27074f2079
X-SVN-Rev: 2649
1167 lines
35 KiB
C
1167 lines
35 KiB
C
/*
|
|
*******************************************************************************
|
|
*
|
|
* Copyright (C) 1999, International Business Machines
|
|
* Corporation and others. All Rights Reserved.
|
|
*
|
|
*******************************************************************************
|
|
* file name: unames.c
|
|
* encoding: US-ASCII
|
|
* tab size: 8 (not used)
|
|
* indentation:4
|
|
*
|
|
* created on: 1999oct04
|
|
* created by: Markus W. Scherer
|
|
*/
|
|
|
|
/* set import/export definitions */
|
|
#ifndef U_COMMON_IMPLEMENTATION
|
|
# define U_COMMON_IMPLEMENTATION
|
|
#endif
|
|
|
|
#include "unicode/utypes.h"
|
|
#include "umutex.h"
|
|
#include "cmemory.h"
|
|
#include "cstring.h"
|
|
#include "unicode/uchar.h"
|
|
#include "unicode/udata.h"
|
|
|
|
/* prototypes --------------------------------------------------------------- */
|
|
|
|
#define DATA_NAME "unames"
|
|
#define DATA_TYPE "dat"
|
|
|
|
#define GROUP_SHIFT 5
|
|
#define LINES_PER_GROUP (1UL<<GROUP_SHIFT)
|
|
#define GROUP_MASK (LINES_PER_GROUP-1)
|
|
|
|
typedef struct {
|
|
uint16_t groupMSB,
|
|
offsetHigh, offsetLow; /* avoid padding */
|
|
} Group;
|
|
|
|
typedef struct {
|
|
uint32_t start, end;
|
|
uint8_t type, variant;
|
|
uint16_t size;
|
|
} AlgorithmicRange;
|
|
|
|
typedef struct {
|
|
uint32_t tokenStringOffset, groupsOffset, groupStringOffset, algNamesOffset;
|
|
} UCharNames;
|
|
|
|
typedef struct {
|
|
const char *otherName;
|
|
UChar32 code;
|
|
} FindName;
|
|
|
|
#define DO_FIND_NAME (findNameDummy)
|
|
|
|
static UDataMemory *uCharNamesData=NULL;
|
|
static UCharNames *uCharNames=NULL;
|
|
|
|
static UBool
|
|
isDataLoaded(UErrorCode *pErrorCode);
|
|
|
|
static UBool
|
|
isAcceptable(void *context,
|
|
const char *type, const char *name,
|
|
const UDataInfo *pInfo);
|
|
|
|
static Group *
|
|
getGroup(UCharNames *names, uint32_t code);
|
|
|
|
static uint16_t
|
|
getName(UCharNames *names, uint32_t code, UCharNameChoice nameChoice,
|
|
char *buffer, uint16_t bufferLength);
|
|
|
|
static const uint8_t *
|
|
expandGroupLengths(const uint8_t *s,
|
|
uint16_t offsets[LINES_PER_GROUP+1], uint16_t lengths[LINES_PER_GROUP+1]);
|
|
|
|
static uint16_t
|
|
expandGroupName(UCharNames *names, Group *group,
|
|
uint16_t lineNumber, UCharNameChoice nameChoice,
|
|
char *buffer, uint16_t bufferLength);
|
|
|
|
static uint16_t
|
|
expandName(UCharNames *names,
|
|
const uint8_t *name, uint16_t nameLength, UCharNameChoice nameChoice,
|
|
char *buffer, uint16_t bufferLength);
|
|
|
|
static UBool
|
|
compareName(UCharNames *names,
|
|
const uint8_t *name, uint16_t nameLength, UCharNameChoice nameChoice,
|
|
const char *otherName);
|
|
|
|
static UBool
|
|
enumGroupNames(UCharNames *names, Group *group,
|
|
UChar32 start, UChar32 end,
|
|
UEnumCharNamesFn *fn, void *context,
|
|
UCharNameChoice nameChoice);
|
|
|
|
static UBool
|
|
enumNames(UCharNames *names,
|
|
UChar32 start, UChar32 limit,
|
|
UEnumCharNamesFn *fn, void *context,
|
|
UCharNameChoice nameChoice);
|
|
|
|
static uint16_t
|
|
getAlgName(AlgorithmicRange *range, uint32_t code, UCharNameChoice nameChoice,
|
|
char *buffer, uint16_t bufferLength);
|
|
|
|
static uint16_t
|
|
writeFactorSuffix(const uint16_t *factors, uint16_t count,
|
|
const char *s, /* suffix elements */
|
|
uint32_t code,
|
|
uint16_t indexes[8], /* output fields from here */
|
|
const char *elementBases[8], const char *elements[8],
|
|
char *buffer, uint16_t bufferLength);
|
|
|
|
static UBool
|
|
enumAlgNames(AlgorithmicRange *range,
|
|
UChar32 start, UChar32 limit,
|
|
UEnumCharNamesFn *fn, void *context,
|
|
UCharNameChoice nameChoice);
|
|
|
|
static UChar32
|
|
findAlgName(AlgorithmicRange *range, UCharNameChoice nameChoice, const char *otherName);
|
|
|
|
static UBool
|
|
findNameDummy(void *context,
|
|
UChar32 code, UCharNameChoice nameChoice,
|
|
const char *name, UTextOffset length);
|
|
|
|
/* public API --------------------------------------------------------------- */
|
|
|
|
U_CAPI UTextOffset U_EXPORT2
|
|
u_charName(UChar32 code, UCharNameChoice nameChoice,
|
|
char *buffer, UTextOffset bufferLength,
|
|
UErrorCode *pErrorCode) {
|
|
AlgorithmicRange *algRange;
|
|
uint32_t *p;
|
|
uint32_t i;
|
|
|
|
/* check the argument values */
|
|
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
|
|
return 0;
|
|
} else if(nameChoice>=U_CHAR_NAME_CHOICE_COUNT || buffer==NULL) {
|
|
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
if((uint32_t)code>0x10ffff) {
|
|
return 0;
|
|
}
|
|
|
|
if(!isDataLoaded(pErrorCode)) {
|
|
return 0;
|
|
}
|
|
|
|
/* try algorithmic names first */
|
|
p=(uint32_t *)((uint8_t *)uCharNames+uCharNames->algNamesOffset);
|
|
i=*p;
|
|
algRange=(AlgorithmicRange *)(p+1);
|
|
while(i>0) {
|
|
if(algRange->start<=(uint32_t)code && (uint32_t)code<=algRange->end) {
|
|
return getAlgName(algRange, (uint32_t)code, nameChoice, buffer, (uint16_t)bufferLength);
|
|
}
|
|
algRange=(AlgorithmicRange *)((uint8_t *)algRange+algRange->size);
|
|
--i;
|
|
}
|
|
|
|
/* normal character name */
|
|
return getName(uCharNames, (uint32_t)code, nameChoice, buffer, (uint16_t)bufferLength);
|
|
}
|
|
|
|
U_CAPI UChar32 U_EXPORT2
|
|
u_charFromName(UCharNameChoice nameChoice,
|
|
const char *name,
|
|
UErrorCode *pErrorCode) {
|
|
FindName findName;
|
|
AlgorithmicRange *algRange;
|
|
uint32_t *p;
|
|
uint32_t i;
|
|
UChar32 c;
|
|
|
|
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
|
|
return 0xffff;
|
|
}
|
|
|
|
if(nameChoice>=U_CHAR_NAME_CHOICE_COUNT || name==NULL || *name==0) {
|
|
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
|
|
return 0xffff;
|
|
}
|
|
|
|
if(!isDataLoaded(pErrorCode)) {
|
|
return 0xffff;
|
|
}
|
|
|
|
/* try algorithmic names first */
|
|
p=(uint32_t *)((uint8_t *)uCharNames+uCharNames->algNamesOffset);
|
|
i=*p;
|
|
algRange=(AlgorithmicRange *)(p+1);
|
|
while(i>0) {
|
|
if((c=findAlgName(algRange, nameChoice, name))!=0xffff) {
|
|
return c;
|
|
}
|
|
algRange=(AlgorithmicRange *)((uint8_t *)algRange+algRange->size);
|
|
--i;
|
|
}
|
|
|
|
/* normal character name */
|
|
findName.otherName=name;
|
|
findName.code=0xffff;
|
|
enumNames(uCharNames, 0, 0x110000, DO_FIND_NAME, &findName, nameChoice);
|
|
return findName.code;
|
|
}
|
|
|
|
U_CAPI void U_EXPORT2
|
|
u_enumCharNames(UChar32 start, UChar32 limit,
|
|
UEnumCharNamesFn *fn,
|
|
void *context,
|
|
UCharNameChoice nameChoice,
|
|
UErrorCode *pErrorCode) {
|
|
AlgorithmicRange *algRange;
|
|
uint32_t *p;
|
|
uint32_t i;
|
|
|
|
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
|
|
return;
|
|
}
|
|
|
|
if(nameChoice>=U_CHAR_NAME_CHOICE_COUNT || fn==NULL) {
|
|
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
|
|
return;
|
|
}
|
|
|
|
if((uint32_t)limit>0x110000) {
|
|
limit=0x110000;
|
|
}
|
|
if((uint32_t)start>=(uint32_t)limit) {
|
|
return;
|
|
}
|
|
|
|
if(!isDataLoaded(pErrorCode)) {
|
|
return;
|
|
}
|
|
|
|
/* interleave the data-driven ones with the algorithmic ones */
|
|
/* iterate over all algorithmic ranges; assume that they are in ascending order */
|
|
p=(uint32_t *)((uint8_t *)uCharNames+uCharNames->algNamesOffset);
|
|
i=*p;
|
|
algRange=(AlgorithmicRange *)(p+1);
|
|
while(i>0) {
|
|
/* enumerate the character names before the current algorithmic range */
|
|
/* here: start<limit */
|
|
if((uint32_t)start<algRange->start) {
|
|
if((uint32_t)limit<=algRange->start) {
|
|
enumNames(uCharNames, start, limit, fn, context, nameChoice);
|
|
return;
|
|
}
|
|
if(!enumNames(uCharNames, start, (UChar32)algRange->start, fn, context, nameChoice)) {
|
|
return;
|
|
}
|
|
start=(UChar32)algRange->start;
|
|
}
|
|
/* enumerate the character names in the current algorithmic range */
|
|
/* here: algRange->start<=start<limit */
|
|
if((uint32_t)start<=algRange->end) {
|
|
if((uint32_t)limit<=(algRange->end+1)) {
|
|
enumAlgNames(algRange, start, limit, fn, context, nameChoice);
|
|
return;
|
|
}
|
|
if(!enumAlgNames(algRange, start, (UChar32)algRange->end+1, fn, context, nameChoice)) {
|
|
return;
|
|
}
|
|
start=(UChar32)algRange->end+1;
|
|
}
|
|
/* continue to the next algorithmic range (here: start<limit) */
|
|
algRange=(AlgorithmicRange *)((uint8_t *)algRange+algRange->size);
|
|
--i;
|
|
}
|
|
/* enumerate the character names after the last algorithmic range */
|
|
enumNames(uCharNames, start, limit, fn, context, nameChoice);
|
|
}
|
|
|
|
/* implementation ----------------------------------------------------------- */
|
|
|
|
static UBool
|
|
isDataLoaded(UErrorCode *pErrorCode) {
|
|
/* load UCharNames from file if necessary */
|
|
if(uCharNames==NULL) {
|
|
UCharNames *names;
|
|
UDataMemory *data;
|
|
|
|
/* open the data outside the mutex block */
|
|
data=udata_openChoice(NULL, DATA_TYPE, DATA_NAME, isAcceptable, NULL, pErrorCode);
|
|
if(U_FAILURE(*pErrorCode)) {
|
|
return FALSE;
|
|
}
|
|
|
|
names=(UCharNames *)udata_getMemory(data);
|
|
|
|
/* in the mutex block, set the data for this process */
|
|
{
|
|
umtx_lock(NULL);
|
|
if(uCharNames==NULL) {
|
|
uCharNames=names;
|
|
uCharNamesData=data;
|
|
data=NULL;
|
|
names=NULL;
|
|
}
|
|
umtx_unlock(NULL);
|
|
}
|
|
|
|
/* if a different thread set it first, then close the extra data */
|
|
if(data!=NULL) {
|
|
udata_close(data); /* NULL if it was set correctly */
|
|
}
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
static UBool
|
|
isAcceptable(void *context,
|
|
const char *type, const char *name,
|
|
const UDataInfo *pInfo) {
|
|
return (UBool)(
|
|
pInfo->size>=20 &&
|
|
pInfo->isBigEndian==U_IS_BIG_ENDIAN &&
|
|
pInfo->charsetFamily==U_CHARSET_FAMILY &&
|
|
pInfo->dataFormat[0]==0x75 && /* dataFormat="unam" */
|
|
pInfo->dataFormat[1]==0x6e &&
|
|
pInfo->dataFormat[2]==0x61 &&
|
|
pInfo->dataFormat[3]==0x6d &&
|
|
pInfo->formatVersion[0]==1);
|
|
}
|
|
|
|
/*
|
|
* getGroup() does a binary search for the group that contains the
|
|
* Unicode code point "code".
|
|
* The return value is always a valid Group* that may contain "code"
|
|
* or else is the highest group before "code".
|
|
* If the lowest group is after "code", then that one is returned.
|
|
*/
|
|
static Group *
|
|
getGroup(UCharNames *names, uint32_t code) {
|
|
uint16_t groupMSB=(uint16_t)(code>>GROUP_SHIFT),
|
|
start=0,
|
|
limit=*(uint16_t *)((char *)names+names->groupsOffset),
|
|
number;
|
|
Group *groups=(Group *)((char *)names+names->groupsOffset+2);
|
|
|
|
/* binary search for the group of names that contains the one for code */
|
|
while(start<limit-1) {
|
|
number=(uint16_t)((start+limit)/2);
|
|
if(groupMSB<groups[number].groupMSB) {
|
|
limit=number;
|
|
} else {
|
|
start=number;
|
|
}
|
|
}
|
|
|
|
/* return this regardless of whether it is an exact match */
|
|
return groups+start;
|
|
}
|
|
|
|
static uint16_t
|
|
getName(UCharNames *names, uint32_t code, UCharNameChoice nameChoice,
|
|
char *buffer, uint16_t bufferLength) {
|
|
Group *group=getGroup(names, code);
|
|
if((uint16_t)(code>>GROUP_SHIFT)==group->groupMSB) {
|
|
return expandGroupName(names, group, (uint16_t)(code&GROUP_MASK), nameChoice,
|
|
buffer, bufferLength);
|
|
} else {
|
|
/* group not found */
|
|
/* zero-terminate */
|
|
if(bufferLength>0) {
|
|
*buffer=0;
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* expandGroupLengths() reads a block of compressed lengths of 32 strings and
|
|
* expands them into offsets and lengths for each string.
|
|
* Lengths are stored with a variable-width encoding in consecutive nibbles:
|
|
* If a nibble<0xc, then it is the length itself (0=empty string).
|
|
* If a nibble>=0xc, then it forms a length value with the following nibble.
|
|
* Calculation see below.
|
|
* The offsets and lengths arrays must be at least 33 (one more) long because
|
|
* there is no check here at the end if the last nibble is still used.
|
|
*/
|
|
static const uint8_t *
|
|
expandGroupLengths(const uint8_t *s,
|
|
uint16_t offsets[LINES_PER_GROUP+1], uint16_t lengths[LINES_PER_GROUP+1]) {
|
|
/* read the lengths of the 32 strings in this group and get each string's offset */
|
|
uint16_t i=0, offset=0, length=0;
|
|
uint8_t lengthByte;
|
|
|
|
/* all 32 lengths must be read to get the offset of the first group string */
|
|
while(i<LINES_PER_GROUP) {
|
|
lengthByte=*s++;
|
|
|
|
/* read even nibble - MSBs of lengthByte */
|
|
if(length>=12) {
|
|
/* double-nibble length spread across two bytes */
|
|
length=(uint16_t)(((length&0x3)<<4|lengthByte>>4)+12);
|
|
lengthByte&=0xf;
|
|
} else if((lengthByte /* &0xf0 */)>=0xc0) {
|
|
/* double-nibble length spread across this one byte */
|
|
length=(uint16_t)((lengthByte&0x3f)+12);
|
|
} else {
|
|
/* single-nibble length in MSBs */
|
|
length=(uint16_t)(lengthByte>>4);
|
|
lengthByte&=0xf;
|
|
}
|
|
|
|
*offsets++=offset;
|
|
*lengths++=length;
|
|
|
|
offset+=length;
|
|
++i;
|
|
|
|
/* read odd nibble - LSBs of lengthByte */
|
|
if((lengthByte&0xf0)==0) {
|
|
/* this nibble was not consumed for a double-nibble length above */
|
|
length=lengthByte;
|
|
if(length<12) {
|
|
/* single-nibble length in LSBs */
|
|
*offsets++=offset;
|
|
*lengths++=length;
|
|
|
|
offset+=length;
|
|
++i;
|
|
}
|
|
} else {
|
|
length=0; /* prevent double-nibble detection in the next iteration */
|
|
}
|
|
}
|
|
|
|
/* now, s is at the first group string */
|
|
return s;
|
|
}
|
|
|
|
static uint16_t
|
|
expandGroupName(UCharNames *names, Group *group,
|
|
uint16_t lineNumber, UCharNameChoice nameChoice,
|
|
char *buffer, uint16_t bufferLength) {
|
|
uint16_t offsets[LINES_PER_GROUP+2], lengths[LINES_PER_GROUP+2];
|
|
const uint8_t *s=(uint8_t *)names+names->groupStringOffset+
|
|
(group->offsetHigh<<16|group->offsetLow);
|
|
s=expandGroupLengths(s, offsets, lengths);
|
|
return expandName(names, s+offsets[lineNumber], lengths[lineNumber], nameChoice,
|
|
buffer, bufferLength);
|
|
}
|
|
|
|
#define WRITE_CHAR(buffer, bufferLength, bufferPos, c) { \
|
|
if((bufferLength)>0) { \
|
|
*(buffer)++=c; \
|
|
--(bufferLength); \
|
|
} \
|
|
++(bufferPos); \
|
|
}
|
|
|
|
/*
|
|
* Important: expandName() and compareName() are almost the same -
|
|
* apply fixes to both.
|
|
*/
|
|
static uint16_t
|
|
expandName(UCharNames *names,
|
|
const uint8_t *name, uint16_t nameLength, UCharNameChoice nameChoice,
|
|
char *buffer, uint16_t bufferLength) {
|
|
uint16_t *tokens=(uint16_t *)names+8;
|
|
uint16_t token, tokenCount=*tokens++, bufferPos=0;
|
|
uint8_t *tokenStrings=(uint8_t *)names+names->tokenStringOffset;
|
|
uint8_t c;
|
|
|
|
if(nameChoice!=U_UNICODE_CHAR_NAME) {
|
|
/*
|
|
* skip the modern name if it is not requested _and_
|
|
* if the semicolon byte value is a character, not a token number
|
|
*/
|
|
if((uint8_t)';'>=tokenCount || tokens[(uint8_t)';']==(uint16_t)(-1)) {
|
|
while(nameLength>0) {
|
|
--nameLength;
|
|
if(*name++==';') {
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
/*
|
|
* the semicolon byte value is a token number, therefore
|
|
* only modern names are stored in unames.dat and there is no
|
|
* such requested Unicode 1.0 name here
|
|
*/
|
|
nameLength=0;
|
|
}
|
|
}
|
|
|
|
/* write each letter directly, and write a token word per token */
|
|
while(nameLength>0) {
|
|
--nameLength;
|
|
c=*name++;
|
|
|
|
if(c>=tokenCount) {
|
|
if(c!=';') {
|
|
/* implicit letter */
|
|
WRITE_CHAR(buffer, bufferLength, bufferPos, c);
|
|
} else {
|
|
/* finished */
|
|
break;
|
|
}
|
|
} else {
|
|
token=tokens[c];
|
|
if(token==(uint16_t)(-2)) {
|
|
/* this is a lead byte for a double-byte token */
|
|
token=tokens[c<<8|*name++];
|
|
--nameLength;
|
|
}
|
|
if(token==(uint16_t)(-1)) {
|
|
if(c!=';') {
|
|
/* explicit letter */
|
|
WRITE_CHAR(buffer, bufferLength, bufferPos, c);
|
|
} else {
|
|
/* finished */
|
|
break;
|
|
}
|
|
} else {
|
|
/* write token word */
|
|
uint8_t *tokenString=tokenStrings+token;
|
|
while((c=*tokenString++)!=0) {
|
|
WRITE_CHAR(buffer, bufferLength, bufferPos, c);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* zero-terminate */
|
|
if(bufferLength>0) {
|
|
*buffer=0;
|
|
}
|
|
|
|
return bufferPos;
|
|
}
|
|
|
|
/*
|
|
* compareName() is almost the same as expandName() except that it compares
|
|
* the currently expanded name to an input name.
|
|
* It returns the match/no match result as soon as possible.
|
|
*/
|
|
static UBool
|
|
compareName(UCharNames *names,
|
|
const uint8_t *name, uint16_t nameLength, UCharNameChoice nameChoice,
|
|
const char *otherName) {
|
|
uint16_t *tokens=(uint16_t *)names+8;
|
|
uint16_t token, tokenCount=*tokens++;
|
|
uint8_t *tokenStrings=(uint8_t *)names+names->tokenStringOffset;
|
|
uint8_t c;
|
|
|
|
if(nameChoice!=U_UNICODE_CHAR_NAME) {
|
|
/*
|
|
* skip the modern name if it is not requested _and_
|
|
* if the semicolon byte value is a character, not a token number
|
|
*/
|
|
if((uint8_t)';'>=tokenCount || tokens[(uint8_t)';']==(uint16_t)(-1)) {
|
|
while(nameLength>0) {
|
|
--nameLength;
|
|
if(*name++==';') {
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
/*
|
|
* the semicolon byte value is a token number, therefore
|
|
* only modern names are stored in unames.dat and there is no
|
|
* such requested Unicode 1.0 name here
|
|
*/
|
|
nameLength=0;
|
|
}
|
|
}
|
|
|
|
/* compare each letter directly, and compare a token word per token */
|
|
while(nameLength>0) {
|
|
--nameLength;
|
|
c=*name++;
|
|
|
|
if(c>=tokenCount) {
|
|
if(c!=';') {
|
|
/* implicit letter */
|
|
if((char)c!=*otherName++) {
|
|
return FALSE;
|
|
}
|
|
} else {
|
|
/* finished */
|
|
break;
|
|
}
|
|
} else {
|
|
token=tokens[c];
|
|
if(token==(uint16_t)(-2)) {
|
|
/* this is a lead byte for a double-byte token */
|
|
token=tokens[c<<8|*name++];
|
|
--nameLength;
|
|
}
|
|
if(token==(uint16_t)(-1)) {
|
|
if(c!=';') {
|
|
/* explicit letter */
|
|
if((char)c!=*otherName++) {
|
|
return FALSE;
|
|
}
|
|
} else {
|
|
/* finished */
|
|
break;
|
|
}
|
|
} else {
|
|
/* write token word */
|
|
uint8_t *tokenString=tokenStrings+token;
|
|
while((c=*tokenString++)!=0) {
|
|
if((char)c!=*otherName++) {
|
|
return FALSE;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* complete match? */
|
|
return (UBool)(*otherName==0);
|
|
}
|
|
|
|
/*
|
|
* enumGroupNames() enumerates all the names in a 32-group
|
|
* and either calls the enumerator function or finds a given input name.
|
|
*/
|
|
static UBool
|
|
enumGroupNames(UCharNames *names, Group *group,
|
|
UChar32 start, UChar32 end,
|
|
UEnumCharNamesFn *fn, void *context,
|
|
UCharNameChoice nameChoice) {
|
|
uint16_t offsets[LINES_PER_GROUP+2], lengths[LINES_PER_GROUP+2];
|
|
const uint8_t *s=(uint8_t *)names+names->groupStringOffset+
|
|
(group->offsetHigh<<16|group->offsetLow);
|
|
|
|
s=expandGroupLengths(s, offsets, lengths);
|
|
if(fn!=DO_FIND_NAME) {
|
|
char buffer[200];
|
|
uint16_t length;
|
|
|
|
while(start<=end) {
|
|
length=expandName(names, s+offsets[start&GROUP_MASK], lengths[start&GROUP_MASK], nameChoice,
|
|
buffer, sizeof(buffer));
|
|
/* here, we assume that the buffer is large enough */
|
|
if(length>0) {
|
|
if(!fn(context, start, nameChoice, buffer, length)) {
|
|
return FALSE;
|
|
}
|
|
}
|
|
++start;
|
|
}
|
|
} else {
|
|
const char *otherName=((FindName *)context)->otherName;
|
|
while(start<=end) {
|
|
if(compareName(names, s+offsets[start&GROUP_MASK], lengths[start&GROUP_MASK], nameChoice, otherName)) {
|
|
((FindName *)context)->code=start;
|
|
return FALSE;
|
|
}
|
|
++start;
|
|
}
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
static UBool
|
|
enumNames(UCharNames *names,
|
|
UChar32 start, UChar32 limit,
|
|
UEnumCharNamesFn *fn, void *context,
|
|
UCharNameChoice nameChoice) {
|
|
uint16_t startGroupMSB, endGroupMSB, groupCount;
|
|
Group *group, *groupLimit;
|
|
|
|
startGroupMSB=(uint16_t)(start>>GROUP_SHIFT);
|
|
endGroupMSB=(uint16_t)((limit-1)>>GROUP_SHIFT);
|
|
|
|
/* find the group that contains start, or the highest before it */
|
|
group=getGroup(names, start);
|
|
|
|
if(startGroupMSB==endGroupMSB) {
|
|
if(startGroupMSB==group->groupMSB) {
|
|
/* if start and limit-1 are in the same group, then enumerate only in that one */
|
|
return enumGroupNames(names, group, start, limit-1, fn, context, nameChoice);
|
|
}
|
|
} else {
|
|
if(startGroupMSB==group->groupMSB) {
|
|
/* enumerate characters in the partial start group */
|
|
if((start&GROUP_MASK)!=0) {
|
|
if(!enumGroupNames(names, group,
|
|
start, ((UChar32)startGroupMSB<<GROUP_SHIFT)+LINES_PER_GROUP-1,
|
|
fn, context, nameChoice)) {
|
|
return FALSE;
|
|
}
|
|
}
|
|
++group; /* continue with the next group */
|
|
} else if(startGroupMSB>group->groupMSB) {
|
|
/* make sure that we start enumerating with the first group after start */
|
|
++group;
|
|
}
|
|
|
|
/* enumerate entire groups between the start- and end-groups */
|
|
groupCount=*(uint16_t *)((char *)names+names->groupsOffset);
|
|
groupLimit=(Group *)((char *)names+names->groupsOffset+2)+groupCount;
|
|
|
|
while(group<groupLimit && group->groupMSB<endGroupMSB) {
|
|
start=(UChar32)group->groupMSB<<GROUP_SHIFT;
|
|
if(!enumGroupNames(names, group, start, start+LINES_PER_GROUP-1, fn, context, nameChoice)) {
|
|
return FALSE;
|
|
}
|
|
++group;
|
|
}
|
|
|
|
/* enumerate within the end group (group->groupMSB==endGroupMSB) */
|
|
if(group<groupLimit && group->groupMSB==endGroupMSB) {
|
|
return enumGroupNames(names, group, (limit-1)&~GROUP_MASK, limit-1, fn, context, nameChoice);
|
|
}
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
/*
|
|
* Important:
|
|
* Parts of findAlgName() are almost the same as some of getAlgName().
|
|
* Fixes must be applied to both.
|
|
*/
|
|
static uint16_t
|
|
getAlgName(AlgorithmicRange *range, uint32_t code, UCharNameChoice nameChoice,
|
|
char *buffer, uint16_t bufferLength) {
|
|
uint16_t bufferPos=0;
|
|
|
|
/*
|
|
* Do not write algorithmic Unicode 1.0 names because
|
|
* Unihan names are the same as the modern ones,
|
|
* extension A was only introduced with Unicode 3.0, and
|
|
* the Hangul syllable block was moved and changed around Unicode 1.1.5.
|
|
*/
|
|
if(nameChoice!=U_UNICODE_CHAR_NAME) {
|
|
/* zero-terminate */
|
|
if(bufferLength>0) {
|
|
*buffer=0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
switch(range->type) {
|
|
case 0: {
|
|
/* name = prefix hex-digits */
|
|
const char *s=(const char *)(range+1);
|
|
char c;
|
|
|
|
uint16_t i, count;
|
|
|
|
/* copy prefix */
|
|
while((c=*s++)!=0) {
|
|
WRITE_CHAR(buffer, bufferLength, bufferPos, c);
|
|
}
|
|
|
|
/* write hexadecimal code point value */
|
|
count=range->variant;
|
|
|
|
/* zero-terminate */
|
|
if(count<bufferLength) {
|
|
buffer[count]=0;
|
|
}
|
|
|
|
for(i=count; i>0;) {
|
|
if(--i<bufferLength) {
|
|
c=(char)(code&0xf);
|
|
if(c<10) {
|
|
c+='0';
|
|
} else {
|
|
c+='A'-10;
|
|
}
|
|
buffer[i]=c;
|
|
}
|
|
code>>=4;
|
|
}
|
|
|
|
bufferPos+=count;
|
|
break;
|
|
}
|
|
case 1: {
|
|
/* name = prefix factorized-elements */
|
|
uint16_t indexes[8];
|
|
const uint16_t *factors=(const uint16_t *)(range+1);
|
|
uint16_t count=range->variant;
|
|
const char *s=(const char *)(factors+count);
|
|
char c;
|
|
|
|
/* copy prefix */
|
|
while((c=*s++)!=0) {
|
|
WRITE_CHAR(buffer, bufferLength, bufferPos, c);
|
|
}
|
|
|
|
bufferPos+=writeFactorSuffix(factors, count,
|
|
s, code-range->start, indexes, NULL, NULL, buffer, bufferLength);
|
|
break;
|
|
}
|
|
default:
|
|
/* undefined type */
|
|
/* zero-terminate */
|
|
if(bufferLength>0) {
|
|
*buffer=0;
|
|
}
|
|
break;
|
|
}
|
|
|
|
return bufferPos;
|
|
}
|
|
|
|
static uint16_t
|
|
writeFactorSuffix(const uint16_t *factors, uint16_t count,
|
|
const char *s, /* suffix elements */
|
|
uint32_t code,
|
|
uint16_t indexes[8], /* output fields from here */
|
|
const char *elementBases[8], const char *elements[8],
|
|
char *buffer, uint16_t bufferLength) {
|
|
uint16_t i, factor, bufferPos=0;
|
|
char c;
|
|
|
|
/* write elements according to the factors */
|
|
|
|
/*
|
|
* the factorized elements are determined by modulo arithmetic
|
|
* with the factors of this algorithm
|
|
*
|
|
* note that for fewer operations, count is decremented here
|
|
*/
|
|
--count;
|
|
for(i=count; i>0; --i) {
|
|
factor=factors[i];
|
|
indexes[i]=(uint16_t)(code%factor);
|
|
code/=factor;
|
|
}
|
|
/*
|
|
* we don't need to calculate the last modulus because start<=code<=end
|
|
* guarantees here that code<=factors[0]
|
|
*/
|
|
indexes[0]=(uint16_t)code;
|
|
|
|
/* write each element */
|
|
for(;;) {
|
|
if(elementBases!=NULL) {
|
|
*elementBases++=s;
|
|
}
|
|
|
|
/* skip indexes[i] strings */
|
|
factor=indexes[i];
|
|
while(factor>0) {
|
|
while(*s++!=0) {}
|
|
--factor;
|
|
}
|
|
if(elements!=NULL) {
|
|
*elements++=s;
|
|
}
|
|
|
|
/* write element */
|
|
while((c=*s++)!=0) {
|
|
WRITE_CHAR(buffer, bufferLength, bufferPos, c);
|
|
}
|
|
|
|
/* we do not need to perform the rest of this loop for i==count - break here */
|
|
if(i>=count) {
|
|
break;
|
|
}
|
|
|
|
/* skip the rest of the strings for this factors[i] */
|
|
factor=(uint16_t)(factors[i]-indexes[i]-1);
|
|
while(factor>0) {
|
|
while(*s++!=0) {}
|
|
--factor;
|
|
}
|
|
|
|
++i;
|
|
}
|
|
|
|
/* zero-terminate */
|
|
if(bufferLength>0) {
|
|
*buffer=0;
|
|
}
|
|
|
|
return bufferPos;
|
|
}
|
|
|
|
/*
|
|
* Important: enumAlgNames() and findAlgName() are almost the same.
|
|
* Any fix must be applied to both.
|
|
*/
|
|
static UBool
|
|
enumAlgNames(AlgorithmicRange *range,
|
|
UChar32 start, UChar32 limit,
|
|
UEnumCharNamesFn *fn, void *context,
|
|
UCharNameChoice nameChoice) {
|
|
char buffer[200];
|
|
uint16_t length;
|
|
|
|
if(nameChoice!=U_UNICODE_CHAR_NAME) {
|
|
return TRUE;
|
|
}
|
|
|
|
switch(range->type) {
|
|
case 0: {
|
|
char *s, *end;
|
|
char c;
|
|
|
|
/* get the full name of the start character */
|
|
length=getAlgName(range, (uint32_t)start, nameChoice, buffer, sizeof(buffer));
|
|
if(length<=0) {
|
|
return TRUE;
|
|
}
|
|
|
|
/* call the enumerator function with this first character */
|
|
if(!fn(context, start, nameChoice, buffer, length)) {
|
|
return FALSE;
|
|
}
|
|
|
|
/* go to the end of the name; all these names have the same length */
|
|
end=buffer;
|
|
while(*end!=0) {
|
|
++end;
|
|
}
|
|
|
|
/* enumerate the rest of the names */
|
|
while(++start<limit) {
|
|
/* increment the hexadecimal number on a character-basis */
|
|
s=end;
|
|
for (;;) {
|
|
c=*--s;
|
|
if(('0'<=c && c<'9') || ('A'<=c && c<'F')) {
|
|
*s=c+1;
|
|
break;
|
|
} else if(c=='9') {
|
|
*s='A';
|
|
break;
|
|
} else if(c=='F') {
|
|
*s='0';
|
|
}
|
|
}
|
|
|
|
if(!fn(context, start, nameChoice, buffer, length)) {
|
|
return FALSE;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case 1: {
|
|
uint16_t indexes[8];
|
|
const char *elementBases[8], *elements[8];
|
|
const uint16_t *factors=(const uint16_t *)(range+1);
|
|
uint16_t count=range->variant;
|
|
const char *s=(const char *)(factors+count);
|
|
char *suffix, *t;
|
|
uint16_t prefixLength, i, index;
|
|
|
|
char c;
|
|
|
|
/* name = prefix factorized-elements */
|
|
|
|
/* copy prefix */
|
|
suffix=buffer;
|
|
prefixLength=0;
|
|
while((c=*s++)!=0) {
|
|
*suffix++=c;
|
|
++prefixLength;
|
|
}
|
|
|
|
/* append the suffix of the start character */
|
|
length=prefixLength+writeFactorSuffix(factors, count,
|
|
s, (uint32_t)start-range->start,
|
|
indexes, elementBases, elements,
|
|
suffix, (uint16_t)(sizeof(buffer)-prefixLength));
|
|
|
|
/* call the enumerator function with this first character */
|
|
if(!fn(context, start, nameChoice, buffer, length)) {
|
|
return FALSE;
|
|
}
|
|
|
|
/* enumerate the rest of the names */
|
|
while(++start<limit) {
|
|
/* increment the indexes in lexical order bound by the factors */
|
|
i=count;
|
|
for (;;) {
|
|
index=indexes[--i]+1;
|
|
if(index<factors[i]) {
|
|
/* skip one index and its element string */
|
|
indexes[i]=index;
|
|
s=elements[i];
|
|
while(*s++!=0) {
|
|
}
|
|
elements[i]=s;
|
|
break;
|
|
} else {
|
|
/* reset this index to 0 and its element string to the first one */
|
|
indexes[i]=0;
|
|
elements[i]=elementBases[i];
|
|
}
|
|
}
|
|
|
|
/* to make matters a little easier, just append all elements to the suffix */
|
|
t=suffix;
|
|
length=prefixLength;
|
|
for(i=0; i<count; ++i) {
|
|
s=elements[i];
|
|
while((c=*s++)!=0) {
|
|
*t++=c;
|
|
++length;
|
|
}
|
|
}
|
|
/* zero-terminate */
|
|
*t=0;
|
|
|
|
if(!fn(context, start, nameChoice, buffer, length)) {
|
|
return FALSE;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
/* undefined type */
|
|
break;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/*
|
|
* findAlgName() is almost the same as enumAlgNames() except that it
|
|
* returns the code point for a name if it fits into the range.
|
|
* It returns 0xffff otherwise.
|
|
*/
|
|
static UChar32
|
|
findAlgName(AlgorithmicRange *range, UCharNameChoice nameChoice, const char *otherName) {
|
|
UChar32 code;
|
|
|
|
if(nameChoice!=U_UNICODE_CHAR_NAME) {
|
|
return 0xffff;
|
|
}
|
|
|
|
switch(range->type) {
|
|
case 0: {
|
|
/* name = prefix hex-digits */
|
|
const char *s=(const char *)(range+1);
|
|
char c;
|
|
|
|
uint16_t i, count;
|
|
|
|
/* compare prefix */
|
|
while((c=*s++)!=0) {
|
|
if((char)c!=*otherName++) {
|
|
return 0xffff;
|
|
}
|
|
}
|
|
|
|
/* read hexadecimal code point value */
|
|
count=range->variant;
|
|
code=0;
|
|
for(i=0; i<count; ++i) {
|
|
c=*otherName++;
|
|
if('0'<=c && c<='9') {
|
|
code=(code<<4)|(c-'0');
|
|
} else if('A'<=c && c<='F') {
|
|
code=(code<<4)|(c-'A'+10);
|
|
} else {
|
|
return 0xffff;
|
|
}
|
|
}
|
|
|
|
/* does it fit into the range? */
|
|
if(*otherName==0 && range->start<=(uint32_t)code && (uint32_t)code<=range->end) {
|
|
return code;
|
|
}
|
|
break;
|
|
}
|
|
case 1: {
|
|
char buffer[64];
|
|
uint16_t indexes[8];
|
|
const char *elementBases[8], *elements[8];
|
|
const uint16_t *factors=(const uint16_t *)(range+1);
|
|
uint16_t count=range->variant;
|
|
const char *s=(const char *)(factors+count), *t;
|
|
UChar32 start, limit;
|
|
uint16_t i, index;
|
|
|
|
char c;
|
|
|
|
/* name = prefix factorized-elements */
|
|
|
|
/* compare prefix */
|
|
while((c=*s++)!=0) {
|
|
if((char)c!=*otherName++) {
|
|
return 0xffff;
|
|
}
|
|
}
|
|
|
|
start=(UChar32)range->start;
|
|
limit=(UChar32)(range->end+1);
|
|
|
|
/* initialize the suffix elements for enumeration; indexes should all be set to 0 */
|
|
writeFactorSuffix(factors, count, s, 0,
|
|
indexes, elementBases, elements, buffer, sizeof(buffer));
|
|
|
|
/* compare the first suffix */
|
|
if(0==uprv_strcmp(otherName, buffer)) {
|
|
return start;
|
|
}
|
|
|
|
/* enumerate and compare the rest of the suffixes */
|
|
while(++start<limit) {
|
|
/* increment the indexes in lexical order bound by the factors */
|
|
i=count;
|
|
for (;;) {
|
|
index=indexes[--i]+1;
|
|
if(index<factors[i]) {
|
|
/* skip one index and its element string */
|
|
indexes[i]=index;
|
|
s=elements[i];
|
|
while(*s++!=0) {}
|
|
elements[i]=s;
|
|
break;
|
|
} else {
|
|
/* reset this index to 0 and its element string to the first one */
|
|
indexes[i]=0;
|
|
elements[i]=elementBases[i];
|
|
}
|
|
}
|
|
|
|
/* to make matters a little easier, just compare all elements of the suffix */
|
|
t=otherName;
|
|
for(i=0; i<count; ++i) {
|
|
s=elements[i];
|
|
while((c=*s++)!=0) {
|
|
if(c!=*t++) {
|
|
s=""; /* does not match */
|
|
i=99;
|
|
}
|
|
}
|
|
}
|
|
if(i<99 && *t==0) {
|
|
return start;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
/* undefined type */
|
|
break;
|
|
}
|
|
|
|
return 0xffff;
|
|
}
|
|
|
|
/* this is a dummy function that is used as a "find not enumerate" flag */
|
|
static UBool
|
|
findNameDummy(void *context,
|
|
UChar32 code, UCharNameChoice nameChoice,
|
|
const char *name, UTextOffset length) {
|
|
return FALSE;
|
|
}
|