scuffed-code/icu4c/source/common/putil.c
2000-05-30 20:43:37 +00:00

1890 lines
58 KiB
C

/*
*******************************************************************************
*
* Copyright (C) 1997-1999, International Business Machines
* Corporation and others. All Rights Reserved.
*
*******************************************************************************
*
* FILE NAME : putil.c (previously putil.cpp and ptypes.cpp)
*
* Date Name Description
* 04/14/97 aliu Creation.
* 04/24/97 aliu Added getDefaultDataDirectory() and
* getDefaultLocaleID().
* 04/28/97 aliu Rewritten to assume Unix and apply general methods
* for assumed case. Non-UNIX platforms must be
* special-cased. Rewrote numeric methods dealing
* with NaN and Infinity to be platform independent
* over all IEEE 754 platforms.
* 05/13/97 aliu Restored sign of timezone
* (semantics are hours West of GMT)
* 06/16/98 erm Added IEEE_754 stuff, cleaned up isInfinite, isNan,
* nextDouble..
* 07/22/98 stephen Added remainder, max, min, trunc
* 08/13/98 stephen Added isNegativeInfinity, isPositiveInfinity
* 08/24/98 stephen Added longBitsFromDouble
* 09/08/98 stephen Minor changes for Mac Port
* 03/02/99 stephen Removed openFile(). Added AS400 support.
* Fixed EBCDIC tables
* 04/15/99 stephen Converted to C.
* 06/28/99 stephen Removed mutex locking in u_isBigEndian().
* 08/04/99 jeffrey R. Added OS/2 changes
* 11/15/99 helena Integrated S/390 IEEE support.
*******************************************************************************
*/
#ifdef _AIX
# include<sys/types.h>
#endif
/* Define _XOPEN_SOURCE for Solaris and friends. */
#ifndef _XOPEN_SOURCE
#define _XOPEN_SOURCE
#endif
/* Define __USE_POSIX and __USE_XOPEN for Linux and glibc. */
#ifndef __USE_POSIX
#define __USE_POSIX
#endif
#ifndef __USE_XOPEN
#define __USE_XOPEN
#endif
/* Include standard headers. */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <locale.h>
#include <time.h>
/* include ICU headers */
#include "unicode/utypes.h"
#include "umutex.h"
#include "cmemory.h"
#include "cstring.h"
#include "filestrm.h"
/* include system headers */
#ifdef WIN32
# include <wtypes.h>
# include <winnls.h>
# include "locmap.h"
#elif defined(OS2)
# define INCL_DOSMISC
# define INCL_DOSERRORS
# define INCL_DOSMODULEMGR
# include <os2.h>
#elif defined(OS400)
# include <float.h>
#elif defined(XP_MAC)
# include <Files.h>
# include <IntlResources.h>
# include <Script.h>
#elif defined(AIX)
# include <sys/ldr.h>
#elif defined(SOLARIS) || defined(LINUX)
# include <dlfcn.h>
# include <link.h>
#elif defined(HPUX)
# include <dl.h>
#endif
/* floating point implementations ------------------------------------------- */
/* We return QNAN rather than SNAN*/
#if IEEE_754
#define NAN_TOP ((int16_t)0x7FF8)
#define INF_TOP ((int16_t)0x7FF0)
#else
#ifdef OS390
#define NAN_TOP ((int16_t)0x7F08)
#define INF_TOP ((int16_t)0x3F00)
#endif
#endif
#define SIGN 0x80000000L
/* statics */
static UBool fgNaNInitialized = FALSE;
static double fgNan;
static UBool fgInfInitialized = FALSE;
static double fgInf;
/* protos */
static char* u_topNBytesOfDouble(double* d, int n);
static char* u_bottomNBytesOfDouble(double* d, int n);
/*---------------------------------------------------------------------------
Platform utilities
Our general strategy is to assume we're on a POSIX platform. Platforms which
are non-POSIX must declare themselves so. The default POSIX implementation
will sometimes work for non-POSIX platforms as well (e.g., the NaN-related
functions).
---------------------------------------------------------------------------*/
/* Assume POSIX, and modify as necessary below*/
#if defined(_WIN32) || defined(XP_MAC) || defined(OS400) || defined(OS2)
# undef POSIX
#else
# define POSIX
#endif
#ifdef POSIX
#include <langinfo.h>
#endif
/*---------------------------------------------------------------------------
Universal Implementations
These are designed to work on all platforms. Try these, and if they don't
work on your platform, then special case your platform with new
implementations.
---------------------------------------------------------------------------*/
/* Get UTC (GMT) time measured in seconds since 0:00 on 1/1/70.*/
int32_t
uprv_getUTCtime()
{
#ifdef XP_MAC
time_t t, t1, t2;
struct tm tmrec;
memset( &tmrec, 0, sizeof(tmrec) );
tmrec.tm_year = 70;
tmrec.tm_mon = 0;
tmrec.tm_mday = 1;
t1 = mktime(&tmrec); /* seconds of 1/1/1970*/
time(&t);
memcpy( &tmrec, gmtime(&t), sizeof(tmrec) );
t2 = mktime(&tmrec); /* seconds of current GMT*/
return t2 - t1; /* GMT (or UTC) in seconds since 1970*/
#else
time_t epochtime;
time(&epochtime);
return epochtime;
#endif
}
/*-----------------------------------------------------------------------------
IEEE 754
These methods detect and return NaN and infinity values for doubles
conforming to IEEE 754. Platforms which support this standard include X86,
Mac 680x0, Mac PowerPC, AIX RS/6000, and most others.
If this doesn't work on your platform, you have non-IEEE floating-point, and
will need to code your own versions. A naive implementation is to return 0.0
for getNaN and getInfinity, and false for isNaN and isInfinite.
---------------------------------------------------------------------------*/
UBool
uprv_isNaN(double number)
{
#if IEEE_754
/* This should work in theory, but it doesn't, so we resort to the more*/
/* complicated method below.*/
/* return number != number;*/
/* You can't return number == getNaN() because, by definition, NaN != x for*/
/* all x, including NaN (that is, NaN != NaN). So instead, we compare*/
/* against the known bit pattern. We must be careful of endianism here.*/
/* The pattern we are looking for id:*/
/* 7FFy yyyy yyyy yyyy (some y non-zero)*/
/* There are two different kinds of NaN, but we ignore the distinction*/
/* here. Note that the y value must be non-zero; if it is zero, then we*/
/* have infinity.*/
uint32_t highBits = *(uint32_t*)u_topNBytesOfDouble(&number,
sizeof(uint32_t));
uint32_t lowBits = *(uint32_t*)u_bottomNBytesOfDouble(&number,
sizeof(uint32_t));
return ((highBits & 0x7FF00000L) == 0x7FF00000L) &&
(((highBits & 0x000FFFFFL) != 0) || (lowBits != 0));
#else
/* If your platform doesn't support IEEE 754 but *does* have an NaN value,*/
/* you'll need to replace this default implementation with what's correct*/
/* for your platform.*/
#ifdef OS390
uint32_t highBits = *(uint32_t*)u_topNBytesOfDouble(&number,
sizeof(uint32_t));
uint32_t lowBits = *(uint32_t*)u_bottomNBytesOfDouble(&number,
sizeof(uint32_t));
return ((highBits & 0x7F080000L) == 0x7F080000L) &&
(lowBits == 0x00000000L);
#endif
return number != number;
#endif
}
UBool
uprv_isInfinite(double number)
{
#if IEEE_754
/* We know the top bit is the sign bit, so we mask that off in a copy of */
/* the number and compare against infinity. [LIU]*/
/* The following approach doesn't work for some reason, so we go ahead and */
/* scrutinize the pattern itself. */
/* double a = number; */
/* *(int8_t*)u_topNBytesOfDouble(&a, 1) &= 0x7F;*/
/* return a == uprv_getInfinity();*/
/* Instead, We want to see either:*/
/* 7FF0 0000 0000 0000*/
/* FFF0 0000 0000 0000*/
uint32_t highBits = *(uint32_t*)u_topNBytesOfDouble(&number,
sizeof(uint32_t));
uint32_t lowBits = *(uint32_t*)u_bottomNBytesOfDouble(&number,
sizeof(uint32_t));
return ((highBits & ~SIGN) == 0x7FF00000L) && (lowBits == 0x00000000L);
#else
/* If your platform doesn't support IEEE 754 but *does* have an infinity*/
/* value, you'll need to replace this default implementation with what's*/
/* correct for your platform.*/
#ifdef OS390
uint32_t highBits = *(uint32_t*)u_topNBytesOfDouble(&number,
sizeof(uint32_t));
uint32_t lowBits = *(uint32_t*)u_bottomNBytesOfDouble(&number,
sizeof(uint32_t));
return ((highBits & ~SIGN) == 0x70FF0000L) && (lowBits == 0x00000000L);
#endif
return number == (2.0 * number);
#endif
}
UBool
uprv_isPositiveInfinity(double number)
{
#if IEEE_754 || defined(OS390)
return (number > 0 && uprv_isInfinite(number));
#else
return uprv_isInfinite(number);
#endif
}
UBool
uprv_isNegativeInfinity(double number)
{
#if IEEE_754 || defined(OS390)
return (number < 0 && uprv_isInfinite(number));
#else
uint32_t highBits = *(uint32_t*)u_topNBytesOfDouble(&number,
sizeof(uint32_t));
return((highBits & SIGN) && uprv_isInfinite(number));
#endif
}
double
uprv_getNaN()
{
#if IEEE_754 || defined(OS390)
if( ! fgNaNInitialized) {
umtx_lock(NULL);
if( ! fgNaNInitialized) {
int i;
int8_t* p = (int8_t*)&fgNan;
for(i = 0; i < sizeof(double); ++i)
*p++ = 0;
*(int16_t*)u_topNBytesOfDouble(&fgNan, sizeof(NAN_TOP)) = NAN_TOP;
fgNaNInitialized = TRUE;
}
umtx_unlock(NULL);
}
return fgNan;
#else
/* If your platform doesn't support IEEE 754 but *does* have an NaN value,*/
/* you'll need to replace this default implementation with what's correct*/
/* for your platform.*/
return 0.0;
#endif
}
double
uprv_getInfinity()
{
#if IEEE_754 || defined(OS390)
if (!fgInfInitialized)
{
int i;
int8_t* p = (int8_t*)&fgInf;
for(i = 0; i < sizeof(double); ++i)
*p++ = 0;
*(int16_t*)u_topNBytesOfDouble(&fgInf, sizeof(INF_TOP)) = INF_TOP;
fgInfInitialized = TRUE;
}
return fgInf;
#else
/* If your platform doesn't support IEEE 754 but *does* have an infinity*/
/* value, you'll need to replace this default implementation with what's*/
/* correct for your platform.*/
return 0.0;
#endif
}
double
uprv_floor(double x)
{
return floor(x);
}
double
uprv_ceil(double x)
{
return ceil(x);
}
double
uprv_fabs(double x)
{
return fabs(x);
}
double
uprv_modf(double x, double* y)
{
return modf(x, y);
}
double
uprv_fmod(double x, double y)
{
return fmod(x, y);
}
double
uprv_pow10(int32_t x)
{
#ifdef XP_MAC
return pow(10.0, (double)x);
#else
return pow(10.0, x);
#endif
}
/**
* Computes the remainder of an implied division of its operands, as
* defined by the IEEE 754 standard. Commonly used to bring a value
* into range without losing accuracy; e.g., bringing a large argument
* to sin() into range.
*
* Returns r, where x = n * p + r. Here n is the integer nearest to
* x / p. If two integers are equidistant from x / p, n is the even
* integer. If r is zero, then it should have the same sign as the
* dividend x.
*
* The IEEE remainder may be negative or positive.
* IEEEremainder(5,3) = -1. IEEEremainder(4,3) = 1.
*
* The IEEE remainder r is always less than or equal to p/2 in
* absolute value. That is, |r| <= |p/2|. By comparison, fmod()
* returns a remainder r such that |r| <= |p|.
*
* Some floating point processors can compute this value in hardware.
* We provide two implementations here, one that manipulates the IEEE
* bit pattern directly, and one that is built upon other floating
* point operations. The former implementation has superior accuracy
* and is preferred; the latter may work on platforms where the former
* fails, but will introduce inaccuracies.
*/
double
uprv_IEEEremainder(double x, double p)
{
#if IEEE_754
int32_t hx, hp;
uint32_t sx, lx, lp;
double p_half;
hx = *(int32_t*)u_topNBytesOfDouble(&x, sizeof(int32_t));
lx = *(uint32_t*)u_bottomNBytesOfDouble(&x, sizeof(uint32_t));
hp = *(int32_t*)u_topNBytesOfDouble(&p, sizeof(int32_t));
lp = *(uint32_t*)u_bottomNBytesOfDouble(&p, sizeof(uint32_t));
sx = hx & SIGN;
hp &= 0x7fffffff;
hx &= 0x7fffffff;
/* purge off exception values */
if((hp|lp) == 0)
return (x*p) / (x*p); /* p = 0 */
if((hx >= 0x7ff00000)|| /* x not finite */
((hp>=0x7ff00000) && /* p is NaN */
(((hp-0x7ff00000)|lp) != 0)))
return (x*p) / (x*p);
if(hp <= 0x7fdfffff)
x = uprv_fmod(x, p + p); /* now x < 2p */
if(((hx-hp)|(lx-lp)) == 0)
return 0.0 * x;
x = uprv_fabs(x);
p = uprv_fabs(p);
if (hp < 0x00200000) {
if(x + x > p) {
x -= p;
if(x + x >= p)
x -= p;
}
}
else {
p_half = 0.5 * p;
if(x > p_half) {
x -= p;
if(x >= p_half)
x -= p;
}
}
*(int32_t*)u_topNBytesOfDouble(&x, sizeof(int32_t)) ^= sx;
return x;
#else
/* INACCURATE but portable implementation of IEEEremainder. This
* implementation should work on platforms that do not have IEEE
* bit layouts. Deficiencies of this implementation are its
* inaccuracy and that it does not attempt to handle NaN or
* infinite parameters and it returns the dividend if the divisor
* is zero. This is probably not an issue on non-IEEE
* platforms. - aliu
*/
if (p != 0.0) { /* exclude zero divisor */
double a = x / p;
double aint = uprv_floor(a);
double afrac = a - aint;
if (afrac > 0.5) {
aint += 1.0;
} else if (!(afrac < 0.5)) { /* avoid == comparison */
if (uprv_modf(aint / 2.0, &a) > 0.0) {
aint += 1.0;
}
}
x -= (p * aint);
}
return x;
#endif
}
double
uprv_fmax(double x, double y)
{
#if IEEE_754
int32_t lowBits;
/* first handle NaN*/
if(uprv_isNaN(x) || uprv_isNaN(y))
return uprv_getNaN();
/* check for -0 and 0*/
lowBits = *(uint32_t*) u_bottomNBytesOfDouble(&x, sizeof(uint32_t));
if(x == 0.0 && y == 0.0 && (lowBits & SIGN))
return y;
return (x > y ? x : y);
#else
/* {sfb} fix this*/
#ifdef OS390
/* this should work for all flt point w/o NaN and Infpecial cases */
return (x > y ? x : y);
#else
return x;
#endif
#endif
}
int32_t
uprv_max(int32_t x, int32_t y)
{
return (x > y ? x : y);
}
double
uprv_fmin(double x, double y)
{
#if IEEE_754
int32_t lowBits;
/* first handle NaN*/
if(uprv_isNaN(x) || uprv_isNaN(y))
return uprv_getNaN();
/* check for -0 and 0*/
lowBits = *(uint32_t*) u_bottomNBytesOfDouble(&y, sizeof(uint32_t));
if(x == 0.0 && y == 0.0 && (lowBits & SIGN))
return y;
return (x > y ? y : x);
#else
/* {sfb} fix this*/
#ifdef OS390
/* this should work for all flt point w/o NaN and Inf special cases */
return (x > y ? y : x);
#else
return x;
#endif
#endif
}
int32_t
uprv_min(int32_t x, int32_t y)
{
return (x > y ? y : x);
}
/**
* Truncates the given double.
* trunc(3.3) = 3.0, trunc (-3.3) = -3.0
* This is different than calling floor() or ceil():
* floor(3.3) = 3, floor(-3.3) = -4
* ceil(3.3) = 4, ceil(-3.3) = -3
*/
double
uprv_trunc(double d)
{
#if IEEE_754
int32_t lowBits;
/* handle error cases*/
if(uprv_isNaN(d)) return uprv_getNaN();
if(uprv_isInfinite(d)) return uprv_getInfinity();
lowBits = *(uint32_t*) u_bottomNBytesOfDouble(&d, sizeof(uint32_t));
if( (d == 0.0 && (lowBits & SIGN)) || d < 0)
return ceil(d);
else
return floor(d);
#else
return d >= 0 ? floor(d) : ceil(d);
#endif
}
void
uprv_longBitsFromDouble(double d, int32_t *hi, uint32_t *lo)
{
*hi = *(int32_t*)u_topNBytesOfDouble(&d, sizeof(int32_t));
*lo = *(uint32_t*)u_bottomNBytesOfDouble(&d, sizeof(uint32_t));
}
/**
* Return the floor of the log base 10 of a given double.
* This method compensates for inaccuracies which arise naturally when
* computing logs, and always give the correct value. The parameter
* must be positive and finite.
* (Thanks to Alan Liu for supplying this function.)
*/
int16_t
uprv_log10(double d)
{
/* The reason this routine is needed is that simply taking the*/
/* log and dividing by log10 yields a result which may be off*/
/* by 1 due to rounding errors. For example, the naive log10*/
/* of 1.0e300 taken this way is 299, rather than 300.*/
double alog10 = log(d) / log(10.0);
int16_t ailog10 = (int16_t) floor(alog10);
/* Positive logs could be too small, e.g. 0.99 instead of 1.0*/
if (alog10 > 0 && d >= pow(10.0, ailog10 + 1))
++ailog10;
/* Negative logs could be too big, e.g. -0.99 instead of -1.0*/
else if (alog10 < 0 && d < pow(10.0, ailog10))
--ailog10;
return ailog10;
}
int32_t
uprv_digitsAfterDecimal(double x)
{
char buffer[20];
int16_t numDigits;
char *p;
int16_t ptPos, exponent;
/* negative numbers throw off the calculations*/
x = fabs(x);
/* cheat and use the string-format routine to get a string representation*/
/* (it handles mathematical inaccuracy better than we can), then find out */
/* many characters are to the right of the decimal point */
sprintf(buffer, "%.9g", x);
p = uprv_strchr(buffer, '.');
if (p == 0)
return 0;
ptPos = p - buffer;
numDigits = strlen(buffer) - ptPos - 1;
/* if the number's string representation is in scientific notation, find */
/* the exponent and take it into account*/
exponent = 0;
p = uprv_strchr(buffer, 'e');
if (p != 0) {
int16_t expPos = p - buffer;
numDigits -= strlen(buffer) - expPos;
exponent = atoi(p + 1);
}
/* the string representation may still have spurious decimal digits in it, */
/* so we cut off at the ninth digit to the right of the decimal, and have */
/* to search backward from there to the first non-zero digit*/
if (numDigits > 9) {
numDigits = 9;
while (numDigits > 0 && buffer[ptPos + numDigits] == '0')
--numDigits;
}
numDigits -= exponent;
return numDigits;
}
/*---------------------------------------------------------------------------
Platform-specific Implementations
Try these, and if they don't work on your platform, then special case your
platform with new implementations.
---------------------------------------------------------------------------*/
/* Time zone utilities */
void
uprv_tzset()
{
#ifdef POSIX
tzset();
#endif
#if defined(OS400) || defined(XP_MAC)
/* no initialization*/
#endif
#if defined(WIN32) || defined(OS2)
_tzset();
#endif
}
int32_t
uprv_timezone()
{
#if defined(POSIX) && !defined(RHAPSODY)
#if defined(OS390)
return _timezone;
#else
return timezone;
#endif
#endif
#if defined(OS400) || defined(XP_MAC) || defined(RHAPSODY)
time_t t, t1, t2;
struct tm tmrec;
UBool dst_checked;
int32_t tdiff = 0;
time(&t);
memcpy( &tmrec, localtime(&t), sizeof(tmrec) );
dst_checked = (tmrec.tm_isdst != 0); /* daylight savings time is checked*/
t1 = mktime(&tmrec); /* local time in seconds*/
memcpy( &tmrec, gmtime(&t), sizeof(tmrec) );
t2 = mktime(&tmrec); /* GMT (or UTC) in seconds*/
tdiff = t2 - t1;
/* imitate NT behaviour, which returns same timezone offset to GMT for
winter and summer*/
if (dst_checked) tdiff += 3600;
return tdiff;
#endif
#if defined(WIN32) || defined(OS2)
return _timezone;
#endif
}
char*
uprv_tzname(int n)
{
#if defined(POSIX) && !defined(RHAPSODY)
return tzname[n];
#endif
#if defined(OS400) || defined(XP_MAC) || defined(RHAPSODY)
return "";
#endif
#if defined(WIN32) || defined(OS2)
return _tzname[n];
#endif
}
/* Get and set the ICU data directory --------------------------------------- */
static UBool
gHaveDataDirectory=FALSE;
static char
gDataDirectory[1024];
/*
* Here, we use a mutex to make sure that setting the data directory
* is thread-safe; however, reading it after calling u_getDataDirectory()
* may still occur while it is (re)set and is therefore not thread-safe.
* The best is to not call it after the initialization.
*/
U_CAPI void U_EXPORT2
u_setDataDirectory(const char *directory) {
if(directory!=NULL) {
int length=uprv_strlen(directory);
if(length<sizeof(gDataDirectory)-1) {
umtx_lock(NULL);
if(length==0) {
*gDataDirectory=0;
} else {
uprv_memcpy(gDataDirectory, directory, length);
/* terminate the directory with a separator (/ or \) */
if(gDataDirectory[length-1]!=U_FILE_SEP_CHAR) {
gDataDirectory[length++]=U_FILE_SEP_CHAR;
}
/* zero-terminate it */
gDataDirectory[length]=0;
}
gHaveDataDirectory=TRUE;
umtx_unlock(NULL);
}
}
}
#ifndef ICU_DATA_DIR
/*
* get the system drive or volume path
* (Windows: e.g. "C:" or "D:")
* do not terminate with a U_FILE_SEP_CHAR separator
* return the length of the path, or 0 if none
*/
static int
getSystemPath(char *path, int size) {
# if defined(XP_MAC)
int16_t volNum;
path[0]=0;
OSErr err=GetVol(path, &volNum);
if(err!=noErr) {
int length=(uint8_t)volName[0];
if(length>0) {
/* convert the Pascal string to a C string */
uprv_memmove(path, path+1, length);
path[length]=0;
}
return length;
}
# elif defined(WIN32)
if(GetSystemDirectory(path, size)>=2 && path[1]==':') {
/* remove the rest of the path - "\\winnt\\system32" or similar */
path[2]=0;
return 2;
}
# elif defined(OS2)
APIRET rc;
ULONG bootDrive=0; /* 1=A, 2=B, 3=C, ... */
rc=DosQuerySysInfo(QSV_BOOT_DRIVE, QSV_BOOT_DRIVE, (PVOID)&bootDrive, sizeof(ULONG));
if(rc==NO_ERROR) {
/* convert the numeric boot drive to a string */
path[0]='A'+bootDrive-1;
path[1]=':';
path[2]=0;
return 2;
}
# endif
return 0;
}
#endif
/*
* get the path to the ICU dynamic library
* do not terminate with a U_FILE_SEP_CHAR separator
* return the length of the path, or 0 if none
*/
static int
getLibraryPath(char *path, int size) {
# ifdef WIN32
HINSTANCE mod=GetModuleHandle("icuuc.dll");
if(mod!=NULL) {
if(GetModuleFileName(mod, path, size)>0) {
/* remove the basename and the last file separator */
char *lastSep=uprv_strrchr(path, U_FILE_SEP_CHAR);
if(lastSep!=NULL) {
*lastSep=0;
return lastSep-path;
}
}
}
# elif defined(OS2)
HMODULE mod=NULLHANDLE;
APIRET rc=DosQueryModuleHandle("icuuc.dll", &mod);
if(rc==NO_ERROR) {
rc=DosQueryModuleName(mod, (LONG)size, path);
if(rc==NO_ERROR) {
/* remove the basename and the last file separator */
char *lastSep=uprv_strrchr(path, U_FILE_SEP_CHAR);
if(lastSep!=NULL) {
*lastSep=0;
return lastSep-path;
}
}
}
# elif defined(OS390)
# elif defined(OS400)
# elif defined(XP_MAC)
# elif defined(SOLARIS)
void *handle=dlopen(U_COMMON_LIBNAME, RTLD_LAZY); /* "libicu-uc.so" */
if(handle!=NULL) {
Link_map *p=NULL;
char *s;
int rc, length=0;
/* get the Link_map list */
rc=dlinfo(handle, RTLD_DI_LINKMAP, (void *)&p);
if(rc>=0) {
/* search for the list item for the library itself */
while(p!=NULL) {
s=uprv_strstr(p->l_name, U_COMMON_LIBNAME); /* "libicu-uc.so" */
if(s!=NULL) {
if(s>p->l_name) {
/* copy the path, without the basename and the last separator */
length=(s-p->l_name)-1;
if(0<length && length<size) {
uprv_memcpy(path, p->l_name, length);
path[length]=0;
} else {
length=0;
}
}
break;
}
p=p->l_next;
}
}
dlclose(handle);
return length;
}
# elif defined(LINUX)
# elif defined(AIX)
void *handle=(void*)load(U_COMMON_LIBNAME, L_LIBPATH_EXEC, "."); /* "libicu-uc.a" */
if(handle!=NULL) {
uint8_t buffer[4096];
struct ld_info *p=NULL;
char *s;
int rc, length=0;
/* copy the linked list of loaded libraries into the buffer */
rc=loadquery(L_GETINFO, buffer, sizeof(buffer));
if(rc>=0) {
/* search for the list item for the library itself */
p=(struct ld_info *)buffer;
for(;;) {
/* advance (ignore the first list item) */
if(p->ldinfo_next==0) {
break;
}
p=(struct ld_info *)((uint8_t *)p+p->ldinfo_next);
s=uprv_strstr(p->ldinfo_filename, U_COMMON_LIBNAME); /* "libicuuc.a" */
if(s!=NULL) {
if(s>p->ldinfo_filename) {
/* copy the path, without the basename and the last separator */
length=(s-p->ldinfo_filename)-1;
if(0<length && length<size) {
uprv_memcpy(path, p->ldinfo_filename, length);
path[length]=0;
} else {
length=0;
}
}
break;
}
/* p=p->l_next; */
}
}
unload(handle);
return length;
}
# elif defined(HPUX)
{
struct shl_descriptor *p=NULL;
char *s;
int i=1, rc, length=0;
/* walk the list of shared libraries */
/* search for the list item for the library itself */
for(;;) {
rc=shl_get(i, &p);
if(rc<0) {
break;
}
s=uprv_strstr(p->filename, U_COMMON_LIBNAME);
if(s!=NULL) {
if(s>p->filename) {
/* copy the path, without the basename and the last separator */
length=(s-p->filename)-1;
if(0<length && length<size) {
uprv_memcpy(path, p->filename, length);
path[length]=0;
} else {
length=0;
}
}
break;
}
++i;
}
return length;
}
# elif defined(TANDEM)
# elif defined(POSIX)
# endif
return 0;
}
/*
* search for the ICU dynamic library and set the path
* do not terminate with a U_FILE_SEP_CHAR separator
* return the length of the path, or 0 if none
*/
static int
findLibraryPath(char *path, int size) {
# ifdef WIN32
# define LIB_PATH_VAR "PATH"
# define LIB_FILENAME "icuuc.dll"
# elif defined(OS2)
# define LIB_PATH_VAR "LIBPATH"
# define LIB_FILENAME "icuuc.dll"
# elif defined(OS390)
# define LIB_PATH_VAR "LIBPATH"
# define LIB_FILENAME "libicuuc.a"
# elif defined(OS400)
# elif defined(XP_MAC)
# elif defined(SOLARIS)
# elif defined(LINUX)
# define LIB_PATH_VAR "LD_LIBRARY_PATH"
# define LIB_FILENAME "libicuuc.so"
# elif defined(AIX)
# elif defined(HPUX)
# elif defined(TANDEM)
# define LIB_PATH_VAR "LIBPATH"
# define LIB_FILENAME "libicuuc.a"
# elif defined(POSIX)
# define LIB_PATH_VAR "LIBPATH"
# define LIB_FILENAME "libicuuc.so"
# endif
/* common implementation for searching the library path */
# ifdef LIB_FILENAME
const char *libPath=getenv(LIB_PATH_VAR);
if(libPath!=NULL) {
/* loop over all paths */
FileStream *f;
const char *end;
int length;
for(;;) {
/* find the end of the path */
end=libPath;
while(*end!=0 && *end!=U_PATH_SEP_CHAR) {
++end;
}
if(end!=libPath) {
/* try this non-empty path */
length=end-libPath;
/* do not terminate the path */
if(*(end-1)==U_FILE_SEP_CHAR) {
--length;
}
/* copy the path and add the library filename */
uprv_memcpy(path, libPath, length);
uprv_strcpy(path+length, U_FILE_SEP_STRING LIB_FILENAME);
/* does this file exist in this path? */
f=T_FileStream_open(path, "rb");
if(f!=NULL) {
/* yes, clean up and return */
T_FileStream_close(f);
path[length]=0;
return length;
}
}
if(*end==0) {
break; /* no more path */
}
/* *end==U_PATH_SEP_CHAR, go to the next path */
libPath=end+1;
}
}
# endif
return 0;
}
/* define a path for fallbacks */
#ifdef WIN32
#define FALLBACK_PATH U_FILE_SEP_STRING ".." U_FILE_SEP_STRING "data"
#else
#define FALLBACK_PATH U_FILE_SEP_STRING "share" U_FILE_SEP_STRING "icu" U_FILE_SEP_STRING U_ICU_VERSION U_FILE_SEP_STRING
#endif
/* #include <stdio.h> */
/* #include <unistd.h> */
U_CAPI const char * U_EXPORT2
u_getDataDirectory(void) {
/* if we have the directory, then return it immediately */
if(!gHaveDataDirectory) {
/* we need to look for it */
char pathBuffer[1024];
const char *path;
int length;
# if !defined(XP_MAC)
/* first try to get the environment variable */
path=getenv("ICU_DATA");
/* fprintf(stderr, " ******** ICU_DATA=%s ********** \n", path); */
/* { */
/* int i; */
/* fprintf(stderr, "E=%08X\n", __environ); */
/* if(__environ) */
/* for(i=0;__environ[i] && __environ[i][0];i++) */
/* puts(__environ[i]); */
/* } */
# endif
# ifdef WIN32
/* next, try to read the path from the registry */
if(path==NULL || *path==0) {
HKEY key;
if(ERROR_SUCCESS==RegOpenKeyEx(HKEY_LOCAL_MACHINE, "SOFTWARE\\ICU\\Unicode\\Data", 0, KEY_QUERY_VALUE, &key)) {
DWORD type=REG_EXPAND_SZ, size=sizeof(pathBuffer);
if(ERROR_SUCCESS==RegQueryValueEx(key, "Path", NULL, &type, pathBuffer, &size) && size>1) {
if(type==REG_EXPAND_SZ) {
/* replace environment variable references by their values */
char temporaryPath[1024];
/* copy the path with variables to the temporary one */
uprv_memcpy(temporaryPath, pathBuffer, size);
/* do the replacement and store it in the pathBuffer */
size=ExpandEnvironmentStrings(temporaryPath, pathBuffer, sizeof(pathBuffer));
if(size>0 && size<sizeof(pathBuffer)) {
path=pathBuffer;
}
} else if(type==REG_SZ) {
path=pathBuffer;
}
}
RegCloseKey(key);
}
}
# endif
/* next, try to get the path to the ICU dynamic library */
if(path==NULL || *path==0) {
length=getLibraryPath(pathBuffer, sizeof(pathBuffer));
if(length>0) {
uprv_strcpy(pathBuffer+length, U_FILE_SEP_STRING ".." FALLBACK_PATH);
path=pathBuffer;
}
}
/* next, search for the ICU dynamic library */
if(path==NULL || *path==0) {
length=findLibraryPath(pathBuffer, sizeof(pathBuffer));
if(length>0) {
uprv_strcpy(pathBuffer+length, U_FILE_SEP_STRING ".." FALLBACK_PATH);
path=pathBuffer;
}
}
/* last resort: use hardcoded path */
if(path==NULL || *path==0) {
/* ICU_DATA_DIR may be set as a compile option */
# ifdef ICU_DATA_DIR
path=ICU_DATA_DIR;
# else
length=getSystemPath(pathBuffer, sizeof(pathBuffer));
if(length>0) {
uprv_strcpy(pathBuffer+length, FALLBACK_PATH);
path=pathBuffer;
} else {
path=FALLBACK_PATH;
}
# endif
}
u_setDataDirectory(path);
}
/* we did set the directory if necessary */
return gDataDirectory;
}
/* Macintosh-specific locale information ------------------------------------ */
#ifdef XP_MAC
struct mac_lc_rec {
int32_t script;
int32_t region;
int32_t lang;
int32_t date_region;
char* posixID;
};
/* To do: This will be updated with a newer version from www.unicode.org web
page when it's available.*/
#define MAC_LC_MAGIC_NUMBER -5
#define MAC_LC_INIT_NUMBER -9
mac_lc_rec mac_lc_recs[] = {
MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, 0, "en_US",
/* United States*/
MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, 1, "fr_FR",
/* France*/
MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, 2, "en_GB",
/* Great Britain*/
MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, 3, "de_DE",
/* Germany*/
MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, 4, "it_IT",
/* Italy*/
MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, 5, "nl_NL",
/* Metherlands*/
MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, 6, "fr_BE",
/* French for Belgium or Lxembourg*/
MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, 7, "sv_SE",
/* Sweden*/
MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, 9, "da_DK",
/* Denmark*/
MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, 10, "pt_PT",
/* Portugal*/
MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, 11, "fr_CA",
/* French Canada*/
MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, 13, "is_IS",
/* Israel*/
MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, 14, "ja_JP",
/* Japan*/
MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, 15, "en_AU",
/* Australia*/
MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, 16, "ar_AE",
/* the Arabic world (?)*/
MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, 17, "fi_FI",
/* Finland*/
MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, 18, "fr_CH",
/* French for Switzerland*/
MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, 19, "de_CH",
/* German for Switzerland*/
MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, 20, "EL_GR",
/* Greece*/
MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, 21, "is_IS",
/* Iceland ===*/
/*MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, 22, "",
// Malta ===*/
/*MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, 23, "",
// Cyprus ===*/
MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, 24, "tr_TR",
/* Turkey ===*/
MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, 25, "sh_YU",
/* Croatian system for Yugoslavia*/
/*MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, 33, "",
// Hindi system for India*/
/*MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, 34, "",
// Pakistan*/
MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, 41, "lt_LT",
/* Lithuania*/
MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, 42, "pl_PL",
/* Poland*/
MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, 43, "hu_HU",
/* Hungary*/
MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, 44, "et_EE",
/* Estonia*/
MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, 45, "lv_LV",
/* Latvia*/
/*MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, 46, "",
// Lapland [Ask Rich for the data. HS]*/
/*MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, 47, "",
// Faeroe Islands*/
MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, 48, "fa_IR",
/* Iran*/
MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, 49, "ru_RU",
/* Russia*/
MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, 50, "en_IE",
/* Ireland*/
MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, 51, "ko_KR",
/* Korea*/
MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, 52, "zh_CN",
/* People's Republic of China*/
MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, 53, "zh_TW",
/* Taiwan*/
MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, 54, "th_TH",
/* Thailand*/
/* fallback is en_US*/
MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER, MAC_LC_MAGIC_NUMBER,
MAC_LC_MAGIC_NUMBER, "en_US"
};
#endif
const char*
uprv_getDefaultLocaleID()
{
#ifdef POSIX
const char* posixID = getenv("LC_ALL");
if (posixID == 0) posixID = getenv("LANG");
if (posixID == 0) posixID = setlocale(LC_ALL, NULL);
if ( (uprv_strcmp("C", posixID) == 0) ||
(uprv_strncmp("C ", posixID, 2) == 0) ) { /* HPUX returns 'C C C C C C C' */
posixID = "en_US";
}
return posixID;
#endif
#ifdef OS400
/* TBD */
return "";
#endif
#ifdef XP_MAC
int32_t script = MAC_LC_INIT_NUMBER;
/* = IntlScript(); or GetScriptManagerVariable(smSysScript);*/
int32_t region = MAC_LC_INIT_NUMBER;
/* = GetScriptManagerVariable(smRegionCode);*/
int32_t lang = MAC_LC_INIT_NUMBER;
/* = GetScriptManagerVariable(smScriptLang);*/
int32_t date_region = MAC_LC_INIT_NUMBER;
char* posixID = 0;
Intl1Hndl ih;
ih = (Intl1Hndl) GetIntlResource(1);
if (ih) date_region = ((uint16_t)(*ih)->intl1Vers) >> 8;
int32_t count = sizeof(mac_lc_recs) / sizeof(mac_lc_rec);
for (int32_t i = 0; i < count; i++) {
if ( ((mac_lc_recs[i].script == MAC_LC_MAGIC_NUMBER)
|| (mac_lc_recs[i].script == script))
&& ((mac_lc_recs[i].region == MAC_LC_MAGIC_NUMBER)
|| (mac_lc_recs[i].region == region))
&& ((mac_lc_recs[i].lang == MAC_LC_MAGIC_NUMBER)
|| (mac_lc_recs[i].lang == lang))
&& ((mac_lc_recs[i].date_region == MAC_LC_MAGIC_NUMBER)
|| (mac_lc_recs[i].date_region == date_region))
) {
posixID = mac_lc_recs[i].posixID;
break;
}
}
return posixID;
#endif
#ifdef WIN32
LCID id = GetThreadLocale();
return T_convertToPosix(id);
#endif
#ifdef OS2
char * locID;
locID = getenv("LC_ALL");
if (!locID || !*locID)
locID = getenv("LANG");
if (!locID || !*locID) {
locID = "C";
}
if (!stricmp(locID, "c") || !stricmp(locID, "posix") ||
!stricmp(locID, "univ"))
locID = "en_US";
return locID;
#endif
}
/* end of platform-specific implementation */
double
uprv_nextDouble(double d, UBool next)
{
#if IEEE_754
int32_t highBits;
uint32_t lowBits;
int32_t highMagnitude;
uint32_t lowMagnitude;
double result;
uint32_t *highResult, *lowResult;
uint32_t signBit;
/* filter out NaN's */
if (uprv_isNaN(d)) {
return d;
}
/* zero's are also a special case */
if (d == 0.0) {
double smallestPositiveDouble = 0.0;
uint32_t *plowBits =
(uint32_t *)u_bottomNBytesOfDouble(&smallestPositiveDouble,
sizeof(uint32_t));
*plowBits = 1;
if (next) {
return smallestPositiveDouble;
} else {
return -smallestPositiveDouble;
}
}
/* if we get here, d is a nonzero value */
/* hold all bits for later use */
highBits = *(int32_t*)u_topNBytesOfDouble(&d, sizeof(uint32_t));
lowBits = *(uint32_t*)u_bottomNBytesOfDouble(&d, sizeof(uint32_t));
/* strip off the sign bit */
highMagnitude = highBits & ~SIGN;
lowMagnitude = lowBits;
/* if next double away from zero, increase magnitude */
if ((highBits >= 0) == next) {
if (highMagnitude != 0x7FF00000L || lowMagnitude != 0x00000000L) {
lowMagnitude += 1;
if (lowMagnitude == 0) {
highMagnitude += 1;
}
}
}
/* else decrease magnitude */
else {
lowMagnitude -= 1;
if (lowMagnitude > lowBits) {
highMagnitude -= 1;
}
}
/* construct result and return */
signBit = highBits & SIGN;
highResult = (uint32_t *)u_topNBytesOfDouble(&result, sizeof(uint32_t));
lowResult = (uint32_t *)u_bottomNBytesOfDouble(&result, sizeof(uint32_t));
*highResult = signBit | highMagnitude;
*lowResult = lowMagnitude;
return result;
#else
#ifdef OS390
double last_eps,sum;
#endif
/* This is the portable implementation...*/
/* a small coefficient within the precision of the mantissa*/
static const double smallValue = 1e-10;
double epsilon = ((d<0)?-d:d) * smallValue; /* first approximation*/
if (epsilon == 0) epsilon = smallValue; /* for very small d's*/
if (!next) epsilon = -epsilon;
double last_eps = epsilon * 2.0;
/* avoid higher precision possibly used for temporay values*/
#ifdef OS390
last_eps = epsilon * 2.0;
sum = d + epsilon;
#else
double sum = d + epsilon;
#endif
while ((sum != d) && (epsilon != last_eps)) {
last_eps = epsilon;
epsilon /= 2.0;
sum = d + epsilon;
}
return d + last_eps;
#endif
}
static char*
u_topNBytesOfDouble(double* d, int n)
{
return U_IS_BIG_ENDIAN ? (char*)d : (char*)(d + 1) - n;
}
static char* u_bottomNBytesOfDouble(double* d, int n)
{
return U_IS_BIG_ENDIAN ? (char*)(d + 1) - n : (char*)d;
}
U_CAPI const char *
uprv_defaultCodePageForLocale(const char *locale);
const char* uprv_getDefaultCodepage()
{
#if defined(OS400)
return "ibm-37";
#elif defined(OS390)
return "ibm-1047-s390";
#elif defined(XP_MAC)
/* TBD */
#elif defined(WIN32)
static char tempString[10] = "";
static char codepage[12]={ "cp" };
uprv_strcpy(codepage+2, _itoa(GetACP(), tempString, 10));
return codepage;
#elif defined(POSIX)
static char codesetName[100];
char *name = NULL;
char *euro = NULL;
char *localeName = NULL;
const char *defaultTable = NULL;
uprv_memset(codesetName, 0, 100);
localeName = setlocale(LC_CTYPE, "");
if (localeName != NULL)
{
uprv_strcpy(codesetName, localeName);
if ((name = (uprv_strchr(codesetName, (int) '.'))) != NULL)
{
/* strip the locale name and look at the suffix only */
name++;
if ((euro = (uprv_strchr(name, (int)'@'))) != NULL)
{
*euro = 0;
}
/* if we can find the codset name from setlocale, return that. */
if (uprv_strlen(name) != 0)
{
return name;
}
}
}
if (strlen(codesetName) != 0)
{
uprv_memset(codesetName, 0, 100);
}
#ifdef LINUX
if (nl_langinfo(_NL_CTYPE_CODESET_NAME) != NULL)
uprv_strcpy(codesetName, nl_langinfo(_NL_CTYPE_CODESET_NAME));
#else
if (nl_langinfo(CODESET) != NULL)
uprv_strcpy(codesetName, nl_langinfo(CODESET));
#endif
if (uprv_strlen(codesetName) == 0)
{
/* look up in srl's table */
defaultTable = uprv_defaultCodePageForLocale(localeName);
if (defaultTable != NULL)
{
uprv_strcpy(codesetName, defaultTable);
}
else
{
/* if the table lookup failed, return latin1. */
uprv_strcpy(codesetName, "LATIN_1");
}
}
return codesetName;
#else
return "LATIN_1";
#endif
}
#if U_CHARSET_FAMILY==U_EBCDIC_FAMILY
#ifdef OS390
/*
* These maps for ASCII to/from EBCDIC are from
* "UTF-EBCDIC - EBCDIC-Friendly Unicode (or UCS) Transformation Format"
* at http://www.unicode.org/unicode/reports/tr16/
* (which should reflect codepage 1047)
* but modified to explicitly exclude the variant
* control and graphical characters that are in ASCII-based
* codepages at 0x80 and above.
* Also, unlike in Version 6.0 of the UTR on UTF-EBCDIC,
* the Line Feed mapping varies according to the environment.
*
* These tables do not establish a converter or a codepage.
*/
/* on S/390 Open Edition, ASCII 0xa (LF) maps to 0x15 and ISO-8 0x85 maps to 0x25 */
# define E_LF 0x15
# define A_15 0x0a
# define A_25 0x00
# if 0
/* the CDRA variation of 1047 is not currently used - see tables in #else below */
/* in standard EBCDIC (CDRA), ASCII 0xa (LF) maps to 0x25 and ISO-8 0x85 maps to 0x15 */
# define E_LF 0x25
# define A_15 0x00
# define A_25 0x0a
# endif
static uint8_t asciiFromEbcdic[256]={
0x00, 0x01, 0x02, 0x03, 0x00, 0x09, 0x00, 0x7F, 0x00, 0x00, 0x00, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
0x10, 0x11, 0x12, 0x13, 0x00, A_15, 0x08, 0x00, 0x18, 0x19, 0x00, 0x00, 0x1C, 0x1D, 0x1E, 0x1F,
0x00, 0x00, 0x00, 0x00, 0x00, A_25, 0x17, 0x1B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x05, 0x06, 0x07,
0x00, 0x00, 0x16, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x14, 0x15, 0x00, 0x1A,
0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x2E, 0x3C, 0x28, 0x2B, 0x7C,
0x26, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x21, 0x24, 0x2A, 0x29, 0x3B, 0x5E,
0x2D, 0x2F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x2C, 0x25, 0x5F, 0x3E, 0x3F,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x60, 0x3A, 0x23, 0x40, 0x27, 0x3D, 0x22,
0x00, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x6A, 0x6B, 0x6C, 0x6D, 0x6E, 0x6F, 0x70, 0x71, 0x72, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x7E, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x00, 0x00, 0x00, 0x5B, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x5D, 0x00, 0x00,
0x7B, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x7D, 0x4A, 0x4B, 0x4C, 0x4D, 0x4E, 0x4F, 0x50, 0x51, 0x52, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x5C, 0x00, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
static uint8_t ebcdicFromAscii[256]={
0x00, 0x01, 0x02, 0x03, 0x37, 0x2D, 0x2E, 0x2F, 0x16, 0x05, E_LF, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
0x10, 0x11, 0x12, 0x13, 0x3C, 0x3D, 0x32, 0x26, 0x18, 0x19, 0x3F, 0x27, 0x1C, 0x1D, 0x1E, 0x1F,
0x40, 0x5A, 0x7F, 0x7B, 0x5B, 0x6C, 0x50, 0x7D, 0x4D, 0x5D, 0x5C, 0x4E, 0x6B, 0x60, 0x4B, 0x61,
0xF0, 0xF1, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8, 0xF9, 0x7A, 0x5E, 0x4C, 0x7E, 0x6E, 0x6F,
0x7C, 0xC1, 0xC2, 0xC3, 0xC4, 0xC5, 0xC6, 0xC7, 0xC8, 0xC9, 0xD1, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6,
0xD7, 0xD8, 0xD9, 0xE2, 0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xAD, 0xE0, 0xBD, 0x5F, 0x6D,
0x79, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96,
0x97, 0x98, 0x99, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7, 0xA8, 0xA9, 0xC0, 0x4F, 0xD0, 0xA1, 0x07,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
#else
/*
* These maps for ASCII to/from EBCDIC were generated
* using the ICU converter for codepage 37 on 2000-may-22.
* They explicitly exclude the variant
* control and graphical characters that are in ASCII-based
* codepages at 0x80 and above.
*
* These tables do not establish a converter or a codepage.
*/
static uint8_t asciiFromEbcdic[256]={
0x00, 0x01, 0x02, 0x03, 0x00, 0x09, 0x00, 0x7f, 0x00, 0x00, 0x00, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x00, 0x00, 0x08, 0x00, 0x18, 0x19, 0x00, 0x00, 0x1c, 0x1d, 0x1e, 0x1f,
0x00, 0x00, 0x00, 0x00, 0x00, 0x0a, 0x17, 0x1b, 0x00, 0x00, 0x00, 0x00, 0x00, 0x05, 0x06, 0x07,
0x00, 0x00, 0x16, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x14, 0x15, 0x00, 0x1a,
0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x2e, 0x3c, 0x28, 0x2b, 0x7c,
0x26, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x21, 0x24, 0x2a, 0x29, 0x3b, 0x00,
0x2d, 0x2f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x2c, 0x25, 0x5f, 0x3e, 0x3f,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x60, 0x3a, 0x23, 0x40, 0x27, 0x3d, 0x22,
0x00, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x7e, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x5e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x5b, 0x5d, 0x00, 0x00, 0x00, 0x00,
0x7b, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x7d, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, 0x50, 0x51, 0x52, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x5c, 0x00, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
static uint8_t ebcdicFromAscii[256]={
0x00, 0x01, 0x02, 0x03, 0x37, 0x2d, 0x2e, 0x2f, 0x16, 0x05, 0x25, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x3c, 0x3d, 0x32, 0x26, 0x18, 0x19, 0x3f, 0x27, 0x1c, 0x1d, 0x1e, 0x1f,
0x40, 0x5a, 0x7f, 0x7b, 0x5b, 0x6c, 0x50, 0x7d, 0x4d, 0x5d, 0x5c, 0x4e, 0x6b, 0x60, 0x4b, 0x61,
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0x7a, 0x5e, 0x4c, 0x7e, 0x6e, 0x6f,
0x7c, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6,
0xd7, 0xd8, 0xd9, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xba, 0xe0, 0xbb, 0xb0, 0x6d,
0x79, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96,
0x97, 0x98, 0x99, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xc0, 0x4f, 0xd0, 0xa1, 0x07,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
#endif
#endif
U_CAPI void U_EXPORT2
u_charsToUChars(const char *cs, UChar *us, UTextOffset length) {
while(length>0) {
#if U_CHARSET_FAMILY==U_ASCII_FAMILY
*us++=(UChar)(uint8_t)(*cs++);
#elif U_CHARSET_FAMILY==U_EBCDIC_FAMILY
*us++=(UChar)asciiFromEbcdic[(uint8_t)(*cs++)];
#else
# error U_CHARSET_FAMILY is not valid
#endif
--length;
}
}
U_CAPI void U_EXPORT2
u_UCharsToChars(const UChar *us, char *cs, UTextOffset length) {
while(length>0) {
#if U_CHARSET_FAMILY==U_ASCII_FAMILY
*cs++=(char)(*us++);
#elif U_CHARSET_FAMILY==U_EBCDIC_FAMILY
*cs++=(char)ebcdicFromAscii[(uint8_t)(*us++)];
#else
# error U_CHARSET_FAMILY is not valid
#endif
--length;
}
}
U_CFUNC void
u_versionFromString(UVersionInfo versionArray, const char *versionString) {
char *end;
uint16_t part=0;
if(versionArray==NULL) {
return;
}
if(versionString!=NULL) {
for(;;) {
versionArray[part]=(uint8_t)uprv_strtoul(versionString, &end, 10);
if(end==versionString || ++part==U_MAX_VERSION_LENGTH || *end!=U_VERSION_DELIMITER) {
break;
}
versionString=end+1;
}
}
while(part<U_MAX_VERSION_LENGTH) {
versionArray[part++]=0;
}
}
U_CAPI void U_EXPORT2
u_versionToString(UVersionInfo versionArray, char *versionString) {
uint16_t count, part;
uint8_t field;
if(versionString==NULL) {
return;
}
if(versionArray==NULL) {
versionString[0]=0;
}
/* count how many fields need to be written */
for(count=4; count>0 && versionArray[count-1]==0; --count) {}
if(count>0) {
/* write the first part */
/* write the decimal field value */
field=versionArray[0];
if(field>=100) {
*versionString++='0'+field/100;
field%=100;
}
if(field>=10) {
*versionString++='0'+field/10;
field%=10;
}
*versionString++='0'+field;
/* write the following parts */
for(part=1; part<count; ++part) {
/* write a dot first */
*versionString++=U_VERSION_DELIMITER;
/* write the decimal field value */
field=versionArray[part];
if(field>=100) {
*versionString++='0'+field/100;
field%=100;
}
if(field>=10) {
*versionString++='0'+field/10;
field%=10;
}
*versionString++='0'+field;
}
}
/* NUL-terminate */
*versionString=0;
}
U_CAPI void U_EXPORT2
u_getVersion(UVersionInfo versionArray) {
u_versionFromString(versionArray, U_ICU_VERSION);
}
/* u_errorName() ------------------------------------------------------------ */
static const char *
_uErrorInfoName[U_ERROR_INFO_LIMIT-U_ERROR_INFO_START]={
"U_USING_FALLBACK_ERROR",
"U_USING_DEFAULT_ERROR"
};
static const char *
_uErrorName[U_ERROR_LIMIT]={
"U_ZERO_ERROR",
"U_ILLEGAL_ARGUMENT_ERROR",
"U_MISSING_RESOURCE_ERROR",
"U_INVALID_FORMAT_ERROR",
"U_FILE_ACCESS_ERROR",
"U_INTERNAL_PROGRAM_ERROR",
"U_MESSAGE_PARSE_ERROR",
"U_MEMORY_ALLOCATION_ERROR",
"U_INDEX_OUTOFBOUNDS_ERROR",
"U_PARSE_ERROR",
"U_INVALID_CHAR_FOUND",
"U_TRUNCATED_CHAR_FOUND",
"U_ILLEGAL_CHAR_FOUND",
"U_INVALID_TABLE_FORMAT",
"U_INVALID_TABLE_FILE",
"U_BUFFER_OVERFLOW_ERROR",
"U_UNSUPPORTED_ERROR",
"U_RESOURCE_TYPE_MISMATCH"
};
U_CAPI const char * U_EXPORT2
u_errorName(UErrorCode code) {
if(code>=0 && code<U_ERROR_LIMIT) {
return _uErrorName[code];
} else if(code>=U_ERROR_INFO_START && code<U_ERROR_INFO_LIMIT) {
return _uErrorInfoName[code-U_ERROR_INFO_START];
} else {
return "[BOGUS UErrorCode]";
}
}
struct
{
char loc[20];
char charmap[40];
}
_localeToDefaultCharmapTable [] =
{
/*
See: http://czyborra.com/charsets/iso8859.html
*/
/* xx_XX locales first, so they will match: */
{ "zh_CN", "gb2312" }, /* Chinese (Simplified) */
{ "zh_TW", "Big5" }, /* Chinese (Traditional) */
{ "af", "iso-8859-1" }, /* Afrikaans */
{ "ar", "iso-8859-6" }, /* Arabic */
{ "be", "iso-8859-5" }, /* Byelorussian */
{ "bg", "iso-8859-5" }, /* Bulgarian */
{ "ca", "iso-8859-1" }, /* Catalan */
{ "cs", "iso-8859-2" }, /* Czech */
{ "da", "iso-8859-1" }, /* Danish */
{ "de", "iso-8859-1" }, /* German */
{ "el", "iso-8859-7" }, /* Greek */
{ "en", "iso-8859-1" }, /* English */
{ "eo", "iso-8859-3" }, /* Esperanto */
{ "es", "iso-8859-1" }, /* Spanish */
{ "et", "iso-8859-4" }, /* Estonian */
{ "eu", "iso-8859-1" }, /* basque */
{ "fi", "iso-8859-1" }, /* Finnish */
{ "fo", "iso-8859-1" }, /* faroese */
{ "fr", "iso-8859-1" }, /* French */
{ "ga", "iso-8859-1" }, /* Irish (Gaelic) */
{ "gd", "iso-8859-1" }, /* Scottish */
{ "he", "iso-8859-8" }, /* hebrew */
{ "hr", "iso-8859-2" }, /* Croatian */
{ "hu", "iso-8859-2" }, /* Hungarian */
{ "in", "iso-8859-1" }, /* Indonesian */
{ "is", "iso-8859-1" }, /* Icelandic */
{ "it", "iso-8859-1" }, /* Italian */
{ "iw", "iso-8859-8" }, /* hebrew */
{ "ja", "Shift_JIS" }, /* Japanese [was: ja_JP ] */
{ "ji", "iso-8859-8" }, /* Yiddish */
{ "kl", "iso-8859-4" }, /* Greenlandic */
{ "ko", "euc-kr" }, /* korean [was: ko_KR ] */
{ "lt", "iso-8859-4" }, /* Lithuanian */
{ "lv", "iso-8859-4" }, /* latvian (lettish) */
{ "mk", "iso-8859-5" }, /* Macedonian */
{ "mt", "iso-8859-3" }, /* Maltese */
{ "nl", "iso-8859-1" }, /* dutch */
{ "no", "iso-8859-1" }, /* Norwegian */
{ "pl", "iso-8859-2" }, /* Polish */
{ "pt", "iso-8859-1" }, /* Portugese */
{ "rm", "iso-8859-1" }, /* Rhaeto-romance */
{ "ro", "iso-8859-2" }, /* Romanian */
{ "ru", "iso-8859-5" }, /* Russian */
{ "sk", "iso-8859-2" }, /* Slovak */
{ "sl", "iso-8859-2" }, /* Slovenian */
{ "sq", "iso-8859-1" }, /* albanian */
{ "sr", "iso-8859-5" }, /* Serbian */
{ "sv", "iso-8859-1" }, /* Swedish */
{ "sw", "iso-8859-1" }, /* Swahili */
{ "th", "tis-620" }, /* Thai [windows-874] */
{ "tr", "iso-8859-9" }, /* Turkish */
{ "uk", "iso-8859-5" }, /* pre 1990 Ukranian... see: <http://czyborra.com/charsets/cyrillic.html#KOI8-U> */
{ "zh", "Big-5" }, /* Chinese (Traditional) */
{ "", "" }
};
/* Not-used list, overridden old data */
#if 0
/**/ { "ar", "ibm-1256" }, /* arabic */
/**/ { "ko", "ibm-949"}, /* korean */
/**/ { "ru", "ibm-878" }, /* Russian- koi8-r */
/**/ { "sk", "ibm-912" },
#endif
U_CAPI const char *
uprv_defaultCodePageForLocale(const char *locale)
{
int32_t i;
int32_t locale_len;
if (locale == NULL)
{
return NULL;
}
locale_len = uprv_strlen(locale);
if(locale_len < 2)
{
return NULL; /* non existent. Not a complete check, but it will
* make sure that 'c' doesn't match catalan, etc.
**/
}
for(i=0; _localeToDefaultCharmapTable[i].loc[0]; i++)
{
if(uprv_strncmp(locale, _localeToDefaultCharmapTable[i].loc,
uprv_min(locale_len,
uprv_strlen(_localeToDefaultCharmapTable[i].loc)))
== 0)
{
return _localeToDefaultCharmapTable[i].charmap;
}
}
return NULL;
}