes:
|
|
* Standard EBCDIC maps
|
|
*
|
|
* <U000A> \x25 |0
|
|
* <U0085> \x15 |0
|
|
*
|
|
* but OS/390 USS EBCDIC swaps the control codes for LF and NL,
|
|
* mapping
|
|
*
|
|
* <U000A> \x15 |0
|
|
* <U0085> \x25 |0
|
|
*
|
|
* This code modifies a loaded standard EBCDIC<->Unicode mapping table
|
|
* by copying it into allocated memory and swapping the LF and NL values.
|
|
* It allows to support the same EBCDIC charset in both versions without
|
|
* duplicating the entire installed table.
|
|
*/
|
|
|
|
/* standard EBCDIC codes */
|
|
#define EBCDIC_LF 0x25
|
|
#define EBCDIC_NL 0x15
|
|
|
|
/* standard EBCDIC codes with roundtrip flag as stored in Unicode-to-single-byte tables */
|
|
#define EBCDIC_RT_LF 0xf25
|
|
#define EBCDIC_RT_NL 0xf15
|
|
|
|
/* Unicode code points */
|
|
#define U_LF 0x0a
|
|
#define U_NL 0x85
|
|
|
|
static UBool
|
|
_EBCDICSwapLFNL(UConverterSharedData *sharedData, UErrorCode *pErrorCode) {
|
|
UConverterMBCSTable *mbcsTable;
|
|
|
|
const uint16_t *table, *results;
|
|
const uint8_t *bytes;
|
|
|
|
int32_t (*newStateTable)[256];
|
|
uint16_t *newResults;
|
|
uint8_t *p;
|
|
char *name;
|
|
|
|
uint32_t stage2Entry;
|
|
uint32_t size, sizeofFromUBytes;
|
|
|
|
mbcsTable=&sharedData->mbcs;
|
|
|
|
table=mbcsTable->fromUnicodeTable;
|
|
bytes=mbcsTable->fromUnicodeBytes;
|
|
results=(const uint16_t *)bytes;
|
|
|
|
/*
|
|
* Check that this is an EBCDIC table with SBCS portion -
|
|
* SBCS or EBCDIC_STATEFUL with standard EBCDIC LF and NL mappings.
|
|
*
|
|
* If not, ignore the option. Options are always ignored if they do not apply.
|
|
*/
|
|
if(!(
|
|
(mbcsTable->outputType==MBCS_OUTPUT_1 || mbcsTable->outputType==MBCS_OUTPUT_2_SISO) &&
|
|
mbcsTable->stateTable[0][EBCDIC_LF]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_LF) &&
|
|
mbcsTable->stateTable[0][EBCDIC_NL]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_NL)
|
|
)) {
|
|
return FALSE;
|
|
}
|
|
|
|
if(mbcsTable->outputType==MBCS_OUTPUT_1) {
|
|
if(!(
|
|
EBCDIC_RT_LF==MBCS_SINGLE_RESULT_FROM_U(table, results, U_LF) &&
|
|
EBCDIC_RT_NL==MBCS_SINGLE_RESULT_FROM_U(table, results, U_NL)
|
|
)) {
|
|
return FALSE;
|
|
}
|
|
} else /* MBCS_OUTPUT_2_SISO */ {
|
|
stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF);
|
|
if(!(
|
|
MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_LF)!=0 &&
|
|
EBCDIC_LF==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_LF)
|
|
)) {
|
|
return FALSE;
|
|
}
|
|
|
|
stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL);
|
|
if(!(
|
|
MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_NL)!=0 &&
|
|
EBCDIC_NL==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_NL)
|
|
)) {
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The table has an appropriate format.
|
|
* Allocate and build
|
|
* - a modified to-Unicode state table
|
|
* - a modified from-Unicode output array
|
|
* - a converter name string with the swap option appended
|
|
*/
|
|
sizeofFromUBytes=_MBCSSizeofFromUBytes(mbcsTable);
|
|
size=
|
|
mbcsTable->countStates*1024+
|
|
sizeofFromUBytes+
|
|
UCNV_MAX_CONVERTER_NAME_LENGTH+20;
|
|
p=(uint8_t *)uprv_malloc(size);
|
|
if(p==NULL) {
|
|
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
|
|
return FALSE;
|
|
}
|
|
|
|
/* copy and modify the to-Unicode state table */
|
|
newStateTable=(int32_t (*)[256])p;
|
|
uprv_memcpy(newStateTable, mbcsTable->stateTable, mbcsTable->countStates*1024);
|
|
|
|
newStateTable[0][EBCDIC_LF]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_NL);
|
|
newStateTable[0][EBCDIC_NL]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_LF);
|
|
|
|
/* copy and modify the from-Unicode result table */
|
|
newResults=(uint16_t *)newStateTable[mbcsTable->countStates];
|
|
uprv_memcpy(newResults, bytes, sizeofFromUBytes);
|
|
|
|
/* conveniently, the table access macros work on the left side of expressions */
|
|
if(mbcsTable->outputType==MBCS_OUTPUT_1) {
|
|
MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_LF)=EBCDIC_RT_NL;
|
|
MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_NL)=EBCDIC_RT_LF;
|
|
} else /* MBCS_OUTPUT_2_SISO */ {
|
|
stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF);
|
|
MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_LF)=EBCDIC_NL;
|
|
|
|
stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL);
|
|
MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_NL)=EBCDIC_LF;
|
|
}
|
|
|
|
/* set the canonical converter name */
|
|
name=(char *)newResults+sizeofFromUBytes;
|
|
uprv_strcpy(name, sharedData->staticData->name);
|
|
uprv_strcat(name, UCNV_SWAP_LFNL_OPTION_STRING);
|
|
|
|
/* set the pointers */
|
|
umtx_lock(NULL);
|
|
if(mbcsTable->swapLFNLStateTable==NULL) {
|
|
mbcsTable->swapLFNLStateTable=newStateTable;
|
|
mbcsTable->swapLFNLFromUnicodeBytes=(uint8_t *)newResults;
|
|
mbcsTable->swapLFNLName=name;
|
|
|
|
newStateTable=NULL;
|
|
}
|
|
umtx_unlock(NULL);
|
|
|
|
/* release the allocated memory if another thread beat us to it */
|
|
if(newStateTable!=NULL) {
|
|
uprv_free(newStateTable);
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
/* MBCS setup functions ----------------------------------------------------- */
|
|
|
|
static void
|
|
_MBCSLoad(UConverterSharedData *sharedData,
|
|
const uint8_t *raw,
|
|
UErrorCode *pErrorCode) {
|
|
UDataInfo info;
|
|
UConverterMBCSTable *mbcsTable=&sharedData->mbcs;
|
|
_MBCSHeader *header=(_MBCSHeader *)raw;
|
|
uint32_t offset;
|
|
|
|
if(header->version[0]!=4) {
|
|
*pErrorCode=U_INVALID_TABLE_FORMAT;
|
|
return;
|
|
}
|
|
|
|
mbcsTable->outputType=(uint8_t)header->flags;
|
|
|
|
/* extension data, header version 4.2 and higher */
|
|
offset=header->flags>>8;
|
|
if(offset!=0) {
|
|
mbcsTable->extIndexes=(const int32_t *)(raw+offset);
|
|
}
|
|
|
|
if(mbcsTable->outputType==MBCS_OUTPUT_EXT_ONLY) {
|
|
UConverterSharedData *baseSharedData;
|
|
const int32_t *extIndexes;
|
|
const char *baseName;
|
|
|
|
/* extension-only file, load the base table and set values appropriately */
|
|
if((extIndexes=mbcsTable->extIndexes)==NULL) {
|
|
/* extension-only file without extension */
|
|
*pErrorCode=U_INVALID_TABLE_FORMAT;
|
|
return;
|
|
}
|
|
|
|
/* load the base table */
|
|
baseName=(const char *)(header+1);
|
|
if(0==uprv_strcmp(baseName, sharedData->staticData->name)) {
|
|
/* forbid loading this same extension-only file */
|
|
/* TODO better prevention of loading another extension table */
|
|
*pErrorCode=U_INVALID_TABLE_FORMAT;
|
|
return;
|
|
}
|
|
|
|
/* TODO pass package name, same as current converter (see ucnv_bld.c) and/or parse out of prefix of base name */
|
|
baseSharedData=ucnv_load(NULL, baseName, pErrorCode);
|
|
if(U_FAILURE(*pErrorCode)) {
|
|
return;
|
|
}
|
|
if( baseSharedData->staticData->conversionType!=UCNV_MBCS ||
|
|
baseSharedData->mbcs.baseSharedData!=NULL
|
|
) {
|
|
ucnv_unload(baseSharedData);
|
|
*pErrorCode=U_INVALID_TABLE_FORMAT;
|
|
return;
|
|
}
|
|
|
|
/* copy the base table data */
|
|
uprv_memcpy(mbcsTable, &baseSharedData->mbcs, sizeof(UConverterMBCSTable));
|
|
|
|
/* overwrite values with relevant ones for the extension converter */
|
|
mbcsTable->baseSharedData=baseSharedData;
|
|
mbcsTable->extIndexes=extIndexes;
|
|
|
|
/*
|
|
* It would be possible to share the swapLFNL data with a base converter,
|
|
* but the generated name would have to be different, and the memory
|
|
* would have to be free'd only once.
|
|
* It is easier to just create the data for the extension converter
|
|
* separately when it is requested.
|
|
*/
|
|
mbcsTable->swapLFNLStateTable=NULL;
|
|
mbcsTable->swapLFNLFromUnicodeBytes=NULL;
|
|
mbcsTable->swapLFNLName=NULL;
|
|
|
|
/*
|
|
* Set a special, runtime-only outputType if the extension converter
|
|
* is a DBCS version of an SI/SO-stateful base converter.
|
|
*/
|
|
if( baseSharedData->mbcs.outputType==MBCS_OUTPUT_2_SISO &&
|
|
(sharedData->staticData->conversionType==UCNV_DBCS ||
|
|
(sharedData->staticData->conversionType==UCNV_MBCS &&
|
|
sharedData->staticData->minBytesPerChar>=2))
|
|
) {
|
|
int32_t entry;
|
|
|
|
/* get the dbcs state from the state table entry for SO=0x0e */
|
|
entry=mbcsTable->stateTable[0][0xe];
|
|
if( MBCS_ENTRY_IS_FINAL(entry) &&
|
|
MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_CHANGE_ONLY &&
|
|
MBCS_ENTRY_FINAL_STATE(entry)!=0
|
|
) {
|
|
mbcsTable->dbcsOnlyState=MBCS_ENTRY_FINAL_STATE(entry);
|
|
|
|
mbcsTable->outputType=MBCS_OUTPUT_DBCS_ONLY;
|
|
}
|
|
}
|
|
} else {
|
|
/* make sure that the output type is known */
|
|
switch(mbcsTable->outputType) {
|
|
case MBCS_OUTPUT_1:
|
|
case MBCS_OUTPUT_2:
|
|
case MBCS_OUTPUT_3:
|
|
case MBCS_OUTPUT_4:
|
|
case MBCS_OUTPUT_3_EUC:
|
|
case MBCS_OUTPUT_4_EUC:
|
|
case MBCS_OUTPUT_2_SISO:
|
|
/* OK */
|
|
break;
|
|
default:
|
|
*pErrorCode=U_INVALID_TABLE_FORMAT;
|
|
return;
|
|
}
|
|
|
|
mbcsTable->countStates=(uint8_t)header->countStates;
|
|
mbcsTable->countToUFallbacks=header->countToUFallbacks;
|
|
mbcsTable->stateTable=(const int32_t (*)[256])(raw+sizeof(_MBCSHeader));
|
|
mbcsTable->toUFallbacks=(const _MBCSToUFallback *)(mbcsTable->stateTable+header->countStates);
|
|
mbcsTable->unicodeCodeUnits=(const uint16_t *)(raw+header->offsetToUCodeUnits);
|
|
|
|
mbcsTable->fromUnicodeTable=(const uint16_t *)(raw+header->offsetFromUTable);
|
|
mbcsTable->fromUnicodeBytes=(const uint8_t *)(raw+header->offsetFromUBytes);
|
|
mbcsTable->fromUBytesLength=header->fromUBytesLength;
|
|
}
|
|
|
|
/*
|
|
* converter versions 6.1 and up contain a unicodeMask that is
|
|
* used here to select the most efficient function implementations
|
|
*/
|
|
info.size=sizeof(UDataInfo);
|
|
udata_getInfo((UDataMemory *)sharedData->dataMemory, &info);
|
|
if(info.formatVersion[0]>6 || (info.formatVersion[0]==6 && info.formatVersion[1]>=1)) {
|
|
/* mask off possible future extensions to be safe */
|
|
mbcsTable->unicodeMask=(uint8_t)(sharedData->staticData->unicodeMask&3);
|
|
} else {
|
|
/* for older versions, assume worst case: contains anything possible (prevent over-optimizations) */
|
|
mbcsTable->unicodeMask=UCNV_HAS_SUPPLEMENTARY|UCNV_HAS_SURROGATES;
|
|
}
|
|
}
|
|
|
|
static void
|
|
_MBCSUnload(UConverterSharedData *sharedData) {
|
|
UConverterMBCSTable *mbcsTable=&sharedData->mbcs;
|
|
|
|
if(mbcsTable->swapLFNLStateTable!=NULL) {
|
|
uprv_free(mbcsTable->swapLFNLStateTable);
|
|
}
|
|
}
|
|
|
|
static void
|
|
_MBCSOpen(UConverter *cnv,
|
|
const char *name,
|
|
const char *locale,
|
|
uint32_t options,
|
|
UErrorCode *pErrorCode) {
|
|
UConverterMBCSTable *mbcsTable;
|
|
const int32_t *extIndexes;
|
|
uint8_t outputType;
|
|
int8_t maxBytesPerUChar;
|
|
|
|
mbcsTable=&cnv->sharedData->mbcs;
|
|
outputType=mbcsTable->outputType;
|
|
|
|
if(outputType==MBCS_OUTPUT_DBCS_ONLY) {
|
|
/* the swaplfnl option does not apply, remove it */
|
|
cnv->options=options&=~UCNV_OPTION_SWAP_LFNL;
|
|
}
|
|
|
|
if((options&UCNV_OPTION_SWAP_LFNL)!=0) {
|
|
/* do this because double-checked locking is broken */
|
|
UBool isCached;
|
|
|
|
umtx_lock(NULL);
|
|
isCached=mbcsTable->swapLFNLStateTable!=NULL;
|
|
umtx_unlock(NULL);
|
|
|
|
if(!isCached) {
|
|
if(!_EBCDICSwapLFNL(cnv->sharedData, pErrorCode)) {
|
|
/* the option does not apply, remove it */
|
|
cnv->options=options&=~UCNV_OPTION_SWAP_LFNL;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(uprv_strstr(name, "18030")!=NULL) {
|
|
if(uprv_strstr(name, "gb18030")!=NULL || uprv_strstr(name, "GB18030")!=NULL) {
|
|
/* set a flag for GB 18030 mode, which changes the callback behavior */
|
|
cnv->options|=_MBCS_OPTION_GB18030;
|
|
}
|
|
}
|
|
|
|
/* fix maxBytesPerUChar depending on outputType and options etc. */
|
|
if(outputType==MBCS_OUTPUT_2_SISO) {
|
|
cnv->maxBytesPerUChar=3; /* SO+DBCS */
|
|
}
|
|
|
|
extIndexes=mbcsTable->extIndexes;
|
|
if(extIndexes!=NULL) {
|
|
maxBytesPerUChar=(int8_t)UCNV_GET_MAX_BYTES_PER_UCHAR(extIndexes);
|
|
if(outputType==MBCS_OUTPUT_2_SISO) {
|
|
++maxBytesPerUChar; /* SO + multiple DBCS */
|
|
}
|
|
|
|
if(maxBytesPerUChar>cnv->maxBytesPerUChar) {
|
|
cnv->maxBytesPerUChar=maxBytesPerUChar;
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
/*
|
|
* documentation of UConverter fields used for status
|
|
* all of these fields are (re)set to 0 by ucnv_bld.c and ucnv_reset()
|
|
*/
|
|
|
|
/* toUnicode */
|
|
cnv->toUnicodeStatus=0; /* offset */
|
|
cnv->mode=0; /* state */
|
|
cnv->toULength=0; /* byteIndex */
|
|
|
|
/* fromUnicode */
|
|
cnv->fromUChar32=0;
|
|
cnv->fromUnicodeStatus=1; /* prevLength */
|
|
#endif
|
|
}
|
|
|
|
static const char *
|
|
_MBCSGetName(const UConverter *cnv) {
|
|
if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0 && cnv->sharedData->mbcs.swapLFNLName!=NULL) {
|
|
return cnv->sharedData->mbcs.swapLFNLName;
|
|
} else {
|
|
return cnv->sharedData->staticData->name;
|
|
}
|
|
}
|
|
|
|
/* MBCS-to-Unicode conversion functions ------------------------------------- */
|
|
|
|
static UChar32
|
|
_MBCSGetFallback(UConverterMBCSTable *mbcsTable, uint32_t offset) {
|
|
const _MBCSToUFallback *toUFallbacks;
|
|
uint32_t i, start, limit;
|
|
|
|
limit=mbcsTable->countToUFallbacks;
|
|
if(limit>0) {
|
|
/* do a binary search for the fallback mapping */
|
|
toUFallbacks=mbcsTable->toUFallbacks;
|
|
start=0;
|
|
while(start<limit-1) {
|
|
i=(start+limit)/2;
|
|
if(offset<toUFallbacks[i].offset) {
|
|
limit=i;
|
|
} else {
|
|
start=i;
|
|
}
|
|
}
|
|
|
|
/* did we really find it? */
|
|
if(offset==toUFallbacks[start].offset) {
|
|
return toUFallbacks[start].codePoint;
|
|
}
|
|
}
|
|
|
|
return 0xfffe;
|
|
}
|
|
|
|
/* This version of _MBCSToUnicodeWithOffsets() is optimized for single-byte, single-state codepages. */
|
|
static void
|
|
_MBCSSingleToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs,
|
|
UErrorCode *pErrorCode) {
|
|
UConverter *cnv;
|
|
const uint8_t *source, *sourceLimit;
|
|
UChar *target;
|
|
const UChar *targetLimit;
|
|
int32_t *offsets;
|
|
|
|
const int32_t (*stateTable)[256];
|
|
|
|
int32_t sourceIndex;
|
|
|
|
int32_t entry;
|
|
UChar c;
|
|
uint8_t action;
|
|
|
|
/* set up the local pointers */
|
|
cnv=pArgs->converter;
|
|
source=(const uint8_t *)pArgs->source;
|
|
sourceLimit=(const uint8_t *)pArgs->sourceLimit;
|
|
target=pArgs->target;
|
|
targetLimit=pArgs->targetLimit;
|
|
offsets=pArgs->offsets;
|
|
|
|
if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
|
|
stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
|
|
} else {
|
|
stateTable=cnv->sharedData->mbcs.stateTable;
|
|
}
|
|
|
|
/* sourceIndex=-1 if the current character began in the previous buffer */
|
|
sourceIndex=0;
|
|
|
|
/* conversion loop */
|
|
while(source<sourceLimit) {
|
|
/*
|
|
* This following test is to see if available input would overflow the output.
|
|
* It does not catch output of more than one code unit that
|
|
* overflows as a result of a surrogate pair or callback output
|
|
* from the last source byte.
|
|
* Therefore, those situations also test for overflows and will
|
|
* then break the loop, too.
|
|
*/
|
|
if(target>=targetLimit) {
|
|
/* target is full */
|
|
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
|
|
break;
|
|
}
|
|
|
|
entry=stateTable[0][*source++];
|
|
/* MBCS_ENTRY_IS_FINAL(entry) */
|
|
|
|
/* test the most common case first */
|
|
if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
|
|
/* output BMP code point */
|
|
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
if(offsets!=NULL) {
|
|
*offsets++=sourceIndex;
|
|
}
|
|
|
|
/* normal end of action codes: prepare for a new character */
|
|
++sourceIndex;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* An if-else-if chain provides more reliable performance for
|
|
* the most common cases compared to a switch.
|
|
*/
|
|
action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
|
|
if(action==MBCS_STATE_VALID_DIRECT_20 ||
|
|
(action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
|
|
) {
|
|
entry=MBCS_ENTRY_FINAL_VALUE(entry);
|
|
/* output surrogate pair */
|
|
*target++=(UChar)(0xd800|(UChar)(entry>>10));
|
|
if(offsets!=NULL) {
|
|
*offsets++=sourceIndex;
|
|
}
|
|
c=(UChar)(0xdc00|(UChar)(entry&0x3ff));
|
|
if(target<targetLimit) {
|
|
*target++=c;
|
|
if(offsets!=NULL) {
|
|
*offsets++=sourceIndex;
|
|
}
|
|
} else {
|
|
/* target overflow */
|
|
cnv->UCharErrorBuffer[0]=c;
|
|
cnv->UCharErrorBufferLength=1;
|
|
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
|
|
break;
|
|
}
|
|
|
|
++sourceIndex;
|
|
continue;
|
|
} else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
|
|
if(UCNV_TO_U_USE_FALLBACK(cnv)) {
|
|
/* output BMP code point */
|
|
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
if(offsets!=NULL) {
|
|
*offsets++=sourceIndex;
|
|
}
|
|
|
|
++sourceIndex;
|
|
continue;
|
|
}
|
|
} else if(action==MBCS_STATE_UNASSIGNED) {
|
|
/* just fall through */
|
|
} else if(action==MBCS_STATE_ILLEGAL) {
|
|
/* callback(illegal) */
|
|
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
|
|
} else {
|
|
/* reserved, must never occur */
|
|
++sourceIndex;
|
|
continue;
|
|
}
|
|
|
|
if(U_FAILURE(*pErrorCode)) {
|
|
/* callback(illegal) */
|
|
break;
|
|
} else /* unassigned sequences indicated with byteIndex>0 */ {
|
|
/* try an extension mapping */
|
|
pArgs->source=(const char *)source;
|
|
cnv->toUBytes[0]=*(source-1);
|
|
cnv->toULength=_extToU(cnv, cnv->sharedData,
|
|
1, (const char **)&source, (const char *)sourceLimit,
|
|
&target, targetLimit,
|
|
&offsets, sourceIndex,
|
|
pArgs->flush,
|
|
pErrorCode);
|
|
sourceIndex+=1+(int32_t)(source-(const uint8_t *)pArgs->source);
|
|
|
|
if(U_FAILURE(*pErrorCode)) {
|
|
/* not mappable or buffer overflow */
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* write back the updated pointers */
|
|
pArgs->source=(const char *)source;
|
|
pArgs->target=target;
|
|
pArgs->offsets=offsets;
|
|
}
|
|
|
|
/*
|
|
* This version of _MBCSSingleToUnicodeWithOffsets() is optimized for single-byte, single-state codepages
|
|
* that only map to and from the BMP.
|
|
* In addition to single-byte optimizations, the offset calculations
|
|
* become much easier.
|
|
*/
|
|
static void
|
|
_MBCSSingleToBMPWithOffsets(UConverterToUnicodeArgs *pArgs,
|
|
UErrorCode *pErrorCode) {
|
|
UConverter *cnv;
|
|
const uint8_t *source, *sourceLimit, *lastSource;
|
|
UChar *target;
|
|
int32_t targetCapacity, length;
|
|
int32_t *offsets;
|
|
|
|
const int32_t (*stateTable)[256];
|
|
|
|
int32_t sourceIndex;
|
|
|
|
int32_t entry;
|
|
uint8_t action;
|
|
|
|
/* set up the local pointers */
|
|
cnv=pArgs->converter;
|
|
source=(const uint8_t *)pArgs->source;
|
|
sourceLimit=(const uint8_t *)pArgs->sourceLimit;
|
|
target=pArgs->target;
|
|
targetCapacity=pArgs->targetLimit-pArgs->target;
|
|
offsets=pArgs->offsets;
|
|
|
|
if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
|
|
stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
|
|
} else {
|
|
stateTable=cnv->sharedData->mbcs.stateTable;
|
|
}
|
|
|
|
/* sourceIndex=-1 if the current character began in the previous buffer */
|
|
sourceIndex=0;
|
|
lastSource=source;
|
|
|
|
/*
|
|
* since the conversion here is 1:1 UChar:uint8_t, we need only one counter
|
|
* for the minimum of the sourceLength and targetCapacity
|
|
*/
|
|
length=sourceLimit-source;
|
|
if(length<targetCapacity) {
|
|
targetCapacity=length;
|
|
}
|
|
|
|
#if MBCS_UNROLL_SINGLE_TO_BMP
|
|
/* unrolling makes it faster on Pentium III/Windows 2000 */
|
|
/* unroll the loop with the most common case */
|
|
unrolled:
|
|
if(targetCapacity>=16) {
|
|
int32_t count, loops, oredEntries;
|
|
|
|
loops=count=targetCapacity>>4;
|
|
do {
|
|
oredEntries=entry=stateTable[0][*source++];
|
|
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
oredEntries|=entry=stateTable[0][*source++];
|
|
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
oredEntries|=entry=stateTable[0][*source++];
|
|
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
oredEntries|=entry=stateTable[0][*source++];
|
|
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
oredEntries|=entry=stateTable[0][*source++];
|
|
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
oredEntries|=entry=stateTable[0][*source++];
|
|
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
oredEntries|=entry=stateTable[0][*source++];
|
|
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
oredEntries|=entry=stateTable[0][*source++];
|
|
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
oredEntries|=entry=stateTable[0][*source++];
|
|
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
oredEntries|=entry=stateTable[0][*source++];
|
|
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
oredEntries|=entry=stateTable[0][*source++];
|
|
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
oredEntries|=entry=stateTable[0][*source++];
|
|
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
oredEntries|=entry=stateTable[0][*source++];
|
|
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
oredEntries|=entry=stateTable[0][*source++];
|
|
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
oredEntries|=entry=stateTable[0][*source++];
|
|
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
oredEntries|=entry=stateTable[0][*source++];
|
|
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
|
|
/* were all 16 entries really valid? */
|
|
if(!MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(oredEntries)) {
|
|
/* no, return to the first of these 16 */
|
|
source-=16;
|
|
target-=16;
|
|
break;
|
|
}
|
|
} while(--count>0);
|
|
count=loops-count;
|
|
targetCapacity-=16*count;
|
|
|
|
if(offsets!=NULL) {
|
|
lastSource+=16*count;
|
|
while(count>0) {
|
|
*offsets++=sourceIndex++;
|
|
*offsets++=sourceIndex++;
|
|
*offsets++=sourceIndex++;
|
|
*offsets++=sourceIndex++;
|
|
*offsets++=sourceIndex++;
|
|
*offsets++=sourceIndex++;
|
|
*offsets++=sourceIndex++;
|
|
*offsets++=sourceIndex++;
|
|
*offsets++=sourceIndex++;
|
|
*offsets++=sourceIndex++;
|
|
*offsets++=sourceIndex++;
|
|
*offsets++=sourceIndex++;
|
|
*offsets++=sourceIndex++;
|
|
*offsets++=sourceIndex++;
|
|
*offsets++=sourceIndex++;
|
|
*offsets++=sourceIndex++;
|
|
--count;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* conversion loop */
|
|
while(targetCapacity>0) {
|
|
entry=stateTable[0][*source++];
|
|
/* MBCS_ENTRY_IS_FINAL(entry) */
|
|
|
|
/* test the most common case first */
|
|
if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
|
|
/* output BMP code point */
|
|
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
--targetCapacity;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* An if-else-if chain provides more reliable performance for
|
|
* the most common cases compared to a switch.
|
|
*/
|
|
action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
|
|
if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
|
|
if(UCNV_TO_U_USE_FALLBACK(cnv)) {
|
|
/* output BMP code point */
|
|
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
--targetCapacity;
|
|
continue;
|
|
}
|
|
} else if(action==MBCS_STATE_UNASSIGNED) {
|
|
/* just fall through */
|
|
} else if(action==MBCS_STATE_ILLEGAL) {
|
|
/* callback(illegal) */
|
|
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
|
|
} else {
|
|
/* reserved, must never occur */
|
|
continue;
|
|
}
|
|
|
|
/* set offsets since the start or the last extension */
|
|
if(offsets!=NULL) {
|
|
int32_t count=(int32_t)(source-lastSource);
|
|
|
|
/* predecrement: do not set the offset for the callback-causing character */
|
|
while(--count>0) {
|
|
*offsets++=sourceIndex++;
|
|
}
|
|
/* offset and sourceIndex are now set for the current character */
|
|
}
|
|
|
|
if(U_FAILURE(*pErrorCode)) {
|
|
/* callback(illegal) */
|
|
break;
|
|
} else /* unassigned sequences indicated with byteIndex>0 */ {
|
|
/* try an extension mapping */
|
|
lastSource=source;
|
|
cnv->toUBytes[0]=*(source-1);
|
|
cnv->toULength=_extToU(cnv, cnv->sharedData,
|
|
1, (const char **)&source, (const char *)sourceLimit,
|
|
&target, target+targetCapacity,
|
|
&offsets, sourceIndex,
|
|
pArgs->flush,
|
|
pErrorCode);
|
|
sourceIndex+=1+(int32_t)(source-lastSource);
|
|
|
|
if(U_FAILURE(*pErrorCode)) {
|
|
/* not mappable or buffer overflow */
|
|
break;
|
|
}
|
|
|
|
/* recalculate the targetCapacity after an extension mapping */
|
|
targetCapacity=pArgs->targetLimit-target;
|
|
length=sourceLimit-source;
|
|
if(length<targetCapacity) {
|
|
targetCapacity=length;
|
|
}
|
|
}
|
|
|
|
#if MBCS_UNROLL_SINGLE_TO_BMP
|
|
/* unrolling makes it faster on Pentium III/Windows 2000 */
|
|
goto unrolled;
|
|
#endif
|
|
}
|
|
|
|
if(U_SUCCESS(*pErrorCode) && source<sourceLimit && target>=pArgs->targetLimit) {
|
|
/* target is full */
|
|
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
|
|
}
|
|
|
|
/* set offsets since the start or the last callback */
|
|
if(offsets!=NULL) {
|
|
size_t count=source-lastSource;
|
|
while(count>0) {
|
|
*offsets++=sourceIndex++;
|
|
--count;
|
|
}
|
|
}
|
|
|
|
/* write back the updated pointers */
|
|
pArgs->source=(const char *)source;
|
|
pArgs->target=target;
|
|
pArgs->offsets=offsets;
|
|
}
|
|
|
|
U_CFUNC void
|
|
_MBCSToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs,
|
|
UErrorCode *pErrorCode) {
|
|
UConverter *cnv;
|
|
const uint8_t *source, *sourceLimit;
|
|
UChar *target;
|
|
const UChar *targetLimit;
|
|
int32_t *offsets;
|
|
|
|
const int32_t (*stateTable)[256];
|
|
const uint16_t *unicodeCodeUnits;
|
|
|
|
uint32_t offset;
|
|
uint8_t state;
|
|
int8_t byteIndex;
|
|
uint8_t *bytes;
|
|
|
|
int32_t sourceIndex, nextSourceIndex;
|
|
|
|
int32_t entry;
|
|
UChar c;
|
|
uint8_t action;
|
|
|
|
/* use optimized function if possible */
|
|
cnv=pArgs->converter;
|
|
|
|
if(cnv->preToULength>0) {
|
|
/*
|
|
* pass sourceIndex=-1 because we continue from an earlier buffer
|
|
* in the future, this may change with continuous offsets
|
|
*/
|
|
ucnv_extContinueMatchToU(cnv, pArgs, -1, pErrorCode);
|
|
|
|
if(U_FAILURE(*pErrorCode) || cnv->preToULength<0) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
if(cnv->sharedData->mbcs.countStates==1) {
|
|
if(!(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
|
|
_MBCSSingleToBMPWithOffsets(pArgs, pErrorCode);
|
|
} else {
|
|
_MBCSSingleToUnicodeWithOffsets(pArgs, pErrorCode);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* set up the local pointers */
|
|
source=(const uint8_t *)pArgs->source;
|
|
sourceLimit=(const uint8_t *)pArgs->sourceLimit;
|
|
target=pArgs->target;
|
|
targetLimit=pArgs->targetLimit;
|
|
offsets=pArgs->offsets;
|
|
|
|
if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
|
|
stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
|
|
} else {
|
|
stateTable=cnv->sharedData->mbcs.stateTable;
|
|
}
|
|
unicodeCodeUnits=cnv->sharedData->mbcs.unicodeCodeUnits;
|
|
|
|
/* get the converter state from UConverter */
|
|
offset=cnv->toUnicodeStatus;
|
|
byteIndex=cnv->toULength;
|
|
bytes=cnv->toUBytes;
|
|
|
|
/*
|
|
* if we are in the SBCS state for a DBCS-only converter,
|
|
* then load the DBCS state from the MBCS data
|
|
* (dbcsOnlyState==0 if it is not a DBCS-only converter)
|
|
*/
|
|
if((state=(uint8_t)(cnv->mode))==0) {
|
|
state=cnv->sharedData->mbcs.dbcsOnlyState;
|
|
}
|
|
|
|
/* sourceIndex=-1 if the current character began in the previous buffer */
|
|
sourceIndex=byteIndex==0 ? 0 : -1;
|
|
nextSourceIndex=0;
|
|
|
|
/* conversion loop */
|
|
while(source<sourceLimit) {
|
|
/*
|
|
* This following test is to see if available input would overflow the output.
|
|
* It does not catch output of more than one code unit that
|
|
* overflows as a result of a surrogate pair or callback output
|
|
* from the last source byte.
|
|
* Therefore, those situations also test for overflows and will
|
|
* then break the loop, too.
|
|
*/
|
|
if(target>=targetLimit) {
|
|
/* target is full */
|
|
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
|
|
break;
|
|
}
|
|
|
|
if(byteIndex==0) {
|
|
/* optimized loop for 1/2-byte input and BMP output */
|
|
if(offsets==NULL) {
|
|
do {
|
|
entry=stateTable[state][*source];
|
|
if(MBCS_ENTRY_IS_TRANSITION(entry)) {
|
|
state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
|
|
offset=MBCS_ENTRY_TRANSITION_OFFSET(entry);
|
|
|
|
++source;
|
|
if( source<sourceLimit &&
|
|
MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) &&
|
|
MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 &&
|
|
(c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe
|
|
) {
|
|
++source;
|
|
*target++=c;
|
|
state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
|
|
offset=0;
|
|
} else {
|
|
/* set the state and leave the optimized loop */
|
|
bytes[0]=*(source-1);
|
|
byteIndex=1;
|
|
break;
|
|
}
|
|
} else {
|
|
if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
|
|
/* output BMP code point */
|
|
++source;
|
|
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
|
|
} else {
|
|
/* leave the optimized loop */
|
|
break;
|
|
}
|
|
}
|
|
} while(source<sourceLimit && target<targetLimit);
|
|
} else /* offsets!=NULL */ {
|
|
do {
|
|
entry=stateTable[state][*source];
|
|
if(MBCS_ENTRY_IS_TRANSITION(entry)) {
|
|
state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
|
|
offset=MBCS_ENTRY_TRANSITION_OFFSET(entry);
|
|
|
|
++source;
|
|
if( source<sourceLimit &&
|
|
MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) &&
|
|
MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 &&
|
|
(c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe
|
|
) {
|
|
++source;
|
|
*target++=c;
|
|
if(offsets!=NULL) {
|
|
*offsets++=sourceIndex;
|
|
sourceIndex=(nextSourceIndex+=2);
|
|
}
|
|
state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
|
|
offset=0;
|
|
} else {
|
|
/* set the state and leave the optimized loop */
|
|
++nextSourceIndex;
|
|
bytes[0]=*(source-1);
|
|
byteIndex=1;
|
|
break;
|
|
}
|
|
} else {
|
|
if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
|
|
/* output BMP code point */
|
|
++source;
|
|
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
if(offsets!=NULL) {
|
|
*offsets++=sourceIndex;
|
|
sourceIndex=++nextSourceIndex;
|
|
}
|
|
state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
|
|
} else {
|
|
/* leave the optimized loop */
|
|
break;
|
|
}
|
|
}
|
|
} while(source<sourceLimit && target<targetLimit);
|
|
}
|
|
|
|
/*
|
|
* these tests and break statements could be put inside the loop
|
|
* if C had "break outerLoop" like Java
|
|
*/
|
|
if(source>=sourceLimit) {
|
|
break;
|
|
}
|
|
if(target>=targetLimit) {
|
|
/* target is full */
|
|
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
|
|
break;
|
|
}
|
|
|
|
++nextSourceIndex;
|
|
bytes[byteIndex++]=*source++;
|
|
} else /* byteIndex>0 */ {
|
|
++nextSourceIndex;
|
|
entry=stateTable[state][bytes[byteIndex++]=*source++];
|
|
}
|
|
|
|
if(MBCS_ENTRY_IS_TRANSITION(entry)) {
|
|
state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
|
|
offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
|
|
continue;
|
|
}
|
|
|
|
/* save the previous state for proper extension mapping with SI/SO-stateful converters */
|
|
cnv->mode=state;
|
|
|
|
/* set the next state early so that we can reuse the entry variable */
|
|
state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
|
|
|
|
/*
|
|
* An if-else-if chain provides more reliable performance for
|
|
* the most common cases compared to a switch.
|
|
*/
|
|
action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
|
|
if(action==MBCS_STATE_VALID_16) {
|
|
offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
c=unicodeCodeUnits[offset];
|
|
if(c<0xfffe) {
|
|
/* output BMP code point */
|
|
*target++=c;
|
|
if(offsets!=NULL) {
|
|
*offsets++=sourceIndex;
|
|
}
|
|
byteIndex=0;
|
|
} else if(c==0xfffe) {
|
|
if(UCNV_TO_U_USE_FALLBACK(cnv) && (entry=(int32_t)_MBCSGetFallback(&cnv->sharedData->mbcs, offset))!=0xfffe) {
|
|
/* output fallback BMP code point */
|
|
*target++=(UChar)entry;
|
|
if(offsets!=NULL) {
|
|
*offsets++=sourceIndex;
|
|
}
|
|
byteIndex=0;
|
|
}
|
|
} else {
|
|
/* callback(illegal) */
|
|
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
|
|
}
|
|
} else if(action==MBCS_STATE_VALID_DIRECT_16) {
|
|
/* output BMP code point */
|
|
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
if(offsets!=NULL) {
|
|
*offsets++=sourceIndex;
|
|
}
|
|
byteIndex=0;
|
|
} else if(action==MBCS_STATE_VALID_16_PAIR) {
|
|
offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
c=unicodeCodeUnits[offset++];
|
|
if(c<0xd800) {
|
|
/* output BMP code point below 0xd800 */
|
|
*target++=c;
|
|
if(offsets!=NULL) {
|
|
*offsets++=sourceIndex;
|
|
}
|
|
byteIndex=0;
|
|
} else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) {
|
|
/* output roundtrip or fallback surrogate pair */
|
|
*target++=(UChar)(c&0xdbff);
|
|
if(offsets!=NULL) {
|
|
*offsets++=sourceIndex;
|
|
}
|
|
byteIndex=0;
|
|
if(target<targetLimit) {
|
|
*target++=unicodeCodeUnits[offset];
|
|
if(offsets!=NULL) {
|
|
*offsets++=sourceIndex;
|
|
}
|
|
} else {
|
|
/* target overflow */
|
|
cnv->UCharErrorBuffer[0]=unicodeCodeUnits[offset];
|
|
cnv->UCharErrorBufferLength=1;
|
|
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
|
|
|
|
offset=0;
|
|
break;
|
|
}
|
|
} else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) {
|
|
/* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
|
|
*target++=unicodeCodeUnits[offset];
|
|
if(offsets!=NULL) {
|
|
*offsets++=sourceIndex;
|
|
}
|
|
byteIndex=0;
|
|
} else if(c==0xffff) {
|
|
/* callback(illegal) */
|
|
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
|
|
}
|
|
} else if(action==MBCS_STATE_VALID_DIRECT_20 ||
|
|
(action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
|
|
) {
|
|
entry=MBCS_ENTRY_FINAL_VALUE(entry);
|
|
/* output surrogate pair */
|
|
*target++=(UChar)(0xd800|(UChar)(entry>>10));
|
|
if(offsets!=NULL) {
|
|
*offsets++=sourceIndex;
|
|
}
|
|
byteIndex=0;
|
|
c=(UChar)(0xdc00|(UChar)(entry&0x3ff));
|
|
if(target<targetLimit) {
|
|
*target++=c;
|
|
if(offsets!=NULL) {
|
|
*offsets++=sourceIndex;
|
|
}
|
|
} else {
|
|
/* target overflow */
|
|
cnv->UCharErrorBuffer[0]=c;
|
|
cnv->UCharErrorBufferLength=1;
|
|
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
|
|
|
|
offset=0;
|
|
break;
|
|
}
|
|
} else if(action==MBCS_STATE_CHANGE_ONLY) {
|
|
/*
|
|
* This serves as a state change without any output.
|
|
* It is useful for reading simple stateful encodings,
|
|
* for example using just Shift-In/Shift-Out codes.
|
|
* The 21 unused bits may later be used for more sophisticated
|
|
* state transitions.
|
|
*/
|
|
if(cnv->sharedData->mbcs.dbcsOnlyState==0) {
|
|
byteIndex=0;
|
|
} else {
|
|
/* SI/SO are illegal for DBCS-only conversion */
|
|
state=(uint8_t)(cnv->mode); /* restore the previous state */
|
|
|
|
/* callback(illegal) */
|
|
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
|
|
}
|
|
} else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
|
|
if(UCNV_TO_U_USE_FALLBACK(cnv)) {
|
|
/* output BMP code point */
|
|
*target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
if(offsets!=NULL) {
|
|
*offsets++=sourceIndex;
|
|
}
|
|
byteIndex=0;
|
|
}
|
|
} else if(action==MBCS_STATE_UNASSIGNED) {
|
|
/* just fall through */
|
|
} else if(action==MBCS_STATE_ILLEGAL) {
|
|
/* callback(illegal) */
|
|
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
|
|
} else {
|
|
/* reserved, must never occur */
|
|
byteIndex=0;
|
|
}
|
|
|
|
/* end of action codes: prepare for a new character */
|
|
offset=0;
|
|
|
|
if(byteIndex==0) {
|
|
sourceIndex=nextSourceIndex;
|
|
} else if(U_FAILURE(*pErrorCode)) {
|
|
/* callback(illegal) */
|
|
break;
|
|
} else /* unassigned sequences indicated with byteIndex>0 */ {
|
|
/* try an extension mapping */
|
|
pArgs->source=(const char *)source;
|
|
byteIndex=_extToU(cnv, cnv->sharedData,
|
|
byteIndex, (const char **)&source, (const char *)sourceLimit,
|
|
&target, targetLimit,
|
|
&offsets, sourceIndex,
|
|
pArgs->flush,
|
|
pErrorCode);
|
|
sourceIndex=nextSourceIndex+(int32_t)(source-(const uint8_t *)pArgs->source);
|
|
|
|
if(U_FAILURE(*pErrorCode)) {
|
|
/* not mappable or buffer overflow */
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* set the converter state back into UConverter */
|
|
cnv->toUnicodeStatus=offset;
|
|
cnv->mode=state;
|
|
cnv->toULength=byteIndex;
|
|
|
|
/* write back the updated pointers */
|
|
pArgs->source=(const char *)source;
|
|
pArgs->target=target;
|
|
pArgs->offsets=offsets;
|
|
}
|
|
|
|
/*
|
|
* This version of _MBCSGetNextUChar() is optimized for single-byte, single-state codepages.
|
|
* We still need a conversion loop in case we find reserved action codes, which are to be ignored.
|
|
*/
|
|
static UChar32
|
|
_MBCSSingleGetNextUChar(UConverterToUnicodeArgs *pArgs,
|
|
UErrorCode *pErrorCode) {
|
|
UConverter *cnv;
|
|
const int32_t (*stateTable)[256];
|
|
const uint8_t *source, *sourceLimit;
|
|
|
|
int32_t entry;
|
|
uint8_t action;
|
|
|
|
/* set up the local pointers */
|
|
cnv=pArgs->converter;
|
|
source=(const uint8_t *)pArgs->source;
|
|
sourceLimit=(const uint8_t *)pArgs->sourceLimit;
|
|
if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
|
|
stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
|
|
} else {
|
|
stateTable=cnv->sharedData->mbcs.stateTable;
|
|
}
|
|
|
|
/* conversion loop */
|
|
while(source<sourceLimit) {
|
|
entry=stateTable[0][*source++];
|
|
/* MBCS_ENTRY_IS_FINAL(entry) */
|
|
|
|
/* write back the updated pointer early so that we can return directly */
|
|
pArgs->source=(const char *)source;
|
|
|
|
if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
|
|
/* output BMP code point */
|
|
return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
}
|
|
|
|
/*
|
|
* An if-else-if chain provides more reliable performance for
|
|
* the most common cases compared to a switch.
|
|
*/
|
|
action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
|
|
if( action==MBCS_STATE_VALID_DIRECT_20 ||
|
|
(action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
|
|
) {
|
|
/* output supplementary code point */
|
|
return (UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000);
|
|
} else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
|
|
if(UCNV_TO_U_USE_FALLBACK(cnv)) {
|
|
/* output BMP code point */
|
|
return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
}
|
|
} else if(action==MBCS_STATE_UNASSIGNED) {
|
|
/* just fall through */
|
|
} else if(action==MBCS_STATE_ILLEGAL) {
|
|
/* callback(illegal) */
|
|
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
|
|
} else {
|
|
/* reserved, must never occur */
|
|
continue;
|
|
}
|
|
|
|
if(U_FAILURE(*pErrorCode)) {
|
|
/* callback(illegal) */
|
|
break;
|
|
} else /* unassigned sequence */ {
|
|
/* defer to the generic implementation */
|
|
pArgs->source=(const char *)source-1;
|
|
return UCNV_GET_NEXT_UCHAR_USE_TO_U;
|
|
}
|
|
}
|
|
|
|
/* no output because of empty input or only state changes */
|
|
*pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
|
|
return 0xffff;
|
|
}
|
|
|
|
/*
|
|
* Version of _MBCSToUnicodeWithOffsets() optimized for single-character
|
|
* conversion without offset handling.
|
|
*
|
|
* When a character does not have a mapping to Unicode, then we return to the
|
|
* generic ucnv_getNextUChar() code for extension/GB 18030 and error/callback
|
|
* handling.
|
|
* We also defer to the generic code in other complicated cases and have them
|
|
* ultimately handled by _MBCSToUnicodeWithOffsets() itself.
|
|
*
|
|
* All normal mappings and errors are handled here.
|
|
*/
|
|
static UChar32
|
|
_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs,
|
|
UErrorCode *pErrorCode) {
|
|
UConverter *cnv;
|
|
const uint8_t *source, *sourceLimit, *lastSource;
|
|
|
|
const int32_t (*stateTable)[256];
|
|
const uint16_t *unicodeCodeUnits;
|
|
|
|
uint32_t offset;
|
|
uint8_t state;
|
|
|
|
int32_t entry;
|
|
UChar32 c;
|
|
uint8_t action;
|
|
|
|
/* use optimized function if possible */
|
|
cnv=pArgs->converter;
|
|
|
|
if(cnv->preToULength>0) {
|
|
/* use the generic code in ucnv_getNextUChar() to continue with a partial match */
|
|
return UCNV_GET_NEXT_UCHAR_USE_TO_U;
|
|
}
|
|
|
|
if(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SURROGATES) {
|
|
/*
|
|
* Using the generic ucnv_getNextUChar() code lets us deal correctly
|
|
* with the rare case of a codepage that maps single surrogates
|
|
* without adding the complexity to this already complicated function here.
|
|
*/
|
|
return UCNV_GET_NEXT_UCHAR_USE_TO_U;
|
|
} else if(cnv->sharedData->mbcs.countStates==1) {
|
|
return _MBCSSingleGetNextUChar(pArgs, pErrorCode);
|
|
}
|
|
|
|
/* set up the local pointers */
|
|
source=lastSource=(const uint8_t *)pArgs->source;
|
|
sourceLimit=(const uint8_t *)pArgs->sourceLimit;
|
|
|
|
if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
|
|
stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
|
|
} else {
|
|
stateTable=cnv->sharedData->mbcs.stateTable;
|
|
}
|
|
unicodeCodeUnits=cnv->sharedData->mbcs.unicodeCodeUnits;
|
|
|
|
/* get the converter state from UConverter */
|
|
offset=cnv->toUnicodeStatus;
|
|
|
|
/*
|
|
* if we are in the SBCS state for a DBCS-only converter,
|
|
* then load the DBCS state from the MBCS data
|
|
* (dbcsOnlyState==0 if it is not a DBCS-only converter)
|
|
*/
|
|
if((state=(uint8_t)(cnv->mode))==0) {
|
|
state=cnv->sharedData->mbcs.dbcsOnlyState;
|
|
}
|
|
|
|
/* conversion loop */
|
|
c=U_SENTINEL;
|
|
while(source<sourceLimit) {
|
|
entry=stateTable[state][*source++];
|
|
if(MBCS_ENTRY_IS_TRANSITION(entry)) {
|
|
state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
|
|
offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
|
|
|
|
/* optimization for 1/2-byte input and BMP output */
|
|
if( source<sourceLimit &&
|
|
MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) &&
|
|
MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 &&
|
|
(c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe
|
|
) {
|
|
++source;
|
|
state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
|
|
/* output BMP code point */
|
|
break;
|
|
}
|
|
} else {
|
|
/* save the previous state for proper extension mapping with SI/SO-stateful converters */
|
|
cnv->mode=state;
|
|
|
|
/* set the next state early so that we can reuse the entry variable */
|
|
state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
|
|
|
|
/*
|
|
* An if-else-if chain provides more reliable performance for
|
|
* the most common cases compared to a switch.
|
|
*/
|
|
action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
|
|
if(action==MBCS_STATE_VALID_DIRECT_16) {
|
|
/* output BMP code point */
|
|
c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
break;
|
|
} else if(action==MBCS_STATE_VALID_16) {
|
|
offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
c=unicodeCodeUnits[offset];
|
|
if(c<0xfffe) {
|
|
/* output BMP code point */
|
|
break;
|
|
} else if(c==0xfffe) {
|
|
if(UCNV_TO_U_USE_FALLBACK(cnv) && (c=_MBCSGetFallback(&cnv->sharedData->mbcs, offset))!=0xfffe) {
|
|
break;
|
|
}
|
|
} else {
|
|
/* callback(illegal) */
|
|
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
|
|
}
|
|
} else if(action==MBCS_STATE_VALID_16_PAIR) {
|
|
offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
c=unicodeCodeUnits[offset++];
|
|
if(c<0xd800) {
|
|
/* output BMP code point below 0xd800 */
|
|
break;
|
|
} else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) {
|
|
/* output roundtrip or fallback supplementary code point */
|
|
c=((c&0x3ff)<<10)+unicodeCodeUnits[offset]+(0x10000-0xdc00);
|
|
break;
|
|
} else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) {
|
|
/* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
|
|
c=unicodeCodeUnits[offset];
|
|
break;
|
|
} else if(c==0xffff) {
|
|
/* callback(illegal) */
|
|
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
|
|
}
|
|
} else if(action==MBCS_STATE_VALID_DIRECT_20 ||
|
|
(action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
|
|
) {
|
|
/* output supplementary code point */
|
|
c=(UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000);
|
|
break;
|
|
} else if(action==MBCS_STATE_CHANGE_ONLY) {
|
|
/*
|
|
* This serves as a state change without any output.
|
|
* It is useful for reading simple stateful encodings,
|
|
* for example using just Shift-In/Shift-Out codes.
|
|
* The 21 unused bits may later be used for more sophisticated
|
|
* state transitions.
|
|
*/
|
|
if(cnv->sharedData->mbcs.dbcsOnlyState!=0) {
|
|
/* SI/SO are illegal for DBCS-only conversion */
|
|
state=(uint8_t)(cnv->mode); /* restore the previous state */
|
|
|
|
/* callback(illegal) */
|
|
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
|
|
}
|
|
} else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
|
|
if(UCNV_TO_U_USE_FALLBACK(cnv)) {
|
|
/* output BMP code point */
|
|
c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
break;
|
|
}
|
|
} else if(action==MBCS_STATE_UNASSIGNED) {
|
|
/* just fall through */
|
|
} else if(action==MBCS_STATE_ILLEGAL) {
|
|
/* callback(illegal) */
|
|
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
|
|
} else {
|
|
/* reserved (must never occur), or only state change */
|
|
offset=0;
|
|
lastSource=source;
|
|
continue;
|
|
}
|
|
|
|
/* end of action codes: prepare for a new character */
|
|
offset=0;
|
|
|
|
if(U_FAILURE(*pErrorCode)) {
|
|
/* callback(illegal) */
|
|
break;
|
|
} else /* unassigned sequence */ {
|
|
/* defer to the generic implementation */
|
|
cnv->toUnicodeStatus=0;
|
|
cnv->mode=state;
|
|
pArgs->source=(const char *)lastSource;
|
|
return UCNV_GET_NEXT_UCHAR_USE_TO_U;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(c<0) {
|
|
if(U_SUCCESS(*pErrorCode) && source==sourceLimit && lastSource<source) {
|
|
*pErrorCode=U_TRUNCATED_CHAR_FOUND;
|
|
}
|
|
if(U_FAILURE(*pErrorCode)) {
|
|
/* incomplete character byte sequence */
|
|
uint8_t *bytes=cnv->toUBytes;
|
|
cnv->toULength=(int8_t)(source-lastSource);
|
|
do {
|
|
*bytes++=*lastSource++;
|
|
} while(lastSource<source);
|
|
} else {
|
|
/* no output because of empty input or only state changes */
|
|
*pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
|
|
}
|
|
c=0xffff;
|
|
}
|
|
|
|
/* set the converter state back into UConverter, ready for a new character */
|
|
cnv->toUnicodeStatus=0;
|
|
cnv->mode=state;
|
|
|
|
/* write back the updated pointer */
|
|
pArgs->source=(const char *)source;
|
|
return c;
|
|
}
|
|
|
|
#if 0
|
|
/*
|
|
* Code disabled 2002dec09 (ICU 2.4) because it is not currently used in ICU. markus
|
|
* Removal improves code coverage.
|
|
*/
|
|
/**
|
|
* This version of _MBCSSimpleGetNextUChar() is optimized for single-byte, single-state codepages.
|
|
* It does not handle the EBCDIC swaplfnl option (set in UConverter).
|
|
* It does not handle conversion extensions (_extToU()).
|
|
*/
|
|
U_CFUNC UChar32
|
|
_MBCSSingleSimpleGetNextUChar(UConverterSharedData *sharedData,
|
|
uint8_t b, UBool useFallback) {
|
|
int32_t entry;
|
|
uint8_t action;
|
|
|
|
entry=sharedData->mbcs.stateTable[0][b];
|
|
/* MBCS_ENTRY_IS_FINAL(entry) */
|
|
|
|
if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
|
|
/* output BMP code point */
|
|
return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
}
|
|
|
|
/*
|
|
* An if-else-if chain provides more reliable performance for
|
|
* the most common cases compared to a switch.
|
|
*/
|
|
action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
|
|
if(action==MBCS_STATE_VALID_DIRECT_20) {
|
|
/* output supplementary code point */
|
|
return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
|
|
} else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
|
|
if(!TO_U_USE_FALLBACK(useFallback)) {
|
|
return 0xfffe;
|
|
}
|
|
/* output BMP code point */
|
|
return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
} else if(action==MBCS_STATE_FALLBACK_DIRECT_20) {
|
|
if(!TO_U_USE_FALLBACK(useFallback)) {
|
|
return 0xfffe;
|
|
}
|
|
/* output supplementary code point */
|
|
return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
|
|
} else if(action==MBCS_STATE_UNASSIGNED) {
|
|
return 0xfffe;
|
|
} else if(action==MBCS_STATE_ILLEGAL) {
|
|
return 0xffff;
|
|
} else {
|
|
/* reserved, must never occur */
|
|
return 0xffff;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* This is a simple version of getNextUChar() that is used
|
|
* by other converter implementations.
|
|
* It does not use state from the converter, nor error codes.
|
|
* It does not handle the EBCDIC swaplfnl option (set in UConverter).
|
|
* It does not handle conversion extensions (_extToU()).
|
|
*
|
|
* Return value:
|
|
* U+fffe unassigned
|
|
* U+ffff illegal
|
|
* otherwise the Unicode code point
|
|
*/
|
|
U_CFUNC UChar32
|
|
_MBCSSimpleGetNextUChar(UConverterSharedData *sharedData,
|
|
const char **pSource, const char *sourceLimit,
|
|
UBool useFallback) {
|
|
const uint8_t *source;
|
|
|
|
const int32_t (*stateTable)[256];
|
|
const uint16_t *unicodeCodeUnits;
|
|
|
|
uint32_t offset;
|
|
uint8_t state, action;
|
|
|
|
int32_t entry;
|
|
|
|
/* set up the local pointers */
|
|
source=(const uint8_t *)*pSource;
|
|
if(source>=(const uint8_t *)sourceLimit) {
|
|
/* no input at all: "illegal" */
|
|
return 0xffff;
|
|
}
|
|
|
|
/* ### TODO extension */
|
|
|
|
#if 0
|
|
/*
|
|
* Code disabled 2002dec09 (ICU 2.4) because it is not currently used in ICU. markus
|
|
* TODO In future releases, verify that this function is never called for SBCS
|
|
* conversions, i.e., that sharedData->mbcs.countStates==1 is still true.
|
|
* Removal improves code coverage.
|
|
*/
|
|
/* use optimized function if possible */
|
|
if(sharedData->mbcs.countStates==1) {
|
|
return _MBCSSingleSimpleGetNextUChar(sharedData, (uint8_t)(*(*pSource)++), useFallback);
|
|
}
|
|
#endif
|
|
|
|
stateTable=sharedData->mbcs.stateTable;
|
|
unicodeCodeUnits=sharedData->mbcs.unicodeCodeUnits;
|
|
|
|
/* converter state */
|
|
offset=0;
|
|
state=sharedData->mbcs.dbcsOnlyState;
|
|
|
|
/* conversion loop */
|
|
do {
|
|
entry=stateTable[state][*source++];
|
|
if(MBCS_ENTRY_IS_TRANSITION(entry)) {
|
|
state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
|
|
offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
|
|
} else {
|
|
*pSource=(const char *)source;
|
|
|
|
/*
|
|
* An if-else-if chain provides more reliable performance for
|
|
* the most common cases compared to a switch.
|
|
*/
|
|
action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
|
|
if(action==MBCS_STATE_VALID_16) {
|
|
offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
entry=unicodeCodeUnits[offset];
|
|
if(entry!=0xfffe) {
|
|
return (UChar32)entry;
|
|
} else if(UCNV_TO_U_USE_FALLBACK(cnv)) {
|
|
return _MBCSGetFallback(&sharedData->mbcs, offset);
|
|
} else {
|
|
return 0xfffe;
|
|
}
|
|
} else if(action==MBCS_STATE_VALID_DIRECT_16) {
|
|
/* output BMP code point */
|
|
return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
} else if(action==MBCS_STATE_VALID_16_PAIR) {
|
|
offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
entry=unicodeCodeUnits[offset++];
|
|
if(entry<0xd800) {
|
|
/* output BMP code point below 0xd800 */
|
|
return (UChar32)entry;
|
|
} else if(UCNV_TO_U_USE_FALLBACK(cnv) ? entry<=0xdfff : entry<=0xdbff) {
|
|
/* output roundtrip or fallback supplementary code point */
|
|
return (UChar32)(((entry&0x3ff)<<10)+unicodeCodeUnits[offset]+(0x10000-0xdc00));
|
|
} else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (entry&0xfffe)==0xe000 : entry==0xe000) {
|
|
/* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
|
|
return unicodeCodeUnits[offset];
|
|
} else if(entry==0xffff) {
|
|
return 0xffff;
|
|
} else {
|
|
return 0xfffe;
|
|
}
|
|
} else if(action==MBCS_STATE_VALID_DIRECT_20) {
|
|
/* output supplementary code point */
|
|
return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
|
|
} else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
|
|
if(!TO_U_USE_FALLBACK(useFallback)) {
|
|
return 0xfffe;
|
|
}
|
|
/* output BMP code point */
|
|
return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
} else if(action==MBCS_STATE_FALLBACK_DIRECT_20) {
|
|
if(!TO_U_USE_FALLBACK(useFallback)) {
|
|
return 0xfffe;
|
|
}
|
|
/* output supplementary code point */
|
|
return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
|
|
} else if(action==MBCS_STATE_CHANGE_ONLY) {
|
|
/*
|
|
* This serves as a state change without any output.
|
|
* It is useful for reading simple stateful encodings,
|
|
* for example using just Shift-In/Shift-Out codes.
|
|
* The 21 unused bits may later be used for more sophisticated
|
|
* state transitions.
|
|
*/
|
|
if(sharedData->mbcs.dbcsOnlyState!=0) {
|
|
/* SI/SO are illegal for DBCS-only conversion */
|
|
return 0xffff;
|
|
}
|
|
if(source==(const uint8_t *)sourceLimit) {
|
|
/* if there are only state changes, then return "unassigned" */
|
|
return 0xfffe;
|
|
}
|
|
} else if(action==MBCS_STATE_UNASSIGNED) {
|
|
return 0xfffe;
|
|
} else if(action==MBCS_STATE_ILLEGAL) {
|
|
return 0xffff;
|
|
} else {
|
|
/* reserved, must never occur */
|
|
}
|
|
|
|
/* state change only - prepare for a new character */
|
|
state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
|
|
offset=0;
|
|
}
|
|
} while(source<(const uint8_t *)sourceLimit);
|
|
|
|
*pSource=(const char *)source;
|
|
return 0xffff;
|
|
}
|
|
|
|
/* MBCS-from-Unicode conversion functions ----------------------------------- */
|
|
|
|
/* This version of _MBCSFromUnicodeWithOffsets() is optimized for double-byte codepages. */
|
|
static void
|
|
_MBCSDoubleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
|
|
UErrorCode *pErrorCode) {
|
|
UConverter *cnv;
|
|
const UChar *source, *sourceLimit;
|
|
uint8_t *target;
|
|
int32_t targetCapacity;
|
|
int32_t *offsets;
|
|
|
|
const uint16_t *table;
|
|
const uint8_t *bytes;
|
|
|
|
UChar32 c;
|
|
|
|
int32_t sourceIndex, nextSourceIndex;
|
|
|
|
uint32_t stage2Entry;
|
|
uint32_t value;
|
|
int32_t length;
|
|
uint8_t unicodeMask;
|
|
|
|
/* use optimized function if possible */
|
|
cnv=pArgs->converter;
|
|
unicodeMask=cnv->sharedData->mbcs.unicodeMask;
|
|
|
|
/* set up the local pointers */
|
|
source=pArgs->source;
|
|
sourceLimit=pArgs->sourceLimit;
|
|
target=(uint8_t *)pArgs->target;
|
|
targetCapacity=pArgs->targetLimit-pArgs->target;
|
|
offsets=pArgs->offsets;
|
|
|
|
table=cnv->sharedData->mbcs.fromUnicodeTable;
|
|
if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
|
|
bytes=cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
|
|
} else {
|
|
bytes=cnv->sharedData->mbcs.fromUnicodeBytes;
|
|
}
|
|
|
|
/* get the converter state from UConverter */
|
|
c=cnv->fromUChar32;
|
|
|
|
/* sourceIndex=-1 if the current character began in the previous buffer */
|
|
sourceIndex= c==0 ? 0 : -1;
|
|
nextSourceIndex=0;
|
|
|
|
/* conversion loop */
|
|
if(c!=0 && targetCapacity>0) {
|
|
goto getTrail;
|
|
}
|
|
|
|
while(source<sourceLimit) {
|
|
/*
|
|
* This following test is to see if available input would overflow the output.
|
|
* It does not catch output of more than one byte that
|
|
* overflows as a result of a multi-byte character or callback output
|
|
* from the last source character.
|
|
* Therefore, those situations also test for overflows and will
|
|
* then break the loop, too.
|
|
*/
|
|
if(targetCapacity>0) {
|
|
/*
|
|
* Get a correct Unicode code point:
|
|
* a single UChar for a BMP code point or
|
|
* a matched surrogate pair for a "supplementary code point".
|
|
*/
|
|
c=*source++;
|
|
++nextSourceIndex;
|
|
/*
|
|
* This also tests if the codepage maps single surrogates.
|
|
* If it does, then surrogates are not paired but mapped separately.
|
|
* Note that in this case unmatched surrogates are not detected.
|
|
*/
|
|
if(UTF_IS_SURROGATE(c) && !(unicodeMask&UCNV_HAS_SURROGATES)) {
|
|
if(UTF_IS_SURROGATE_FIRST(c)) {
|
|
getTrail:
|
|
if(source<sourceLimit) {
|
|
/* test the following code unit */
|
|
UChar trail=*source;
|
|
if(UTF_IS_SECOND_SURROGATE(trail)) {
|
|
++source;
|
|
++nextSourceIndex;
|
|
c=UTF16_GET_PAIR_VALUE(c, trail);
|
|
if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
|
|
/* BMP-only codepages are stored without stage 1 entries for supplementary code points */
|
|
/* callback(unassigned) */
|
|
goto unassigned;
|
|
}
|
|
/* convert this supplementary code point */
|
|
/* exit this condition tree */
|
|
} else {
|
|
/* this is an unmatched lead code unit (1st surrogate) */
|
|
/* callback(illegal) */
|
|
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
|
|
break;
|
|
}
|
|
} else {
|
|
/* no more input */
|
|
break;
|
|
}
|
|
} else {
|
|
/* this is an unmatched trail code unit (2nd surrogate) */
|
|
/* callback(illegal) */
|
|
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* convert the Unicode code point in c into codepage bytes */
|
|
stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
|
|
|
|
/* get the bytes and the length for the output */
|
|
/* MBCS_OUTPUT_2 */
|
|
value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
|
|
if(value<=0xff) {
|
|
length=1;
|
|
} else {
|
|
length=2;
|
|
}
|
|
|
|
/* is this code point assigned, or do we use fallbacks? */
|
|
if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) ||
|
|
(UCNV_FROM_U_USE_FALLBACK(cnv, c) && (value!=0 || c==0)))
|
|
) {
|
|
/*
|
|
* We allow a 0 byte output if the Unicode code point is
|
|
* U+0000 and also if the "assigned" bit is set for this entry.
|
|
* There is no way with this data structure for fallback output
|
|
* for other than U+0000 to be a zero byte.
|
|
*/
|
|
|
|
unassigned:
|
|
/* try an extension mapping */
|
|
pArgs->source=source;
|
|
c=_extFromU(cnv, cnv->sharedData,
|
|
c, &source, sourceLimit,
|
|
(char **)&target, (char *)target+targetCapacity,
|
|
&offsets, sourceIndex,
|
|
pArgs->flush,
|
|
pErrorCode);
|
|
nextSourceIndex+=(int32_t)(source-pArgs->source);
|
|
|
|
if(U_FAILURE(*pErrorCode)) {
|
|
/* not mappable or buffer overflow */
|
|
break;
|
|
} else {
|
|
/* a mapping was written to the target, continue */
|
|
|
|
/* recalculate the targetCapacity after an extension mapping */
|
|
targetCapacity=pArgs->targetLimit-(char *)target;
|
|
|
|
/* normal end of conversion: prepare for a new character */
|
|
sourceIndex=nextSourceIndex;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* write the output character bytes from value and length */
|
|
/* from the first if in the loop we know that targetCapacity>0 */
|
|
if(length==1) {
|
|
/* this is easy because we know that there is enough space */
|
|
*target++=(uint8_t)value;
|
|
if(offsets!=NULL) {
|
|
*offsets++=sourceIndex;
|
|
}
|
|
--targetCapacity;
|
|
} else /* length==2 */ {
|
|
*target++=(uint8_t)(value>>8);
|
|
if(2<=targetCapacity) {
|
|
*target++=(uint8_t)value;
|
|
if(offsets!=NULL) {
|
|
*offsets++=sourceIndex;
|
|
*offsets++=sourceIndex;
|
|
}
|
|
targetCapacity-=2;
|
|
} else {
|
|
if(offsets!=NULL) {
|
|
*offsets++=sourceIndex;
|
|
}
|
|
cnv->charErrorBuffer[0]=(char)value;
|
|
cnv->charErrorBufferLength=1;
|
|
|
|
/* target overflow */
|
|
targetCapacity=0;
|
|
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
|
|
c=0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* normal end of conversion: prepare for a new character */
|
|
c=0;
|
|
sourceIndex=nextSourceIndex;
|
|
continue;
|
|
} else {
|
|
/* target is full */
|
|
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* set the converter state back into UConverter */
|
|
cnv->fromUChar32=c;
|
|
|
|
/* write back the updated pointers */
|
|
pArgs->source=source;
|
|
pArgs->target=(char *)target;
|
|
pArgs->offsets=offsets;
|
|
}
|
|
|
|
/* This version of _MBCSFromUnicodeWithOffsets() is optimized for single-byte codepages. */
|
|
static void
|
|
_MBCSSingleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
|
|
UErrorCode *pErrorCode) {
|
|
UConverter *cnv;
|
|
const UChar *source, *sourceLimit;
|
|
uint8_t *target;
|
|
int32_t targetCapacity;
|
|
int32_t *offsets;
|
|
|
|
const uint16_t *table;
|
|
const uint16_t *results;
|
|
|
|
UChar32 c;
|
|
|
|
int32_t sourceIndex, nextSourceIndex;
|
|
|
|
uint16_t value, minValue;
|
|
UBool hasSupplementary;
|
|
|
|
/* set up the local pointers */
|
|
cnv=pArgs->converter;
|
|
source=pArgs->source;
|
|
sourceLimit=pArgs->sourceLimit;
|
|
target=(uint8_t *)pArgs->target;
|
|
targetCapacity=pArgs->targetLimit-pArgs->target;
|
|
offsets=pArgs->offsets;
|
|
|
|
table=cnv->sharedData->mbcs.fromUnicodeTable;
|
|
if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
|
|
results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
|
|
} else {
|
|
results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
|
|
}
|
|
|
|
if(cnv->useFallback) {
|
|
/* use all roundtrip and fallback results */
|
|
minValue=0x800;
|
|
} else {
|
|
/* use only roundtrips and fallbacks from private-use characters */
|
|
minValue=0xc00;
|
|
}
|
|
hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY);
|
|
|
|
/* get the converter state from UConverter */
|
|
c=cnv->fromUChar32;
|
|
|
|
/* sourceIndex=-1 if the current character began in the previous buffer */
|
|
sourceIndex= c==0 ? 0 : -1;
|
|
nextSourceIndex=0;
|
|
|
|
/* conversion loop */
|
|
if(c!=0 && targetCapacity>0) {
|
|
goto getTrail;
|
|
}
|
|
|
|
while(source<sourceLimit) {
|
|
/*
|
|
* This following test is to see if available input would overflow the output.
|
|
* It does not catch output of more than one byte that
|
|
* overflows as a result of a multi-byte character or callback output
|
|
* from the last source character.
|
|
* Therefore, those situations also test for overflows and will
|
|
* then break the loop, too.
|
|
*/
|
|
if(targetCapacity>0) {
|
|
/*
|
|
* Get a correct Unicode code point:
|
|
* a single UChar for a BMP code point or
|
|
* a matched surrogate pair for a "supplementary code point".
|
|
*/
|
|
c=*source++;
|
|
++nextSourceIndex;
|
|
if(UTF_IS_SURROGATE(c)) {
|
|
if(UTF_IS_SURROGATE_FIRST(c)) {
|
|
getTrail:
|
|
if(source<sourceLimit) {
|
|
/* test the following code unit */
|
|
UChar trail=*source;
|
|
if(UTF_IS_SECOND_SURROGATE(trail)) {
|
|
++source;
|
|
++nextSourceIndex;
|
|
c=UTF16_GET_PAIR_VALUE(c, trail);
|
|
if(!hasSupplementary) {
|
|
/* BMP-only codepages are stored without stage 1 entries for supplementary code points */
|
|
/* callback(unassigned) */
|
|
goto unassigned;
|
|
}
|
|
/* convert this supplementary code point */
|
|
/* exit this condition tree */
|
|
} else {
|
|
/* this is an unmatched lead code unit (1st surrogate) */
|
|
/* callback(illegal) */
|
|
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
|
|
break;
|
|
}
|
|
} else {
|
|
/* no more input */
|
|
break;
|
|
}
|
|
} else {
|
|
/* this is an unmatched trail code unit (2nd surrogate) */
|
|
/* callback(illegal) */
|
|
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* convert the Unicode code point in c into codepage bytes */
|
|
value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
|
|
|
|
/* is this code point assigned, or do we use fallbacks? */
|
|
if(value>=minValue) {
|
|
/* assigned, write the output character bytes from value and length */
|
|
/* length==1 */
|
|
/* this is easy because we know that there is enough space */
|
|
*target++=(uint8_t)value;
|
|
if(offsets!=NULL) {
|
|
*offsets++=sourceIndex;
|
|
}
|
|
--targetCapacity;
|
|
|
|
/* normal end of conversion: prepare for a new character */
|
|
c=0;
|
|
sourceIndex=nextSourceIndex;
|
|
} else { /* unassigned */
|
|
unassigned:
|
|
/* try an extension mapping */
|
|
pArgs->source=source;
|
|
c=_extFromU(cnv, cnv->sharedData,
|
|
c, &source, sourceLimit,
|
|
(char **)&target, (char *)target+targetCapacity,
|
|
&offsets, sourceIndex,
|
|
pArgs->flush,
|
|
pErrorCode);
|
|
nextSourceIndex+=(int32_t)(source-pArgs->source);
|
|
|
|
if(U_FAILURE(*pErrorCode)) {
|
|
/* not mappable or buffer overflow */
|
|
break;
|
|
} else {
|
|
/* a mapping was written to the target, continue */
|
|
|
|
/* recalculate the targetCapacity after an extension mapping */
|
|
targetCapacity=pArgs->targetLimit-(char *)target;
|
|
|
|
/* normal end of conversion: prepare for a new character */
|
|
sourceIndex=nextSourceIndex;
|
|
}
|
|
}
|
|
} else {
|
|
/* target is full */
|
|
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* set the converter state back into UConverter */
|
|
cnv->fromUChar32=c;
|
|
|
|
/* write back the updated pointers */
|
|
pArgs->source=source;
|
|
pArgs->target=(char *)target;
|
|
pArgs->offsets=offsets;
|
|
}
|
|
|
|
/*
|
|
* This version of _MBCSFromUnicode() is optimized for single-byte codepages
|
|
* that map only to and from the BMP.
|
|
* In addition to single-byte/state optimizations, the offset calculations
|
|
* become much easier.
|
|
*/
|
|
static void
|
|
_MBCSSingleFromBMPWithOffsets(UConverterFromUnicodeArgs *pArgs,
|
|
UErrorCode *pErrorCode) {
|
|
UConverter *cnv;
|
|
const UChar *source, *sourceLimit, *lastSource;
|
|
uint8_t *target;
|
|
int32_t targetCapacity, length;
|
|
int32_t *offsets;
|
|
|
|
const uint16_t *table;
|
|
const uint16_t *results;
|
|
|
|
UChar32 c;
|
|
|
|
int32_t sourceIndex;
|
|
|
|
uint16_t value, minValue;
|
|
|
|
/* set up the local pointers */
|
|
cnv=pArgs->converter;
|
|
source=pArgs->source;
|
|
sourceLimit=pArgs->sourceLimit;
|
|
target=(uint8_t *)pArgs->target;
|
|
targetCapacity=pArgs->targetLimit-pArgs->target;
|
|
offsets=pArgs->offsets;
|
|
|
|
table=cnv->sharedData->mbcs.fromUnicodeTable;
|
|
if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
|
|
results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
|
|
} else {
|
|
results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
|
|
}
|
|
|
|
if(cnv->useFallback) {
|
|
/* use all roundtrip and fallback results */
|
|
minValue=0x800;
|
|
} else {
|
|
/* use only roundtrips and fallbacks from private-use characters */
|
|
minValue=0xc00;
|
|
}
|
|
|
|
/* get the converter state from UConverter */
|
|
c=cnv->fromUChar32;
|
|
|
|
/* sourceIndex=-1 if the current character began in the previous buffer */
|
|
sourceIndex= c==0 ? 0 : -1;
|
|
lastSource=source;
|
|
|
|
/*
|
|
* since the conversion here is 1:1 UChar:uint8_t, we need only one counter
|
|
* for the minimum of the sourceLength and targetCapacity
|
|
*/
|
|
length=sourceLimit-source;
|
|
if(length<targetCapacity) {
|
|
targetCapacity=length;
|
|
}
|
|
|
|
/* conversion loop */
|
|
if(c!=0 && targetCapacity>0) {
|
|
goto getTrail;
|
|
}
|
|
|
|
#if MBCS_UNROLL_SINGLE_FROM_BMP
|
|
/* unrolling makes it slower on Pentium III/Windows 2000?! */
|
|
/* unroll the loop with the most common case */
|
|
unrolled:
|
|
if(targetCapacity>=4) {
|
|
int32_t count, loops;
|
|
uint16_t andedValues;
|
|
|
|
loops=count=targetCapacity>>2;
|
|
do {
|
|
c=*source++;
|
|
andedValues=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
|
|
*target++=(uint8_t)value;
|
|
c=*source++;
|
|
andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
|
|
*target++=(uint8_t)value;
|
|
c=*source++;
|
|
andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
|
|
*target++=(uint8_t)value;
|
|
c=*source++;
|
|
andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
|
|
*target++=(uint8_t)value;
|
|
|
|
/* were all 4 entries really valid? */
|
|
if(andedValues<minValue) {
|
|
/* no, return to the first of these 4 */
|
|
source-=4;
|
|
target-=4;
|
|
break;
|
|
}
|
|
} while(--count>0);
|
|
count=loops-count;
|
|
targetCapacity-=4*count;
|
|
|
|
if(offsets!=NULL) {
|
|
lastSource+=4*count;
|
|
while(count>0) {
|
|
*offsets++=sourceIndex++;
|
|
*offsets++=sourceIndex++;
|
|
*offsets++=sourceIndex++;
|
|
*offsets++=sourceIndex++;
|
|
--count;
|
|
}
|
|
}
|
|
|
|
c=0;
|
|
}
|
|
#endif
|
|
|
|
while(targetCapacity>0) {
|
|
/*
|
|
* Get a correct Unicode code point:
|
|
* a single UChar for a BMP code point or
|
|
* a matched surrogate pair for a "supplementary code point".
|
|
*/
|
|
c=*source++;
|
|
/*
|
|
* Do not immediately check for single surrogates:
|
|
* Assume that they are unassigned and check for them in that case.
|
|
* This speeds up the conversion of assigned characters.
|
|
*/
|
|
/* convert the Unicode code point in c into codepage bytes */
|
|
value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
|
|
|
|
/* is this code point assigned, or do we use fallbacks? */
|
|
if(value>=minValue) {
|
|
/* assigned, write the output character bytes from value and length */
|
|
/* length==1 */
|
|
/* this is easy because we know that there is enough space */
|
|
*target++=(uint8_t)value;
|
|
--targetCapacity;
|
|
|
|
/* normal end of conversion: prepare for a new character */
|
|
c=0;
|
|
continue;
|
|
} else if(!UTF_IS_SURROGATE(c)) {
|
|
/* normal, unassigned BMP character */
|
|
} else if(UTF_IS_SURROGATE_FIRST(c)) {
|
|
getTrail:
|
|
if(source<sourceLimit) {
|
|
/* test the following code unit */
|
|
UChar trail=*source;
|
|
if(UTF_IS_SECOND_SURROGATE(trail)) {
|
|
++source;
|
|
c=UTF16_GET_PAIR_VALUE(c, trail);
|
|
/* this codepage does not map supplementary code points */
|
|
/* callback(unassigned) */
|
|
} else {
|
|
/* this is an unmatched lead code unit (1st surrogate) */
|
|
/* callback(illegal) */
|
|
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
|
|
break;
|
|
}
|
|
} else {
|
|
/* no more input */
|
|
break;
|
|
}
|
|
} else {
|
|
/* this is an unmatched trail code unit (2nd surrogate) */
|
|
/* callback(illegal) */
|
|
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
|
|
break;
|
|
}
|
|
|
|
/* c does not have a mapping */
|
|
|
|
/* get the number of code units for c to correctly advance sourceIndex */
|
|
length=U16_LENGTH(c);
|
|
|
|
/* set offsets since the start or the last extension */
|
|
if(offsets!=NULL) {
|
|
int32_t count=(int32_t)(source-lastSource);
|
|
|
|
/* do not set the offset for this character */
|
|
count-=length;
|
|
|
|
while(count>0) {
|
|
*offsets++=sourceIndex++;
|
|
--count;
|
|
}
|
|
/* offsets and sourceIndex are now set for the current character */
|
|
}
|
|
|
|
/* try an extension mapping */
|
|
lastSource=source;
|
|
c=_extFromU(cnv, cnv->sharedData,
|
|
c, &source, sourceLimit,
|
|
(char **)&target, (char *)target+targetCapacity,
|
|
&offsets, sourceIndex,
|
|
pArgs->flush,
|
|
pErrorCode);
|
|
sourceIndex+=length+(int32_t)(source-lastSource);
|
|
lastSource=source;
|
|
|
|
if(U_FAILURE(*pErrorCode)) {
|
|
/* not mappable or buffer overflow */
|
|
break;
|
|
} else {
|
|
/* a mapping was written to the target, continue */
|
|
|
|
/* recalculate the targetCapacity after an extension mapping */
|
|
targetCapacity=pArgs->targetLimit-(char *)target;
|
|
length=sourceLimit-source;
|
|
if(length<targetCapacity) {
|
|
targetCapacity=length;
|
|
}
|
|
}
|
|
|
|
#if MBCS_UNROLL_SINGLE_FROM_BMP
|
|
/* unrolling makes it slower on Pentium III/Windows 2000?! */
|
|
goto unrolled;
|
|
#endif
|
|
}
|
|
|
|
if(U_SUCCESS(*pErrorCode) && source<sourceLimit && target>=(uint8_t *)pArgs->targetLimit) {
|
|
/* target is full */
|
|
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
|
|
}
|
|
|
|
/* set offsets since the start or the last callback */
|
|
if(offsets!=NULL) {
|
|
size_t count=source-lastSource;
|
|
while(count>0) {
|
|
*offsets++=sourceIndex++;
|
|
--count;
|
|
}
|
|
}
|
|
|
|
/* set the converter state back into UConverter */
|
|
cnv->fromUChar32=c;
|
|
|
|
/* write back the updated pointers */
|
|
pArgs->source=source;
|
|
pArgs->target=(char *)target;
|
|
pArgs->offsets=offsets;
|
|
}
|
|
|
|
U_CFUNC void
|
|
_MBCSFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
|
|
UErrorCode *pErrorCode) {
|
|
UConverter *cnv;
|
|
const UChar *source, *sourceLimit;
|
|
uint8_t *target;
|
|
int32_t targetCapacity;
|
|
int32_t *offsets;
|
|
|
|
const uint16_t *table;
|
|
const uint8_t *p, *bytes;
|
|
uint8_t outputType;
|
|
|
|
UChar32 c;
|
|
|
|
int32_t prevSourceIndex, sourceIndex, nextSourceIndex;
|
|
|
|
uint32_t stage2Entry;
|
|
uint32_t value;
|
|
int32_t length, prevLength;
|
|
uint8_t unicodeMask;
|
|
|
|
cnv=pArgs->converter;
|
|
|
|
if(cnv->preFromUFirstCP>=0) {
|
|
/*
|
|
* pass sourceIndex=-1 because we continue from an earlier buffer
|
|
* in the future, this may change with continuous offsets
|
|
*/
|
|
ucnv_extContinueMatchFromU(cnv, pArgs, -1, pErrorCode);
|
|
|
|
if(U_FAILURE(*pErrorCode) || cnv->preFromULength<0) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* use optimized function if possible */
|
|
outputType=cnv->sharedData->mbcs.outputType;
|
|
unicodeMask=cnv->sharedData->mbcs.unicodeMask;
|
|
if(outputType==MBCS_OUTPUT_1 && !(unicodeMask&UCNV_HAS_SURROGATES)) {
|
|
if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
|
|
_MBCSSingleFromBMPWithOffsets(pArgs, pErrorCode);
|
|
} else {
|
|
_MBCSSingleFromUnicodeWithOffsets(pArgs, pErrorCode);
|
|
}
|
|
return;
|
|
} else if(outputType==MBCS_OUTPUT_2) {
|
|
_MBCSDoubleFromUnicodeWithOffsets(pArgs, pErrorCode);
|
|
return;
|
|
}
|
|
|
|
/* set up the local pointers */
|
|
source=pArgs->source;
|
|
sourceLimit=pArgs->sourceLimit;
|
|
target=(uint8_t *)pArgs->target;
|
|
targetCapacity=pArgs->targetLimit-pArgs->target;
|
|
offsets=pArgs->offsets;
|
|
|
|
table=cnv->sharedData->mbcs.fromUnicodeTable;
|
|
|
|
if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
|
|
bytes=cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
|
|
} else {
|
|
bytes=cnv->sharedData->mbcs.fromUnicodeBytes;
|
|
}
|
|
|
|
/* get the converter state from UConverter */
|
|
c=cnv->fromUChar32;
|
|
|
|
if(outputType==MBCS_OUTPUT_2_SISO) {
|
|
prevLength=cnv->fromUnicodeStatus;
|
|
if(prevLength==0) {
|
|
/* set the real value */
|
|
prevLength=1;
|
|
}
|
|
} else {
|
|
/* prevent fromUnicodeStatus from being set to something non-0 */
|
|
prevLength=0;
|
|
}
|
|
|
|
/* sourceIndex=-1 if the current character began in the previous buffer */
|
|
prevSourceIndex=-1;
|
|
sourceIndex= c==0 ? 0 : -1;
|
|
nextSourceIndex=0;
|
|
|
|
/* conversion loop */
|
|
/*
|
|
* This is another piece of ugly code:
|
|
* A goto into the loop if the converter state contains a first surrogate
|
|
* from the previous function call.
|
|
* It saves me to check in each loop iteration a check of if(c==0)
|
|
* and duplicating the trail-surrogate-handling code in the else
|
|
* branch of that check.
|
|
* I could not find any other way to get around this other than
|
|
* using a function call for the conversion and callback, which would
|
|
* be even more inefficient.
|
|
*
|
|
* Markus Scherer 2000-jul-19
|
|
*/
|
|
if(c!=0 && targetCapacity>0) {
|
|
goto getTrail;
|
|
}
|
|
|
|
while(source<sourceLimit) {
|
|
/*
|
|
* This following test is to see if available input would overflow the output.
|
|
* It does not catch output of more than one byte that
|
|
* overflows as a result of a multi-byte character or callback output
|
|
* from the last source character.
|
|
* Therefore, those situations also test for overflows and will
|
|
* then break the loop, too.
|
|
*/
|
|
if(targetCapacity>0) {
|
|
/*
|
|
* Get a correct Unicode code point:
|
|
* a single UChar for a BMP code point or
|
|
* a matched surrogate pair for a "supplementary code point".
|
|
*/
|
|
c=*source++;
|
|
++nextSourceIndex;
|
|
/*
|
|
* This also tests if the codepage maps single surrogates.
|
|
* If it does, then surrogates are not paired but mapped separately.
|
|
* Note that in this case unmatched surrogates are not detected.
|
|
*/
|
|
if(UTF_IS_SURROGATE(c) && !(unicodeMask&UCNV_HAS_SURROGATES)) {
|
|
if(UTF_IS_SURROGATE_FIRST(c)) {
|
|
getTrail:
|
|
if(source<sourceLimit) {
|
|
/* test the following code unit */
|
|
UChar trail=*source;
|
|
if(UTF_IS_SECOND_SURROGATE(trail)) {
|
|
++source;
|
|
++nextSourceIndex;
|
|
c=UTF16_GET_PAIR_VALUE(c, trail);
|
|
if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
|
|
/* BMP-only codepages are stored without stage 1 entries for supplementary code points */
|
|
/* callback(unassigned) */
|
|
goto unassigned;
|
|
}
|
|
/* convert this supplementary code point */
|
|
/* exit this condition tree */
|
|
} else {
|
|
/* this is an unmatched lead code unit (1st surrogate) */
|
|
/* callback(illegal) */
|
|
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
|
|
break;
|
|
}
|
|
} else {
|
|
/* no more input */
|
|
break;
|
|
}
|
|
} else {
|
|
/* this is an unmatched trail code unit (2nd surrogate) */
|
|
/* callback(illegal) */
|
|
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* convert the Unicode code point in c into codepage bytes */
|
|
|
|
/*
|
|
* The basic lookup is a triple-stage compact array (trie) lookup.
|
|
* For details see the beginning of this file.
|
|
*
|
|
* Single-byte codepages are handled with a different data structure
|
|
* by _MBCSSingle... functions.
|
|
*
|
|
* The result consists of a 32-bit value from stage 2 and
|
|
* a pointer to as many bytes as are stored per character.
|
|
* The pointer points to the character's bytes in stage 3.
|
|
* Bits 15..0 of the stage 2 entry contain the stage 3 index
|
|
* for that pointer, while bits 31..16 are flags for which of
|
|
* the 16 characters in the block are roundtrip-assigned.
|
|
*
|
|
* For 2-byte and 4-byte codepages, the bytes are stored as uint16_t
|
|
* respectively as uint32_t, in the platform encoding.
|
|
* For 3-byte codepages, the bytes are always stored in big-endian order.
|
|
*
|
|
* For EUC encodings that use only either 0x8e or 0x8f as the first
|
|
* byte of their longest byte sequences, the first two bytes in
|
|
* this third stage indicate with their 7th bits whether these bytes
|
|
* are to be written directly or actually need to be preceeded by
|
|
* one of the two Single-Shift codes. With this, the third stage
|
|
* stores one byte fewer per character than the actual maximum length of
|
|
* EUC byte sequences.
|
|
*
|
|
* Other than that, leading zero bytes are removed and the other
|
|
* bytes output. A single zero byte may be output if the "assigned"
|
|
* bit in stage 2 was on or also if the Unicode code point is U+0000.
|
|
* The data structure does not support zero byte output as a fallback
|
|
* for other code points, and also does not allow output of leading zeros.
|
|
*/
|
|
stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
|
|
|
|
/* get the bytes and the length for the output */
|
|
switch(outputType) {
|
|
case MBCS_OUTPUT_2:
|
|
value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
|
|
if(value<=0xff) {
|
|
length=1;
|
|
} else {
|
|
length=2;
|
|
}
|
|
break;
|
|
case MBCS_OUTPUT_2_SISO:
|
|
/* 1/2-byte stateful with Shift-In/Shift-Out */
|
|
/*
|
|
* Save the old state in the converter object
|
|
* right here, then change the local prevLength state variable if necessary.
|
|
* Then, if this character turns out to be unassigned or a fallback that
|
|
* is not taken, the callback code must not save the new state in the converter
|
|
* because the new state is for a character that is not output.
|
|
* However, the callback must still restore the state from the converter
|
|
* in case the callback function changed it for its output.
|
|
*/
|
|
cnv->fromUnicodeStatus=prevLength; /* save the old state */
|
|
value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
|
|
if(value<=0xff) {
|
|
if(value==0 && MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)==0) {
|
|
/* no mapping, leave value==0 */
|
|
} else if(prevLength<=1) {
|
|
length=1;
|
|
} else {
|
|
/* change from double-byte mode to single-byte */
|
|
value|=(uint32_t)UCNV_SI<<8;
|
|
length=2;
|
|
prevLength=1;
|
|
}
|
|
} else {
|
|
if(prevLength==2) {
|
|
length=2;
|
|
} else {
|
|
/* change from single-byte mode to double-byte */
|
|
value|=(uint32_t)UCNV_SO<<16;
|
|
length=3;
|
|
prevLength=2;
|
|
}
|
|
}
|
|
break;
|
|
case MBCS_OUTPUT_DBCS_ONLY:
|
|
/* 1/2-byte stateful table but only DBCS mappings used */
|
|
value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
|
|
if(value<=0xff) {
|
|
/* no mapping or SBCS result, not taken for DBCS-only */
|
|
value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */
|
|
length=0;
|
|
} else {
|
|
length=2;
|
|
}
|
|
break;
|
|
case MBCS_OUTPUT_3:
|
|
p=MBCS_POINTER_3_FROM_STAGE_2(bytes, stage2Entry, c);
|
|
value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
|
|
if(value<=0xff) {
|
|
length=1;
|
|
} else if(value<=0xffff) {
|
|
length=2;
|
|
} else {
|
|
length=3;
|
|
}
|
|
break;
|
|
case MBCS_OUTPUT_4:
|
|
value=MBCS_VALUE_4_FROM_STAGE_2(bytes, stage2Entry, c);
|
|
if(value<=0xff) {
|
|
length=1;
|
|
} else if(value<=0xffff) {
|
|
length=2;
|
|
} else if(value<=0xffffff) {
|
|
length=3;
|
|
} else {
|
|
length=4;
|
|
}
|
|
break;
|
|
case MBCS_OUTPUT_3_EUC:
|
|
value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
|
|
/* EUC 16-bit fixed-length representation */
|
|
if(value<=0xff) {
|
|
length=1;
|
|
} else if((value&0x8000)==0) {
|
|
value|=0x8e8000;
|
|
length=3;
|
|
} else if((value&0x80)==0) {
|
|
value|=0x8f0080;
|
|
length=3;
|
|
} else {
|
|
length=2;
|
|
}
|
|
break;
|
|
case MBCS_OUTPUT_4_EUC:
|
|
p=MBCS_POINTER_3_FROM_STAGE_2(bytes, stage2Entry, c);
|
|
value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
|
|
/* EUC 16-bit fixed-length representation applied to the first two bytes */
|
|
if(value<=0xff) {
|
|
length=1;
|
|
} else if(value<=0xffff) {
|
|
length=2;
|
|
} else if((value&0x800000)==0) {
|
|
value|=0x8e800000;
|
|
length=4;
|
|
} else if((value&0x8000)==0) {
|
|
value|=0x8f008000;
|
|
length=4;
|
|
} else {
|
|
length=3;
|
|
}
|
|
break;
|
|
default:
|
|
/* must not occur */
|
|
/*
|
|
* To avoid compiler warnings that value & length may be
|
|
* used without having been initialized, we set them here.
|
|
* In reality, this is unreachable code.
|
|
* Not having a default branch also causes warnings with
|
|
* some compilers.
|
|
*/
|
|
value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */
|
|
length=0;
|
|
break;
|
|
}
|
|
|
|
/* is this code point assigned, or do we use fallbacks? */
|
|
if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)!=0 ||
|
|
(UCNV_FROM_U_USE_FALLBACK(cnv, c) && (value!=0 || c==0)))
|
|
) {
|
|
/*
|
|
* We allow a 0 byte output if the Unicode code point is
|
|
* U+0000 and also if the "assigned" bit is set for this entry.
|
|
* There is no way with this data structure for fallback output
|
|
* for other than U+0000 to be a zero byte.
|
|
*/
|
|
|
|
unassigned:
|
|
/* try an extension mapping */
|
|
pArgs->source=source;
|
|
c=_extFromU(cnv, cnv->sharedData,
|
|
c, &source, sourceLimit,
|
|
(char **)&target, (char *)target+targetCapacity,
|
|
&offsets, sourceIndex,
|
|
pArgs->flush,
|
|
pErrorCode);
|
|
nextSourceIndex+=(int32_t)(source-pArgs->source);
|
|
prevLength=cnv->fromUnicodeStatus; /* restore SISO state */
|
|
|
|
if(U_FAILURE(*pErrorCode)) {
|
|
/* not mappable or buffer overflow */
|
|
break;
|
|
} else {
|
|
/* a mapping was written to the target, continue */
|
|
|
|
/* recalculate the targetCapacity after an extension mapping */
|
|
targetCapacity=pArgs->targetLimit-(char *)target;
|
|
|
|
/* normal end of conversion: prepare for a new character */
|
|
if(offsets!=NULL) {
|
|
prevSourceIndex=sourceIndex;
|
|
sourceIndex=nextSourceIndex;
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* write the output character bytes from value and length */
|
|
/* from the first if in the loop we know that targetCapacity>0 */
|
|
if(length<=targetCapacity) {
|
|
if(offsets==NULL) {
|
|
switch(length) {
|
|
/* each branch falls through to the next one */
|
|
case 4:
|
|
*target++=(uint8_t)(value>>24);
|
|
case 3:
|
|
*target++=(uint8_t)(value>>16);
|
|
case 2:
|
|
*target++=(uint8_t)(value>>8);
|
|
case 1:
|
|
*target++=(uint8_t)value;
|
|
default:
|
|
/* will never occur */
|
|
break;
|
|
}
|
|
} else {
|
|
switch(length) {
|
|
/* each branch falls through to the next one */
|
|
case 4:
|
|
*target++=(uint8_t)(value>>24);
|
|
*offsets++=sourceIndex;
|
|
case 3:
|
|
*target++=(uint8_t)(value>>16);
|
|
*offsets++=sourceIndex;
|
|
case 2:
|
|
*target++=(uint8_t)(value>>8);
|
|
*offsets++=sourceIndex;
|
|
case 1:
|
|
*target++=(uint8_t)value;
|
|
*offsets++=sourceIndex;
|
|
default:
|
|
/* will never occur */
|
|
break;
|
|
}
|
|
}
|
|
targetCapacity-=length;
|
|
} else {
|
|
uint8_t *charErrorBuffer;
|
|
|
|
/*
|
|
* We actually do this backwards here:
|
|
* In order to save an intermediate variable, we output
|
|
* first to the overflow buffer what does not fit into the
|
|
* regular target.
|
|
*/
|
|
/* we know that 1<=targetCapacity<length<=4 */
|
|
length-=targetCapacity;
|
|
charErrorBuffer=(uint8_t *)cnv->charErrorBuffer;
|
|
switch(length) {
|
|
/* each branch falls through to the next one */
|
|
case 3:
|
|
*charErrorBuffer++=(uint8_t)(value>>16);
|
|
case 2:
|
|
*charErrorBuffer++=(uint8_t)(value>>8);
|
|
case 1:
|
|
*charErrorBuffer=(uint8_t)value;
|
|
default:
|
|
/* will never occur */
|
|
break;
|
|
}
|
|
cnv->charErrorBufferLength=(int8_t)length;
|
|
|
|
/* now output what fits into the regular target */
|
|
value>>=8*length; /* length was reduced by targetCapacity */
|
|
switch(targetCapacity) {
|
|
/* each branch falls through to the next one */
|
|
case 3:
|
|
*target++=(uint8_t)(value>>16);
|
|
if(offsets!=NULL) {
|
|
*offsets++=sourceIndex;
|
|
}
|
|
case 2:
|
|
*target++=(uint8_t)(value>>8);
|
|
if(offsets!=NULL) {
|
|
*offsets++=sourceIndex;
|
|
}
|
|
case 1:
|
|
*target++=(uint8_t)value;
|
|
if(offsets!=NULL) {
|
|
*offsets++=sourceIndex;
|
|
}
|
|
default:
|
|
/* will never occur */
|
|
break;
|
|
}
|
|
|
|
/* target overflow */
|
|
targetCapacity=0;
|
|
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
|
|
c=0;
|
|
break;
|
|
}
|
|
|
|
/* normal end of conversion: prepare for a new character */
|
|
c=0;
|
|
if(offsets!=NULL) {
|
|
prevSourceIndex=sourceIndex;
|
|
sourceIndex=nextSourceIndex;
|
|
}
|
|
continue;
|
|
} else {
|
|
/* target is full */
|
|
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* the end of the input stream and detection of truncated input
|
|
* are handled by the framework, but for EBCDIC_STATEFUL conversion
|
|
* we need to emit an SI at the very end
|
|
*
|
|
* conditions:
|
|
* successful
|
|
* EBCDIC_STATEFUL in DBCS mode
|
|
* end of input and no truncated input
|
|
*/
|
|
if( U_SUCCESS(*pErrorCode) &&
|
|
outputType==MBCS_OUTPUT_2_SISO && prevLength==2 &&
|
|
pArgs->flush && source>=sourceLimit && c==0
|
|
) {
|
|
/* EBCDIC_STATEFUL ending with DBCS: emit an SI to return the output stream to SBCS */
|
|
if(targetCapacity>0) {
|
|
*target++=(uint8_t)UCNV_SI;
|
|
if(offsets!=NULL) {
|
|
/* set the last source character's index (sourceIndex points at sourceLimit now) */
|
|
*offsets++=prevSourceIndex;
|
|
}
|
|
} else {
|
|
/* target is full */
|
|
cnv->charErrorBuffer[0]=(char)UCNV_SI;
|
|
cnv->charErrorBufferLength=1;
|
|
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
|
|
}
|
|
prevLength=1; /* we switched into SBCS */
|
|
}
|
|
|
|
/* set the converter state back into UConverter */
|
|
cnv->fromUChar32=c;
|
|
cnv->fromUnicodeStatus=prevLength;
|
|
|
|
/* write back the updated pointers */
|
|
pArgs->source=source;
|
|
pArgs->target=(char *)target;
|
|
pArgs->offsets=offsets;
|
|
}
|
|
|
|
/*
|
|
* This is another simple conversion function for internal use by other
|
|
* conversion implementations.
|
|
* It does not use the converter state nor call callbacks.
|
|
* It does not handle the EBCDIC swaplfnl option (set in UConverter).
|
|
* It does not handle conversion extensions (_extFromU()).
|
|
*
|
|
* It converts one single Unicode code point into codepage bytes, encoded
|
|
* as one 32-bit value. The function returns the number of bytes in *pValue:
|
|
* 1..4 the number of bytes in *pValue
|
|
* 0 unassigned (*pValue undefined)
|
|
* -1 illegal (currently not used, *pValue undefined)
|
|
*
|
|
* *pValue will contain the resulting bytes with the last byte in bits 7..0,
|
|
* the second to last byte in bits 15..8, etc.
|
|
* Currently, the function assumes but does not check that 0<=c<=0x10ffff.
|
|
*/
|
|
U_CFUNC int32_t
|
|
_MBCSFromUChar32(UConverterSharedData *sharedData,
|
|
UChar32 c, uint32_t *pValue,
|
|
UBool useFallback) {
|
|
const uint16_t *table=sharedData->mbcs.fromUnicodeTable;
|
|
const uint8_t *p;
|
|
uint32_t stage2Entry;
|
|
uint32_t value;
|
|
int32_t length;
|
|
|
|
/* ### TODO extension mapping */
|
|
|
|
/* BMP-only codepages are stored without stage 1 entries for supplementary code points */
|
|
if(c>=0x10000 && !(sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
|
|
return 0;
|
|
}
|
|
|
|
/* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */
|
|
if(sharedData->mbcs.outputType==MBCS_OUTPUT_1) {
|
|
value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.fromUnicodeBytes, c);
|
|
/* is this code point assigned, or do we use fallbacks? */
|
|
if(useFallback ? value>=0x800 : value>=0xc00) {
|
|
*pValue=value&0xff;
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
|
|
|
|
/* get the bytes and the length for the output */
|
|
switch(sharedData->mbcs.outputType) {
|
|
case MBCS_OUTPUT_2:
|
|
value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
|
|
if(value<=0xff) {
|
|
length=1;
|
|
} else {
|
|
length=2;
|
|
}
|
|
break;
|
|
case MBCS_OUTPUT_DBCS_ONLY:
|
|
/* 1/2-byte stateful table but only DBCS mappings used */
|
|
value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
|
|
if(value<=0xff) {
|
|
/* no mapping or SBCS result, not taken for DBCS-only */
|
|
value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */
|
|
length=0;
|
|
} else {
|
|
length=2;
|
|
}
|
|
break;
|
|
case MBCS_OUTPUT_3:
|
|
p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
|
|
value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
|
|
if(value<=0xff) {
|
|
length=1;
|
|
} else if(value<=0xffff) {
|
|
length=2;
|
|
} else {
|
|
length=3;
|
|
}
|
|
break;
|
|
case MBCS_OUTPUT_4:
|
|
value=MBCS_VALUE_4_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
|
|
if(value<=0xff) {
|
|
length=1;
|
|
} else if(value<=0xffff) {
|
|
length=2;
|
|
} else if(value<=0xffffff) {
|
|
length=3;
|
|
} else {
|
|
length=4;
|
|
}
|
|
break;
|
|
case MBCS_OUTPUT_3_EUC:
|
|
value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
|
|
/* EUC 16-bit fixed-length representation */
|
|
if(value<=0xff) {
|
|
length=1;
|
|
} else if((value&0x8000)==0) {
|
|
value|=0x8e8000;
|
|
length=3;
|
|
} else if((value&0x80)==0) {
|
|
value|=0x8f0080;
|
|
length=3;
|
|
} else {
|
|
length=2;
|
|
}
|
|
break;
|
|
case MBCS_OUTPUT_4_EUC:
|
|
p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
|
|
value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
|
|
/* EUC 16-bit fixed-length representation applied to the first two bytes */
|
|
if(value<=0xff) {
|
|
length=1;
|
|
} else if(value<=0xffff) {
|
|
length=2;
|
|
} else if((value&0x800000)==0) {
|
|
value|=0x8e800000;
|
|
length=4;
|
|
} else if((value&0x8000)==0) {
|
|
value|=0x8f008000;
|
|
length=4;
|
|
} else {
|
|
length=3;
|
|
}
|
|
break;
|
|
default:
|
|
/* must not occur */
|
|
return -1;
|
|
}
|
|
|
|
/* is this code point assigned, or do we use fallbacks? */
|
|
if( MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) ||
|
|
(FROM_U_USE_FALLBACK(useFallback, c) && (value!=0 || c==0))
|
|
) {
|
|
/*
|
|
* We allow a 0 byte output if the Unicode code point is
|
|
* U+0000 and also if the "assigned" bit is set for this entry.
|
|
* There is no way with this data structure for fallback output
|
|
* for other than U+0000 to be a zero byte.
|
|
*/
|
|
/* assigned */
|
|
*pValue=value;
|
|
return length;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
#if 0
|
|
/*
|
|
* This function has been moved to ucnv2022.c for inlining.
|
|
* This implementation is here only for documentation purposes
|
|
*/
|
|
|
|
/**
|
|
* This version of _MBCSFromUChar32() is optimized for single-byte codepages.
|
|
* It does not handle the EBCDIC swaplfnl option (set in UConverter).
|
|
* It does not handle conversion extensions (_extFromU()).
|
|
*
|
|
* It returns the codepage byte for the code point, or -1 if it is unassigned.
|
|
*/
|
|
U_CFUNC int32_t
|
|
_MBCSSingleFromUChar32(UConverterSharedData *sharedData,
|
|
UChar32 c,
|
|
UBool useFallback) {
|
|
const uint16_t *table;
|
|
int32_t value;
|
|
|
|
/* BMP-only codepages are stored without stage 1 entries for supplementary code points */
|
|
if(c>=0x10000 && !(sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
|
|
return -1;
|
|
}
|
|
|
|
/* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */
|
|
table=sharedData->mbcs.fromUnicodeTable;
|
|
|
|
/* get the byte for the output */
|
|
value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.fromUnicodeBytes, c);
|
|
/* is this code point assigned, or do we use fallbacks? */
|
|
if(useFallback ? value>=0x800 : value>=0xc00) {
|
|
return value&0xff;
|
|
} else {
|
|
return -1;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* miscellaneous ------------------------------------------------------------ */
|
|
|
|
static void
|
|
_MBCSGetStarters(const UConverter* cnv,
|
|
UBool starters[256],
|
|
UErrorCode *pErrorCode) {
|
|
const int32_t *state0;
|
|
int i;
|
|
|
|
state0=cnv->sharedData->mbcs.stateTable[cnv->sharedData->mbcs.dbcsOnlyState];
|
|
for(i=0; i<256; ++i) {
|
|
/* all bytes that cause a state transition from state 0 are lead bytes */
|
|
starters[i]= (UBool)MBCS_ENTRY_IS_TRANSITION(state0[i]);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This is an internal function that allows other converter implementations
|
|
* to check whether a byte is a lead byte.
|
|
*/
|
|
U_CFUNC UBool
|
|
_MBCSIsLeadByte(UConverterSharedData *sharedData, char byte) {
|
|
return (UBool)MBCS_ENTRY_IS_TRANSITION(sharedData->mbcs.stateTable[0][(uint8_t)byte]);
|
|
}
|
|
|
|
static void
|
|
_MBCSWriteSub(UConverterFromUnicodeArgs *pArgs,
|
|
int32_t offsetIndex,
|
|
UErrorCode *pErrorCode) {
|
|
UConverter *cnv=pArgs->converter;
|
|
char *p, *subchar;
|
|
char buffer[4];
|
|
int32_t length;
|
|
|
|
/* first, select between subChar and subChar1 */
|
|
if( cnv->subChar1!=0 &&
|
|
(cnv->sharedData->mbcs.extIndexes!=NULL ?
|
|
cnv->useSubChar1 :
|
|
(cnv->invalidUCharBuffer[0]<=0xff))
|
|
) {
|
|
/* select subChar1 if it is set (not 0) and the unmappable Unicode code point is up to U+00ff (IBM MBCS behavior) */
|
|
subchar=(char *)&cnv->subChar1;
|
|
length=1;
|
|
} else {
|
|
/* select subChar in all other cases */
|
|
subchar=(char *)cnv->subChar;
|
|
length=cnv->subCharLen;
|
|
}
|
|
|
|
/* reset the selector for the next code point */
|
|
cnv->useSubChar1=FALSE;
|
|
|
|
switch(cnv->sharedData->mbcs.outputType) {
|
|
case MBCS_OUTPUT_2_SISO:
|
|
p=buffer;
|
|
|
|
/* fromUnicodeStatus contains prevLength */
|
|
switch(length) {
|
|
case 1:
|
|
if(cnv->fromUnicodeStatus==2) {
|
|
/* DBCS mode and SBCS sub char: change to SBCS */
|
|
cnv->fromUnicodeStatus=1;
|
|
*p++=UCNV_SI;
|
|
}
|
|
*p++=subchar[0];
|
|
break;
|
|
case 2:
|
|
if(cnv->fromUnicodeStatus<=1) {
|
|
/* SBCS mode and DBCS sub char: change to DBCS */
|
|
cnv->fromUnicodeStatus=2;
|
|
*p++=UCNV_SO;
|
|
}
|
|
*p++=subchar[0];
|
|
*p++=subchar[1];
|
|
break;
|
|
default:
|
|
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
|
|
return;
|
|
}
|
|
ucnv_cbFromUWriteBytes(pArgs,
|
|
buffer, (int32_t)(p-buffer),
|
|
offsetIndex, pErrorCode);
|
|
break;
|
|
default:
|
|
ucnv_cbFromUWriteBytes(pArgs,
|
|
subchar, length,
|
|
offsetIndex, pErrorCode);
|
|
break;
|
|
}
|
|
}
|
|
|
|
U_CFUNC UConverterType
|
|
_MBCSGetType(const UConverter* converter) {
|
|
/* SBCS, DBCS, and EBCDIC_STATEFUL are replaced by MBCS, but here we cheat a little */
|
|
if(converter->sharedData->mbcs.countStates==1) {
|
|
return (UConverterType)UCNV_SBCS;
|
|
} else if((converter->sharedData->mbcs.outputType&0xff)==MBCS_OUTPUT_2_SISO) {
|
|
return (UConverterType)UCNV_EBCDIC_STATEFUL;
|
|
} else if(converter->sharedData->staticData->minBytesPerChar==2 && converter->sharedData->staticData->maxBytesPerChar==2) {
|
|
return (UConverterType)UCNV_DBCS;
|
|
}
|
|
return (UConverterType)UCNV_MBCS;
|
|
}
|
|
|
|
static const UConverterImpl _MBCSImpl={
|
|
UCNV_MBCS,
|
|
|
|
_MBCSLoad,
|
|
_MBCSUnload,
|
|
|
|
_MBCSOpen,
|
|
NULL,
|
|
NULL,
|
|
|
|
_MBCSToUnicodeWithOffsets,
|
|
_MBCSToUnicodeWithOffsets,
|
|
_MBCSFromUnicodeWithOffsets,
|
|
_MBCSFromUnicodeWithOffsets,
|
|
_MBCSGetNextUChar,
|
|
|
|
_MBCSGetStarters,
|
|
_MBCSGetName,
|
|
_MBCSWriteSub,
|
|
NULL,
|
|
_MBCSGetUnicodeSet
|
|
};
|
|
|
|
|
|
/* Static data is in tools/makeconv/ucnvstat.c for data-based
|
|
* converters. Be sure to update it as well.
|
|
*/
|
|
|
|
const UConverterSharedData _MBCSData={
|
|
sizeof(UConverterSharedData), 1,
|
|
NULL, NULL, NULL, FALSE, &_MBCSImpl,
|
|
0
|
|
};
|
|
|
|
#endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */
|