scuffed-code/icu4c/source/i18n/collationbasedatabuilder.cpp
2014-02-25 21:21:49 +00:00

493 lines
19 KiB
C++

/*
*******************************************************************************
* Copyright (C) 2012-2014, International Business Machines
* Corporation and others. All Rights Reserved.
*******************************************************************************
* collationbasedatabuilder.cpp
*
* created on: 2012aug11
* created by: Markus W. Scherer
*/
#include "unicode/utypes.h"
#if !UCONFIG_NO_COLLATION
#include "unicode/localpointer.h"
#include "unicode/ucharstriebuilder.h"
#include "unicode/uniset.h"
#include "unicode/unistr.h"
#include "unicode/utf16.h"
#include "collation.h"
#include "collationbasedatabuilder.h"
#include "collationdata.h"
#include "collationdatabuilder.h"
#include "collationrootelements.h"
#include "normalizer2impl.h"
#include "uassert.h"
#include "utrie2.h"
#include "uvectr32.h"
#include "uvectr64.h"
#include "uvector.h"
U_NAMESPACE_BEGIN
namespace {
/**
* Compare two signed int64_t values as if they were unsigned.
*/
int32_t
compareInt64AsUnsigned(int64_t a, int64_t b) {
if((uint64_t)a < (uint64_t)b) {
return -1;
} else if((uint64_t)a > (uint64_t)b) {
return 1;
} else {
return 0;
}
}
// TODO: Try to merge this with the binarySearch in alphaindex.cpp.
/**
* Like Java Collections.binarySearch(List, String, Comparator).
*
* @return the index>=0 where the item was found,
* or the index<0 for inserting the string at ~index in sorted order
*/
int32_t
binarySearch(const UVector64 &list, int64_t ce) {
if (list.size() == 0) { return ~0; }
int32_t start = 0;
int32_t limit = list.size();
for (;;) {
int32_t i = (start + limit) / 2;
int32_t cmp = compareInt64AsUnsigned(ce, list.elementAti(i));
if (cmp == 0) {
return i;
} else if (cmp < 0) {
if (i == start) {
return ~start; // insert ce before i
}
limit = i;
} else {
if (i == start) {
return ~(start + 1); // insert ce after i
}
start = i;
}
}
}
} // namespace
CollationBaseDataBuilder::CollationBaseDataBuilder(UErrorCode &errorCode)
: CollationDataBuilder(errorCode),
numericPrimary(0x12000000),
firstHanPrimary(0), lastHanPrimary(0), hanStep(2),
rootElements(errorCode) {
}
CollationBaseDataBuilder::~CollationBaseDataBuilder() {
}
void
CollationBaseDataBuilder::init(UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return; }
if(trie != NULL) {
errorCode = U_INVALID_STATE_ERROR;
return;
}
// Not compressible:
// - digits
// - Latin
// - Hani
// - trail weights
// Some scripts are compressible, some are not.
uprv_memset(compressibleBytes, FALSE, 256);
compressibleBytes[Collation::UNASSIGNED_IMPLICIT_BYTE] = TRUE;
// For a base, the default is to compute an unassigned-character implicit CE.
// This includes surrogate code points; see the last option in
// UCA section 7.1.1 Handling Ill-Formed Code Unit Sequences.
trie = utrie2_open(Collation::UNASSIGNED_CE32, Collation::FFFD_CE32, &errorCode);
// Preallocate trie blocks for Latin in the hope that proximity helps with CPU caches.
for(UChar32 c = 0; c < 0x180; ++c) {
utrie2_set32(trie, c, Collation::UNASSIGNED_CE32, &errorCode);
}
utrie2_set32(trie, 0xfffe, Collation::MERGE_SEPARATOR_CE32, &errorCode);
// No root element for the merge separator which has 02 weights.
// Some code assumes that the root first primary CE is the "space first primary"
// from FractionalUCA.txt.
uint32_t hangulCE32 = Collation::makeCE32FromTagAndIndex(Collation::HANGUL_TAG, 0);
utrie2_setRange32(trie, Hangul::HANGUL_BASE, Hangul::HANGUL_END, hangulCE32, TRUE, &errorCode);
// Add a mapping for the first-unassigned boundary,
// which is the AlphabeticIndex overflow boundary.
UnicodeString s((UChar)0xfdd1); // Script boundary contractions start with U+FDD1.
s.append((UChar)0xfdd0); // Zzzz script sample character U+FDD0.
int64_t ce = Collation::makeCE(Collation::FIRST_UNASSIGNED_PRIMARY);
add(UnicodeString(), s, &ce, 1, errorCode);
// Add a tailoring boundary, but not a mapping, for [first trailing].
ce = Collation::makeCE(Collation::FIRST_TRAILING_PRIMARY);
rootElements.addElement(ce, errorCode);
// U+FFFD maps to a CE with the third-highest primary weight,
// for predictable handling of ill-formed UTF-8.
uint32_t ce32 = Collation::FFFD_CE32;
utrie2_set32(trie, 0xfffd, ce32, &errorCode);
addRootElement(Collation::ceFromSimpleCE32(ce32), errorCode);
// U+FFFF maps to a CE with the highest primary weight.
ce32 = Collation::MAX_REGULAR_CE32;
utrie2_set32(trie, 0xffff, ce32, &errorCode);
addRootElement(Collation::ceFromSimpleCE32(ce32), errorCode);
}
void
CollationBaseDataBuilder::initHanRanges(const UChar32 ranges[], int32_t length,
UErrorCode &errorCode) {
if(U_FAILURE(errorCode) || length == 0) { return; }
if((length & 1) != 0) { // incomplete start/end pairs
errorCode = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
if(isAssigned(0x4e00)) { // already set
errorCode = U_INVALID_STATE_ERROR;
return;
}
int32_t numHanCodePoints = 0;
for(int32_t i = 0; i < length; i += 2) {
UChar32 start = ranges[i];
UChar32 end = ranges[i + 1];
numHanCodePoints += end - start + 1;
}
// Multiply the number of code points by (gap+1).
// Add hanStep+2 for tailoring after the last Han character.
int32_t gap = 1;
hanStep = gap + 1;
int32_t numHan = numHanCodePoints * hanStep + hanStep + 2;
// Numbers of Han primaries per lead byte determined by
// numbers of 2nd (not compressible) times 3rd primary byte values.
int32_t numHanPerLeadByte = 254 * 254;
int32_t numHanLeadBytes = (numHan + numHanPerLeadByte - 1) / numHanPerLeadByte;
uint32_t hanPrimary = (uint32_t)(Collation::UNASSIGNED_IMPLICIT_BYTE - numHanLeadBytes) << 24;
hanPrimary |= 0x20200;
firstHanPrimary = hanPrimary;
for(int32_t i = 0; i < length; i += 2) {
UChar32 start = ranges[i];
UChar32 end = ranges[i + 1];
hanPrimary = setPrimaryRangeAndReturnNext(start, end, hanPrimary, hanStep, errorCode);
}
// One past the actual last one, but that is harmless for tailoring.
// It saves us from subtracting "hanStep" and handling underflows.
lastHanPrimary = hanPrimary;
}
UBool
CollationBaseDataBuilder::isCompressibleLeadByte(uint32_t b) const {
return compressibleBytes[b];
}
void
CollationBaseDataBuilder::setCompressibleLeadByte(uint32_t b) {
compressibleBytes[b] = TRUE;
}
int32_t
CollationBaseDataBuilder::diffTwoBytePrimaries(uint32_t p1, uint32_t p2, UBool isCompressible) {
if((p1 & 0xff000000) == (p2 & 0xff000000)) {
// Same lead bytes.
return (int32_t)(p2 - p1) >> 16;
} else {
int32_t linear1;
int32_t linear2;
int32_t factor;
if(isCompressible) {
// Second byte for compressible lead byte: 251 bytes 04..FE
linear1 = (int32_t)((p1 >> 16) & 0xff) - 4;
linear2 = (int32_t)((p2 >> 16) & 0xff) - 4;
factor = 251;
} else {
// Second byte for incompressible lead byte: 254 bytes 02..FF
linear1 = (int32_t)((p1 >> 16) & 0xff) - 2;
linear2 = (int32_t)((p2 >> 16) & 0xff) - 2;
factor = 254;
}
linear1 += factor * (int32_t)((p1 >> 24) & 0xff);
linear2 += factor * (int32_t)((p2 >> 24) & 0xff);
return linear2 - linear1;
}
}
int32_t
CollationBaseDataBuilder::diffThreeBytePrimaries(uint32_t p1, uint32_t p2, UBool isCompressible) {
if((p1 & 0xffff0000) == (p2 & 0xffff0000)) {
// Same first two bytes.
return (int32_t)(p2 - p1) >> 8;
} else {
// Third byte: 254 bytes 02..FF
int32_t linear1 = (int32_t)((p1 >> 8) & 0xff) - 2;
int32_t linear2 = (int32_t)((p2 >> 8) & 0xff) - 2;
int32_t factor;
if(isCompressible) {
// Second byte for compressible lead byte: 251 bytes 04..FE
linear1 += 254 * ((int32_t)((p1 >> 16) & 0xff) - 4);
linear2 += 254 * ((int32_t)((p2 >> 16) & 0xff) - 4);
factor = 251 * 254;
} else {
// Second byte for incompressible lead byte: 254 bytes 02..FF
linear1 += 254 * ((int32_t)((p1 >> 16) & 0xff) - 2);
linear2 += 254 * ((int32_t)((p2 >> 16) & 0xff) - 2);
factor = 254 * 254;
}
linear1 += factor * (int32_t)((p1 >> 24) & 0xff);
linear2 += factor * (int32_t)((p2 >> 24) & 0xff);
return linear2 - linear1;
}
}
uint32_t
CollationBaseDataBuilder::encodeCEs(const int64_t ces[], int32_t cesLength, UErrorCode &errorCode) {
addRootElements(ces, cesLength, errorCode);
return CollationDataBuilder::encodeCEs(ces, cesLength, errorCode);
}
void
CollationBaseDataBuilder::addRootElements(const int64_t ces[], int32_t cesLength,
UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return; }
for(int32_t i = 0; i < cesLength; ++i) {
addRootElement(ces[i], errorCode);
}
}
void
CollationBaseDataBuilder::addRootElement(int64_t ce, UErrorCode &errorCode) {
if(U_FAILURE(errorCode) || ce == 0) { return; }
// Remove case bits.
ce &= INT64_C(0xffffffffffff3fff);
U_ASSERT((ce & 0xc0) == 0); // quaternary==0
// Ignore the CE if it has a Han primary weight and common secondary/tertiary weights.
// We will add it later, as part of the Han ranges.
uint32_t p = (uint32_t)(ce >> 32);
uint32_t secTer = (uint32_t)ce;
if(secTer == Collation::COMMON_SEC_AND_TER_CE) {
if(firstHanPrimary <= p && p <= lastHanPrimary) {
return;
}
} else {
// Check that secondary and tertiary weights are >= "common".
uint32_t s = secTer >> 16;
uint32_t t = secTer & Collation::ONLY_TERTIARY_MASK;
if((s != 0 && s < Collation::COMMON_WEIGHT16) || (t != 0 && t < Collation::COMMON_WEIGHT16)) {
errorCode = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
}
// Check that primaries have at most 3 bytes.
if((p & 0xff) != 0) {
errorCode = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
int32_t i = binarySearch(rootElements, ce);
if(i < 0) {
rootElements.insertElementAt(ce, ~i, errorCode);
}
}
void
CollationBaseDataBuilder::addReorderingGroup(uint32_t firstByte, uint32_t lastByte,
const UnicodeString &groupScripts,
UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return; }
if(groupScripts.isEmpty()) {
errorCode = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
if(groupScripts.indexOf((UChar)USCRIPT_UNKNOWN) >= 0) {
// Zzzz must not occur.
// It is the code used in the API to separate low and high scripts.
errorCode = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
// Note: We are mostly trusting the input data,
// rather than verifying that reordering groups do not intersect
// with their lead byte ranges nor their sets of scripts,
// and that all script codes are valid.
scripts.append((UChar)((firstByte << 8) | lastByte));
scripts.append((UChar)groupScripts.length());
scripts.append(groupScripts);
}
void
CollationBaseDataBuilder::build(CollationData &data, UErrorCode &errorCode) {
buildMappings(data, errorCode);
data.numericPrimary = numericPrimary;
data.compressibleBytes = compressibleBytes;
data.scripts = reinterpret_cast<const uint16_t *>(scripts.getBuffer());
data.scriptsLength = scripts.length();
buildFastLatinTable(data, errorCode);
}
void
CollationBaseDataBuilder::buildRootElementsTable(UVector32 &table, UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return; }
uint32_t nextHanPrimary = firstHanPrimary; // Set to 0xffffffff after the last Han range.
uint32_t prevPrimary = 0; // Start with primary ignorable CEs.
UBool tryRange = FALSE;
for(int32_t i = 0; i < rootElements.size(); ++i) {
int64_t ce = rootElements.elementAti(i);
uint32_t p = (uint32_t)(ce >> 32);
uint32_t secTer = (uint32_t)ce & Collation::ONLY_SEC_TER_MASK;
if(p != prevPrimary) {
U_ASSERT((p & 0xff) == 0);
int32_t end;
if(p >= nextHanPrimary) {
// Add a Han primary weight or range.
// We omitted them initially, and omitted all CEs with Han primaries
// and common secondary/tertiary weights.
U_ASSERT(p > lastHanPrimary || secTer != Collation::COMMON_SEC_AND_TER_CE);
if(p == nextHanPrimary) {
// One single Han primary with non-common secondary/tertiary weights.
table.addElement((int32_t)p, errorCode);
if(p < lastHanPrimary) {
// Prepare for the next Han range.
nextHanPrimary = Collation::incThreeBytePrimaryByOffset(p, FALSE, hanStep);
} else {
// p is the last Han primary.
nextHanPrimary = 0xffffffff;
}
} else {
// p > nextHanPrimary: Add a Han primary range, starting with nextHanPrimary.
table.addElement((int32_t)nextHanPrimary, errorCode);
if(nextHanPrimary == lastHanPrimary) {
// nextHanPrimary == lastHanPrimary < p
// We just wrote the single last Han primary.
nextHanPrimary = 0xffffffff;
} else if(p < lastHanPrimary) {
// nextHanPrimary < p < lastHanPrimary
// End the Han range on p, prepare for the next range.
table.addElement((int32_t)p | hanStep, errorCode);
nextHanPrimary = Collation::incThreeBytePrimaryByOffset(p, FALSE, hanStep);
} else if(p == lastHanPrimary) {
// nextHanPrimary < p == lastHanPrimary
// End the last Han range on p.
table.addElement((int32_t)p | hanStep, errorCode);
nextHanPrimary = 0xffffffff;
} else {
// nextHanPrimary < lastHanPrimary < p
// End the last Han range, then write p.
table.addElement((int32_t)lastHanPrimary | hanStep, errorCode);
nextHanPrimary = 0xffffffff;
table.addElement((int32_t)p, errorCode);
}
}
} else if(tryRange && secTer == Collation::COMMON_SEC_AND_TER_CE &&
(end = writeRootElementsRange(prevPrimary, p, i + 1, table, errorCode)) != 0) {
// Multiple CEs with only common secondary/tertiary weights were
// combined into a primary range.
// The range end was written, ending with the primary of rootElements[end].
ce = rootElements.elementAti(end);
p = (uint32_t)(ce >> 32);
secTer = (uint32_t)ce & Collation::ONLY_SEC_TER_MASK;
i = end;
} else {
// Write the primary weight of a normal CE.
table.addElement((int32_t)p, errorCode);
}
prevPrimary = p;
}
if(secTer == Collation::COMMON_SEC_AND_TER_CE) {
// The common secondar/tertiary weights are implied in the primary unit.
// If there is no intervening delta unit, then we will try to combine
// the next several primaries into a range.
tryRange = TRUE;
} else {
// For each new set of secondary/tertiary weights we write a delta unit.
table.addElement((int32_t)secTer | CollationRootElements::SEC_TER_DELTA_FLAG, errorCode);
tryRange = FALSE;
}
}
// Limit sentinel for root elements.
// This allows us to reduce range checks at runtime.
table.addElement(CollationRootElements::PRIMARY_SENTINEL, errorCode);
}
int32_t
CollationBaseDataBuilder::writeRootElementsRange(
uint32_t prevPrimary, uint32_t p, int32_t i,
UVector32 &table, UErrorCode &errorCode) {
if(U_FAILURE(errorCode) || i >= rootElements.size()) { return 0; }
U_ASSERT(prevPrimary < p);
// No ranges of single-byte primaries.
if((p & prevPrimary & 0xff0000) == 0) { return 0; }
// Lead bytes of compressible primaries must match.
UBool isCompressible = isCompressiblePrimary(p);
if((isCompressible || isCompressiblePrimary(prevPrimary)) &&
(p & 0xff000000) != (prevPrimary & 0xff000000)) {
return 0;
}
// Number of bytes in the primaries.
UBool twoBytes;
// Number of primaries from prevPrimary to p.
int32_t step;
if((p & 0xff00) == 0) {
// 2-byte primary
if((prevPrimary & 0xff00) != 0) { return 0; } // length mismatch
twoBytes = TRUE;
step = diffTwoBytePrimaries(prevPrimary, p, isCompressible);
} else {
// 3-byte primary
if((prevPrimary & 0xff00) == 0) { return 0; } // length mismatch
twoBytes = FALSE;
step = diffThreeBytePrimaries(prevPrimary, p, isCompressible);
}
if(step > (int32_t)CollationRootElements::PRIMARY_STEP_MASK) { return 0; }
// See if there are more than two CEs with primaries increasing by "step"
// and with only common secondary/tertiary weights on all but the last one.
int32_t end = 0; // Initially 0: No range for just two primaries.
for(;;) {
prevPrimary = p;
// Calculate which primary we expect next.
uint32_t nextPrimary; // = p + step
if(twoBytes) {
nextPrimary = Collation::incTwoBytePrimaryByOffset(p, isCompressible, step);
} else {
nextPrimary = Collation::incThreeBytePrimaryByOffset(p, isCompressible, step);
}
// Fetch the actual next CE.
int64_t ce = rootElements.elementAti(i);
p = (uint32_t)(ce >> 32);
uint32_t secTer = (uint32_t)ce & Collation::ONLY_SEC_TER_MASK;
// Does this primary increase by "step" from the last one?
if(p != nextPrimary ||
// Do not cross into a new lead byte if either is compressible.
((p & 0xff000000) != (prevPrimary & 0xff000000) &&
(isCompressible || isCompressiblePrimary(p)))) {
// The range ends with the previous CE.
p = prevPrimary;
break;
}
// Extend the range to include this primary.
end = i++;
// This primary is the last in the range if it has non-common weights
// or if we are at the end of the list.
if(secTer != Collation::COMMON_SEC_AND_TER_CE || i >= rootElements.size()) { break; }
}
if(end != 0) {
table.addElement((int32_t)p | step, errorCode);
}
return end;
}
U_NAMESPACE_END
#endif // !UCONFIG_NO_COLLATION