8a3a93deed
X-SVN-Rev: 16265
4768 lines
154 KiB
C++
4768 lines
154 KiB
C++
/*
|
|
******************************************************************************
|
|
* Copyright (c) 1996-2004, International Business Machines
|
|
* Corporation and others. All Rights Reserved.
|
|
******************************************************************************
|
|
* File unorm.cpp
|
|
*
|
|
* Created by: Vladimir Weinstein 12052000
|
|
*
|
|
* Modification history :
|
|
*
|
|
* Date Name Description
|
|
* 02/01/01 synwee Added normalization quickcheck enum and method.
|
|
* 02/12/01 synwee Commented out quickcheck util api has been approved
|
|
* Added private method for doing FCD checks
|
|
* 02/23/01 synwee Modified quickcheck and checkFCE to run through
|
|
* string for codepoints < 0x300 for the normalization
|
|
* mode NFC.
|
|
* 05/25/01+ Markus Scherer total rewrite, implement all normalization here
|
|
* instead of just wrappers around normlzr.cpp,
|
|
* load unorm.dat, support Unicode 3.1 with
|
|
* supplementary code points, etc.
|
|
*/
|
|
|
|
#include "unicode/utypes.h"
|
|
|
|
// moved up to make unorm_cmpEquivFold work without normalization
|
|
#include "unicode/ustring.h"
|
|
#include "unormimp.h"
|
|
#include "ucase.h"
|
|
|
|
#if !UCONFIG_NO_NORMALIZATION
|
|
|
|
#include "unicode/udata.h"
|
|
#include "unicode/uchar.h"
|
|
#include "unicode/uiter.h"
|
|
#include "unicode/uniset.h"
|
|
#include "unicode/usetiter.h"
|
|
#include "unicode/unorm.h"
|
|
#include "cmemory.h"
|
|
#include "umutex.h"
|
|
#include "utrie.h"
|
|
#include "unicode/uset.h"
|
|
#include "udataswp.h"
|
|
|
|
/*
|
|
* Status of tailored normalization
|
|
*
|
|
* This was done initially for investigation on Unicode public review issue 7
|
|
* (http://www.unicode.org/review/). See Jitterbug 2481.
|
|
* While the UTC at meeting #94 (2003mar) did not take up the issue, this is
|
|
* a permanent feature in ICU 2.6 in support of IDNA which requires true
|
|
* Unicode 3.2 normalization.
|
|
* (NormalizationCorrections are rolled into IDNA mapping tables.)
|
|
*
|
|
* Tailored normalization as implemented here allows to "normalize less"
|
|
* than full Unicode normalization would.
|
|
* Based internally on a UnicodeSet of code points that are
|
|
* "excluded from normalization", the normalization functions leave those
|
|
* code points alone ("inert"). This means that tailored normalization
|
|
* still transforms text into a canonically equivalent form.
|
|
* It does not add decompositions to code points that do not have any or
|
|
* change decomposition results.
|
|
*
|
|
* Any function that searches for a safe boundary has not been touched,
|
|
* which means that these functions will be over-pessimistic when
|
|
* exclusions are applied.
|
|
* This should not matter because subsequent checks and normalizations
|
|
* do apply the exclusions; only a little more of the text may be processed
|
|
* than necessary under exclusions.
|
|
*
|
|
* Normalization exclusions have the following effect on excluded code points c:
|
|
* - c is not decomposed
|
|
* - c is not a composition target
|
|
* - c does not combine forward or backward for composition
|
|
* except that this is not implemented for Jamo
|
|
* - c is treated as having a combining class of 0
|
|
*/
|
|
#define LENGTHOF(array) (sizeof(array)/sizeof((array)[0]))
|
|
|
|
/*
|
|
* This new implementation of the normalization code loads its data from
|
|
* unorm.dat, which is generated with the gennorm tool.
|
|
* The format of that file is described in unormimp.h .
|
|
*/
|
|
|
|
/* -------------------------------------------------------------------------- */
|
|
|
|
enum {
|
|
_STACK_BUFFER_CAPACITY=100
|
|
};
|
|
|
|
/*
|
|
* Constants for the bit fields in the options bit set parameter.
|
|
* These need not be public.
|
|
* A user only needs to know the currently assigned values.
|
|
* The number and positions of reserved bits per field can remain private
|
|
* and may change in future implementations.
|
|
*/
|
|
enum {
|
|
_NORM_OPTIONS_NX_MASK=0x1f,
|
|
_NORM_OPTIONS_UNICODE_MASK=0xe0,
|
|
_NORM_OPTIONS_SETS_MASK=0xff,
|
|
|
|
_NORM_OPTIONS_UNICODE_SHIFT=5,
|
|
|
|
/*
|
|
* The following options are used only in some composition functions.
|
|
* They use bits 12 and up to preserve lower bits for the available options
|
|
* space in unorm_compare() -
|
|
* see documentation for UNORM_COMPARE_NORM_OPTIONS_SHIFT.
|
|
*/
|
|
|
|
/** Options bit 12, for compatibility vs. canonical decomposition. */
|
|
_NORM_OPTIONS_COMPAT=0x1000,
|
|
/** Options bit 13, no discontiguous composition (FCC vs. NFC). */
|
|
_NORM_OPTIONS_COMPOSE_CONTIGUOUS=0x2000
|
|
};
|
|
|
|
static inline UBool
|
|
isHangulWithoutJamoT(UChar c) {
|
|
c-=HANGUL_BASE;
|
|
return c<HANGUL_COUNT && c%JAMO_T_COUNT==0;
|
|
}
|
|
|
|
/* norm32 helpers */
|
|
|
|
/* is this a norm32 with a regular index? */
|
|
static inline UBool
|
|
isNorm32Regular(uint32_t norm32) {
|
|
return norm32<_NORM_MIN_SPECIAL;
|
|
}
|
|
|
|
/* is this a norm32 with a special index for a lead surrogate? */
|
|
static inline UBool
|
|
isNorm32LeadSurrogate(uint32_t norm32) {
|
|
return _NORM_MIN_SPECIAL<=norm32 && norm32<_NORM_SURROGATES_TOP;
|
|
}
|
|
|
|
/* is this a norm32 with a special index for a Hangul syllable or a Jamo? */
|
|
static inline UBool
|
|
isNorm32HangulOrJamo(uint32_t norm32) {
|
|
return norm32>=_NORM_MIN_HANGUL;
|
|
}
|
|
|
|
/*
|
|
* Given isNorm32HangulOrJamo(),
|
|
* is this a Hangul syllable or a Jamo?
|
|
*/
|
|
static inline UBool
|
|
isHangulJamoNorm32HangulOrJamoL(uint32_t norm32) {
|
|
return norm32<_NORM_MIN_JAMO_V;
|
|
}
|
|
|
|
/*
|
|
* Given norm32 for Jamo V or T,
|
|
* is this a Jamo V?
|
|
*/
|
|
static inline UBool
|
|
isJamoVTNorm32JamoV(uint32_t norm32) {
|
|
return norm32<_NORM_JAMO_V_TOP;
|
|
}
|
|
|
|
/* load unorm.dat ----------------------------------------------------------- */
|
|
|
|
#define DATA_NAME "unorm"
|
|
#define DATA_TYPE "icu"
|
|
|
|
static UDataMemory *normData=NULL;
|
|
static UErrorCode dataErrorCode=U_ZERO_ERROR;
|
|
static int8_t haveNormData=0;
|
|
|
|
static int32_t indexes[_NORM_INDEX_TOP]={ 0 };
|
|
static UTrie normTrie={ 0,0,0,0,0,0,0 }, fcdTrie={ 0,0,0,0,0,0,0 }, auxTrie={ 0,0,0,0,0,0,0 };
|
|
|
|
/*
|
|
* pointers into the memory-mapped unorm.icu
|
|
*/
|
|
static const uint16_t *extraData=NULL,
|
|
*combiningTable=NULL,
|
|
*canonStartSets=NULL;
|
|
|
|
static uint8_t formatVersion[4]={ 0, 0, 0, 0 };
|
|
static UBool formatVersion_2_1=FALSE, formatVersion_2_2=FALSE;
|
|
|
|
/* the Unicode version of the normalization data */
|
|
static UVersionInfo dataVersion={ 0, 0, 0, 0 };
|
|
|
|
/* cache UnicodeSets for each combination of exclusion flags */
|
|
static UnicodeSet *nxCache[_NORM_OPTIONS_SETS_MASK+1]={ NULL };
|
|
|
|
U_CDECL_BEGIN
|
|
|
|
UBool
|
|
unorm_cleanup() {
|
|
int32_t i;
|
|
|
|
if(normData!=NULL) {
|
|
udata_close(normData);
|
|
normData=NULL;
|
|
}
|
|
dataErrorCode=U_ZERO_ERROR;
|
|
haveNormData=0;
|
|
|
|
for(i=0; i<(int32_t)LENGTHOF(nxCache); ++i) {
|
|
delete nxCache[i];
|
|
}
|
|
uprv_memset(nxCache, 0, sizeof(nxCache));
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* normTrie: 32-bit trie result may contain a special extraData index with the folding offset */
|
|
static int32_t U_CALLCONV
|
|
getFoldingNormOffset(uint32_t norm32) {
|
|
if(isNorm32LeadSurrogate(norm32)) {
|
|
return
|
|
UTRIE_BMP_INDEX_LENGTH+
|
|
(((int32_t)norm32>>(_NORM_EXTRA_SHIFT-UTRIE_SURROGATE_BLOCK_BITS))&
|
|
(0x3ff<<UTRIE_SURROGATE_BLOCK_BITS));
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* fcdTrie: the folding offset is the lead FCD value itself */
|
|
static int32_t U_CALLCONV
|
|
getFoldingFCDOffset(uint32_t data) {
|
|
return (int32_t)data;
|
|
}
|
|
|
|
/* auxTrie: the folding offset is in bits 9..0 of the 16-bit trie result */
|
|
static int32_t U_CALLCONV
|
|
getFoldingAuxOffset(uint32_t data) {
|
|
return (int32_t)(data&_NORM_AUX_FNC_MASK)<<UTRIE_SURROGATE_BLOCK_BITS;
|
|
}
|
|
|
|
static UBool U_CALLCONV
|
|
isAcceptable(void * /* context */,
|
|
const char * /* type */, const char * /* name */,
|
|
const UDataInfo *pInfo) {
|
|
if(
|
|
pInfo->size>=20 &&
|
|
pInfo->isBigEndian==U_IS_BIG_ENDIAN &&
|
|
pInfo->charsetFamily==U_CHARSET_FAMILY &&
|
|
pInfo->dataFormat[0]==0x4e && /* dataFormat="Norm" */
|
|
pInfo->dataFormat[1]==0x6f &&
|
|
pInfo->dataFormat[2]==0x72 &&
|
|
pInfo->dataFormat[3]==0x6d &&
|
|
pInfo->formatVersion[0]==2 &&
|
|
pInfo->formatVersion[2]==UTRIE_SHIFT &&
|
|
pInfo->formatVersion[3]==UTRIE_INDEX_SHIFT
|
|
) {
|
|
uprv_memcpy(formatVersion, pInfo->formatVersion, 4);
|
|
uprv_memcpy(dataVersion, pInfo->dataVersion, 4);
|
|
return TRUE;
|
|
} else {
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
static UBool U_CALLCONV
|
|
_enumPropertyStartsRange(const void *context, UChar32 start, UChar32 /*limit*/, uint32_t /*value*/) {
|
|
/* add the start code point to the USet */
|
|
USetAdder *sa=(USetAdder *)context;
|
|
sa->add(sa->set, start);
|
|
return TRUE;
|
|
}
|
|
|
|
U_CDECL_END
|
|
|
|
static int8_t
|
|
loadNormData(UErrorCode &errorCode) {
|
|
/* load Unicode normalization data from file */
|
|
|
|
/*
|
|
* This lazy intialization with double-checked locking (without mutex protection for
|
|
* haveNormData==0) is transiently unsafe under certain circumstances.
|
|
* Check the readme and use u_init() if necessary.
|
|
*
|
|
* While u_init() initializes the main normalization data via this functions,
|
|
* it does not do so for exclusion sets (which are fully mutexed).
|
|
* This is because
|
|
* - there can be many exclusion sets
|
|
* - they are rarely used
|
|
* - they are not usually used in execution paths that are
|
|
* as performance-sensitive as others
|
|
* (e.g., IDNA takes more time than unorm_quickCheck() anyway)
|
|
*/
|
|
if(haveNormData==0) {
|
|
UTrie _normTrie={ 0,0,0,0,0,0,0 }, _fcdTrie={ 0,0,0,0,0,0,0 }, _auxTrie={ 0,0,0,0,0,0,0 };
|
|
UDataMemory *data;
|
|
const int32_t *p=NULL;
|
|
const uint8_t *pb;
|
|
|
|
if(&errorCode==NULL || U_FAILURE(errorCode)) {
|
|
return 0;
|
|
}
|
|
|
|
/* open the data outside the mutex block */
|
|
data=udata_openChoice(NULL, DATA_TYPE, DATA_NAME, isAcceptable, NULL, &errorCode);
|
|
dataErrorCode=errorCode;
|
|
if(U_FAILURE(errorCode)) {
|
|
return haveNormData=-1;
|
|
}
|
|
|
|
p=(const int32_t *)udata_getMemory(data);
|
|
pb=(const uint8_t *)(p+_NORM_INDEX_TOP);
|
|
utrie_unserialize(&_normTrie, pb, p[_NORM_INDEX_TRIE_SIZE], &errorCode);
|
|
_normTrie.getFoldingOffset=getFoldingNormOffset;
|
|
|
|
pb+=p[_NORM_INDEX_TRIE_SIZE]+p[_NORM_INDEX_UCHAR_COUNT]*2+p[_NORM_INDEX_COMBINE_DATA_COUNT]*2;
|
|
utrie_unserialize(&_fcdTrie, pb, p[_NORM_INDEX_FCD_TRIE_SIZE], &errorCode);
|
|
_fcdTrie.getFoldingOffset=getFoldingFCDOffset;
|
|
|
|
if(p[_NORM_INDEX_FCD_TRIE_SIZE]!=0) {
|
|
pb+=p[_NORM_INDEX_FCD_TRIE_SIZE];
|
|
utrie_unserialize(&_auxTrie, pb, p[_NORM_INDEX_AUX_TRIE_SIZE], &errorCode);
|
|
_auxTrie.getFoldingOffset=getFoldingAuxOffset;
|
|
}
|
|
|
|
if(U_FAILURE(errorCode)) {
|
|
dataErrorCode=errorCode;
|
|
udata_close(data);
|
|
return haveNormData=-1;
|
|
}
|
|
|
|
/* in the mutex block, set the data for this process */
|
|
umtx_lock(NULL);
|
|
if(normData==NULL) {
|
|
normData=data;
|
|
data=NULL;
|
|
|
|
uprv_memcpy(&indexes, p, sizeof(indexes));
|
|
uprv_memcpy(&normTrie, &_normTrie, sizeof(UTrie));
|
|
uprv_memcpy(&fcdTrie, &_fcdTrie, sizeof(UTrie));
|
|
uprv_memcpy(&auxTrie, &_auxTrie, sizeof(UTrie));
|
|
} else {
|
|
p=(const int32_t *)udata_getMemory(normData);
|
|
}
|
|
|
|
/* initialize some variables */
|
|
extraData=(uint16_t *)((uint8_t *)(p+_NORM_INDEX_TOP)+indexes[_NORM_INDEX_TRIE_SIZE]);
|
|
combiningTable=extraData+indexes[_NORM_INDEX_UCHAR_COUNT];
|
|
formatVersion_2_1=formatVersion[0]>2 || (formatVersion[0]==2 && formatVersion[1]>=1);
|
|
formatVersion_2_2=formatVersion[0]>2 || (formatVersion[0]==2 && formatVersion[1]>=2);
|
|
if(formatVersion_2_1) {
|
|
canonStartSets=combiningTable+
|
|
indexes[_NORM_INDEX_COMBINE_DATA_COUNT]+
|
|
(indexes[_NORM_INDEX_FCD_TRIE_SIZE]+indexes[_NORM_INDEX_AUX_TRIE_SIZE])/2;
|
|
}
|
|
haveNormData=1;
|
|
umtx_unlock(NULL);
|
|
|
|
/* if a different thread set it first, then close the extra data */
|
|
if(data!=NULL) {
|
|
udata_close(data); /* NULL if it was set correctly */
|
|
}
|
|
}
|
|
|
|
return haveNormData;
|
|
}
|
|
|
|
static inline UBool
|
|
_haveData(UErrorCode &errorCode) {
|
|
if(haveNormData!=0) {
|
|
errorCode=dataErrorCode;
|
|
return (UBool)(haveNormData>0);
|
|
} else {
|
|
return (UBool)(loadNormData(errorCode)>0);
|
|
}
|
|
}
|
|
|
|
U_CAPI UBool U_EXPORT2
|
|
unorm_haveData(UErrorCode *pErrorCode) {
|
|
return _haveData(*pErrorCode);
|
|
}
|
|
|
|
U_CAPI const uint16_t * U_EXPORT2
|
|
unorm_getFCDTrie(UErrorCode *pErrorCode) {
|
|
if(_haveData(*pErrorCode)) {
|
|
return fcdTrie.index;
|
|
} else {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/* data access primitives --------------------------------------------------- */
|
|
|
|
static inline uint32_t
|
|
_getNorm32(UChar c) {
|
|
return UTRIE_GET32_FROM_LEAD(&normTrie, c);
|
|
}
|
|
|
|
static inline uint32_t
|
|
_getNorm32FromSurrogatePair(uint32_t norm32, UChar c2) {
|
|
/*
|
|
* the surrogate index in norm32 stores only the number of the surrogate index block
|
|
* see gennorm/store.c/getFoldedNormValue()
|
|
*/
|
|
norm32=
|
|
UTRIE_BMP_INDEX_LENGTH+
|
|
((norm32>>(_NORM_EXTRA_SHIFT-UTRIE_SURROGATE_BLOCK_BITS))&
|
|
(0x3ff<<UTRIE_SURROGATE_BLOCK_BITS));
|
|
return UTRIE_GET32_FROM_OFFSET_TRAIL(&normTrie, norm32, c2);
|
|
}
|
|
|
|
/*
|
|
* get a norm32 from text with complete code points
|
|
* (like from decompositions)
|
|
*/
|
|
static inline uint32_t
|
|
_getNorm32(const UChar *p, uint32_t mask) {
|
|
uint32_t norm32=_getNorm32(*p);
|
|
if((norm32&mask) && isNorm32LeadSurrogate(norm32)) {
|
|
/* *p is a lead surrogate, get the real norm32 */
|
|
norm32=_getNorm32FromSurrogatePair(norm32, *(p+1));
|
|
}
|
|
return norm32;
|
|
}
|
|
|
|
static inline uint16_t
|
|
_getFCD16(UChar c) {
|
|
return UTRIE_GET16_FROM_LEAD(&fcdTrie, c);
|
|
}
|
|
|
|
static inline uint16_t
|
|
_getFCD16FromSurrogatePair(uint16_t fcd16, UChar c2) {
|
|
/* the surrogate index in fcd16 is an absolute offset over the start of stage 1 */
|
|
return UTRIE_GET16_FROM_OFFSET_TRAIL(&fcdTrie, fcd16, c2);
|
|
}
|
|
|
|
static inline const uint16_t *
|
|
_getExtraData(uint32_t norm32) {
|
|
return extraData+(norm32>>_NORM_EXTRA_SHIFT);
|
|
}
|
|
|
|
/* normalization exclusion sets --------------------------------------------- */
|
|
|
|
/*
|
|
* Normalization exclusion UnicodeSets are used for tailored normalization;
|
|
* see the comment near the beginning of this file.
|
|
*
|
|
* By specifying one or several sets of code points,
|
|
* those code points become inert for normalization.
|
|
*/
|
|
|
|
static const UnicodeSet *
|
|
internalGetNXHangul(UErrorCode &errorCode) {
|
|
/* internal function, does not check for incoming U_FAILURE */
|
|
|
|
UBool isCached;
|
|
|
|
/* do this because double-checked locking is broken */
|
|
umtx_lock(NULL);
|
|
isCached=nxCache[UNORM_NX_HANGUL]!=NULL;
|
|
umtx_unlock(NULL);
|
|
|
|
if(!isCached) {
|
|
UnicodeSet *set=new UnicodeSet(0xac00, 0xd7a3);
|
|
if(set==NULL) {
|
|
errorCode=U_MEMORY_ALLOCATION_ERROR;
|
|
return NULL;
|
|
}
|
|
|
|
umtx_lock(NULL);
|
|
if(nxCache[UNORM_NX_HANGUL]==NULL) {
|
|
nxCache[UNORM_NX_HANGUL]=set;
|
|
set=NULL;
|
|
}
|
|
umtx_unlock(NULL);
|
|
|
|
delete set;
|
|
}
|
|
|
|
return nxCache[UNORM_NX_HANGUL];
|
|
}
|
|
|
|
static const UnicodeSet *
|
|
internalGetNXCJKCompat(UErrorCode &errorCode) {
|
|
/* internal function, does not check for incoming U_FAILURE */
|
|
|
|
UBool isCached;
|
|
|
|
/* do this because double-checked locking is broken */
|
|
umtx_lock(NULL);
|
|
isCached=nxCache[UNORM_NX_CJK_COMPAT]!=NULL;
|
|
umtx_unlock(NULL);
|
|
|
|
if(!isCached) {
|
|
/* build a set from [CJK Ideographs]&[has canonical decomposition] */
|
|
UnicodeSet *set, *hasDecomp;
|
|
|
|
set=new UnicodeSet(UNICODE_STRING("[:Ideographic:]", 15), errorCode);
|
|
if(set==NULL) {
|
|
errorCode=U_MEMORY_ALLOCATION_ERROR;
|
|
return NULL;
|
|
}
|
|
if(U_FAILURE(errorCode)) {
|
|
delete set;
|
|
return NULL;
|
|
}
|
|
|
|
/* start with an empty set for [has canonical decomposition] */
|
|
hasDecomp=new UnicodeSet();
|
|
if(hasDecomp==NULL) {
|
|
delete set;
|
|
errorCode=U_MEMORY_ALLOCATION_ERROR;
|
|
return NULL;
|
|
}
|
|
|
|
/* iterate over all ideographs and remember which canonically decompose */
|
|
UnicodeSetIterator it(*set);
|
|
UChar32 start, end;
|
|
uint32_t norm32;
|
|
|
|
while(it.nextRange() && !it.isString()) {
|
|
start=it.getCodepoint();
|
|
end=it.getCodepointEnd();
|
|
while(start<=end) {
|
|
UTRIE_GET32(&normTrie, start, norm32);
|
|
if(norm32&_NORM_QC_NFD) {
|
|
hasDecomp->add(start);
|
|
}
|
|
++start;
|
|
}
|
|
}
|
|
|
|
/* hasDecomp now contains all ideographs that decompose canonically */
|
|
|
|
umtx_lock(NULL);
|
|
if(nxCache[UNORM_NX_CJK_COMPAT]==NULL) {
|
|
nxCache[UNORM_NX_CJK_COMPAT]=hasDecomp;
|
|
hasDecomp=NULL;
|
|
}
|
|
umtx_unlock(NULL);
|
|
|
|
delete hasDecomp;
|
|
delete set;
|
|
}
|
|
|
|
return nxCache[UNORM_NX_CJK_COMPAT];
|
|
}
|
|
|
|
static const UnicodeSet *
|
|
internalGetNXUnicode(uint32_t options, UErrorCode &errorCode) {
|
|
/* internal function, does not check for incoming U_FAILURE */
|
|
options&=_NORM_OPTIONS_UNICODE_MASK;
|
|
if(options==0) {
|
|
return NULL;
|
|
}
|
|
|
|
UBool isCached;
|
|
|
|
/* do this because double-checked locking is broken */
|
|
umtx_lock(NULL);
|
|
isCached=nxCache[options]!=NULL;
|
|
umtx_unlock(NULL);
|
|
|
|
if(!isCached) {
|
|
/* build a set with all code points that were not designated by the specified Unicode version */
|
|
UnicodeSet *set;
|
|
|
|
switch(options) {
|
|
case UNORM_UNICODE_3_2:
|
|
set=new UnicodeSet(UNICODE_STRING("[:^Age=3.2:]", 12), errorCode);
|
|
break;
|
|
default:
|
|
errorCode=U_ILLEGAL_ARGUMENT_ERROR;
|
|
return NULL;
|
|
}
|
|
|
|
if(set==NULL) {
|
|
errorCode=U_MEMORY_ALLOCATION_ERROR;
|
|
return NULL;
|
|
}
|
|
if(U_FAILURE(errorCode)) {
|
|
delete set;
|
|
return NULL;
|
|
}
|
|
|
|
umtx_lock(NULL);
|
|
if(nxCache[options]==NULL) {
|
|
nxCache[options]=set;
|
|
set=NULL;
|
|
}
|
|
umtx_unlock(NULL);
|
|
|
|
delete set;
|
|
}
|
|
|
|
return nxCache[options];
|
|
}
|
|
|
|
/* Get a decomposition exclusion set. The data must be loaded. */
|
|
static const UnicodeSet *
|
|
internalGetNX(int32_t options, UErrorCode &errorCode) {
|
|
options&=_NORM_OPTIONS_SETS_MASK;
|
|
|
|
UBool isCached;
|
|
|
|
/* do this because double-checked locking is broken */
|
|
umtx_lock(NULL);
|
|
isCached=nxCache[options]!=NULL;
|
|
umtx_unlock(NULL);
|
|
|
|
if(!isCached) {
|
|
/* return basic sets */
|
|
if(options==UNORM_NX_HANGUL) {
|
|
return internalGetNXHangul(errorCode);
|
|
}
|
|
if(options==UNORM_NX_CJK_COMPAT) {
|
|
return internalGetNXCJKCompat(errorCode);
|
|
}
|
|
if((options&_NORM_OPTIONS_UNICODE_MASK)!=0 && (options&_NORM_OPTIONS_NX_MASK)==0) {
|
|
return internalGetNXUnicode(options, errorCode);
|
|
}
|
|
|
|
/* build a set from multiple subsets */
|
|
UnicodeSet *set;
|
|
const UnicodeSet *other;
|
|
|
|
set=new UnicodeSet();
|
|
if(set==NULL) {
|
|
errorCode=U_MEMORY_ALLOCATION_ERROR;
|
|
return NULL;
|
|
}
|
|
|
|
if((options&UNORM_NX_HANGUL)!=0 && NULL!=(other=internalGetNXHangul(errorCode))) {
|
|
set->addAll(*other);
|
|
}
|
|
if((options&UNORM_NX_CJK_COMPAT)!=0 && NULL!=(other=internalGetNXCJKCompat(errorCode))) {
|
|
set->addAll(*other);
|
|
}
|
|
if((options&_NORM_OPTIONS_UNICODE_MASK)!=0 && NULL!=(other=internalGetNXUnicode(options, errorCode))) {
|
|
set->addAll(*other);
|
|
}
|
|
|
|
if(U_FAILURE(errorCode)) {
|
|
delete set;
|
|
return NULL;
|
|
}
|
|
|
|
umtx_lock(NULL);
|
|
if(nxCache[options]==NULL) {
|
|
nxCache[options]=set;
|
|
set=NULL;
|
|
}
|
|
umtx_unlock(NULL);
|
|
|
|
delete set;
|
|
}
|
|
|
|
return nxCache[options];
|
|
}
|
|
|
|
static inline const UnicodeSet *
|
|
getNX(int32_t options, UErrorCode &errorCode) {
|
|
if(U_FAILURE(errorCode) || (options&=_NORM_OPTIONS_SETS_MASK)==0) {
|
|
/* incoming failure, or no decomposition exclusions requested */
|
|
return NULL;
|
|
} else {
|
|
return internalGetNX(options, errorCode);
|
|
}
|
|
}
|
|
|
|
static inline UBool
|
|
nx_contains(const UnicodeSet *nx, UChar32 c) {
|
|
return nx!=NULL && nx->contains(c);
|
|
}
|
|
|
|
static inline UBool
|
|
nx_contains(const UnicodeSet *nx, UChar c, UChar c2) {
|
|
return nx!=NULL && nx->contains(c2==0 ? c : U16_GET_SUPPLEMENTARY(c, c2));
|
|
}
|
|
|
|
/* other normalization primitives ------------------------------------------- */
|
|
|
|
/* get the canonical or compatibility decomposition for one character */
|
|
static inline const UChar *
|
|
_decompose(uint32_t norm32, uint32_t qcMask, int32_t &length,
|
|
uint8_t &cc, uint8_t &trailCC) {
|
|
const UChar *p=(const UChar *)_getExtraData(norm32);
|
|
length=*p++;
|
|
|
|
if((norm32&qcMask&_NORM_QC_NFKD)!=0 && length>=0x100) {
|
|
/* use compatibility decomposition, skip canonical data */
|
|
p+=((length>>7)&1)+(length&_NORM_DECOMP_LENGTH_MASK);
|
|
length>>=8;
|
|
}
|
|
|
|
if(length&_NORM_DECOMP_FLAG_LENGTH_HAS_CC) {
|
|
/* get the lead and trail cc's */
|
|
UChar bothCCs=*p++;
|
|
cc=(uint8_t)(bothCCs>>8);
|
|
trailCC=(uint8_t)bothCCs;
|
|
} else {
|
|
/* lead and trail cc's are both 0 */
|
|
cc=trailCC=0;
|
|
}
|
|
|
|
length&=_NORM_DECOMP_LENGTH_MASK;
|
|
return p;
|
|
}
|
|
|
|
/* get the canonical decomposition for one character */
|
|
static inline const UChar *
|
|
_decompose(uint32_t norm32, int32_t &length,
|
|
uint8_t &cc, uint8_t &trailCC) {
|
|
const UChar *p=(const UChar *)_getExtraData(norm32);
|
|
length=*p++;
|
|
|
|
if(length&_NORM_DECOMP_FLAG_LENGTH_HAS_CC) {
|
|
/* get the lead and trail cc's */
|
|
UChar bothCCs=*p++;
|
|
cc=(uint8_t)(bothCCs>>8);
|
|
trailCC=(uint8_t)bothCCs;
|
|
} else {
|
|
/* lead and trail cc's are both 0 */
|
|
cc=trailCC=0;
|
|
}
|
|
|
|
length&=_NORM_DECOMP_LENGTH_MASK;
|
|
return p;
|
|
}
|
|
|
|
/**
|
|
* Get the canonical decomposition for one code point.
|
|
* @param c code point
|
|
* @param buffer out-only buffer for algorithmic decompositions of Hangul
|
|
* @param length out-only, takes the length of the decomposition, if any
|
|
* @return pointer to decomposition, or 0 if none
|
|
* @internal
|
|
*/
|
|
static const UChar *
|
|
_decompose(UChar32 c, UChar buffer[4], int32_t &length) {
|
|
uint32_t norm32;
|
|
|
|
UTRIE_GET32(&normTrie, c, norm32);
|
|
if(norm32&_NORM_QC_NFD) {
|
|
if(isNorm32HangulOrJamo(norm32)) {
|
|
/* Hangul syllable: decompose algorithmically */
|
|
UChar c2;
|
|
|
|
c-=HANGUL_BASE;
|
|
|
|
c2=(UChar)(c%JAMO_T_COUNT);
|
|
c/=JAMO_T_COUNT;
|
|
if(c2>0) {
|
|
buffer[2]=(UChar)(JAMO_T_BASE+c2);
|
|
length=3;
|
|
} else {
|
|
length=2;
|
|
}
|
|
|
|
buffer[1]=(UChar)(JAMO_V_BASE+c%JAMO_V_COUNT);
|
|
buffer[0]=(UChar)(JAMO_L_BASE+c/JAMO_V_COUNT);
|
|
return buffer;
|
|
} else {
|
|
/* normal decomposition */
|
|
uint8_t cc, trailCC;
|
|
return _decompose(norm32, length, cc, trailCC);
|
|
}
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* get the combining class of (c, c2)=*p++
|
|
* before: p<limit after: p<=limit
|
|
* if only one code unit is used, then c2==0
|
|
*/
|
|
static inline uint8_t
|
|
_getNextCC(const UChar *&p, const UChar *limit, UChar &c, UChar &c2) {
|
|
uint32_t norm32;
|
|
|
|
c=*p++;
|
|
norm32=_getNorm32(c);
|
|
if((norm32&_NORM_CC_MASK)==0) {
|
|
c2=0;
|
|
return 0;
|
|
} else {
|
|
if(!isNorm32LeadSurrogate(norm32)) {
|
|
c2=0;
|
|
} else {
|
|
/* c is a lead surrogate, get the real norm32 */
|
|
if(p!=limit && UTF_IS_SECOND_SURROGATE(c2=*p)) {
|
|
++p;
|
|
norm32=_getNorm32FromSurrogatePair(norm32, c2);
|
|
} else {
|
|
c2=0;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return (uint8_t)(norm32>>_NORM_CC_SHIFT);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* read backwards and get norm32
|
|
* return 0 if the character is <minC
|
|
* if c2!=0 then (c2, c) is a surrogate pair (reversed - c2 is first surrogate but read second!)
|
|
*/
|
|
static inline uint32_t
|
|
_getPrevNorm32(const UChar *start, const UChar *&src,
|
|
uint32_t minC, uint32_t mask,
|
|
UChar &c, UChar &c2) {
|
|
uint32_t norm32;
|
|
|
|
c=*--src;
|
|
c2=0;
|
|
|
|
/* check for a surrogate before getting norm32 to see if we need to predecrement further */
|
|
if(c<minC) {
|
|
return 0;
|
|
} else if(!UTF_IS_SURROGATE(c)) {
|
|
return _getNorm32(c);
|
|
} else if(UTF_IS_SURROGATE_FIRST(c)) {
|
|
/* unpaired first surrogate */
|
|
return 0;
|
|
} else if(src!=start && UTF_IS_FIRST_SURROGATE(c2=*(src-1))) {
|
|
--src;
|
|
norm32=_getNorm32(c2);
|
|
|
|
if((norm32&mask)==0) {
|
|
/* all surrogate pairs with this lead surrogate have only irrelevant data */
|
|
return 0;
|
|
} else {
|
|
/* norm32 must be a surrogate special */
|
|
return _getNorm32FromSurrogatePair(norm32, c);
|
|
}
|
|
} else {
|
|
/* unpaired second surrogate */
|
|
c2=0;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* get the combining class of (c, c2)=*--p
|
|
* before: start<p after: start<=p
|
|
*/
|
|
static inline uint8_t
|
|
_getPrevCC(const UChar *start, const UChar *&p) {
|
|
UChar c, c2;
|
|
|
|
return (uint8_t)(_getPrevNorm32(start, p, _NORM_MIN_WITH_LEAD_CC, _NORM_CC_MASK, c, c2)>>_NORM_CC_SHIFT);
|
|
}
|
|
|
|
/*
|
|
* is this a safe boundary character for NF*D?
|
|
* (lead cc==0)
|
|
*/
|
|
static inline UBool
|
|
_isNFDSafe(uint32_t norm32, uint32_t ccOrQCMask, uint32_t decompQCMask) {
|
|
if((norm32&ccOrQCMask)==0) {
|
|
return TRUE; /* cc==0 and no decomposition: this is NF*D safe */
|
|
}
|
|
|
|
/* inspect its decomposition - maybe a Hangul but not a surrogate here */
|
|
if(isNorm32Regular(norm32) && (norm32&decompQCMask)!=0) {
|
|
int32_t length;
|
|
uint8_t cc, trailCC;
|
|
|
|
/* decomposes, get everything from the variable-length extra data */
|
|
_decompose(norm32, decompQCMask, length, cc, trailCC);
|
|
return cc==0;
|
|
} else {
|
|
/* no decomposition (or Hangul), test the cc directly */
|
|
return (norm32&_NORM_CC_MASK)==0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* is this (or does its decomposition begin with) a "true starter"?
|
|
* (cc==0 and NF*C_YES)
|
|
*/
|
|
static inline UBool
|
|
_isTrueStarter(uint32_t norm32, uint32_t ccOrQCMask, uint32_t decompQCMask) {
|
|
if((norm32&ccOrQCMask)==0) {
|
|
return TRUE; /* this is a true starter (could be Hangul or Jamo L) */
|
|
}
|
|
|
|
/* inspect its decomposition - not a Hangul or a surrogate here */
|
|
if((norm32&decompQCMask)!=0) {
|
|
const UChar *p;
|
|
int32_t length;
|
|
uint8_t cc, trailCC;
|
|
|
|
/* decomposes, get everything from the variable-length extra data */
|
|
p=_decompose(norm32, decompQCMask, length, cc, trailCC);
|
|
if(cc==0) {
|
|
uint32_t qcMask=ccOrQCMask&_NORM_QC_MASK;
|
|
|
|
/* does it begin with NFC_YES? */
|
|
if((_getNorm32(p, qcMask)&qcMask)==0) {
|
|
/* yes, the decomposition begins with a true starter */
|
|
return TRUE;
|
|
}
|
|
}
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
/* uchar.h */
|
|
U_CAPI uint8_t U_EXPORT2
|
|
u_getCombiningClass(UChar32 c) {
|
|
UErrorCode errorCode=U_ZERO_ERROR;
|
|
if(_haveData(errorCode)) {
|
|
uint32_t norm32;
|
|
|
|
UTRIE_GET32(&normTrie, c, norm32);
|
|
return (uint8_t)(norm32>>_NORM_CC_SHIFT);
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
U_CAPI UBool U_EXPORT2
|
|
unorm_internalIsFullCompositionExclusion(UChar32 c) {
|
|
UErrorCode errorCode=U_ZERO_ERROR;
|
|
if(_haveData(errorCode) && formatVersion_2_1) {
|
|
uint16_t aux;
|
|
|
|
UTRIE_GET16(&auxTrie, c, aux);
|
|
return (UBool)((aux&_NORM_AUX_COMP_EX_MASK)!=0);
|
|
} else {
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
U_CAPI UBool U_EXPORT2
|
|
unorm_isCanonSafeStart(UChar32 c) {
|
|
UErrorCode errorCode=U_ZERO_ERROR;
|
|
if(_haveData(errorCode) && formatVersion_2_1) {
|
|
uint16_t aux;
|
|
|
|
UTRIE_GET16(&auxTrie, c, aux);
|
|
return (UBool)((aux&_NORM_AUX_UNSAFE_MASK)==0);
|
|
} else {
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
U_CAPI void U_EXPORT2
|
|
unorm_getUnicodeVersion(UVersionInfo *versionInfo, UErrorCode *pErrorCode){
|
|
if(unorm_haveData(pErrorCode)){
|
|
uprv_memcpy(*versionInfo, dataVersion, 4);
|
|
}
|
|
}
|
|
|
|
|
|
U_CAPI UBool U_EXPORT2
|
|
unorm_getCanonStartSet(UChar32 c, USerializedSet *fillSet) {
|
|
UErrorCode errorCode=U_ZERO_ERROR;
|
|
if( fillSet!=NULL && (uint32_t)c<=0x10ffff &&
|
|
_haveData(errorCode) && canonStartSets!=NULL
|
|
) {
|
|
const uint16_t *table;
|
|
int32_t i, start, limit;
|
|
|
|
/*
|
|
* binary search for c
|
|
*
|
|
* There are two search tables,
|
|
* one for BMP code points and one for supplementary ones.
|
|
* See unormimp.h for details.
|
|
*/
|
|
if(c<=0xffff) {
|
|
table=canonStartSets+canonStartSets[_NORM_SET_INDEX_CANON_SETS_LENGTH];
|
|
start=0;
|
|
limit=canonStartSets[_NORM_SET_INDEX_CANON_BMP_TABLE_LENGTH];
|
|
|
|
/* each entry is a pair { c, result } */
|
|
while(start<limit-2) {
|
|
i=(uint16_t)(((start+limit)/4)*2); /* (start+limit)/2 and address pairs */
|
|
if(c<table[i]) {
|
|
limit=i;
|
|
} else {
|
|
start=i;
|
|
}
|
|
}
|
|
|
|
/* found? */
|
|
if(c==table[start]) {
|
|
i=table[start+1];
|
|
if((i&_NORM_CANON_SET_BMP_MASK)==_NORM_CANON_SET_BMP_IS_INDEX) {
|
|
/* result 01xxxxxx xxxxxx contains index x to a USerializedSet */
|
|
i&=(_NORM_MAX_CANON_SETS-1);
|
|
return uset_getSerializedSet(fillSet,
|
|
canonStartSets+i,
|
|
canonStartSets[_NORM_SET_INDEX_CANON_SETS_LENGTH]-i);
|
|
} else {
|
|
/* other result values are BMP code points for single-code point sets */
|
|
uset_setSerializedToOne(fillSet, (UChar32)i);
|
|
return TRUE;
|
|
}
|
|
}
|
|
} else {
|
|
uint16_t high, low, h;
|
|
|
|
table=canonStartSets+canonStartSets[_NORM_SET_INDEX_CANON_SETS_LENGTH]+
|
|
canonStartSets[_NORM_SET_INDEX_CANON_BMP_TABLE_LENGTH];
|
|
start=0;
|
|
limit=canonStartSets[_NORM_SET_INDEX_CANON_SUPP_TABLE_LENGTH];
|
|
|
|
high=(uint16_t)(c>>16);
|
|
low=(uint16_t)c;
|
|
|
|
/* each entry is a triplet { high(c), low(c), result } */
|
|
while(start<limit-3) {
|
|
i=(uint16_t)(((start+limit)/6)*3); /* (start+limit)/2 and address triplets */
|
|
h=table[i]&0x1f; /* high word */
|
|
if(high<h || (high==h && low<table[i+1])) {
|
|
limit=i;
|
|
} else {
|
|
start=i;
|
|
}
|
|
}
|
|
|
|
/* found? */
|
|
h=table[start];
|
|
if(high==(h&0x1f) && low==table[start+1]) {
|
|
i=table[start+2];
|
|
if((h&0x8000)==0) {
|
|
/* the result is an index to a USerializedSet */
|
|
return uset_getSerializedSet(fillSet,
|
|
canonStartSets+i,
|
|
canonStartSets[_NORM_SET_INDEX_CANON_SETS_LENGTH]-i);
|
|
} else {
|
|
/*
|
|
* single-code point set {x} in
|
|
* triplet { 100xxxxx 000hhhhh llllllll llllllll xxxxxxxx xxxxxxxx }
|
|
*/
|
|
i|=((int32_t)h&0x1f00)<<8; /* add high bits from high(c) */
|
|
uset_setSerializedToOne(fillSet, (UChar32)i);
|
|
return TRUE;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return FALSE; /* not found */
|
|
}
|
|
|
|
U_CAPI int32_t U_EXPORT2
|
|
u_getFC_NFKC_Closure(UChar32 c, UChar *dest, int32_t destCapacity, UErrorCode *pErrorCode) {
|
|
uint16_t aux;
|
|
|
|
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
|
|
return 0;
|
|
}
|
|
if(destCapacity<0 || (dest==NULL && destCapacity>0)) {
|
|
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
|
|
return 0;
|
|
}
|
|
if(!_haveData(*pErrorCode) || !formatVersion_2_1) {
|
|
return 0;
|
|
}
|
|
|
|
UTRIE_GET16(&auxTrie, c, aux);
|
|
aux&=_NORM_AUX_FNC_MASK;
|
|
if(aux!=0) {
|
|
const UChar *s;
|
|
int32_t length;
|
|
|
|
s=(const UChar *)(extraData+aux);
|
|
if(*s<0xff00) {
|
|
/* s points to the single-unit string */
|
|
length=1;
|
|
} else {
|
|
length=*s&0xff;
|
|
++s;
|
|
}
|
|
if(0<length && length<=destCapacity) {
|
|
uprv_memcpy(dest, s, length*U_SIZEOF_UCHAR);
|
|
}
|
|
return u_terminateUChars(dest, destCapacity, length, pErrorCode);
|
|
} else {
|
|
return u_terminateUChars(dest, destCapacity, 0, pErrorCode);
|
|
}
|
|
}
|
|
|
|
/* Is c an NF<mode>-skippable code point? See unormimp.h. */
|
|
U_CAPI UBool U_EXPORT2
|
|
unorm_isNFSkippable(UChar32 c, UNormalizationMode mode) {
|
|
UErrorCode errorCode;
|
|
uint32_t norm32, mask;
|
|
uint16_t aux, fcd;
|
|
|
|
errorCode=U_ZERO_ERROR;
|
|
if(!_haveData(errorCode)) {
|
|
return FALSE;
|
|
}
|
|
|
|
/* handle trivial cases; set the comparison mask for the normal ones */
|
|
switch(mode) {
|
|
case UNORM_NONE:
|
|
return TRUE;
|
|
case UNORM_NFD:
|
|
mask=_NORM_CC_MASK|_NORM_QC_NFD;
|
|
break;
|
|
case UNORM_NFKD:
|
|
mask=_NORM_CC_MASK|_NORM_QC_NFKD;
|
|
break;
|
|
case UNORM_NFC:
|
|
/* case UNORM_FCC: */
|
|
mask=_NORM_CC_MASK|_NORM_COMBINES_ANY|(_NORM_QC_NFC&_NORM_QC_ANY_NO);
|
|
break;
|
|
case UNORM_NFKC:
|
|
mask=_NORM_CC_MASK|_NORM_COMBINES_ANY|(_NORM_QC_NFKC&_NORM_QC_ANY_NO);
|
|
break;
|
|
case UNORM_FCD:
|
|
/* FCD: skippable if lead cc==0 and trail cc<=1 */
|
|
UTRIE_GET16(&fcdTrie, c, fcd);
|
|
return fcd<=1;
|
|
default:
|
|
return FALSE;
|
|
}
|
|
|
|
/* check conditions (a)..(e), see unormimp.h */
|
|
UTRIE_GET32(&normTrie, c, norm32);
|
|
if((norm32&mask)!=0) {
|
|
return FALSE; /* fails (a)..(e), not skippable */
|
|
}
|
|
|
|
if(mode<UNORM_NFC) {
|
|
return TRUE; /* NF*D, passed (a)..(c), is skippable */
|
|
}
|
|
|
|
/* NF*C/FCC, passed (a)..(e) */
|
|
if((norm32&_NORM_QC_NFD)==0) {
|
|
return TRUE; /* no canonical decomposition, is skippable */
|
|
}
|
|
|
|
/* check Hangul syllables algorithmically */
|
|
if(isNorm32HangulOrJamo(norm32)) {
|
|
/* Jamo passed (a)..(e) above, must be Hangul */
|
|
return !isHangulWithoutJamoT((UChar)c); /* LVT are skippable, LV are not */
|
|
}
|
|
|
|
/* if(mode<=UNORM_NFKC) { -- enable when implementing FCC */
|
|
/* NF*C, test (f) flag */
|
|
if(!formatVersion_2_2) {
|
|
return FALSE; /* no (f) data, say not skippable to be safe */
|
|
}
|
|
|
|
UTRIE_GET16(&auxTrie, c, aux);
|
|
return (aux&_NORM_AUX_NFC_SKIP_F_MASK)==0; /* TRUE=skippable if the (f) flag is not set */
|
|
|
|
/* } else { FCC, test fcd<=1 instead of the above } */
|
|
}
|
|
|
|
U_CAPI void U_EXPORT2
|
|
unorm_addPropertyStarts(USetAdder *sa, UErrorCode *pErrorCode) {
|
|
UChar c;
|
|
|
|
if(!_haveData(*pErrorCode)) {
|
|
return;
|
|
}
|
|
|
|
/* add the start code point of each same-value range of each trie */
|
|
utrie_enum(&normTrie, NULL, _enumPropertyStartsRange, sa);
|
|
utrie_enum(&fcdTrie, NULL, _enumPropertyStartsRange, sa);
|
|
if(formatVersion_2_1) {
|
|
utrie_enum(&auxTrie, NULL, _enumPropertyStartsRange, sa);
|
|
}
|
|
|
|
/* add Hangul LV syllables and LV+1 because of skippables */
|
|
for(c=HANGUL_BASE; c<HANGUL_BASE+HANGUL_COUNT; c+=JAMO_T_COUNT) {
|
|
sa->add(sa->set, c);
|
|
sa->add(sa->set, c+1);
|
|
}
|
|
sa->add(sa->set, HANGUL_BASE+HANGUL_COUNT); /* add Hangul+1 to continue with other properties */
|
|
}
|
|
|
|
U_CAPI UNormalizationCheckResult U_EXPORT2
|
|
unorm_getQuickCheck(UChar32 c, UNormalizationMode mode) {
|
|
static const uint32_t qcMask[UNORM_MODE_COUNT]={
|
|
0, 0, _NORM_QC_NFD, _NORM_QC_NFKD, _NORM_QC_NFC, _NORM_QC_NFKC
|
|
};
|
|
|
|
UErrorCode errorCode;
|
|
uint32_t norm32;
|
|
|
|
errorCode=U_ZERO_ERROR;
|
|
if(!_haveData(errorCode)) {
|
|
return UNORM_YES;
|
|
}
|
|
|
|
UTRIE_GET32(&normTrie, c, norm32);
|
|
norm32&=qcMask[mode];
|
|
|
|
if(norm32==0) {
|
|
return UNORM_YES;
|
|
} else if(norm32&_NORM_QC_ANY_NO) {
|
|
return UNORM_NO;
|
|
} else /* _NORM_QC_ANY_MAYBE */ {
|
|
return UNORM_MAYBE;
|
|
}
|
|
}
|
|
|
|
U_CAPI uint16_t U_EXPORT2
|
|
unorm_getFCD16FromCodePoint(UChar32 c) {
|
|
UErrorCode errorCode;
|
|
uint16_t fcd;
|
|
|
|
errorCode=U_ZERO_ERROR;
|
|
if(!_haveData(errorCode)) {
|
|
return 0;
|
|
}
|
|
|
|
UTRIE_GET16(&fcdTrie, c, fcd);
|
|
return fcd;
|
|
}
|
|
|
|
/* reorder UTF-16 in-place -------------------------------------------------- */
|
|
|
|
/*
|
|
* simpler, single-character version of _mergeOrdered() -
|
|
* bubble-insert one single code point into the preceding string
|
|
* which is already canonically ordered
|
|
* (c, c2) may or may not yet have been inserted at [current..p[
|
|
*
|
|
* it must be p=current+lengthof(c, c2) i.e. p=current+(c2==0 ? 1 : 2)
|
|
*
|
|
* before: [start..current[ is already ordered, and
|
|
* [current..p[ may or may not hold (c, c2) but
|
|
* must be exactly the same length as (c, c2)
|
|
* after: [start..p[ is ordered
|
|
*
|
|
* returns the trailing combining class
|
|
*/
|
|
static uint8_t
|
|
_insertOrdered(const UChar *start, UChar *current, UChar *p,
|
|
UChar c, UChar c2, uint8_t cc) {
|
|
const UChar *pBack, *pPreBack;
|
|
UChar *r;
|
|
uint8_t prevCC, trailCC=cc;
|
|
|
|
if(start<current && cc!=0) {
|
|
/* search for the insertion point where cc>=prevCC */
|
|
pPreBack=pBack=current;
|
|
prevCC=_getPrevCC(start, pPreBack);
|
|
if(cc<prevCC) {
|
|
/* this will be the last code point, so keep its cc */
|
|
trailCC=prevCC;
|
|
pBack=pPreBack;
|
|
while(start<pPreBack) {
|
|
prevCC=_getPrevCC(start, pPreBack);
|
|
if(cc>=prevCC) {
|
|
break;
|
|
}
|
|
pBack=pPreBack;
|
|
}
|
|
|
|
/*
|
|
* this is where we are right now with all these pointers:
|
|
* [start..pPreBack[ 0..? code points that we can ignore
|
|
* [pPreBack..pBack[ 0..1 code points with prevCC<=cc
|
|
* [pBack..current[ 0..n code points with >cc, move up to insert (c, c2)
|
|
* [current..p[ 1 code point (c, c2) with cc
|
|
*/
|
|
|
|
/* move the code units in between up */
|
|
r=p;
|
|
do {
|
|
*--r=*--current;
|
|
} while(pBack!=current);
|
|
}
|
|
}
|
|
|
|
/* insert (c, c2) */
|
|
*current=c;
|
|
if(c2!=0) {
|
|
*(current+1)=c2;
|
|
}
|
|
|
|
/* we know the cc of the last code point */
|
|
return trailCC;
|
|
}
|
|
|
|
/*
|
|
* merge two UTF-16 string parts together
|
|
* to canonically order (order by combining classes) their concatenation
|
|
*
|
|
* the two strings may already be adjacent, so that the merging is done in-place
|
|
* if the two strings are not adjacent, then the buffer holding the first one
|
|
* must be large enough
|
|
* the second string may or may not be ordered in itself
|
|
*
|
|
* before: [start..current[ is already ordered, and
|
|
* [next..limit[ may be ordered in itself, but
|
|
* is not in relation to [start..current[
|
|
* after: [start..current+(limit-next)[ is ordered
|
|
*
|
|
* the algorithm is a simple bubble-sort that takes the characters from *next++
|
|
* and inserts them in correct combining class order into the preceding part
|
|
* of the string
|
|
*
|
|
* since this function is called much less often than the single-code point
|
|
* _insertOrdered(), it just uses that for easier maintenance
|
|
* (see file version from before 2001aug31 for a more optimized version)
|
|
*
|
|
* returns the trailing combining class
|
|
*/
|
|
static uint8_t
|
|
_mergeOrdered(UChar *start, UChar *current,
|
|
const UChar *next, const UChar *limit, UBool isOrdered=TRUE) {
|
|
UChar *r;
|
|
UChar c, c2;
|
|
uint8_t cc, trailCC=0;
|
|
UBool adjacent;
|
|
|
|
adjacent= current==next;
|
|
|
|
if(start!=current || !isOrdered) {
|
|
while(next<limit) {
|
|
cc=_getNextCC(next, limit, c, c2);
|
|
if(cc==0) {
|
|
/* does not bubble back */
|
|
trailCC=0;
|
|
if(adjacent) {
|
|
current=(UChar *)next;
|
|
} else {
|
|
*current++=c;
|
|
if(c2!=0) {
|
|
*current++=c2;
|
|
}
|
|
}
|
|
if(isOrdered) {
|
|
break;
|
|
} else {
|
|
start=current;
|
|
}
|
|
} else {
|
|
r=current+(c2==0 ? 1 : 2);
|
|
trailCC=_insertOrdered(start, current, r, c, c2, cc);
|
|
current=r;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(next==limit) {
|
|
/* we know the cc of the last code point */
|
|
return trailCC;
|
|
} else {
|
|
if(!adjacent) {
|
|
/* copy the second string part */
|
|
do {
|
|
*current++=*next++;
|
|
} while(next!=limit);
|
|
limit=current;
|
|
}
|
|
return _getPrevCC(start, limit);
|
|
}
|
|
}
|
|
|
|
/* find the last true starter in [start..src[ and return the pointer to it */
|
|
static const UChar *
|
|
_findPreviousStarter(const UChar *start, const UChar *src,
|
|
uint32_t ccOrQCMask, uint32_t decompQCMask, UChar minNoMaybe) {
|
|
uint32_t norm32;
|
|
UChar c, c2;
|
|
|
|
while(start<src) {
|
|
norm32=_getPrevNorm32(start, src, minNoMaybe, ccOrQCMask|decompQCMask, c, c2);
|
|
if(_isTrueStarter(norm32, ccOrQCMask, decompQCMask)) {
|
|
break;
|
|
}
|
|
}
|
|
return src;
|
|
}
|
|
|
|
/* find the first true starter in [src..limit[ and return the pointer to it */
|
|
static const UChar *
|
|
_findNextStarter(const UChar *src, const UChar *limit,
|
|
uint32_t qcMask, uint32_t decompQCMask, UChar minNoMaybe) {
|
|
const UChar *p;
|
|
uint32_t norm32, ccOrQCMask;
|
|
int32_t length;
|
|
UChar c, c2;
|
|
uint8_t cc, trailCC;
|
|
|
|
ccOrQCMask=_NORM_CC_MASK|qcMask;
|
|
|
|
for(;;) {
|
|
if(src==limit) {
|
|
break; /* end of string */
|
|
}
|
|
c=*src;
|
|
if(c<minNoMaybe) {
|
|
break; /* catches NUL terminater, too */
|
|
}
|
|
|
|
norm32=_getNorm32(c);
|
|
if((norm32&ccOrQCMask)==0) {
|
|
break; /* true starter */
|
|
}
|
|
|
|
if(isNorm32LeadSurrogate(norm32)) {
|
|
/* c is a lead surrogate, get the real norm32 */
|
|
if((src+1)==limit || !UTF_IS_SECOND_SURROGATE(c2=*(src+1))) {
|
|
break; /* unmatched first surrogate: counts as a true starter */
|
|
}
|
|
norm32=_getNorm32FromSurrogatePair(norm32, c2);
|
|
|
|
if((norm32&ccOrQCMask)==0) {
|
|
break; /* true starter */
|
|
}
|
|
} else {
|
|
c2=0;
|
|
}
|
|
|
|
/* (c, c2) is not a true starter but its decomposition may be */
|
|
if(norm32&decompQCMask) {
|
|
/* (c, c2) decomposes, get everything from the variable-length extra data */
|
|
p=_decompose(norm32, decompQCMask, length, cc, trailCC);
|
|
|
|
/* get the first character's norm32 to check if it is a true starter */
|
|
if(cc==0 && (_getNorm32(p, qcMask)&qcMask)==0) {
|
|
break; /* true starter */
|
|
}
|
|
}
|
|
|
|
src+= c2==0 ? 1 : 2; /* not a true starter, continue */
|
|
}
|
|
|
|
return src;
|
|
}
|
|
|
|
/* make NFD & NFKD ---------------------------------------------------------- */
|
|
|
|
U_CAPI int32_t U_EXPORT2
|
|
unorm_getDecomposition(UChar32 c, UBool compat,
|
|
UChar *dest, int32_t destCapacity) {
|
|
UErrorCode errorCode=U_ZERO_ERROR;
|
|
if( (uint32_t)c<=0x10ffff &&
|
|
_haveData(errorCode) &&
|
|
((dest!=NULL && destCapacity>0) || destCapacity==0)
|
|
) {
|
|
uint32_t norm32, qcMask;
|
|
UChar32 minNoMaybe;
|
|
int32_t length;
|
|
|
|
/* initialize */
|
|
if(!compat) {
|
|
minNoMaybe=(UChar32)indexes[_NORM_INDEX_MIN_NFD_NO_MAYBE];
|
|
qcMask=_NORM_QC_NFD;
|
|
} else {
|
|
minNoMaybe=(UChar32)indexes[_NORM_INDEX_MIN_NFKD_NO_MAYBE];
|
|
qcMask=_NORM_QC_NFKD;
|
|
}
|
|
|
|
if(c<minNoMaybe) {
|
|
/* trivial case */
|
|
if(destCapacity>0) {
|
|
dest[0]=(UChar)c;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/* data lookup */
|
|
UTRIE_GET32(&normTrie, c, norm32);
|
|
if((norm32&qcMask)==0) {
|
|
/* simple case: no decomposition */
|
|
if(c<=0xffff) {
|
|
if(destCapacity>0) {
|
|
dest[0]=(UChar)c;
|
|
}
|
|
return -1;
|
|
} else {
|
|
if(destCapacity>=2) {
|
|
dest[0]=UTF16_LEAD(c);
|
|
dest[1]=UTF16_TRAIL(c);
|
|
}
|
|
return -2;
|
|
}
|
|
} else if(isNorm32HangulOrJamo(norm32)) {
|
|
/* Hangul syllable: decompose algorithmically */
|
|
UChar c2;
|
|
|
|
c-=HANGUL_BASE;
|
|
|
|
c2=(UChar)(c%JAMO_T_COUNT);
|
|
c/=JAMO_T_COUNT;
|
|
if(c2>0) {
|
|
if(destCapacity>=3) {
|
|
dest[2]=(UChar)(JAMO_T_BASE+c2);
|
|
}
|
|
length=3;
|
|
} else {
|
|
length=2;
|
|
}
|
|
|
|
if(destCapacity>=2) {
|
|
dest[1]=(UChar)(JAMO_V_BASE+c%JAMO_V_COUNT);
|
|
dest[0]=(UChar)(JAMO_L_BASE+c/JAMO_V_COUNT);
|
|
}
|
|
return length;
|
|
} else {
|
|
/* c decomposes, get everything from the variable-length extra data */
|
|
const UChar *p, *limit;
|
|
uint8_t cc, trailCC;
|
|
|
|
p=_decompose(norm32, qcMask, length, cc, trailCC);
|
|
if(length<=destCapacity) {
|
|
limit=p+length;
|
|
do {
|
|
*dest++=*p++;
|
|
} while(p<limit);
|
|
}
|
|
return length;
|
|
}
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int32_t
|
|
_decompose(UChar *dest, int32_t destCapacity,
|
|
const UChar *src, int32_t srcLength,
|
|
UBool compat, const UnicodeSet *nx,
|
|
uint8_t &outTrailCC) {
|
|
UChar buffer[3];
|
|
const UChar *limit, *prevSrc, *p;
|
|
uint32_t norm32, ccOrQCMask, qcMask;
|
|
int32_t destIndex, reorderStartIndex, length;
|
|
UChar c, c2, minNoMaybe;
|
|
uint8_t cc, prevCC, trailCC;
|
|
|
|
if(!compat) {
|
|
minNoMaybe=(UChar)indexes[_NORM_INDEX_MIN_NFD_NO_MAYBE];
|
|
qcMask=_NORM_QC_NFD;
|
|
} else {
|
|
minNoMaybe=(UChar)indexes[_NORM_INDEX_MIN_NFKD_NO_MAYBE];
|
|
qcMask=_NORM_QC_NFKD;
|
|
}
|
|
|
|
/* initialize */
|
|
ccOrQCMask=_NORM_CC_MASK|qcMask;
|
|
destIndex=reorderStartIndex=0;
|
|
prevCC=0;
|
|
|
|
/* avoid compiler warnings */
|
|
norm32=0;
|
|
c=0;
|
|
|
|
if(srcLength>=0) {
|
|
/* string with length */
|
|
limit=src+srcLength;
|
|
} else /* srcLength==-1 */ {
|
|
/* zero-terminated string */
|
|
limit=NULL;
|
|
}
|
|
|
|
U_ALIGN_CODE(16);
|
|
|
|
for(;;) {
|
|
/* count code units below the minimum or with irrelevant data for the quick check */
|
|
prevSrc=src;
|
|
if(limit==NULL) {
|
|
while((c=*src)<minNoMaybe ? c!=0 : ((norm32=_getNorm32(c))&ccOrQCMask)==0) {
|
|
prevCC=0;
|
|
++src;
|
|
}
|
|
} else {
|
|
while(src!=limit && ((c=*src)<minNoMaybe || ((norm32=_getNorm32(c))&ccOrQCMask)==0)) {
|
|
prevCC=0;
|
|
++src;
|
|
}
|
|
}
|
|
|
|
/* copy these code units all at once */
|
|
if(src!=prevSrc) {
|
|
length=(int32_t)(src-prevSrc);
|
|
if((destIndex+length)<=destCapacity) {
|
|
uprv_memcpy(dest+destIndex, prevSrc, length*U_SIZEOF_UCHAR);
|
|
}
|
|
destIndex+=length;
|
|
reorderStartIndex=destIndex;
|
|
}
|
|
|
|
/* end of source reached? */
|
|
if(limit==NULL ? c==0 : src==limit) {
|
|
break;
|
|
}
|
|
|
|
/* c already contains *src and norm32 is set for it, increment src */
|
|
++src;
|
|
|
|
/* check one above-minimum, relevant code unit */
|
|
/*
|
|
* generally, set p and length to the decomposition string
|
|
* in simple cases, p==NULL and (c, c2) will hold the length code units to append
|
|
* in all cases, set cc to the lead and trailCC to the trail combining class
|
|
*
|
|
* the following merge-sort of the current character into the preceding,
|
|
* canonically ordered result text will use the optimized _insertOrdered()
|
|
* if there is only one single code point to process;
|
|
* this is indicated with p==NULL, and (c, c2) is the character to insert
|
|
* ((c, 0) for a BMP character and (lead surrogate, trail surrogate)
|
|
* for a supplementary character)
|
|
* otherwise, p[length] is merged in with _mergeOrdered()
|
|
*/
|
|
if(isNorm32HangulOrJamo(norm32)) {
|
|
if(nx_contains(nx, c)) {
|
|
c2=0;
|
|
p=NULL;
|
|
length=1;
|
|
} else {
|
|
/* Hangul syllable: decompose algorithmically */
|
|
p=buffer;
|
|
cc=trailCC=0;
|
|
|
|
c-=HANGUL_BASE;
|
|
|
|
c2=(UChar)(c%JAMO_T_COUNT);
|
|
c/=JAMO_T_COUNT;
|
|
if(c2>0) {
|
|
buffer[2]=(UChar)(JAMO_T_BASE+c2);
|
|
length=3;
|
|
} else {
|
|
length=2;
|
|
}
|
|
|
|
buffer[1]=(UChar)(JAMO_V_BASE+c%JAMO_V_COUNT);
|
|
buffer[0]=(UChar)(JAMO_L_BASE+c/JAMO_V_COUNT);
|
|
}
|
|
} else {
|
|
if(isNorm32Regular(norm32)) {
|
|
c2=0;
|
|
length=1;
|
|
} else {
|
|
/* c is a lead surrogate, get the real norm32 */
|
|
if(src!=limit && UTF_IS_SECOND_SURROGATE(c2=*src)) {
|
|
++src;
|
|
length=2;
|
|
norm32=_getNorm32FromSurrogatePair(norm32, c2);
|
|
} else {
|
|
c2=0;
|
|
length=1;
|
|
norm32=0;
|
|
}
|
|
}
|
|
|
|
/* get the decomposition and the lead and trail cc's */
|
|
if(nx_contains(nx, c, c2)) {
|
|
/* excluded: norm32==0 */
|
|
cc=trailCC=0;
|
|
p=NULL;
|
|
} else if((norm32&qcMask)==0) {
|
|
/* c does not decompose */
|
|
cc=trailCC=(uint8_t)(norm32>>_NORM_CC_SHIFT);
|
|
p=NULL;
|
|
} else {
|
|
/* c decomposes, get everything from the variable-length extra data */
|
|
p=_decompose(norm32, qcMask, length, cc, trailCC);
|
|
if(length==1) {
|
|
/* fastpath a single code unit from decomposition */
|
|
c=*p;
|
|
c2=0;
|
|
p=NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* append the decomposition to the destination buffer, assume length>0 */
|
|
if((destIndex+length)<=destCapacity) {
|
|
UChar *reorderSplit=dest+destIndex;
|
|
if(p==NULL) {
|
|
/* fastpath: single code point */
|
|
if(cc!=0 && cc<prevCC) {
|
|
/* (c, c2) is out of order with respect to the preceding text */
|
|
destIndex+=length;
|
|
trailCC=_insertOrdered(dest+reorderStartIndex, reorderSplit, dest+destIndex, c, c2, cc);
|
|
} else {
|
|
/* just append (c, c2) */
|
|
dest[destIndex++]=c;
|
|
if(c2!=0) {
|
|
dest[destIndex++]=c2;
|
|
}
|
|
}
|
|
} else {
|
|
/* general: multiple code points (ordered by themselves) from decomposition */
|
|
if(cc!=0 && cc<prevCC) {
|
|
/* the decomposition is out of order with respect to the preceding text */
|
|
destIndex+=length;
|
|
trailCC=_mergeOrdered(dest+reorderStartIndex, reorderSplit, p, p+length);
|
|
} else {
|
|
/* just append the decomposition */
|
|
do {
|
|
dest[destIndex++]=*p++;
|
|
} while(--length>0);
|
|
}
|
|
}
|
|
} else {
|
|
/* buffer overflow */
|
|
/* keep incrementing the destIndex for preflighting */
|
|
destIndex+=length;
|
|
}
|
|
|
|
prevCC=trailCC;
|
|
if(prevCC==0) {
|
|
reorderStartIndex=destIndex;
|
|
}
|
|
}
|
|
|
|
outTrailCC=prevCC;
|
|
return destIndex;
|
|
}
|
|
|
|
U_CAPI int32_t U_EXPORT2
|
|
unorm_decompose(UChar *dest, int32_t destCapacity,
|
|
const UChar *src, int32_t srcLength,
|
|
UBool compat, int32_t options,
|
|
UErrorCode *pErrorCode) {
|
|
const UnicodeSet *nx;
|
|
int32_t destIndex;
|
|
uint8_t trailCC;
|
|
|
|
if(!_haveData(*pErrorCode)) {
|
|
return 0;
|
|
}
|
|
|
|
nx=getNX(options, *pErrorCode);
|
|
if(U_FAILURE(*pErrorCode)) {
|
|
return 0;
|
|
}
|
|
|
|
destIndex=_decompose(dest, destCapacity,
|
|
src, srcLength,
|
|
compat, nx,
|
|
trailCC);
|
|
|
|
return u_terminateUChars(dest, destCapacity, destIndex, pErrorCode);
|
|
}
|
|
|
|
/* make NFC & NFKC ---------------------------------------------------------- */
|
|
|
|
/* get the composition properties of the next character */
|
|
static inline uint32_t
|
|
_getNextCombining(UChar *&p, const UChar *limit,
|
|
UChar &c, UChar &c2,
|
|
uint16_t &combiningIndex, uint8_t &cc,
|
|
const UnicodeSet *nx) {
|
|
uint32_t norm32, combineFlags;
|
|
|
|
/* get properties */
|
|
c=*p++;
|
|
norm32=_getNorm32(c);
|
|
|
|
/* preset output values for most characters */
|
|
c2=0;
|
|
combiningIndex=0;
|
|
cc=0;
|
|
|
|
if((norm32&(_NORM_CC_MASK|_NORM_COMBINES_ANY))==0) {
|
|
return 0;
|
|
} else {
|
|
if(isNorm32Regular(norm32)) {
|
|
/* set cc etc. below */
|
|
} else if(isNorm32HangulOrJamo(norm32)) {
|
|
/* a compatibility decomposition contained Jamos */
|
|
combiningIndex=(uint16_t)(0xfff0|(norm32>>_NORM_EXTRA_SHIFT));
|
|
return norm32&_NORM_COMBINES_ANY;
|
|
} else {
|
|
/* c is a lead surrogate, get the real norm32 */
|
|
if(p!=limit && UTF_IS_SECOND_SURROGATE(c2=*p)) {
|
|
++p;
|
|
norm32=_getNorm32FromSurrogatePair(norm32, c2);
|
|
} else {
|
|
c2=0;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if(nx_contains(nx, c, c2)) {
|
|
return 0; /* excluded: norm32==0 */
|
|
}
|
|
|
|
cc=(uint8_t)(norm32>>_NORM_CC_SHIFT);
|
|
|
|
combineFlags=norm32&_NORM_COMBINES_ANY;
|
|
if(combineFlags!=0) {
|
|
combiningIndex=*(_getExtraData(norm32)-1);
|
|
}
|
|
return combineFlags;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* given a composition-result starter (c, c2) - which means its cc==0,
|
|
* it combines forward, it has extra data, its norm32!=0,
|
|
* it is not a Hangul or Jamo,
|
|
* get just its combineFwdIndex
|
|
*
|
|
* norm32(c) is special if and only if c2!=0
|
|
*/
|
|
static inline uint16_t
|
|
_getCombiningIndexFromStarter(UChar c, UChar c2) {
|
|
uint32_t norm32;
|
|
|
|
norm32=_getNorm32(c);
|
|
if(c2!=0) {
|
|
norm32=_getNorm32FromSurrogatePair(norm32, c2);
|
|
}
|
|
return *(_getExtraData(norm32)-1);
|
|
}
|
|
|
|
/*
|
|
* Find the recomposition result for
|
|
* a forward-combining character
|
|
* (specified with a pointer to its part of the combiningTable[])
|
|
* and a backward-combining character
|
|
* (specified with its combineBackIndex).
|
|
*
|
|
* If these two characters combine, then set (value, value2)
|
|
* with the code unit(s) of the composition character.
|
|
*
|
|
* Return value:
|
|
* 0 do not combine
|
|
* 1 combine
|
|
* >1 combine, and the composition is a forward-combining starter
|
|
*
|
|
* See unormimp.h for a description of the composition table format.
|
|
*/
|
|
static inline uint16_t
|
|
_combine(const uint16_t *table, uint16_t combineBackIndex,
|
|
uint16_t &value, uint16_t &value2) {
|
|
uint16_t key;
|
|
|
|
/* search in the starter's composition table */
|
|
for(;;) {
|
|
key=*table++;
|
|
if(key>=combineBackIndex) {
|
|
break;
|
|
}
|
|
table+= *table&0x8000 ? 2 : 1;
|
|
}
|
|
|
|
/* mask off bit 15, the last-entry-in-the-list flag */
|
|
if((key&0x7fff)==combineBackIndex) {
|
|
/* found! combine! */
|
|
value=*table;
|
|
|
|
/* is the composition a starter that combines forward? */
|
|
key=(uint16_t)((value&0x2000)+1);
|
|
|
|
/* get the composition result code point from the variable-length result value */
|
|
if(value&0x8000) {
|
|
if(value&0x4000) {
|
|
/* surrogate pair composition result */
|
|
value=(uint16_t)((value&0x3ff)|0xd800);
|
|
value2=*(table+1);
|
|
} else {
|
|
/* BMP composition result U+2000..U+ffff */
|
|
value=*(table+1);
|
|
value2=0;
|
|
}
|
|
} else {
|
|
/* BMP composition result U+0000..U+1fff */
|
|
value&=0x1fff;
|
|
value2=0;
|
|
}
|
|
|
|
return key;
|
|
} else {
|
|
/* not found */
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static inline UBool
|
|
_composeHangul(UChar prev, UChar c, uint32_t norm32, const UChar *&src, const UChar *limit,
|
|
UBool compat, UChar *dest, const UnicodeSet *nx) {
|
|
if(isJamoVTNorm32JamoV(norm32)) {
|
|
/* c is a Jamo V, compose with previous Jamo L and following Jamo T */
|
|
prev=(UChar)(prev-JAMO_L_BASE);
|
|
if(prev<JAMO_L_COUNT) {
|
|
c=(UChar)(HANGUL_BASE+(prev*JAMO_V_COUNT+(c-JAMO_V_BASE))*JAMO_T_COUNT);
|
|
|
|
/* check if the next character is a Jamo T (normal or compatibility) */
|
|
if(src!=limit) {
|
|
UChar next, t;
|
|
|
|
next=*src;
|
|
if((t=(UChar)(next-JAMO_T_BASE))<JAMO_T_COUNT) {
|
|
/* normal Jamo T */
|
|
++src;
|
|
c+=t;
|
|
} else if(compat) {
|
|
/* if NFKC, then check for compatibility Jamo T (BMP only) */
|
|
norm32=_getNorm32(next);
|
|
if(isNorm32Regular(norm32) && (norm32&_NORM_QC_NFKD)) {
|
|
const UChar *p;
|
|
int32_t length;
|
|
uint8_t cc, trailCC;
|
|
|
|
p=_decompose(norm32, _NORM_QC_NFKD, length, cc, trailCC);
|
|
if(length==1 && (t=(UChar)(*p-JAMO_T_BASE))<JAMO_T_COUNT) {
|
|
/* compatibility Jamo T */
|
|
++src;
|
|
c+=t;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if(nx_contains(nx, c)) {
|
|
if(!isHangulWithoutJamoT(c)) {
|
|
--src; /* undo ++src from reading the Jamo T */
|
|
}
|
|
return FALSE;
|
|
}
|
|
if(dest!=0) {
|
|
*dest=c;
|
|
}
|
|
return TRUE;
|
|
}
|
|
} else if(isHangulWithoutJamoT(prev)) {
|
|
/* c is a Jamo T, compose with previous Hangul LV that does not contain a Jamo T */
|
|
c=(UChar)(prev+(c-JAMO_T_BASE));
|
|
if(nx_contains(nx, c)) {
|
|
return FALSE;
|
|
}
|
|
if(dest!=0) {
|
|
*dest=c;
|
|
}
|
|
return TRUE;
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
/*
|
|
* recompose the characters in [p..limit[
|
|
* (which is in NFD - decomposed and canonically ordered),
|
|
* adjust limit, and return the trailing cc
|
|
*
|
|
* since for NFKC we may get Jamos in decompositions, we need to
|
|
* recompose those too
|
|
*
|
|
* note that recomposition never lengthens the text:
|
|
* any character consists of either one or two code units;
|
|
* a composition may contain at most one more code unit than the original starter,
|
|
* while the combining mark that is removed has at least one code unit
|
|
*/
|
|
static uint8_t
|
|
_recompose(UChar *p, UChar *&limit, int32_t options, const UnicodeSet *nx) {
|
|
UChar *starter, *pRemove, *q, *r;
|
|
uint32_t combineFlags;
|
|
UChar c, c2;
|
|
uint16_t combineFwdIndex, combineBackIndex;
|
|
uint16_t result, value, value2;
|
|
uint8_t cc, prevCC;
|
|
UBool starterIsSupplementary;
|
|
|
|
starter=NULL; /* no starter */
|
|
combineFwdIndex=0; /* will not be used until starter!=NULL - avoid compiler warnings */
|
|
combineBackIndex=0; /* will always be set if combineFlags!=0 - avoid compiler warnings */
|
|
value=value2=0; /* always set by _combine() before used - avoid compiler warnings */
|
|
starterIsSupplementary=FALSE; /* will not be used until starter!=NULL - avoid compiler warnings */
|
|
prevCC=0;
|
|
|
|
for(;;) {
|
|
combineFlags=_getNextCombining(p, limit, c, c2, combineBackIndex, cc, nx);
|
|
if((combineFlags&_NORM_COMBINES_BACK) && starter!=NULL) {
|
|
if(combineBackIndex&0x8000) {
|
|
/* c is a Jamo V/T, see if we can compose it with the previous character */
|
|
/* for the PRI #29 fix, check that there is no intervening combining mark */
|
|
if((options&UNORM_BEFORE_PRI_29) || prevCC==0) {
|
|
pRemove=NULL; /* NULL while no Hangul composition */
|
|
combineFlags=0;
|
|
c2=*starter;
|
|
if(combineBackIndex==0xfff2) {
|
|
/* Jamo V, compose with previous Jamo L and following Jamo T */
|
|
c2=(UChar)(c2-JAMO_L_BASE);
|
|
if(c2<JAMO_L_COUNT) {
|
|
pRemove=p-1;
|
|
c=(UChar)(HANGUL_BASE+(c2*JAMO_V_COUNT+(c-JAMO_V_BASE))*JAMO_T_COUNT);
|
|
if(p!=limit && (c2=(UChar)(*p-JAMO_T_BASE))<JAMO_T_COUNT) {
|
|
++p;
|
|
c+=c2;
|
|
} else {
|
|
/* the result is an LV syllable, which is a starter (unlike LVT) */
|
|
combineFlags=_NORM_COMBINES_FWD;
|
|
}
|
|
if(!nx_contains(nx, c)) {
|
|
*starter=c;
|
|
} else {
|
|
/* excluded */
|
|
if(!isHangulWithoutJamoT(c)) {
|
|
--p; /* undo the ++p from reading the Jamo T */
|
|
}
|
|
/* c is modified but not used any more -- c=*(p-1); -- re-read the Jamo V/T */
|
|
pRemove=NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Normally, the following can not occur:
|
|
* Since the input is in NFD, there are no Hangul LV syllables that
|
|
* a Jamo T could combine with.
|
|
* All Jamo Ts are combined above when handling Jamo Vs.
|
|
*
|
|
* However, before the PRI #29 fix, this can occur due to
|
|
* an intervening combining mark between the Hangul LV and the Jamo T.
|
|
*/
|
|
} else {
|
|
/* Jamo T, compose with previous Hangul that does not have a Jamo T */
|
|
if(isHangulWithoutJamoT(c2)) {
|
|
c2+=(UChar)(c-JAMO_T_BASE);
|
|
if(!nx_contains(nx, c2)) {
|
|
pRemove=p-1;
|
|
*starter=c2;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(pRemove!=NULL) {
|
|
/* remove the Jamo(s) */
|
|
q=pRemove;
|
|
r=p;
|
|
while(r<limit) {
|
|
*q++=*r++;
|
|
}
|
|
p=pRemove;
|
|
limit=q;
|
|
}
|
|
|
|
c2=0; /* c2 held *starter temporarily */
|
|
|
|
if(combineFlags!=0) {
|
|
/*
|
|
* not starter=NULL because the composition is a Hangul LV syllable
|
|
* and might combine once more (but only before the PRI #29 fix)
|
|
*/
|
|
|
|
/* done? */
|
|
if(p==limit) {
|
|
return prevCC;
|
|
}
|
|
|
|
/* the composition is a Hangul LV syllable which is a starter that combines forward */
|
|
combineFwdIndex=0xfff0;
|
|
|
|
/* we combined; continue with looking for compositions */
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* now: cc==0 and the combining index does not include "forward" ->
|
|
* the rest of the loop body will reset starter to NULL;
|
|
* technically, a composed Hangul syllable is a starter, but it
|
|
* does not combine forward now that we have consumed all eligible Jamos;
|
|
* for Jamo V/T, combineFlags does not contain _NORM_COMBINES_FWD
|
|
*/
|
|
|
|
} else if(
|
|
/* the starter is not a Hangul LV or Jamo V/T and */
|
|
!(combineFwdIndex&0x8000) &&
|
|
/* the combining mark is not blocked and */
|
|
((options&UNORM_BEFORE_PRI_29) ?
|
|
(prevCC!=cc || prevCC==0) :
|
|
(prevCC<cc || prevCC==0)) &&
|
|
/* the starter and the combining mark (c, c2) do combine and */
|
|
0!=(result=_combine(combiningTable+combineFwdIndex, combineBackIndex, value, value2)) &&
|
|
/* the composition result is not excluded */
|
|
!nx_contains(nx, value, value2)
|
|
) {
|
|
/* replace the starter with the composition, remove the combining mark */
|
|
pRemove= c2==0 ? p-1 : p-2; /* pointer to the combining mark */
|
|
|
|
/* replace the starter with the composition */
|
|
*starter=(UChar)value;
|
|
if(starterIsSupplementary) {
|
|
if(value2!=0) {
|
|
/* both are supplementary */
|
|
*(starter+1)=(UChar)value2;
|
|
} else {
|
|
/* the composition is shorter than the starter, move the intermediate characters forward one */
|
|
starterIsSupplementary=FALSE;
|
|
q=starter+1;
|
|
r=q+1;
|
|
while(r<pRemove) {
|
|
*q++=*r++;
|
|
}
|
|
--pRemove;
|
|
}
|
|
} else if(value2!=0) {
|
|
/* the composition is longer than the starter, move the intermediate characters back one */
|
|
starterIsSupplementary=TRUE;
|
|
++starter; /* temporarily increment for the loop boundary */
|
|
q=pRemove;
|
|
r=++pRemove;
|
|
while(starter<q) {
|
|
*--r=*--q;
|
|
}
|
|
*starter=(UChar)value2;
|
|
--starter; /* undo the temporary increment */
|
|
/* } else { both are on the BMP, nothing more to do */
|
|
}
|
|
|
|
/* remove the combining mark by moving the following text over it */
|
|
if(pRemove<p) {
|
|
q=pRemove;
|
|
r=p;
|
|
while(r<limit) {
|
|
*q++=*r++;
|
|
}
|
|
p=pRemove;
|
|
limit=q;
|
|
}
|
|
|
|
/* keep prevCC because we removed the combining mark */
|
|
|
|
/* done? */
|
|
if(p==limit) {
|
|
return prevCC;
|
|
}
|
|
|
|
/* is the composition a starter that combines forward? */
|
|
if(result>1) {
|
|
combineFwdIndex=_getCombiningIndexFromStarter((UChar)value, (UChar)value2);
|
|
} else {
|
|
starter=NULL;
|
|
}
|
|
|
|
/* we combined; continue with looking for compositions */
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* no combination this time */
|
|
prevCC=cc;
|
|
if(p==limit) {
|
|
return prevCC;
|
|
}
|
|
|
|
/* if (c, c2) did not combine, then check if it is a starter */
|
|
if(cc==0) {
|
|
/* found a new starter; combineFlags==0 if (c, c2) is excluded */
|
|
if(combineFlags&_NORM_COMBINES_FWD) {
|
|
/* it may combine with something, prepare for it */
|
|
if(c2==0) {
|
|
starterIsSupplementary=FALSE;
|
|
starter=p-1;
|
|
} else {
|
|
starterIsSupplementary=TRUE;
|
|
starter=p-2;
|
|
}
|
|
combineFwdIndex=combineBackIndex;
|
|
} else {
|
|
/* it will not combine with anything */
|
|
starter=NULL;
|
|
}
|
|
} else if(options&_NORM_OPTIONS_COMPOSE_CONTIGUOUS) {
|
|
/* FCC: no discontiguous compositions; any intervening character blocks */
|
|
starter=NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* decompose and recompose [prevStarter..src[ */
|
|
static const UChar *
|
|
_composePart(UChar *stackBuffer, UChar *&buffer, int32_t &bufferCapacity, int32_t &length,
|
|
const UChar *prevStarter, const UChar *src,
|
|
uint8_t &prevCC,
|
|
int32_t options, const UnicodeSet *nx,
|
|
UErrorCode *pErrorCode) {
|
|
UChar *recomposeLimit;
|
|
uint8_t trailCC;
|
|
UBool compat;
|
|
|
|
compat=(UBool)((options&_NORM_OPTIONS_COMPAT)!=0);
|
|
|
|
/* decompose [prevStarter..src[ */
|
|
length=_decompose(buffer, bufferCapacity,
|
|
prevStarter, src-prevStarter,
|
|
compat, nx,
|
|
trailCC);
|
|
if(length>bufferCapacity) {
|
|
if(!u_growBufferFromStatic(stackBuffer, &buffer, &bufferCapacity, 2*length, 0)) {
|
|
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
|
|
return NULL;
|
|
}
|
|
length=_decompose(buffer, bufferCapacity,
|
|
prevStarter, src-prevStarter,
|
|
compat, nx,
|
|
trailCC);
|
|
}
|
|
|
|
/* recompose the decomposition */
|
|
recomposeLimit=buffer+length;
|
|
if(length>=2) {
|
|
prevCC=_recompose(buffer, recomposeLimit, options, nx);
|
|
}
|
|
|
|
/* return with a pointer to the recomposition and its length */
|
|
length=recomposeLimit-buffer;
|
|
return buffer;
|
|
}
|
|
|
|
static int32_t
|
|
_compose(UChar *dest, int32_t destCapacity,
|
|
const UChar *src, int32_t srcLength,
|
|
int32_t options, const UnicodeSet *nx,
|
|
UErrorCode *pErrorCode) {
|
|
UChar stackBuffer[_STACK_BUFFER_CAPACITY];
|
|
UChar *buffer;
|
|
int32_t bufferCapacity;
|
|
|
|
const UChar *limit, *prevSrc, *prevStarter;
|
|
uint32_t norm32, ccOrQCMask, qcMask;
|
|
int32_t destIndex, reorderStartIndex, length;
|
|
UChar c, c2, minNoMaybe;
|
|
uint8_t cc, prevCC;
|
|
|
|
if(options&_NORM_OPTIONS_COMPAT) {
|
|
minNoMaybe=(UChar)indexes[_NORM_INDEX_MIN_NFKC_NO_MAYBE];
|
|
qcMask=_NORM_QC_NFKC;
|
|
} else {
|
|
minNoMaybe=(UChar)indexes[_NORM_INDEX_MIN_NFC_NO_MAYBE];
|
|
qcMask=_NORM_QC_NFC;
|
|
}
|
|
|
|
/* initialize */
|
|
buffer=stackBuffer;
|
|
bufferCapacity=_STACK_BUFFER_CAPACITY;
|
|
|
|
/*
|
|
* prevStarter points to the last character before the current one
|
|
* that is a "true" starter with cc==0 and quick check "yes".
|
|
*
|
|
* prevStarter will be used instead of looking for a true starter
|
|
* while incrementally decomposing [prevStarter..prevSrc[
|
|
* in _composePart(). Having a good prevStarter allows to just decompose
|
|
* the entire [prevStarter..prevSrc[.
|
|
*
|
|
* When _composePart() backs out from prevSrc back to prevStarter,
|
|
* then it also backs out destIndex by the same amount.
|
|
* Therefore, at all times, the (prevSrc-prevStarter) source units
|
|
* must correspond 1:1 to destination units counted with destIndex,
|
|
* except for reordering.
|
|
* This is true for the qc "yes" characters copied in the fast loop,
|
|
* and for pure reordering.
|
|
* prevStarter must be set forward to src when this is not true:
|
|
* In _composePart() and after composing a Hangul syllable.
|
|
*
|
|
* This mechanism relies on the assumption that the decomposition of a true starter
|
|
* also begins with a true starter. gennorm/store.c checks for this.
|
|
*/
|
|
prevStarter=src;
|
|
|
|
ccOrQCMask=_NORM_CC_MASK|qcMask;
|
|
destIndex=reorderStartIndex=0;
|
|
prevCC=0;
|
|
|
|
/* avoid compiler warnings */
|
|
norm32=0;
|
|
c=0;
|
|
|
|
if(srcLength>=0) {
|
|
/* string with length */
|
|
limit=src+srcLength;
|
|
} else /* srcLength==-1 */ {
|
|
/* zero-terminated string */
|
|
limit=NULL;
|
|
}
|
|
|
|
U_ALIGN_CODE(16);
|
|
|
|
for(;;) {
|
|
/* count code units below the minimum or with irrelevant data for the quick check */
|
|
prevSrc=src;
|
|
if(limit==NULL) {
|
|
while((c=*src)<minNoMaybe ? c!=0 : ((norm32=_getNorm32(c))&ccOrQCMask)==0) {
|
|
prevCC=0;
|
|
++src;
|
|
}
|
|
} else {
|
|
while(src!=limit && ((c=*src)<minNoMaybe || ((norm32=_getNorm32(c))&ccOrQCMask)==0)) {
|
|
prevCC=0;
|
|
++src;
|
|
}
|
|
}
|
|
|
|
/* copy these code units all at once */
|
|
if(src!=prevSrc) {
|
|
length=(int32_t)(src-prevSrc);
|
|
if((destIndex+length)<=destCapacity) {
|
|
uprv_memcpy(dest+destIndex, prevSrc, length*U_SIZEOF_UCHAR);
|
|
}
|
|
destIndex+=length;
|
|
reorderStartIndex=destIndex;
|
|
|
|
/* set prevStarter to the last character in the quick check loop */
|
|
prevStarter=src-1;
|
|
if(UTF_IS_SECOND_SURROGATE(*prevStarter) && prevSrc<prevStarter && UTF_IS_FIRST_SURROGATE(*(prevStarter-1))) {
|
|
--prevStarter;
|
|
}
|
|
|
|
prevSrc=src;
|
|
}
|
|
|
|
/* end of source reached? */
|
|
if(limit==NULL ? c==0 : src==limit) {
|
|
break;
|
|
}
|
|
|
|
/* c already contains *src and norm32 is set for it, increment src */
|
|
++src;
|
|
|
|
/*
|
|
* source buffer pointers:
|
|
*
|
|
* all done quick check current char not yet
|
|
* "yes" but (c, c2) processed
|
|
* may combine
|
|
* forward
|
|
* [-------------[-------------[-------------[-------------[
|
|
* | | | | |
|
|
* start prevStarter prevSrc src limit
|
|
*
|
|
*
|
|
* destination buffer pointers and indexes:
|
|
*
|
|
* all done might take not filled yet
|
|
* characters for
|
|
* reordering
|
|
* [-------------[-------------[-------------[
|
|
* | | | |
|
|
* dest reorderStartIndex destIndex destCapacity
|
|
*/
|
|
|
|
/* check one above-minimum, relevant code unit */
|
|
/*
|
|
* norm32 is for c=*(src-1), and the quick check flag is "no" or "maybe", and/or cc!=0
|
|
* check for Jamo V/T, then for surrogates and regular characters
|
|
* c is not a Hangul syllable or Jamo L because
|
|
* they are not marked with no/maybe for NFC & NFKC (and their cc==0)
|
|
*/
|
|
if(isNorm32HangulOrJamo(norm32)) {
|
|
/*
|
|
* c is a Jamo V/T:
|
|
* try to compose with the previous character, Jamo V also with a following Jamo T,
|
|
* and set values here right now in case we just continue with the main loop
|
|
*/
|
|
prevCC=cc=0;
|
|
reorderStartIndex=destIndex;
|
|
|
|
if(
|
|
destIndex>0 &&
|
|
_composeHangul(
|
|
*(prevSrc-1), c, norm32, src, limit, (UBool)((options&_NORM_OPTIONS_COMPAT)!=0),
|
|
destIndex<=destCapacity ? dest+(destIndex-1) : 0,
|
|
nx)
|
|
) {
|
|
prevStarter=src;
|
|
continue;
|
|
}
|
|
|
|
/* the Jamo V/T did not compose into a Hangul syllable, just append to dest */
|
|
c2=0;
|
|
length=1;
|
|
prevStarter=prevSrc;
|
|
} else {
|
|
if(isNorm32Regular(norm32)) {
|
|
c2=0;
|
|
length=1;
|
|
} else {
|
|
/* c is a lead surrogate, get the real norm32 */
|
|
if(src!=limit && UTF_IS_SECOND_SURROGATE(c2=*src)) {
|
|
++src;
|
|
length=2;
|
|
norm32=_getNorm32FromSurrogatePair(norm32, c2);
|
|
} else {
|
|
/* c is an unpaired lead surrogate, nothing to do */
|
|
c2=0;
|
|
length=1;
|
|
norm32=0;
|
|
}
|
|
}
|
|
|
|
/* we are looking at the character (c, c2) at [prevSrc..src[ */
|
|
if(nx_contains(nx, c, c2)) {
|
|
/* excluded: norm32==0 */
|
|
cc=0;
|
|
} else if((norm32&qcMask)==0) {
|
|
cc=(uint8_t)(norm32>>_NORM_CC_SHIFT);
|
|
} else {
|
|
const UChar *p;
|
|
uint32_t decompQCMask;
|
|
|
|
/*
|
|
* find appropriate boundaries around this character,
|
|
* decompose the source text from between the boundaries,
|
|
* and recompose it
|
|
*
|
|
* this puts the intermediate text into the side buffer because
|
|
* it might be longer than the recomposition end result,
|
|
* or the destination buffer may be too short or missing
|
|
*
|
|
* note that destIndex may be adjusted backwards to account
|
|
* for source text that passed the quick check but needed to
|
|
* take part in the recomposition
|
|
*/
|
|
decompQCMask=(qcMask<<2)&0xf; /* decomposition quick check mask */
|
|
|
|
/*
|
|
* find the last true starter in [prevStarter..src[
|
|
* it is either the decomposition of the current character (at prevSrc),
|
|
* or prevStarter
|
|
*/
|
|
if(_isTrueStarter(norm32, ccOrQCMask, decompQCMask)) {
|
|
prevStarter=prevSrc;
|
|
} else {
|
|
/* adjust destIndex: back out what had been copied with qc "yes" */
|
|
destIndex-=(int32_t)(prevSrc-prevStarter);
|
|
}
|
|
|
|
/* find the next true starter in [src..limit[ - modifies src to point to the next starter */
|
|
src=_findNextStarter(src, limit, qcMask, decompQCMask, minNoMaybe);
|
|
|
|
/* compose [prevStarter..src[ */
|
|
p=_composePart(stackBuffer, buffer, bufferCapacity,
|
|
length, /* output */
|
|
prevStarter, src,
|
|
prevCC, /* output */
|
|
options, nx,
|
|
pErrorCode);
|
|
|
|
if(p==NULL) {
|
|
destIndex=0; /* an error occurred (out of memory) */
|
|
break;
|
|
}
|
|
|
|
/* append the recomposed buffer contents to the destination buffer */
|
|
if((destIndex+length)<=destCapacity) {
|
|
while(length>0) {
|
|
dest[destIndex++]=*p++;
|
|
--length;
|
|
}
|
|
} else {
|
|
/* buffer overflow */
|
|
/* keep incrementing the destIndex for preflighting */
|
|
destIndex+=length;
|
|
}
|
|
|
|
/* set the next starter */
|
|
prevStarter=src;
|
|
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* append the single code point (c, c2) to the destination buffer */
|
|
if((destIndex+length)<=destCapacity) {
|
|
if(cc!=0 && cc<prevCC) {
|
|
/* (c, c2) is out of order with respect to the preceding text */
|
|
UChar *reorderSplit=dest+destIndex;
|
|
destIndex+=length;
|
|
prevCC=_insertOrdered(dest+reorderStartIndex, reorderSplit, dest+destIndex, c, c2, cc);
|
|
} else {
|
|
/* just append (c, c2) */
|
|
dest[destIndex++]=c;
|
|
if(c2!=0) {
|
|
dest[destIndex++]=c2;
|
|
}
|
|
prevCC=cc;
|
|
}
|
|
} else {
|
|
/* buffer overflow */
|
|
/* keep incrementing the destIndex for preflighting */
|
|
destIndex+=length;
|
|
prevCC=cc;
|
|
}
|
|
}
|
|
|
|
/* cleanup */
|
|
if(buffer!=stackBuffer) {
|
|
uprv_free(buffer);
|
|
}
|
|
|
|
return destIndex;
|
|
}
|
|
|
|
U_CAPI int32_t U_EXPORT2
|
|
unorm_compose(UChar *dest, int32_t destCapacity,
|
|
const UChar *src, int32_t srcLength,
|
|
UBool compat, int32_t options,
|
|
UErrorCode *pErrorCode) {
|
|
const UnicodeSet *nx;
|
|
int32_t destIndex;
|
|
|
|
if(!_haveData(*pErrorCode)) {
|
|
return 0;
|
|
}
|
|
|
|
nx=getNX(options, *pErrorCode);
|
|
if(U_FAILURE(*pErrorCode)) {
|
|
return 0;
|
|
}
|
|
|
|
/* reset options bits that should only be set here or inside _compose() */
|
|
options&=~(_NORM_OPTIONS_SETS_MASK|_NORM_OPTIONS_COMPAT|_NORM_OPTIONS_COMPOSE_CONTIGUOUS);
|
|
|
|
if(compat) {
|
|
options|=_NORM_OPTIONS_COMPAT;
|
|
}
|
|
|
|
destIndex=_compose(dest, destCapacity,
|
|
src, srcLength,
|
|
options, nx,
|
|
pErrorCode);
|
|
|
|
return u_terminateUChars(dest, destCapacity, destIndex, pErrorCode);
|
|
}
|
|
|
|
/* make FCD ----------------------------------------------------------------- */
|
|
|
|
static const UChar *
|
|
_findSafeFCD(const UChar *src, const UChar *limit, uint16_t fcd16) {
|
|
UChar c, c2;
|
|
|
|
/*
|
|
* find the first position in [src..limit[ after some cc==0 according to FCD data
|
|
*
|
|
* at the beginning of the loop, we have fcd16 from before src
|
|
*
|
|
* stop at positions:
|
|
* - after trail cc==0
|
|
* - at the end of the source
|
|
* - before lead cc==0
|
|
*/
|
|
for(;;) {
|
|
/* stop if trail cc==0 for the previous character */
|
|
if((fcd16&0xff)==0) {
|
|
break;
|
|
}
|
|
|
|
/* get c=*src - stop at end of string */
|
|
if(src==limit) {
|
|
break;
|
|
}
|
|
c=*src;
|
|
|
|
/* stop if lead cc==0 for this character */
|
|
if(c<_NORM_MIN_WITH_LEAD_CC || (fcd16=_getFCD16(c))==0) {
|
|
break; /* catches terminating NUL, too */
|
|
}
|
|
|
|
if(!UTF_IS_FIRST_SURROGATE(c)) {
|
|
if(fcd16<=0xff) {
|
|
break;
|
|
}
|
|
++src;
|
|
} else if((src+1)!=limit && (c2=*(src+1), UTF_IS_SECOND_SURROGATE(c2))) {
|
|
/* c is a lead surrogate, get the real fcd16 */
|
|
fcd16=_getFCD16FromSurrogatePair(fcd16, c2);
|
|
if(fcd16<=0xff) {
|
|
break;
|
|
}
|
|
src+=2;
|
|
} else {
|
|
/* c is an unpaired first surrogate, lead cc==0 */
|
|
break;
|
|
}
|
|
}
|
|
|
|
return src;
|
|
}
|
|
|
|
static uint8_t
|
|
_decomposeFCD(const UChar *src, const UChar *decompLimit,
|
|
UChar *dest, int32_t &destIndex, int32_t destCapacity,
|
|
const UnicodeSet *nx) {
|
|
const UChar *p;
|
|
uint32_t norm32;
|
|
int32_t reorderStartIndex, length;
|
|
UChar c, c2;
|
|
uint8_t cc, prevCC, trailCC;
|
|
|
|
/*
|
|
* canonically decompose [src..decompLimit[
|
|
*
|
|
* all characters in this range have some non-zero cc,
|
|
* directly or in decomposition,
|
|
* so that we do not need to check in the following for quick-check limits etc.
|
|
*
|
|
* there _are_ _no_ Hangul syllables or Jamos in here because they are FCD-safe (cc==0)!
|
|
*
|
|
* we also do not need to check for c==0 because we have an established decompLimit
|
|
*/
|
|
reorderStartIndex=destIndex;
|
|
prevCC=0;
|
|
|
|
while(src<decompLimit) {
|
|
c=*src++;
|
|
norm32=_getNorm32(c);
|
|
if(isNorm32Regular(norm32)) {
|
|
c2=0;
|
|
length=1;
|
|
} else {
|
|
/*
|
|
* reminder: this function is called with [src..decompLimit[
|
|
* not containing any Hangul/Jamo characters,
|
|
* therefore the only specials are lead surrogates
|
|
*/
|
|
/* c is a lead surrogate, get the real norm32 */
|
|
if(src!=decompLimit && UTF_IS_SECOND_SURROGATE(c2=*src)) {
|
|
++src;
|
|
length=2;
|
|
norm32=_getNorm32FromSurrogatePair(norm32, c2);
|
|
} else {
|
|
c2=0;
|
|
length=1;
|
|
norm32=0;
|
|
}
|
|
}
|
|
|
|
/* get the decomposition and the lead and trail cc's */
|
|
if(nx_contains(nx, c, c2)) {
|
|
/* excluded: norm32==0 */
|
|
cc=trailCC=0;
|
|
p=NULL;
|
|
} else if((norm32&_NORM_QC_NFD)==0) {
|
|
/* c does not decompose */
|
|
cc=trailCC=(uint8_t)(norm32>>_NORM_CC_SHIFT);
|
|
p=NULL;
|
|
} else {
|
|
/* c decomposes, get everything from the variable-length extra data */
|
|
p=_decompose(norm32, length, cc, trailCC);
|
|
if(length==1) {
|
|
/* fastpath a single code unit from decomposition */
|
|
c=*p;
|
|
c2=0;
|
|
p=NULL;
|
|
}
|
|
}
|
|
|
|
/* append the decomposition to the destination buffer, assume length>0 */
|
|
if((destIndex+length)<=destCapacity) {
|
|
UChar *reorderSplit=dest+destIndex;
|
|
if(p==NULL) {
|
|
/* fastpath: single code point */
|
|
if(cc!=0 && cc<prevCC) {
|
|
/* (c, c2) is out of order with respect to the preceding text */
|
|
destIndex+=length;
|
|
trailCC=_insertOrdered(dest+reorderStartIndex, reorderSplit, dest+destIndex, c, c2, cc);
|
|
} else {
|
|
/* just append (c, c2) */
|
|
dest[destIndex++]=c;
|
|
if(c2!=0) {
|
|
dest[destIndex++]=c2;
|
|
}
|
|
}
|
|
} else {
|
|
/* general: multiple code points (ordered by themselves) from decomposition */
|
|
if(cc!=0 && cc<prevCC) {
|
|
/* the decomposition is out of order with respect to the preceding text */
|
|
destIndex+=length;
|
|
trailCC=_mergeOrdered(dest+reorderStartIndex, reorderSplit, p, p+length);
|
|
} else {
|
|
/* just append the decomposition */
|
|
do {
|
|
dest[destIndex++]=*p++;
|
|
} while(--length>0);
|
|
}
|
|
}
|
|
} else {
|
|
/* buffer overflow */
|
|
/* keep incrementing the destIndex for preflighting */
|
|
destIndex+=length;
|
|
}
|
|
|
|
prevCC=trailCC;
|
|
if(prevCC==0) {
|
|
reorderStartIndex=destIndex;
|
|
}
|
|
}
|
|
|
|
return prevCC;
|
|
}
|
|
|
|
static int32_t
|
|
unorm_makeFCD(UChar *dest, int32_t destCapacity,
|
|
const UChar *src, int32_t srcLength,
|
|
const UnicodeSet *nx,
|
|
UErrorCode *pErrorCode) {
|
|
const UChar *limit, *prevSrc, *decompStart;
|
|
int32_t destIndex, length;
|
|
UChar c, c2;
|
|
uint16_t fcd16;
|
|
int16_t prevCC, cc;
|
|
|
|
if(!_haveData(*pErrorCode)) {
|
|
return 0;
|
|
}
|
|
|
|
/* initialize */
|
|
decompStart=src;
|
|
destIndex=0;
|
|
prevCC=0;
|
|
|
|
/* avoid compiler warnings */
|
|
c=0;
|
|
fcd16=0;
|
|
|
|
if(srcLength>=0) {
|
|
/* string with length */
|
|
limit=src+srcLength;
|
|
} else /* srcLength==-1 */ {
|
|
/* zero-terminated string */
|
|
limit=NULL;
|
|
}
|
|
|
|
U_ALIGN_CODE(16);
|
|
|
|
for(;;) {
|
|
/* skip a run of code units below the minimum or with irrelevant data for the FCD check */
|
|
prevSrc=src;
|
|
if(limit==NULL) {
|
|
for(;;) {
|
|
c=*src;
|
|
if(c<_NORM_MIN_WITH_LEAD_CC) {
|
|
if(c==0) {
|
|
break;
|
|
}
|
|
prevCC=(int16_t)-c;
|
|
} else if((fcd16=_getFCD16(c))==0) {
|
|
prevCC=0;
|
|
} else {
|
|
break;
|
|
}
|
|
++src;
|
|
}
|
|
} else {
|
|
for(;;) {
|
|
if(src==limit) {
|
|
break;
|
|
} else if((c=*src)<_NORM_MIN_WITH_LEAD_CC) {
|
|
prevCC=(int16_t)-c;
|
|
} else if((fcd16=_getFCD16(c))==0) {
|
|
prevCC=0;
|
|
} else {
|
|
break;
|
|
}
|
|
++src;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* prevCC has values from the following ranges:
|
|
* 0..0xff - the previous trail combining class
|
|
* <0 - the negative value of the previous code unit;
|
|
* that code unit was <_NORM_MIN_WITH_LEAD_CC and its _getFCD16()
|
|
* was deferred so that average text is checked faster
|
|
*/
|
|
|
|
/* copy these code units all at once */
|
|
if(src!=prevSrc) {
|
|
length=(int32_t)(src-prevSrc);
|
|
if((destIndex+length)<=destCapacity) {
|
|
uprv_memcpy(dest+destIndex, prevSrc, length*U_SIZEOF_UCHAR);
|
|
}
|
|
destIndex+=length;
|
|
prevSrc=src;
|
|
|
|
/* prevCC<0 is only possible from the above loop, i.e., only if prevSrc<src */
|
|
if(prevCC<0) {
|
|
/* the previous character was <_NORM_MIN_WITH_LEAD_CC, we need to get its trail cc */
|
|
if(!nx_contains(nx, (UChar32)-prevCC)) {
|
|
prevCC=(int16_t)(_getFCD16((UChar)-prevCC)&0xff);
|
|
} else {
|
|
prevCC=0; /* excluded: fcd16==0 */
|
|
}
|
|
|
|
/*
|
|
* set a pointer to this below-U+0300 character;
|
|
* if prevCC==0 then it will moved to after this character below
|
|
*/
|
|
decompStart=prevSrc-1;
|
|
}
|
|
}
|
|
/*
|
|
* now:
|
|
* prevSrc==src - used later to adjust destIndex before decomposition
|
|
* prevCC>=0
|
|
*/
|
|
|
|
/* end of source reached? */
|
|
if(limit==NULL ? c==0 : src==limit) {
|
|
break;
|
|
}
|
|
|
|
/* set a pointer to after the last source position where prevCC==0 */
|
|
if(prevCC==0) {
|
|
decompStart=prevSrc;
|
|
}
|
|
|
|
/* c already contains *src and fcd16 is set for it, increment src */
|
|
++src;
|
|
|
|
/* check one above-minimum, relevant code unit */
|
|
if(UTF_IS_FIRST_SURROGATE(c)) {
|
|
/* c is a lead surrogate, get the real fcd16 */
|
|
if(src!=limit && UTF_IS_SECOND_SURROGATE(c2=*src)) {
|
|
++src;
|
|
fcd16=_getFCD16FromSurrogatePair(fcd16, c2);
|
|
} else {
|
|
c2=0;
|
|
fcd16=0;
|
|
}
|
|
} else {
|
|
c2=0;
|
|
}
|
|
|
|
/* we are looking at the character (c, c2) at [prevSrc..src[ */
|
|
if(nx_contains(nx, c, c2)) {
|
|
fcd16=0; /* excluded: fcd16==0 */
|
|
}
|
|
|
|
/* check the combining order, get the lead cc */
|
|
cc=(int16_t)(fcd16>>8);
|
|
if(cc==0 || cc>=prevCC) {
|
|
/* the order is ok */
|
|
if(cc==0) {
|
|
decompStart=prevSrc;
|
|
}
|
|
prevCC=(int16_t)(fcd16&0xff);
|
|
|
|
/* just append (c, c2) */
|
|
length= c2==0 ? 1 : 2;
|
|
if((destIndex+length)<=destCapacity) {
|
|
dest[destIndex++]=c;
|
|
if(c2!=0) {
|
|
dest[destIndex++]=c2;
|
|
}
|
|
} else {
|
|
destIndex+=length;
|
|
}
|
|
} else {
|
|
/*
|
|
* back out the part of the source that we copied already but
|
|
* is now going to be decomposed;
|
|
* prevSrc is set to after what was copied
|
|
*/
|
|
destIndex-=(int32_t)(prevSrc-decompStart);
|
|
|
|
/*
|
|
* find the part of the source that needs to be decomposed;
|
|
* to be safe and simple, decompose to before the next character with lead cc==0
|
|
*/
|
|
src=_findSafeFCD(src, limit, fcd16);
|
|
|
|
/*
|
|
* the source text does not fulfill the conditions for FCD;
|
|
* decompose and reorder a limited piece of the text
|
|
*/
|
|
prevCC=_decomposeFCD(decompStart, src,
|
|
dest, destIndex, destCapacity,
|
|
nx);
|
|
decompStart=src;
|
|
}
|
|
}
|
|
|
|
return u_terminateUChars(dest, destCapacity, destIndex, pErrorCode);
|
|
}
|
|
|
|
/* quick check functions ---------------------------------------------------- */
|
|
|
|
static UBool
|
|
unorm_checkFCD(const UChar *src, int32_t srcLength, const UnicodeSet *nx) {
|
|
const UChar *limit;
|
|
UChar c, c2;
|
|
uint16_t fcd16;
|
|
int16_t prevCC, cc;
|
|
|
|
/* initialize */
|
|
prevCC=0;
|
|
|
|
if(srcLength>=0) {
|
|
/* string with length */
|
|
limit=src+srcLength;
|
|
} else /* srcLength==-1 */ {
|
|
/* zero-terminated string */
|
|
limit=NULL;
|
|
}
|
|
|
|
U_ALIGN_CODE(16);
|
|
|
|
for(;;) {
|
|
/* skip a run of code units below the minimum or with irrelevant data for the FCD check */
|
|
if(limit==NULL) {
|
|
for(;;) {
|
|
c=*src++;
|
|
if(c<_NORM_MIN_WITH_LEAD_CC) {
|
|
if(c==0) {
|
|
return TRUE;
|
|
}
|
|
/*
|
|
* delay _getFCD16(c) for any character <_NORM_MIN_WITH_LEAD_CC
|
|
* because chances are good that the next one will have
|
|
* a leading cc of 0;
|
|
* _getFCD16(-prevCC) is later called when necessary -
|
|
* -c fits into int16_t because it is <_NORM_MIN_WITH_LEAD_CC==0x300
|
|
*/
|
|
prevCC=(int16_t)-c;
|
|
} else if((fcd16=_getFCD16(c))==0) {
|
|
prevCC=0;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
for(;;) {
|
|
if(src==limit) {
|
|
return TRUE;
|
|
} else if((c=*src++)<_NORM_MIN_WITH_LEAD_CC) {
|
|
prevCC=(int16_t)-c;
|
|
} else if((fcd16=_getFCD16(c))==0) {
|
|
prevCC=0;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* check one above-minimum, relevant code unit */
|
|
if(UTF_IS_FIRST_SURROGATE(c)) {
|
|
/* c is a lead surrogate, get the real fcd16 */
|
|
if(src!=limit && UTF_IS_SECOND_SURROGATE(c2=*src)) {
|
|
++src;
|
|
fcd16=_getFCD16FromSurrogatePair(fcd16, c2);
|
|
} else {
|
|
c2=0;
|
|
fcd16=0;
|
|
}
|
|
} else {
|
|
c2=0;
|
|
}
|
|
|
|
if(nx_contains(nx, c, c2)) {
|
|
prevCC=0; /* excluded: fcd16==0 */
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* prevCC has values from the following ranges:
|
|
* 0..0xff - the previous trail combining class
|
|
* <0 - the negative value of the previous code unit;
|
|
* that code unit was <_NORM_MIN_WITH_LEAD_CC and its _getFCD16()
|
|
* was deferred so that average text is checked faster
|
|
*/
|
|
|
|
/* check the combining order */
|
|
cc=(int16_t)(fcd16>>8);
|
|
if(cc!=0) {
|
|
if(prevCC<0) {
|
|
/* the previous character was <_NORM_MIN_WITH_LEAD_CC, we need to get its trail cc */
|
|
if(!nx_contains(nx, (UChar32)-prevCC)) {
|
|
prevCC=(int16_t)(_getFCD16((UChar)-prevCC)&0xff);
|
|
} else {
|
|
prevCC=0; /* excluded: fcd16==0 */
|
|
}
|
|
}
|
|
|
|
if(cc<prevCC) {
|
|
return FALSE;
|
|
}
|
|
}
|
|
prevCC=(int16_t)(fcd16&0xff);
|
|
}
|
|
}
|
|
|
|
static UNormalizationCheckResult
|
|
_quickCheck(const UChar *src,
|
|
int32_t srcLength,
|
|
UNormalizationMode mode,
|
|
UBool allowMaybe,
|
|
const UnicodeSet *nx,
|
|
UErrorCode *pErrorCode) {
|
|
UChar stackBuffer[_STACK_BUFFER_CAPACITY];
|
|
UChar *buffer;
|
|
int32_t bufferCapacity;
|
|
|
|
const UChar *start, *limit;
|
|
uint32_t norm32, qcNorm32, ccOrQCMask, qcMask;
|
|
int32_t options;
|
|
UChar c, c2, minNoMaybe;
|
|
uint8_t cc, prevCC;
|
|
UNormalizationCheckResult result;
|
|
|
|
/* check arguments */
|
|
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
|
|
return UNORM_MAYBE;
|
|
}
|
|
|
|
if(src==NULL || srcLength<-1) {
|
|
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
|
|
return UNORM_MAYBE;
|
|
}
|
|
|
|
if(!_haveData(*pErrorCode)) {
|
|
return UNORM_MAYBE;
|
|
}
|
|
|
|
/* check for a valid mode and set the quick check minimum and mask */
|
|
switch(mode) {
|
|
case UNORM_NFC:
|
|
minNoMaybe=(UChar)indexes[_NORM_INDEX_MIN_NFC_NO_MAYBE];
|
|
qcMask=_NORM_QC_NFC;
|
|
options=0;
|
|
break;
|
|
case UNORM_NFKC:
|
|
minNoMaybe=(UChar)indexes[_NORM_INDEX_MIN_NFKC_NO_MAYBE];
|
|
qcMask=_NORM_QC_NFKC;
|
|
options=_NORM_OPTIONS_COMPAT;
|
|
break;
|
|
case UNORM_NFD:
|
|
minNoMaybe=(UChar)indexes[_NORM_INDEX_MIN_NFD_NO_MAYBE];
|
|
qcMask=_NORM_QC_NFD;
|
|
options=0;
|
|
break;
|
|
case UNORM_NFKD:
|
|
minNoMaybe=(UChar)indexes[_NORM_INDEX_MIN_NFKD_NO_MAYBE];
|
|
qcMask=_NORM_QC_NFKD;
|
|
options=_NORM_OPTIONS_COMPAT;
|
|
break;
|
|
case UNORM_FCD:
|
|
return unorm_checkFCD(src, srcLength, nx) ? UNORM_YES : UNORM_NO;
|
|
default:
|
|
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
|
|
return UNORM_MAYBE;
|
|
}
|
|
|
|
/* initialize */
|
|
buffer=stackBuffer;
|
|
bufferCapacity=_STACK_BUFFER_CAPACITY;
|
|
|
|
ccOrQCMask=_NORM_CC_MASK|qcMask;
|
|
result=UNORM_YES;
|
|
prevCC=0;
|
|
|
|
start=src;
|
|
if(srcLength>=0) {
|
|
/* string with length */
|
|
limit=src+srcLength;
|
|
} else /* srcLength==-1 */ {
|
|
/* zero-terminated string */
|
|
limit=NULL;
|
|
}
|
|
|
|
U_ALIGN_CODE(16);
|
|
|
|
for(;;) {
|
|
/* skip a run of code units below the minimum or with irrelevant data for the quick check */
|
|
if(limit==NULL) {
|
|
for(;;) {
|
|
c=*src++;
|
|
if(c<minNoMaybe) {
|
|
if(c==0) {
|
|
goto endloop; /* break out of outer loop */
|
|
}
|
|
} else if(((norm32=_getNorm32(c))&ccOrQCMask)!=0) {
|
|
break;
|
|
}
|
|
prevCC=0;
|
|
}
|
|
} else {
|
|
for(;;) {
|
|
if(src==limit) {
|
|
goto endloop; /* break out of outer loop */
|
|
} else if((c=*src++)>=minNoMaybe && ((norm32=_getNorm32(c))&ccOrQCMask)!=0) {
|
|
break;
|
|
}
|
|
prevCC=0;
|
|
}
|
|
}
|
|
|
|
/* check one above-minimum, relevant code unit */
|
|
if(isNorm32LeadSurrogate(norm32)) {
|
|
/* c is a lead surrogate, get the real norm32 */
|
|
if(src!=limit && UTF_IS_SECOND_SURROGATE(c2=*src)) {
|
|
++src;
|
|
norm32=_getNorm32FromSurrogatePair(norm32, c2);
|
|
} else {
|
|
c2=0;
|
|
norm32=0;
|
|
}
|
|
} else {
|
|
c2=0;
|
|
}
|
|
|
|
if(nx_contains(nx, c, c2)) {
|
|
/* excluded: norm32==0 */
|
|
norm32=0;
|
|
}
|
|
|
|
/* check the combining order */
|
|
cc=(uint8_t)(norm32>>_NORM_CC_SHIFT);
|
|
if(cc!=0 && cc<prevCC) {
|
|
result=UNORM_NO;
|
|
break;
|
|
}
|
|
prevCC=cc;
|
|
|
|
/* check for "no" or "maybe" quick check flags */
|
|
qcNorm32=norm32&qcMask;
|
|
if(qcNorm32&_NORM_QC_ANY_NO) {
|
|
result=UNORM_NO;
|
|
break;
|
|
} else if(qcNorm32!=0) {
|
|
/* "maybe" can only occur for NFC and NFKC */
|
|
if(allowMaybe) {
|
|
result=UNORM_MAYBE;
|
|
} else {
|
|
/* normalize a section around here to see if it is really normalized or not */
|
|
const UChar *prevStarter;
|
|
uint32_t decompQCMask;
|
|
int32_t length;
|
|
|
|
decompQCMask=(qcMask<<2)&0xf; /* decomposition quick check mask */
|
|
|
|
/* find the previous starter */
|
|
prevStarter=src-1; /* set prevStarter to the beginning of the current character */
|
|
if(UTF_IS_TRAIL(*prevStarter)) {
|
|
--prevStarter; /* safe because unpaired surrogates do not result in "maybe" */
|
|
}
|
|
prevStarter=_findPreviousStarter(start, prevStarter, ccOrQCMask, decompQCMask, minNoMaybe);
|
|
|
|
/* find the next true starter in [src..limit[ - modifies src to point to the next starter */
|
|
src=_findNextStarter(src, limit, qcMask, decompQCMask, minNoMaybe);
|
|
|
|
/* decompose and recompose [prevStarter..src[ */
|
|
_composePart(stackBuffer, buffer, bufferCapacity,
|
|
length,
|
|
prevStarter,
|
|
src,
|
|
prevCC,
|
|
options, nx, pErrorCode);
|
|
if(U_FAILURE(*pErrorCode)) {
|
|
result=UNORM_MAYBE; /* error (out of memory) */
|
|
break;
|
|
}
|
|
|
|
/* compare the normalized version with the original */
|
|
if(0!=uprv_strCompare(prevStarter, (int32_t)(src-prevStarter), buffer, length, FALSE, FALSE)) {
|
|
result=UNORM_NO; /* normalization differs */
|
|
break;
|
|
}
|
|
|
|
/* continue after the next starter */
|
|
}
|
|
}
|
|
}
|
|
endloop:
|
|
|
|
if(buffer!=stackBuffer) {
|
|
uprv_free(buffer);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
U_CAPI UNormalizationCheckResult U_EXPORT2
|
|
unorm_quickCheck(const UChar *src,
|
|
int32_t srcLength,
|
|
UNormalizationMode mode,
|
|
UErrorCode *pErrorCode) {
|
|
return _quickCheck(src, srcLength, mode, TRUE, NULL, pErrorCode);
|
|
}
|
|
|
|
U_CAPI UNormalizationCheckResult U_EXPORT2
|
|
unorm_quickCheckWithOptions(const UChar *src, int32_t srcLength,
|
|
UNormalizationMode mode, int32_t options,
|
|
UErrorCode *pErrorCode) {
|
|
return _quickCheck(src, srcLength, mode, TRUE, getNX(options, *pErrorCode), pErrorCode);
|
|
}
|
|
|
|
U_CAPI UBool U_EXPORT2
|
|
unorm_isNormalized(const UChar *src, int32_t srcLength,
|
|
UNormalizationMode mode,
|
|
UErrorCode *pErrorCode) {
|
|
return (UBool)(UNORM_YES==_quickCheck(src, srcLength, mode, FALSE, NULL, pErrorCode));
|
|
}
|
|
|
|
U_CAPI UBool U_EXPORT2
|
|
unorm_isNormalizedWithOptions(const UChar *src, int32_t srcLength,
|
|
UNormalizationMode mode, int32_t options,
|
|
UErrorCode *pErrorCode) {
|
|
return (UBool)(UNORM_YES==_quickCheck(src, srcLength, mode, FALSE, getNX(options, *pErrorCode), pErrorCode));
|
|
}
|
|
|
|
/* normalize() API ---------------------------------------------------------- */
|
|
|
|
/**
|
|
* Internal API for normalizing.
|
|
* Does not check for bad input.
|
|
* Requires _haveData() to be true.
|
|
* @internal
|
|
*/
|
|
static int32_t
|
|
unorm_internalNormalize(UChar *dest, int32_t destCapacity,
|
|
const UChar *src, int32_t srcLength,
|
|
UNormalizationMode mode, int32_t options, const UnicodeSet *nx,
|
|
UErrorCode *pErrorCode) {
|
|
int32_t destLength;
|
|
uint8_t trailCC;
|
|
|
|
switch(mode) {
|
|
case UNORM_NFD:
|
|
destLength=_decompose(dest, destCapacity,
|
|
src, srcLength,
|
|
FALSE, nx, trailCC);
|
|
break;
|
|
case UNORM_NFKD:
|
|
destLength=_decompose(dest, destCapacity,
|
|
src, srcLength,
|
|
TRUE, nx, trailCC);
|
|
break;
|
|
case UNORM_NFC:
|
|
destLength=_compose(dest, destCapacity,
|
|
src, srcLength,
|
|
options, nx, pErrorCode);
|
|
break;
|
|
case UNORM_NFKC:
|
|
destLength=_compose(dest, destCapacity,
|
|
src, srcLength,
|
|
options|_NORM_OPTIONS_COMPAT, nx, pErrorCode);
|
|
break;
|
|
case UNORM_FCD:
|
|
return unorm_makeFCD(dest, destCapacity,
|
|
src, srcLength,
|
|
nx,
|
|
pErrorCode);
|
|
#if 0
|
|
case UNORM_FCC:
|
|
destLength=_compose(dest, destCapacity,
|
|
src, srcLength,
|
|
options|_NORM_OPTIONS_COMPOSE_CONTIGUOUS, nx, pErrorCode);
|
|
break;
|
|
#endif
|
|
case UNORM_NONE:
|
|
/* just copy the string */
|
|
if(srcLength==-1) {
|
|
srcLength=u_strlen(src);
|
|
}
|
|
if(srcLength>0 && srcLength<=destCapacity) {
|
|
uprv_memcpy(dest, src, srcLength*U_SIZEOF_UCHAR);
|
|
}
|
|
destLength=srcLength;
|
|
break;
|
|
default:
|
|
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
return u_terminateUChars(dest, destCapacity, destLength, pErrorCode);
|
|
}
|
|
|
|
/**
|
|
* Internal API for normalizing.
|
|
* Does not check for bad input.
|
|
* @internal
|
|
*/
|
|
U_CAPI int32_t U_EXPORT2
|
|
unorm_internalNormalize(UChar *dest, int32_t destCapacity,
|
|
const UChar *src, int32_t srcLength,
|
|
UNormalizationMode mode, int32_t options,
|
|
UErrorCode *pErrorCode) {
|
|
const UnicodeSet *nx;
|
|
|
|
if(!_haveData(*pErrorCode)) {
|
|
return 0;
|
|
}
|
|
|
|
nx=getNX(options, *pErrorCode);
|
|
if(U_FAILURE(*pErrorCode)) {
|
|
return 0;
|
|
}
|
|
|
|
/* reset options bits that should only be set inside unorm_internalNormalize() */
|
|
options&=~(_NORM_OPTIONS_SETS_MASK|_NORM_OPTIONS_COMPAT|_NORM_OPTIONS_COMPOSE_CONTIGUOUS);
|
|
|
|
return unorm_internalNormalize(dest, destCapacity,
|
|
src, srcLength,
|
|
mode, options, nx,
|
|
pErrorCode);
|
|
}
|
|
|
|
/** Public API for normalizing. */
|
|
U_CAPI int32_t U_EXPORT2
|
|
unorm_normalize(const UChar *src, int32_t srcLength,
|
|
UNormalizationMode mode, int32_t options,
|
|
UChar *dest, int32_t destCapacity,
|
|
UErrorCode *pErrorCode) {
|
|
/* check argument values */
|
|
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
|
|
return 0;
|
|
}
|
|
|
|
if( destCapacity<0 || (dest==NULL && destCapacity>0) ||
|
|
src==NULL || srcLength<-1
|
|
) {
|
|
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
/* check for overlapping src and destination */
|
|
if( dest!=NULL &&
|
|
((src>=dest && src<(dest+destCapacity)) ||
|
|
(srcLength>0 && dest>=src && dest<(src+srcLength)))
|
|
) {
|
|
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
return unorm_internalNormalize(dest, destCapacity,
|
|
src, srcLength,
|
|
mode, options,
|
|
pErrorCode);
|
|
}
|
|
|
|
|
|
/* iteration functions ------------------------------------------------------ */
|
|
|
|
/*
|
|
* These iteration functions are the core implementations of the
|
|
* Normalizer class iteration API.
|
|
* They read from a UCharIterator into their own buffer
|
|
* and normalize into the Normalizer iteration buffer.
|
|
* Normalizer itself then iterates over its buffer until that needs to be
|
|
* filled again.
|
|
*/
|
|
|
|
/*
|
|
* ### TODO:
|
|
* Now that UCharIterator.next/previous return (int32_t)-1 not (UChar)0xffff
|
|
* if iteration bounds are reached,
|
|
* try to not call hasNext/hasPrevious and instead check for >=0.
|
|
*/
|
|
|
|
/* backward iteration ------------------------------------------------------- */
|
|
|
|
/*
|
|
* read backwards and get norm32
|
|
* return 0 if the character is <minC
|
|
* if c2!=0 then (c2, c) is a surrogate pair (reversed - c2 is first surrogate but read second!)
|
|
*/
|
|
static inline uint32_t
|
|
_getPrevNorm32(UCharIterator &src, uint32_t minC, uint32_t mask, UChar &c, UChar &c2) {
|
|
uint32_t norm32;
|
|
|
|
/* need src.hasPrevious() */
|
|
c=(UChar)src.previous(&src);
|
|
c2=0;
|
|
|
|
/* check for a surrogate before getting norm32 to see if we need to predecrement further */
|
|
if(c<minC) {
|
|
return 0;
|
|
} else if(!UTF_IS_SURROGATE(c)) {
|
|
return _getNorm32(c);
|
|
} else if(UTF_IS_SURROGATE_FIRST(c) || !src.hasPrevious(&src)) {
|
|
/* unpaired surrogate */
|
|
return 0;
|
|
} else if(UTF_IS_FIRST_SURROGATE(c2=(UChar)src.previous(&src))) {
|
|
norm32=_getNorm32(c2);
|
|
if((norm32&mask)==0) {
|
|
/* all surrogate pairs with this lead surrogate have irrelevant data */
|
|
return 0;
|
|
} else {
|
|
/* norm32 must be a surrogate special */
|
|
return _getNorm32FromSurrogatePair(norm32, c);
|
|
}
|
|
} else {
|
|
/* unpaired second surrogate, undo the c2=src.previous() movement */
|
|
src.move(&src, 1, UITER_CURRENT);
|
|
c2=0;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* read backwards and check if the character is a previous-iteration boundary
|
|
* if c2!=0 then (c2, c) is a surrogate pair (reversed - c2 is first surrogate but read second!)
|
|
*/
|
|
typedef UBool
|
|
IsPrevBoundaryFn(UCharIterator &src, uint32_t minC, uint32_t mask, UChar &c, UChar &c2);
|
|
|
|
/*
|
|
* for NF*D:
|
|
* read backwards and check if the lead combining class is 0
|
|
* if c2!=0 then (c2, c) is a surrogate pair (reversed - c2 is first surrogate but read second!)
|
|
*/
|
|
static UBool
|
|
_isPrevNFDSafe(UCharIterator &src, uint32_t minC, uint32_t ccOrQCMask, UChar &c, UChar &c2) {
|
|
return _isNFDSafe(_getPrevNorm32(src, minC, ccOrQCMask, c, c2), ccOrQCMask, ccOrQCMask&_NORM_QC_MASK);
|
|
}
|
|
|
|
/*
|
|
* read backwards and check if the character is (or its decomposition begins with)
|
|
* a "true starter" (cc==0 and NF*C_YES)
|
|
* if c2!=0 then (c2, c) is a surrogate pair (reversed - c2 is first surrogate but read second!)
|
|
*/
|
|
static UBool
|
|
_isPrevTrueStarter(UCharIterator &src, uint32_t minC, uint32_t ccOrQCMask, UChar &c, UChar &c2) {
|
|
uint32_t norm32, decompQCMask;
|
|
|
|
decompQCMask=(ccOrQCMask<<2)&0xf; /* decomposition quick check mask */
|
|
norm32=_getPrevNorm32(src, minC, ccOrQCMask|decompQCMask, c, c2);
|
|
return _isTrueStarter(norm32, ccOrQCMask, decompQCMask);
|
|
}
|
|
|
|
static int32_t
|
|
_findPreviousIterationBoundary(UCharIterator &src,
|
|
IsPrevBoundaryFn *isPrevBoundary, uint32_t minC, uint32_t mask,
|
|
UChar *&buffer, int32_t &bufferCapacity,
|
|
int32_t &startIndex,
|
|
UErrorCode *pErrorCode) {
|
|
UChar *stackBuffer;
|
|
UChar c, c2;
|
|
UBool isBoundary;
|
|
|
|
/* initialize */
|
|
stackBuffer=buffer;
|
|
startIndex=bufferCapacity; /* fill the buffer from the end backwards */
|
|
|
|
while(src.hasPrevious(&src)) {
|
|
isBoundary=isPrevBoundary(src, minC, mask, c, c2);
|
|
|
|
/* always write this character to the front of the buffer */
|
|
/* make sure there is enough space in the buffer */
|
|
if(startIndex < (c2==0 ? 1 : 2)) {
|
|
int32_t bufferLength=bufferCapacity;
|
|
|
|
if(!u_growBufferFromStatic(stackBuffer, &buffer, &bufferCapacity, 2*bufferCapacity, bufferLength)) {
|
|
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
|
|
src.move(&src, 0, UITER_START);
|
|
return 0;
|
|
}
|
|
|
|
/* move the current buffer contents up */
|
|
uprv_memmove(buffer+(bufferCapacity-bufferLength), buffer, bufferLength*U_SIZEOF_UCHAR);
|
|
startIndex+=bufferCapacity-bufferLength;
|
|
}
|
|
|
|
buffer[--startIndex]=c;
|
|
if(c2!=0) {
|
|
buffer[--startIndex]=c2;
|
|
}
|
|
|
|
/* stop if this just-copied character is a boundary */
|
|
if(isBoundary) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* return the length of the buffer contents */
|
|
return bufferCapacity-startIndex;
|
|
}
|
|
|
|
U_CAPI int32_t U_EXPORT2
|
|
unorm_previous(UCharIterator *src,
|
|
UChar *dest, int32_t destCapacity,
|
|
UNormalizationMode mode, int32_t options,
|
|
UBool doNormalize, UBool *pNeededToNormalize,
|
|
UErrorCode *pErrorCode) {
|
|
UChar stackBuffer[100];
|
|
UChar *buffer=NULL;
|
|
IsPrevBoundaryFn *isPreviousBoundary=NULL;
|
|
uint32_t mask=0;
|
|
int32_t startIndex=0, bufferLength=0, bufferCapacity=0, destLength=0;
|
|
int32_t c=0, c2=0;
|
|
UChar minC=0;
|
|
|
|
/* check argument values */
|
|
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
|
|
return 0;
|
|
}
|
|
|
|
if( destCapacity<0 || (dest==NULL && destCapacity>0) ||
|
|
src==NULL
|
|
) {
|
|
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
if(!_haveData(*pErrorCode)) {
|
|
return 0;
|
|
}
|
|
|
|
if(pNeededToNormalize!=NULL) {
|
|
*pNeededToNormalize=FALSE;
|
|
}
|
|
|
|
switch(mode) {
|
|
case UNORM_NFD:
|
|
case UNORM_FCD:
|
|
isPreviousBoundary=_isPrevNFDSafe;
|
|
minC=_NORM_MIN_WITH_LEAD_CC;
|
|
mask=_NORM_CC_MASK|_NORM_QC_NFD;
|
|
break;
|
|
case UNORM_NFKD:
|
|
isPreviousBoundary=_isPrevNFDSafe;
|
|
minC=_NORM_MIN_WITH_LEAD_CC;
|
|
mask=_NORM_CC_MASK|_NORM_QC_NFKD;
|
|
break;
|
|
case UNORM_NFC:
|
|
isPreviousBoundary=_isPrevTrueStarter;
|
|
minC=(UChar)indexes[_NORM_INDEX_MIN_NFC_NO_MAYBE];
|
|
mask=_NORM_CC_MASK|_NORM_QC_NFC;
|
|
break;
|
|
case UNORM_NFKC:
|
|
isPreviousBoundary=_isPrevTrueStarter;
|
|
minC=(UChar)indexes[_NORM_INDEX_MIN_NFKC_NO_MAYBE];
|
|
mask=_NORM_CC_MASK|_NORM_QC_NFKC;
|
|
break;
|
|
case UNORM_NONE:
|
|
destLength=0;
|
|
if((c=src->previous(src))>=0) {
|
|
destLength=1;
|
|
if(UTF_IS_TRAIL(c) && (c2=src->previous(src))>=0) {
|
|
if(UTF_IS_LEAD(c2)) {
|
|
if(destCapacity>=2) {
|
|
dest[1]=(UChar)c; /* trail surrogate */
|
|
destLength=2;
|
|
}
|
|
c=c2; /* lead surrogate to be written below */
|
|
} else {
|
|
src->move(src, 1, UITER_CURRENT);
|
|
}
|
|
}
|
|
|
|
if(destCapacity>0) {
|
|
dest[0]=(UChar)c;
|
|
}
|
|
}
|
|
return u_terminateUChars(dest, destCapacity, destLength, pErrorCode);
|
|
default:
|
|
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
buffer=stackBuffer;
|
|
bufferCapacity=(int32_t)(sizeof(stackBuffer)/U_SIZEOF_UCHAR);
|
|
bufferLength=_findPreviousIterationBoundary(*src,
|
|
isPreviousBoundary, minC, mask,
|
|
buffer, bufferCapacity,
|
|
startIndex,
|
|
pErrorCode);
|
|
if(bufferLength>0) {
|
|
if(doNormalize) {
|
|
destLength=unorm_internalNormalize(dest, destCapacity,
|
|
buffer+startIndex, bufferLength,
|
|
mode, options,
|
|
pErrorCode);
|
|
if(pNeededToNormalize!=0 && U_SUCCESS(*pErrorCode)) {
|
|
*pNeededToNormalize=
|
|
(UBool)(destLength!=bufferLength ||
|
|
0!=uprv_memcmp(dest, buffer+startIndex, destLength*U_SIZEOF_UCHAR));
|
|
}
|
|
} else {
|
|
/* just copy the source characters */
|
|
if(destCapacity>0) {
|
|
uprv_memcpy(dest, buffer+startIndex, uprv_min(bufferLength, destCapacity)*U_SIZEOF_UCHAR);
|
|
}
|
|
destLength=u_terminateUChars(dest, destCapacity, bufferLength, pErrorCode);
|
|
}
|
|
} else {
|
|
destLength=u_terminateUChars(dest, destCapacity, 0, pErrorCode);
|
|
}
|
|
|
|
/* cleanup */
|
|
if(buffer!=stackBuffer) {
|
|
uprv_free(buffer);
|
|
}
|
|
|
|
return destLength;
|
|
}
|
|
|
|
/* forward iteration -------------------------------------------------------- */
|
|
|
|
/*
|
|
* read forward and get norm32
|
|
* return 0 if the character is <minC
|
|
* if c2!=0 then (c2, c) is a surrogate pair
|
|
* always reads complete characters
|
|
*/
|
|
static inline uint32_t
|
|
_getNextNorm32(UCharIterator &src, uint32_t minC, uint32_t mask, UChar &c, UChar &c2) {
|
|
uint32_t norm32;
|
|
|
|
/* need src.hasNext() to be true */
|
|
c=(UChar)src.next(&src);
|
|
c2=0;
|
|
|
|
if(c<minC) {
|
|
return 0;
|
|
}
|
|
|
|
norm32=_getNorm32(c);
|
|
if(UTF_IS_FIRST_SURROGATE(c)) {
|
|
if(src.hasNext(&src) && UTF_IS_SECOND_SURROGATE(c2=(UChar)src.current(&src))) {
|
|
src.move(&src, 1, UITER_CURRENT); /* skip the c2 surrogate */
|
|
if((norm32&mask)==0) {
|
|
/* irrelevant data */
|
|
return 0;
|
|
} else {
|
|
/* norm32 must be a surrogate special */
|
|
return _getNorm32FromSurrogatePair(norm32, c2);
|
|
}
|
|
} else {
|
|
/* unmatched surrogate */
|
|
c2=0;
|
|
return 0;
|
|
}
|
|
}
|
|
return norm32;
|
|
}
|
|
|
|
/*
|
|
* read forward and check if the character is a next-iteration boundary
|
|
* if c2!=0 then (c, c2) is a surrogate pair
|
|
*/
|
|
typedef UBool
|
|
IsNextBoundaryFn(UCharIterator &src, uint32_t minC, uint32_t mask, UChar &c, UChar &c2);
|
|
|
|
/*
|
|
* for NF*D:
|
|
* read forward and check if the lead combining class is 0
|
|
* if c2!=0 then (c, c2) is a surrogate pair
|
|
*/
|
|
static UBool
|
|
_isNextNFDSafe(UCharIterator &src, uint32_t minC, uint32_t ccOrQCMask, UChar &c, UChar &c2) {
|
|
return _isNFDSafe(_getNextNorm32(src, minC, ccOrQCMask, c, c2), ccOrQCMask, ccOrQCMask&_NORM_QC_MASK);
|
|
}
|
|
|
|
/*
|
|
* for NF*C:
|
|
* read forward and check if the character is (or its decomposition begins with)
|
|
* a "true starter" (cc==0 and NF*C_YES)
|
|
* if c2!=0 then (c, c2) is a surrogate pair
|
|
*/
|
|
static UBool
|
|
_isNextTrueStarter(UCharIterator &src, uint32_t minC, uint32_t ccOrQCMask, UChar &c, UChar &c2) {
|
|
uint32_t norm32, decompQCMask;
|
|
|
|
decompQCMask=(ccOrQCMask<<2)&0xf; /* decomposition quick check mask */
|
|
norm32=_getNextNorm32(src, minC, ccOrQCMask|decompQCMask, c, c2);
|
|
return _isTrueStarter(norm32, ccOrQCMask, decompQCMask);
|
|
}
|
|
|
|
static int32_t
|
|
_findNextIterationBoundary(UCharIterator &src,
|
|
IsNextBoundaryFn *isNextBoundary, uint32_t minC, uint32_t mask,
|
|
UChar *&buffer, int32_t &bufferCapacity,
|
|
UErrorCode *pErrorCode) {
|
|
UChar *stackBuffer;
|
|
int32_t bufferIndex;
|
|
UChar c, c2;
|
|
|
|
if(!src.hasNext(&src)) {
|
|
return 0;
|
|
}
|
|
|
|
/* initialize */
|
|
stackBuffer=buffer;
|
|
|
|
/* get one character and ignore its properties */
|
|
buffer[0]=c=(UChar)src.next(&src);
|
|
bufferIndex=1;
|
|
if(UTF_IS_FIRST_SURROGATE(c) && src.hasNext(&src)) {
|
|
if(UTF_IS_SECOND_SURROGATE(c2=(UChar)src.next(&src))) {
|
|
buffer[bufferIndex++]=c2;
|
|
} else {
|
|
src.move(&src, -1, UITER_CURRENT); /* back out the non-trail-surrogate */
|
|
}
|
|
}
|
|
|
|
/* get all following characters until we see a boundary */
|
|
/* checking hasNext() instead of c!=DONE on the off-chance that U+ffff is part of the string */
|
|
while(src.hasNext(&src)) {
|
|
if(isNextBoundary(src, minC, mask, c, c2)) {
|
|
/* back out the latest movement to stop at the boundary */
|
|
src.move(&src, c2==0 ? -1 : -2, UITER_CURRENT);
|
|
break;
|
|
} else {
|
|
if(bufferIndex+(c2==0 ? 1 : 2)<=bufferCapacity ||
|
|
/* attempt to grow the buffer */
|
|
u_growBufferFromStatic(stackBuffer, &buffer, &bufferCapacity,
|
|
2*bufferCapacity,
|
|
bufferIndex)
|
|
) {
|
|
buffer[bufferIndex++]=c;
|
|
if(c2!=0) {
|
|
buffer[bufferIndex++]=c2;
|
|
}
|
|
} else {
|
|
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
|
|
src.move(&src, 0, UITER_LIMIT);
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* return the length of the buffer contents */
|
|
return bufferIndex;
|
|
}
|
|
|
|
U_CAPI int32_t U_EXPORT2
|
|
unorm_next(UCharIterator *src,
|
|
UChar *dest, int32_t destCapacity,
|
|
UNormalizationMode mode, int32_t options,
|
|
UBool doNormalize, UBool *pNeededToNormalize,
|
|
UErrorCode *pErrorCode) {
|
|
UChar stackBuffer[100];
|
|
UChar *buffer;
|
|
IsNextBoundaryFn *isNextBoundary;
|
|
uint32_t mask;
|
|
int32_t bufferLength, bufferCapacity, destLength;
|
|
int32_t c, c2;
|
|
UChar minC;
|
|
|
|
/* check argument values */
|
|
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
|
|
return 0;
|
|
}
|
|
|
|
if( destCapacity<0 || (dest==NULL && destCapacity>0) ||
|
|
src==NULL
|
|
) {
|
|
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
if(!_haveData(*pErrorCode)) {
|
|
return 0;
|
|
}
|
|
|
|
if(pNeededToNormalize!=NULL) {
|
|
*pNeededToNormalize=FALSE;
|
|
}
|
|
|
|
switch(mode) {
|
|
case UNORM_NFD:
|
|
case UNORM_FCD:
|
|
isNextBoundary=_isNextNFDSafe;
|
|
minC=_NORM_MIN_WITH_LEAD_CC;
|
|
mask=_NORM_CC_MASK|_NORM_QC_NFD;
|
|
break;
|
|
case UNORM_NFKD:
|
|
isNextBoundary=_isNextNFDSafe;
|
|
minC=_NORM_MIN_WITH_LEAD_CC;
|
|
mask=_NORM_CC_MASK|_NORM_QC_NFKD;
|
|
break;
|
|
case UNORM_NFC:
|
|
isNextBoundary=_isNextTrueStarter;
|
|
minC=(UChar)indexes[_NORM_INDEX_MIN_NFC_NO_MAYBE];
|
|
mask=_NORM_CC_MASK|_NORM_QC_NFC;
|
|
break;
|
|
case UNORM_NFKC:
|
|
isNextBoundary=_isNextTrueStarter;
|
|
minC=(UChar)indexes[_NORM_INDEX_MIN_NFKC_NO_MAYBE];
|
|
mask=_NORM_CC_MASK|_NORM_QC_NFKC;
|
|
break;
|
|
case UNORM_NONE:
|
|
destLength=0;
|
|
if((c=src->next(src))>=0) {
|
|
destLength=1;
|
|
if(UTF_IS_LEAD(c) && (c2=src->next(src))>=0) {
|
|
if(UTF_IS_TRAIL(c2)) {
|
|
if(destCapacity>=2) {
|
|
dest[1]=(UChar)c2; /* trail surrogate */
|
|
destLength=2;
|
|
}
|
|
/* lead surrogate to be written below */
|
|
} else {
|
|
src->move(src, -1, UITER_CURRENT);
|
|
}
|
|
}
|
|
|
|
if(destCapacity>0) {
|
|
dest[0]=(UChar)c;
|
|
}
|
|
}
|
|
return u_terminateUChars(dest, destCapacity, destLength, pErrorCode);
|
|
default:
|
|
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
buffer=stackBuffer;
|
|
bufferCapacity=(int32_t)(sizeof(stackBuffer)/U_SIZEOF_UCHAR);
|
|
bufferLength=_findNextIterationBoundary(*src,
|
|
isNextBoundary, minC, mask,
|
|
buffer, bufferCapacity,
|
|
pErrorCode);
|
|
if(bufferLength>0) {
|
|
if(doNormalize) {
|
|
destLength=unorm_internalNormalize(dest, destCapacity,
|
|
buffer, bufferLength,
|
|
mode, options,
|
|
pErrorCode);
|
|
if(pNeededToNormalize!=0 && U_SUCCESS(*pErrorCode)) {
|
|
*pNeededToNormalize=
|
|
(UBool)(destLength!=bufferLength ||
|
|
0!=uprv_memcmp(dest, buffer, destLength*U_SIZEOF_UCHAR));
|
|
}
|
|
} else {
|
|
/* just copy the source characters */
|
|
if(destCapacity>0) {
|
|
uprv_memcpy(dest, buffer, uprv_min(bufferLength, destCapacity)*U_SIZEOF_UCHAR);
|
|
}
|
|
destLength=u_terminateUChars(dest, destCapacity, bufferLength, pErrorCode);
|
|
}
|
|
} else {
|
|
destLength=u_terminateUChars(dest, destCapacity, 0, pErrorCode);
|
|
}
|
|
|
|
/* cleanup */
|
|
if(buffer!=stackBuffer) {
|
|
uprv_free(buffer);
|
|
}
|
|
|
|
return destLength;
|
|
}
|
|
|
|
/*
|
|
* ### TODO: check if NF*D and FCD iteration finds optimal boundaries
|
|
* and if not, how hard it would be to improve it.
|
|
* For example, see _findSafeFCD().
|
|
*/
|
|
|
|
/* Concatenation of normalized strings -------------------------------------- */
|
|
|
|
U_CAPI int32_t U_EXPORT2
|
|
unorm_concatenate(const UChar *left, int32_t leftLength,
|
|
const UChar *right, int32_t rightLength,
|
|
UChar *dest, int32_t destCapacity,
|
|
UNormalizationMode mode, int32_t options,
|
|
UErrorCode *pErrorCode) {
|
|
UChar stackBuffer[100];
|
|
UChar *buffer;
|
|
int32_t bufferLength, bufferCapacity;
|
|
|
|
UCharIterator iter;
|
|
int32_t leftBoundary, rightBoundary, destLength;
|
|
|
|
/* check argument values */
|
|
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
|
|
return 0;
|
|
}
|
|
|
|
if( destCapacity<0 || (dest==NULL && destCapacity>0) ||
|
|
left==NULL || leftLength<-1 ||
|
|
right==NULL || rightLength<-1
|
|
) {
|
|
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
/* check for overlapping right and destination */
|
|
if( dest!=NULL &&
|
|
((right>=dest && right<(dest+destCapacity)) ||
|
|
(rightLength>0 && dest>=right && dest<(right+rightLength)))
|
|
) {
|
|
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
/* allow left==dest */
|
|
|
|
/* set up intermediate buffer */
|
|
buffer=stackBuffer;
|
|
bufferCapacity=(int32_t)(sizeof(stackBuffer)/U_SIZEOF_UCHAR);
|
|
|
|
/*
|
|
* Input: left[0..leftLength[ + right[0..rightLength[
|
|
*
|
|
* Find normalization-safe boundaries leftBoundary and rightBoundary
|
|
* and copy the end parts together:
|
|
* buffer=left[leftBoundary..leftLength[ + right[0..rightBoundary[
|
|
*
|
|
* dest=left[0..leftBoundary[ +
|
|
* normalize(buffer) +
|
|
* right[rightBoundary..rightLength[
|
|
*/
|
|
|
|
/*
|
|
* find a normalization boundary at the end of the left string
|
|
* and copy the end part into the buffer
|
|
*/
|
|
uiter_setString(&iter, left, leftLength);
|
|
iter.index=leftLength=iter.length; /* end of left string */
|
|
|
|
bufferLength=unorm_previous(&iter, buffer, bufferCapacity,
|
|
mode, options,
|
|
FALSE, NULL,
|
|
pErrorCode);
|
|
leftBoundary=iter.index;
|
|
if(*pErrorCode==U_BUFFER_OVERFLOW_ERROR) {
|
|
*pErrorCode=U_ZERO_ERROR;
|
|
if(!u_growBufferFromStatic(stackBuffer, &buffer, &bufferCapacity, 2*bufferLength, 0)) {
|
|
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
|
|
/* dont need to cleanup here since
|
|
* u_growBufferFromStatic frees buffer if(buffer!=stackBuffer)
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
/* just copy from the left string: we know the boundary already */
|
|
uprv_memcpy(buffer, left+leftBoundary, bufferLength*U_SIZEOF_UCHAR);
|
|
}
|
|
|
|
/*
|
|
* find a normalization boundary at the beginning of the right string
|
|
* and concatenate the beginning part to the buffer
|
|
*/
|
|
uiter_setString(&iter, right, rightLength);
|
|
rightLength=iter.length; /* in case it was -1 */
|
|
|
|
rightBoundary=unorm_next(&iter, buffer+bufferLength, bufferCapacity-bufferLength,
|
|
mode, options,
|
|
FALSE, NULL,
|
|
pErrorCode);
|
|
if(*pErrorCode==U_BUFFER_OVERFLOW_ERROR) {
|
|
*pErrorCode=U_ZERO_ERROR;
|
|
if(!u_growBufferFromStatic(stackBuffer, &buffer, &bufferCapacity, bufferLength+rightBoundary, 0)) {
|
|
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
|
|
/* dont need to cleanup here since
|
|
* u_growBufferFromStatic frees buffer if(buffer!=stackBuffer)
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
/* just copy from the right string: we know the boundary already */
|
|
uprv_memcpy(buffer+bufferLength, right, rightBoundary*U_SIZEOF_UCHAR);
|
|
}
|
|
|
|
bufferLength+=rightBoundary;
|
|
|
|
/* copy left[0..leftBoundary[ to dest */
|
|
if(left!=dest && leftBoundary>0 && destCapacity>0) {
|
|
uprv_memcpy(dest, left, uprv_min(leftBoundary, destCapacity)*U_SIZEOF_UCHAR);
|
|
}
|
|
destLength=leftBoundary;
|
|
|
|
/* concatenate the normalization of the buffer to dest */
|
|
if(destCapacity>destLength) {
|
|
destLength+=unorm_internalNormalize(dest+destLength, destCapacity-destLength,
|
|
buffer, bufferLength,
|
|
mode, options,
|
|
pErrorCode);
|
|
} else {
|
|
destLength+=unorm_internalNormalize(NULL, 0,
|
|
buffer, bufferLength,
|
|
mode, options,
|
|
pErrorCode);
|
|
}
|
|
/*
|
|
* only errorCode that is expected is a U_BUFFER_OVERFLOW_ERROR
|
|
* so we dont check for the error code here..just let it pass through
|
|
*/
|
|
/* concatenate right[rightBoundary..rightLength[ to dest */
|
|
right+=rightBoundary;
|
|
rightLength-=rightBoundary;
|
|
if(rightLength>0 && destCapacity>destLength) {
|
|
uprv_memcpy(dest+destLength, right, uprv_min(rightLength, destCapacity-destLength)*U_SIZEOF_UCHAR);
|
|
}
|
|
destLength+=rightLength;
|
|
|
|
/* cleanup */
|
|
if(buffer!=stackBuffer) {
|
|
uprv_free(buffer);
|
|
}
|
|
|
|
return u_terminateUChars(dest, destCapacity, destLength, pErrorCode);
|
|
}
|
|
|
|
/* compare canonically equivalent ------------------------------------------- */
|
|
|
|
#else
|
|
|
|
/*
|
|
* Normalization is not built into the ICU library, but case-insensitive
|
|
* comparisons are possible using unorm_cmpEquivFold().
|
|
* The following simply disables the decomposition part.
|
|
*/
|
|
|
|
static inline UBool
|
|
_haveData(UErrorCode &errorCode) {
|
|
if(U_SUCCESS(errorCode)) {
|
|
errorCode=U_INTERNAL_PROGRAM_ERROR;
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
static inline const UChar *
|
|
_decompose(UChar32 /*c*/, UChar /*buffer*/[4], int32_t &/*length*/) {
|
|
return NULL;
|
|
}
|
|
|
|
#endif /* #if !UCONFIG_NO_NORMALIZATION */
|
|
|
|
/*
|
|
* Compare two strings for canonical equivalence.
|
|
* Further options include case-insensitive comparison and
|
|
* code point order (as opposed to code unit order).
|
|
*
|
|
* In this function, canonical equivalence is optional as well.
|
|
* If canonical equivalence is tested, then both strings must fulfill
|
|
* the FCD check.
|
|
*
|
|
* Semantically, this is equivalent to
|
|
* strcmp[CodePointOrder](NFD(foldCase(s1)), NFD(foldCase(s2)))
|
|
* where code point order, NFD and foldCase are all optional.
|
|
*
|
|
* String comparisons almost always yield results before processing both strings
|
|
* completely.
|
|
* They are generally more efficient working incrementally instead of
|
|
* performing the sub-processing (strlen, normalization, case-folding)
|
|
* on the entire strings first.
|
|
*
|
|
* It is also unnecessary to not normalize identical characters.
|
|
*
|
|
* This function works in principle as follows:
|
|
*
|
|
* loop {
|
|
* get one code unit c1 from s1 (-1 if end of source)
|
|
* get one code unit c2 from s2 (-1 if end of source)
|
|
*
|
|
* if(either string finished) {
|
|
* return result;
|
|
* }
|
|
* if(c1==c2) {
|
|
* continue;
|
|
* }
|
|
*
|
|
* // c1!=c2
|
|
* try to decompose/case-fold c1/c2, and continue if one does;
|
|
*
|
|
* // still c1!=c2 and neither decomposes/case-folds, return result
|
|
* return c1-c2;
|
|
* }
|
|
*
|
|
* When a character decomposes, then the pointer for that source changes to
|
|
* the decomposition, pushing the previous pointer onto a stack.
|
|
* When the end of the decomposition is reached, then the code unit reader
|
|
* pops the previous source from the stack.
|
|
* (Same for case-folding.)
|
|
*
|
|
* This is complicated further by operating on variable-width UTF-16.
|
|
* The top part of the loop works on code units, while lookups for decomposition
|
|
* and case-folding need code points.
|
|
* Code points are assembled after the equality/end-of-source part.
|
|
* The source pointer is only advanced beyond all code units when the code point
|
|
* actually decomposes/case-folds.
|
|
*
|
|
* If we were on a trail surrogate unit when assembling a code point,
|
|
* and the code point decomposes/case-folds, then the decomposition/folding
|
|
* result must be compared with the part of the other string that corresponds to
|
|
* this string's lead surrogate.
|
|
* Since we only assemble a code point when hitting a trail unit when the
|
|
* preceding lead units were identical, we back up the other string by one unit
|
|
* in such a case.
|
|
*
|
|
* The optional code point order comparison at the end works with
|
|
* the same fix-up as the other code point order comparison functions.
|
|
* See ustring.c and the comment near the end of this function.
|
|
*
|
|
* Assumption: A decomposition or case-folding result string never contains
|
|
* a single surrogate. This is a safe assumption in the Unicode Standard.
|
|
* Therefore, we do not need to check for surrogate pairs across
|
|
* decomposition/case-folding boundaries.
|
|
*
|
|
* Further assumptions (see verifications tstnorm.cpp):
|
|
* The API function checks for FCD first, while the core function
|
|
* first case-folds and then decomposes. This requires that case-folding does not
|
|
* un-FCD any strings.
|
|
*
|
|
* The API function may also NFD the input and turn off decomposition.
|
|
* This requires that case-folding does not un-NFD strings either.
|
|
*
|
|
* TODO If any of the above two assumptions is violated,
|
|
* then this entire code must be re-thought.
|
|
* If this happens, then a simple solution is to case-fold both strings up front
|
|
* and to turn off UNORM_INPUT_IS_FCD.
|
|
* We already do this when not both strings are in FCD because makeFCD
|
|
* would be a partial NFD before the case folding, which does not work.
|
|
* Note that all of this is only a problem when case-folding _and_
|
|
* canonical equivalence come together.
|
|
*
|
|
* This function could be moved to a different source file, at increased cost
|
|
* for calling the decomposition access function.
|
|
*/
|
|
|
|
// stack element for previous-level source/decomposition pointers
|
|
struct CmpEquivLevel {
|
|
const UChar *start, *s, *limit;
|
|
};
|
|
typedef struct CmpEquivLevel CmpEquivLevel;
|
|
|
|
// internal function
|
|
U_CAPI int32_t U_EXPORT2
|
|
unorm_cmpEquivFold(const UChar *s1, int32_t length1,
|
|
const UChar *s2, int32_t length2,
|
|
uint32_t options,
|
|
UErrorCode *pErrorCode) {
|
|
UCaseProps *csp;
|
|
|
|
// current-level start/limit - s1/s2 as current
|
|
const UChar *start1, *start2, *limit1, *limit2;
|
|
|
|
// decomposition variables
|
|
const UChar *p;
|
|
int32_t length;
|
|
|
|
// stacks of previous-level start/current/limit
|
|
CmpEquivLevel stack1[2], stack2[2];
|
|
|
|
// decomposition buffers for Hangul
|
|
UChar decomp1[4], decomp2[4];
|
|
|
|
// case folding buffers, only use current-level start/limit
|
|
UChar fold1[UCASE_MAX_STRING_LENGTH+1], fold2[UCASE_MAX_STRING_LENGTH+1];
|
|
|
|
// track which is the current level per string
|
|
int32_t level1, level2;
|
|
|
|
// current code units, and code points for lookups
|
|
int32_t c1, c2, cp1, cp2;
|
|
|
|
// no argument error checking because this itself is not an API
|
|
|
|
// assume that at least one of the options _COMPARE_EQUIV and U_COMPARE_IGNORE_CASE is set
|
|
// otherwise this function must behave exactly as uprv_strCompare()
|
|
// not checking for that here makes testing this function easier
|
|
|
|
// normalization/properties data loaded?
|
|
if( ((options&_COMPARE_EQUIV)!=0 && !_haveData(*pErrorCode)) ||
|
|
U_FAILURE(*pErrorCode)
|
|
) {
|
|
return 0;
|
|
}
|
|
if((options&U_COMPARE_IGNORE_CASE)!=0) {
|
|
csp=ucase_getSingleton(pErrorCode);
|
|
if(U_FAILURE(*pErrorCode)) {
|
|
return 0;
|
|
}
|
|
} else {
|
|
csp=NULL;
|
|
}
|
|
|
|
// initialize
|
|
start1=s1;
|
|
if(length1==-1) {
|
|
limit1=NULL;
|
|
} else {
|
|
limit1=s1+length1;
|
|
}
|
|
|
|
start2=s2;
|
|
if(length2==-1) {
|
|
limit2=NULL;
|
|
} else {
|
|
limit2=s2+length2;
|
|
}
|
|
|
|
level1=level2=0;
|
|
c1=c2=-1;
|
|
|
|
// comparison loop
|
|
for(;;) {
|
|
// here a code unit value of -1 means "get another code unit"
|
|
// below it will mean "this source is finished"
|
|
|
|
if(c1<0) {
|
|
// get next code unit from string 1, post-increment
|
|
for(;;) {
|
|
if(s1==limit1 || ((c1=*s1)==0 && (limit1==NULL || (options&_STRNCMP_STYLE)))) {
|
|
if(level1==0) {
|
|
c1=-1;
|
|
break;
|
|
}
|
|
} else {
|
|
++s1;
|
|
break;
|
|
}
|
|
|
|
// reached end of level buffer, pop one level
|
|
do {
|
|
--level1;
|
|
start1=stack1[level1].start;
|
|
} while(start1==NULL);
|
|
s1=stack1[level1].s;
|
|
limit1=stack1[level1].limit;
|
|
}
|
|
}
|
|
|
|
if(c2<0) {
|
|
// get next code unit from string 2, post-increment
|
|
for(;;) {
|
|
if(s2==limit2 || ((c2=*s2)==0 && (limit2==NULL || (options&_STRNCMP_STYLE)))) {
|
|
if(level2==0) {
|
|
c2=-1;
|
|
break;
|
|
}
|
|
} else {
|
|
++s2;
|
|
break;
|
|
}
|
|
|
|
// reached end of level buffer, pop one level
|
|
do {
|
|
--level2;
|
|
start2=stack2[level2].start;
|
|
} while(start2==NULL);
|
|
s2=stack2[level2].s;
|
|
limit2=stack2[level2].limit;
|
|
}
|
|
}
|
|
|
|
// compare c1 and c2
|
|
// either variable c1, c2 is -1 only if the corresponding string is finished
|
|
if(c1==c2) {
|
|
if(c1<0) {
|
|
return 0; // c1==c2==-1 indicating end of strings
|
|
}
|
|
c1=c2=-1; // make us fetch new code units
|
|
continue;
|
|
} else if(c1<0) {
|
|
return -1; // string 1 ends before string 2
|
|
} else if(c2<0) {
|
|
return 1; // string 2 ends before string 1
|
|
}
|
|
// c1!=c2 && c1>=0 && c2>=0
|
|
|
|
// get complete code points for c1, c2 for lookups if either is a surrogate
|
|
cp1=c1;
|
|
if(UTF_IS_SURROGATE(c1)) {
|
|
UChar c;
|
|
|
|
if(UTF_IS_SURROGATE_FIRST(c1)) {
|
|
if(s1!=limit1 && UTF_IS_TRAIL(c=*s1)) {
|
|
// advance ++s1; only below if cp1 decomposes/case-folds
|
|
cp1=UTF16_GET_PAIR_VALUE(c1, c);
|
|
}
|
|
} else /* isTrail(c1) */ {
|
|
if(start1<=(s1-2) && UTF_IS_LEAD(c=*(s1-2))) {
|
|
cp1=UTF16_GET_PAIR_VALUE(c, c1);
|
|
}
|
|
}
|
|
}
|
|
|
|
cp2=c2;
|
|
if(UTF_IS_SURROGATE(c2)) {
|
|
UChar c;
|
|
|
|
if(UTF_IS_SURROGATE_FIRST(c2)) {
|
|
if(s2!=limit2 && UTF_IS_TRAIL(c=*s2)) {
|
|
// advance ++s2; only below if cp2 decomposes/case-folds
|
|
cp2=UTF16_GET_PAIR_VALUE(c2, c);
|
|
}
|
|
} else /* isTrail(c2) */ {
|
|
if(start2<=(s2-2) && UTF_IS_LEAD(c=*(s2-2))) {
|
|
cp2=UTF16_GET_PAIR_VALUE(c, c2);
|
|
}
|
|
}
|
|
}
|
|
|
|
// go down one level for each string
|
|
// continue with the main loop as soon as there is a real change
|
|
|
|
if( level1==0 && (options&U_COMPARE_IGNORE_CASE) &&
|
|
(length=ucase_toFullFolding(csp, (UChar32)cp1, &p, options))>=0
|
|
) {
|
|
// cp1 case-folds to the code point "length" or to p[length]
|
|
if(UTF_IS_SURROGATE(c1)) {
|
|
if(UTF_IS_SURROGATE_FIRST(c1)) {
|
|
// advance beyond source surrogate pair if it case-folds
|
|
++s1;
|
|
} else /* isTrail(c1) */ {
|
|
// we got a supplementary code point when hitting its trail surrogate,
|
|
// therefore the lead surrogate must have been the same as in the other string;
|
|
// compare this decomposition with the lead surrogate in the other string
|
|
// remember that this simulates bulk text replacement:
|
|
// the decomposition would replace the entire code point
|
|
--s2;
|
|
c2=*(s2-1);
|
|
}
|
|
}
|
|
|
|
// push current level pointers
|
|
stack1[0].start=start1;
|
|
stack1[0].s=s1;
|
|
stack1[0].limit=limit1;
|
|
++level1;
|
|
|
|
// copy the folding result to fold1[]
|
|
if(length<=UCASE_MAX_STRING_LENGTH) {
|
|
u_memcpy(fold1, p, length);
|
|
} else {
|
|
int32_t i=0;
|
|
U16_APPEND_UNSAFE(fold1, i, length);
|
|
length=i;
|
|
}
|
|
|
|
// set next level pointers to case folding
|
|
start1=s1=fold1;
|
|
limit1=fold1+length;
|
|
|
|
// get ready to read from decomposition, continue with loop
|
|
c1=-1;
|
|
continue;
|
|
}
|
|
|
|
if( level2==0 && (options&U_COMPARE_IGNORE_CASE) &&
|
|
(length=ucase_toFullFolding(csp, (UChar32)cp2, &p, options))>=0
|
|
) {
|
|
// cp2 case-folds to the code point "length" or to p[length]
|
|
if(UTF_IS_SURROGATE(c2)) {
|
|
if(UTF_IS_SURROGATE_FIRST(c2)) {
|
|
// advance beyond source surrogate pair if it case-folds
|
|
++s2;
|
|
} else /* isTrail(c2) */ {
|
|
// we got a supplementary code point when hitting its trail surrogate,
|
|
// therefore the lead surrogate must have been the same as in the other string;
|
|
// compare this decomposition with the lead surrogate in the other string
|
|
// remember that this simulates bulk text replacement:
|
|
// the decomposition would replace the entire code point
|
|
--s1;
|
|
c1=*(s1-1);
|
|
}
|
|
}
|
|
|
|
// push current level pointers
|
|
stack2[0].start=start2;
|
|
stack2[0].s=s2;
|
|
stack2[0].limit=limit2;
|
|
++level2;
|
|
|
|
// copy the folding result to fold2[]
|
|
if(length<=UCASE_MAX_STRING_LENGTH) {
|
|
u_memcpy(fold2, p, length);
|
|
} else {
|
|
int32_t i=0;
|
|
U16_APPEND_UNSAFE(fold2, i, length);
|
|
length=i;
|
|
}
|
|
|
|
// set next level pointers to case folding
|
|
start2=s2=fold2;
|
|
limit2=fold2+length;
|
|
|
|
// get ready to read from decomposition, continue with loop
|
|
c2=-1;
|
|
continue;
|
|
}
|
|
|
|
if( level1<2 && (options&_COMPARE_EQUIV) &&
|
|
0!=(p=_decompose((UChar32)cp1, decomp1, length))
|
|
) {
|
|
// cp1 decomposes into p[length]
|
|
if(UTF_IS_SURROGATE(c1)) {
|
|
if(UTF_IS_SURROGATE_FIRST(c1)) {
|
|
// advance beyond source surrogate pair if it decomposes
|
|
++s1;
|
|
} else /* isTrail(c1) */ {
|
|
// we got a supplementary code point when hitting its trail surrogate,
|
|
// therefore the lead surrogate must have been the same as in the other string;
|
|
// compare this decomposition with the lead surrogate in the other string
|
|
// remember that this simulates bulk text replacement:
|
|
// the decomposition would replace the entire code point
|
|
--s2;
|
|
c2=*(s2-1);
|
|
}
|
|
}
|
|
|
|
// push current level pointers
|
|
stack1[level1].start=start1;
|
|
stack1[level1].s=s1;
|
|
stack1[level1].limit=limit1;
|
|
++level1;
|
|
|
|
// set empty intermediate level if skipped
|
|
if(level1<2) {
|
|
stack1[level1++].start=NULL;
|
|
}
|
|
|
|
// set next level pointers to decomposition
|
|
start1=s1=p;
|
|
limit1=p+length;
|
|
|
|
// get ready to read from decomposition, continue with loop
|
|
c1=-1;
|
|
continue;
|
|
}
|
|
|
|
if( level2<2 && (options&_COMPARE_EQUIV) &&
|
|
0!=(p=_decompose((UChar32)cp2, decomp2, length))
|
|
) {
|
|
// cp2 decomposes into p[length]
|
|
if(UTF_IS_SURROGATE(c2)) {
|
|
if(UTF_IS_SURROGATE_FIRST(c2)) {
|
|
// advance beyond source surrogate pair if it decomposes
|
|
++s2;
|
|
} else /* isTrail(c2) */ {
|
|
// we got a supplementary code point when hitting its trail surrogate,
|
|
// therefore the lead surrogate must have been the same as in the other string;
|
|
// compare this decomposition with the lead surrogate in the other string
|
|
// remember that this simulates bulk text replacement:
|
|
// the decomposition would replace the entire code point
|
|
--s1;
|
|
c1=*(s1-1);
|
|
}
|
|
}
|
|
|
|
// push current level pointers
|
|
stack2[level2].start=start2;
|
|
stack2[level2].s=s2;
|
|
stack2[level2].limit=limit2;
|
|
++level2;
|
|
|
|
// set empty intermediate level if skipped
|
|
if(level2<2) {
|
|
stack2[level2++].start=NULL;
|
|
}
|
|
|
|
// set next level pointers to decomposition
|
|
start2=s2=p;
|
|
limit2=p+length;
|
|
|
|
// get ready to read from decomposition, continue with loop
|
|
c2=-1;
|
|
continue;
|
|
}
|
|
|
|
// no decomposition/case folding, max level for both sides:
|
|
// return difference result
|
|
|
|
// code point order comparison must not just return cp1-cp2
|
|
// because when single surrogates are present then the surrogate pairs
|
|
// that formed cp1 and cp2 may be from different string indexes
|
|
|
|
// example: { d800 d800 dc01 } vs. { d800 dc00 }, compare at second code units
|
|
// c1=d800 cp1=10001 c2=dc00 cp2=10000
|
|
// cp1-cp2>0 but c1-c2<0 and in fact in UTF-32 it is { d800 10001 } < { 10000 }
|
|
|
|
// therefore, use same fix-up as in ustring.c/uprv_strCompare()
|
|
// except: uprv_strCompare() fetches c=*s while this functions fetches c=*s++
|
|
// so we have slightly different pointer/start/limit comparisons here
|
|
|
|
if(c1>=0xd800 && c2>=0xd800 && (options&U_COMPARE_CODE_POINT_ORDER)) {
|
|
/* subtract 0x2800 from BMP code points to make them smaller than supplementary ones */
|
|
if(
|
|
(c1<=0xdbff && s1!=limit1 && UTF_IS_TRAIL(*s1)) ||
|
|
(UTF_IS_TRAIL(c1) && start1!=(s1-1) && UTF_IS_LEAD(*(s1-2)))
|
|
) {
|
|
/* part of a surrogate pair, leave >=d800 */
|
|
} else {
|
|
/* BMP code point - may be surrogate code point - make <d800 */
|
|
c1-=0x2800;
|
|
}
|
|
|
|
if(
|
|
(c2<=0xdbff && s2!=limit2 && UTF_IS_TRAIL(*s2)) ||
|
|
(UTF_IS_TRAIL(c2) && start2!=(s2-1) && UTF_IS_LEAD(*(s2-2)))
|
|
) {
|
|
/* part of a surrogate pair, leave >=d800 */
|
|
} else {
|
|
/* BMP code point - may be surrogate code point - make <d800 */
|
|
c2-=0x2800;
|
|
}
|
|
}
|
|
|
|
return c1-c2;
|
|
}
|
|
}
|
|
|
|
#if !UCONFIG_NO_NORMALIZATION
|
|
|
|
U_CAPI int32_t U_EXPORT2
|
|
unorm_compare(const UChar *s1, int32_t length1,
|
|
const UChar *s2, int32_t length2,
|
|
uint32_t options,
|
|
UErrorCode *pErrorCode) {
|
|
UChar fcd1[300], fcd2[300];
|
|
UChar *d1, *d2;
|
|
const UnicodeSet *nx;
|
|
UNormalizationMode mode;
|
|
int32_t normOptions;
|
|
int32_t result;
|
|
|
|
/* argument checking */
|
|
if(pErrorCode==0 || U_FAILURE(*pErrorCode)) {
|
|
return 0;
|
|
}
|
|
if(s1==0 || length1<-1 || s2==0 || length2<-1) {
|
|
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
if(!_haveData(*pErrorCode)) {
|
|
return 0;
|
|
}
|
|
if(!uprv_haveProperties(pErrorCode)) {
|
|
return 0;
|
|
}
|
|
|
|
normOptions=(int32_t)(options>>UNORM_COMPARE_NORM_OPTIONS_SHIFT);
|
|
nx=getNX(normOptions, *pErrorCode);
|
|
if(U_FAILURE(*pErrorCode)) {
|
|
return 0;
|
|
}
|
|
|
|
d1=d2=0;
|
|
options|=_COMPARE_EQUIV;
|
|
result=0;
|
|
|
|
/*
|
|
* UAX #21 Case Mappings, as fixed for Unicode version 4
|
|
* (see Jitterbug 2021), defines a canonical caseless match as
|
|
*
|
|
* A string X is a canonical caseless match
|
|
* for a string Y if and only if
|
|
* NFD(toCasefold(NFD(X))) = NFD(toCasefold(NFD(Y)))
|
|
*
|
|
* For better performance, we check for FCD (or let the caller tell us that
|
|
* both strings are in FCD) for the inner normalization.
|
|
* BasicNormalizerTest::FindFoldFCDExceptions() makes sure that
|
|
* case-folding preserves the FCD-ness of a string.
|
|
* The outer normalization is then only performed by unorm_cmpEquivFold()
|
|
* when there is a difference.
|
|
*
|
|
* Exception: When using the Turkic case-folding option, we do perform
|
|
* full NFD first. This is because in the Turkic case precomposed characters
|
|
* with 0049 capital I or 0069 small i fold differently whether they
|
|
* are first decomposed or not, so an FCD check - a check only for
|
|
* canonical order - is not sufficient.
|
|
*/
|
|
if(options&U_FOLD_CASE_EXCLUDE_SPECIAL_I) {
|
|
mode=UNORM_NFD;
|
|
options&=~UNORM_INPUT_IS_FCD;
|
|
} else {
|
|
mode=UNORM_FCD;
|
|
}
|
|
|
|
if(!(options&UNORM_INPUT_IS_FCD)) {
|
|
int32_t _len1, _len2;
|
|
UBool isFCD1, isFCD2;
|
|
|
|
// check if s1 and/or s2 fulfill the FCD conditions
|
|
isFCD1= UNORM_YES==_quickCheck(s1, length1, mode, TRUE, nx, pErrorCode);
|
|
isFCD2= UNORM_YES==_quickCheck(s2, length2, mode, TRUE, nx, pErrorCode);
|
|
if(U_FAILURE(*pErrorCode)) {
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* ICU 2.4 had a further optimization:
|
|
* If both strings were not in FCD, then they were both NFD'ed,
|
|
* and the _COMPARE_EQUIV option was turned off.
|
|
* It is not entirely clear that this is valid with the current
|
|
* definition of the canonical caseless match.
|
|
* Therefore, ICU 2.6 removes that optimization.
|
|
*/
|
|
|
|
if(!isFCD1) {
|
|
_len1=unorm_internalNormalize(fcd1, LENGTHOF(fcd1),
|
|
s1, length1,
|
|
mode, normOptions, nx,
|
|
pErrorCode);
|
|
if(*pErrorCode!=U_BUFFER_OVERFLOW_ERROR) {
|
|
s1=fcd1;
|
|
} else {
|
|
d1=(UChar *)uprv_malloc(_len1*U_SIZEOF_UCHAR);
|
|
if(d1==0) {
|
|
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
|
|
goto cleanup;
|
|
}
|
|
|
|
*pErrorCode=U_ZERO_ERROR;
|
|
_len1=unorm_internalNormalize(d1, _len1,
|
|
s1, length1,
|
|
mode, normOptions, nx,
|
|
pErrorCode);
|
|
if(U_FAILURE(*pErrorCode)) {
|
|
goto cleanup;
|
|
}
|
|
|
|
s1=d1;
|
|
}
|
|
length1=_len1;
|
|
}
|
|
|
|
if(!isFCD2) {
|
|
_len2=unorm_internalNormalize(fcd2, LENGTHOF(fcd2),
|
|
s2, length2,
|
|
mode, normOptions, nx,
|
|
pErrorCode);
|
|
if(*pErrorCode!=U_BUFFER_OVERFLOW_ERROR) {
|
|
s2=fcd2;
|
|
} else {
|
|
d2=(UChar *)uprv_malloc(_len2*U_SIZEOF_UCHAR);
|
|
if(d2==0) {
|
|
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
|
|
goto cleanup;
|
|
}
|
|
|
|
*pErrorCode=U_ZERO_ERROR;
|
|
_len2=unorm_internalNormalize(d2, _len2,
|
|
s2, length2,
|
|
mode, normOptions, nx,
|
|
pErrorCode);
|
|
if(U_FAILURE(*pErrorCode)) {
|
|
goto cleanup;
|
|
}
|
|
|
|
s2=d2;
|
|
}
|
|
length2=_len2;
|
|
}
|
|
}
|
|
|
|
if(U_SUCCESS(*pErrorCode)) {
|
|
result=unorm_cmpEquivFold(s1, length1, s2, length2, options, pErrorCode);
|
|
}
|
|
|
|
cleanup:
|
|
if(d1!=0) {
|
|
uprv_free(d1);
|
|
}
|
|
if(d2!=0) {
|
|
uprv_free(d2);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/* data swapping ------------------------------------------------------------ */
|
|
|
|
U_CAPI int32_t U_EXPORT2
|
|
unorm_swap(const UDataSwapper *ds,
|
|
const void *inData, int32_t length, void *outData,
|
|
UErrorCode *pErrorCode) {
|
|
const UDataInfo *pInfo;
|
|
int32_t headerSize;
|
|
|
|
const uint8_t *inBytes;
|
|
uint8_t *outBytes;
|
|
|
|
const int32_t *inIndexes;
|
|
int32_t indexes[32];
|
|
|
|
int32_t i, offset, count, size;
|
|
|
|
/* udata_swapDataHeader checks the arguments */
|
|
headerSize=udata_swapDataHeader(ds, inData, length, outData, pErrorCode);
|
|
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
|
|
return 0;
|
|
}
|
|
|
|
/* check data format and format version */
|
|
pInfo=(const UDataInfo *)((const char *)inData+4);
|
|
if(!(
|
|
pInfo->dataFormat[0]==0x4e && /* dataFormat="Norm" */
|
|
pInfo->dataFormat[1]==0x6f &&
|
|
pInfo->dataFormat[2]==0x72 &&
|
|
pInfo->dataFormat[3]==0x6d &&
|
|
pInfo->formatVersion[0]==2
|
|
)) {
|
|
udata_printError(ds, "unorm_swap(): data format %02x.%02x.%02x.%02x (format version %02x) is not recognized as unorm.icu\n",
|
|
pInfo->dataFormat[0], pInfo->dataFormat[1],
|
|
pInfo->dataFormat[2], pInfo->dataFormat[3],
|
|
pInfo->formatVersion[0]);
|
|
*pErrorCode=U_UNSUPPORTED_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
inBytes=(const uint8_t *)inData+headerSize;
|
|
outBytes=(uint8_t *)outData+headerSize;
|
|
|
|
inIndexes=(const int32_t *)inBytes;
|
|
|
|
if(length>=0) {
|
|
length-=headerSize;
|
|
if(length<32*4) {
|
|
udata_printError(ds, "unorm_swap(): too few bytes (%d after header) for unorm.icu\n",
|
|
length);
|
|
*pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* read the first 32 indexes (ICU 2.8/format version 2.2: _NORM_INDEX_TOP==32, might grow) */
|
|
for(i=0; i<32; ++i) {
|
|
indexes[i]=udata_readInt32(ds, inIndexes[i]);
|
|
}
|
|
|
|
/* calculate the total length of the data */
|
|
size=
|
|
32*4+ /* size of indexes[] */
|
|
indexes[_NORM_INDEX_TRIE_SIZE]+
|
|
indexes[_NORM_INDEX_UCHAR_COUNT]*2+
|
|
indexes[_NORM_INDEX_COMBINE_DATA_COUNT]*2+
|
|
indexes[_NORM_INDEX_FCD_TRIE_SIZE]+
|
|
indexes[_NORM_INDEX_AUX_TRIE_SIZE]+
|
|
indexes[_NORM_INDEX_CANON_SET_COUNT]*2;
|
|
|
|
if(length>=0) {
|
|
if(length<size) {
|
|
udata_printError(ds, "unorm_swap(): too few bytes (%d after header) for all of unorm.icu\n",
|
|
length);
|
|
*pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
/* copy the data for inaccessible bytes */
|
|
if(inBytes!=outBytes) {
|
|
uprv_memcpy(outBytes, inBytes, size);
|
|
}
|
|
|
|
offset=0;
|
|
|
|
/* swap the indexes[] */
|
|
count=32*4;
|
|
ds->swapArray32(ds, inBytes, count, outBytes, pErrorCode);
|
|
offset+=count;
|
|
|
|
/* swap the main UTrie */
|
|
count=indexes[_NORM_INDEX_TRIE_SIZE];
|
|
utrie_swap(ds, inBytes+offset, count, outBytes+offset, pErrorCode);
|
|
offset+=count;
|
|
|
|
/* swap the uint16_t extraData[] and the uint16_t combiningTable[] */
|
|
count=(indexes[_NORM_INDEX_UCHAR_COUNT]+indexes[_NORM_INDEX_COMBINE_DATA_COUNT])*2;
|
|
ds->swapArray16(ds, inBytes+offset, count, outBytes+offset, pErrorCode);
|
|
offset+=count;
|
|
|
|
/* swap the FCD UTrie */
|
|
count=indexes[_NORM_INDEX_FCD_TRIE_SIZE];
|
|
if(count!=0) {
|
|
utrie_swap(ds, inBytes+offset, count, outBytes+offset, pErrorCode);
|
|
offset+=count;
|
|
}
|
|
|
|
/* swap the aux UTrie */
|
|
count=indexes[_NORM_INDEX_AUX_TRIE_SIZE];
|
|
if(count!=0) {
|
|
utrie_swap(ds, inBytes+offset, count, outBytes+offset, pErrorCode);
|
|
offset+=count;
|
|
}
|
|
|
|
/* swap the uint16_t combiningTable[] */
|
|
count=indexes[_NORM_INDEX_CANON_SET_COUNT]*2;
|
|
ds->swapArray16(ds, inBytes+offset, count, outBytes+offset, pErrorCode);
|
|
offset+=count;
|
|
}
|
|
|
|
return headerSize+size;
|
|
}
|
|
|
|
#endif /* #if !UCONFIG_NO_NORMALIZATION */
|