scuffed-code/icu4c/source/common/uprops.c
2003-04-01 22:06:31 +00:00

431 lines
16 KiB
C

/*
*******************************************************************************
*
* Copyright (C) 2002-2003, International Business Machines
* Corporation and others. All Rights Reserved.
*
*******************************************************************************
* file name: uprops.h
* encoding: US-ASCII
* tab size: 8 (not used)
* indentation:4
*
* created on: 2002feb24
* created by: Markus W. Scherer
*
* Implementations for mostly non-core Unicode character properties
* stored in uprops.icu.
*/
#include "unicode/utypes.h"
#include "unicode/uchar.h"
#include "unicode/uscript.h"
#include "cstring.h"
#include "unormimp.h"
#include "uprops.h"
#define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0]))
/**
* Unicode property names and property value names are compared
* "loosely". Property[Value]Aliases.txt say:
* "With loose matching of property names, the case distinctions, whitespace,
* and '_' are ignored."
*
* This function does just that, for ASCII (char *) name strings.
* It is almost identical to ucnv_compareNames() but also ignores
* ASCII White_Space characters (U+0009..U+000d).
*
* @internal
*/
U_CAPI int32_t U_EXPORT2
uprv_comparePropertyNames(const char *name1, const char *name2) {
int32_t rc;
unsigned char c1, c2;
for(;;) {
/* Ignore delimiters '-', '_', and ASCII White_Space */
while((c1=(unsigned char)*name1)=='-' || c1=='_' ||
c1==' ' || c1=='\t' || c1=='\n' || c1=='\v' || c1=='\f' || c1=='\r'
) {
++name1;
}
while((c2=(unsigned char)*name2)=='-' || c2=='_' ||
c2==' ' || c2=='\t' || c2=='\n' || c2=='\v' || c2=='\f' || c2=='\r'
) {
++name2;
}
/* If we reach the ends of both strings then they match */
if((c1|c2)==0) {
return 0;
}
/* Case-insensitive comparison */
if(c1!=c2) {
rc=(int32_t)(unsigned char)uprv_tolower(c1)-(int32_t)(unsigned char)uprv_tolower(c2);
if(rc!=0) {
return rc;
}
}
++name1;
++name2;
}
}
/* API functions ------------------------------------------------------------ */
U_CAPI void U_EXPORT2
u_charAge(UChar32 c, UVersionInfo versionArray) {
if(versionArray!=NULL) {
uint32_t version=u_getUnicodeProperties(c, 0)>>UPROPS_AGE_SHIFT;
versionArray[0]=(uint8_t)(version>>4);
versionArray[1]=(uint8_t)(version&0xf);
versionArray[2]=versionArray[3]=0;
}
}
U_CAPI UScriptCode U_EXPORT2
uscript_getScript(UChar32 c, UErrorCode *pErrorCode) {
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
return 0;
}
if((uint32_t)c>0x10ffff) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
return (UScriptCode)(u_getUnicodeProperties(c, 0)&UPROPS_SCRIPT_MASK);
}
U_CAPI UBlockCode U_EXPORT2
ublock_getCode(UChar32 c) {
return (UBlockCode)((u_getUnicodeProperties(c, 0)&UPROPS_BLOCK_MASK)>>UPROPS_BLOCK_SHIFT);
}
static const struct {
int32_t column;
uint32_t mask;
} binProps[]={
/*
* column and mask values for binary properties from u_getUnicodeProperties().
* Must be in order of corresponding UProperty,
* and there must be exacly one entry per binary UProperty.
*/
{ 1, U_MASK(UPROPS_ALPHABETIC) },
{ 1, U_MASK(UPROPS_ASCII_HEX_DIGIT) },
{ 1, U_MASK(UPROPS_BIDI_CONTROL) },
{ -1, U_MASK(UPROPS_MIRROR_SHIFT) },
{ 1, U_MASK(UPROPS_DASH) },
{ 1, U_MASK(UPROPS_DEFAULT_IGNORABLE_CODE_POINT) },
{ 1, U_MASK(UPROPS_DEPRECATED) },
{ 1, U_MASK(UPROPS_DIACRITIC) },
{ 1, U_MASK(UPROPS_EXTENDER) },
{ 0, 0 }, /* UCHAR_FULL_COMPOSITION_EXCLUSION */
{ 1, U_MASK(UPROPS_GRAPHEME_BASE) },
{ 1, U_MASK(UPROPS_GRAPHEME_EXTEND) },
{ 1, U_MASK(UPROPS_GRAPHEME_LINK) },
{ 1, U_MASK(UPROPS_HEX_DIGIT) },
{ 1, U_MASK(UPROPS_HYPHEN) },
{ 1, U_MASK(UPROPS_ID_CONTINUE) },
{ 1, U_MASK(UPROPS_ID_START) },
{ 1, U_MASK(UPROPS_IDEOGRAPHIC) },
{ 1, U_MASK(UPROPS_IDS_BINARY_OPERATOR) },
{ 1, U_MASK(UPROPS_IDS_TRINARY_OPERATOR) },
{ 1, U_MASK(UPROPS_JOIN_CONTROL) },
{ 1, U_MASK(UPROPS_LOGICAL_ORDER_EXCEPTION) },
{ 1, U_MASK(UPROPS_LOWERCASE) },
{ 1, U_MASK(UPROPS_MATH) },
{ 1, U_MASK(UPROPS_NONCHARACTER_CODE_POINT) },
{ 1, U_MASK(UPROPS_QUOTATION_MARK) },
{ 1, U_MASK(UPROPS_RADICAL) },
{ 1, U_MASK(UPROPS_SOFT_DOTTED) },
{ 1, U_MASK(UPROPS_TERMINAL_PUNCTUATION) },
{ 1, U_MASK(UPROPS_UNIFIED_IDEOGRAPH) },
{ 1, U_MASK(UPROPS_UPPERCASE) },
{ 1, U_MASK(UPROPS_WHITE_SPACE) },
{ 1, U_MASK(UPROPS_XID_CONTINUE) },
{ 1, U_MASK(UPROPS_XID_START) },
{ -1, U_MASK(UPROPS_CASE_SENSITIVE_SHIFT) }
};
U_CAPI UBool U_EXPORT2
u_hasBinaryProperty(UChar32 c, UProperty which) {
/* c is range-checked in the functions that are called from here */
if(which<UCHAR_BINARY_START || UCHAR_BINARY_LIMIT<=which) {
/* not a known binary property */
return FALSE;
} else if(which==UCHAR_FULL_COMPOSITION_EXCLUSION) {
return unorm_internalIsFullCompositionExclusion(c);
} else {
/* systematic, directly stored properties */
return (u_getUnicodeProperties(c, binProps[which].column)&binProps[which].mask)!=0;
}
}
U_CAPI UBool U_EXPORT2
u_isUAlphabetic(UChar32 c) {
return u_hasBinaryProperty(c, UCHAR_ALPHABETIC);
}
U_CAPI UBool U_EXPORT2
u_isULowercase(UChar32 c) {
return u_hasBinaryProperty(c, UCHAR_LOWERCASE);
}
U_CAPI UBool U_EXPORT2
u_isUUppercase(UChar32 c) {
return u_hasBinaryProperty(c, UCHAR_UPPERCASE);
}
U_CAPI UBool U_EXPORT2
u_isUWhiteSpace(UChar32 c) {
return u_hasBinaryProperty(c, UCHAR_WHITE_SPACE);
}
U_CAPI UBool U_EXPORT2
uprv_isRuleWhiteSpace(UChar32 c) {
/* "white space" in the sense of ICU rule parsers: Cf+White_Space */
return
u_charType(c)==U_FORMAT_CHAR ||
u_hasBinaryProperty(c, UCHAR_WHITE_SPACE);
}
static const UChar _PATTERN[] = {
/* "[[:Cf:][:WSpace:]]" */
91, 91, 58, 67, 102, 58, 93, 91, 58, 87,
83, 112, 97, 99, 101, 58, 93, 93, 0
};
U_CAPI USet* U_EXPORT2
uprv_openRuleWhiteSpaceSet(UErrorCode* ec) {
return uset_openPattern(_PATTERN,
sizeof(_PATTERN)/sizeof(_PATTERN[0])-1, ec);
}
U_CAPI int32_t U_EXPORT2
u_getIntPropertyValue(UChar32 c, UProperty which) {
UErrorCode errorCode;
if(which<UCHAR_BINARY_START) {
return 0; /* undefined */
} else if(which<UCHAR_BINARY_LIMIT) {
return (int32_t)u_hasBinaryProperty(c, which);
} else if(which<UCHAR_INT_START) {
return 0; /* undefined */
} else if(which<UCHAR_INT_LIMIT) {
switch(which) {
case UCHAR_BIDI_CLASS:
return (int32_t)u_charDirection(c);
case UCHAR_BLOCK:
return (int32_t)ublock_getCode(c);
case UCHAR_CANONICAL_COMBINING_CLASS:
return u_getCombiningClass(c);
case UCHAR_DECOMPOSITION_TYPE:
return (int32_t)(u_getUnicodeProperties(c, 2)&UPROPS_DT_MASK);
case UCHAR_EAST_ASIAN_WIDTH:
return (int32_t)(u_getUnicodeProperties(c, 0)&UPROPS_EA_MASK)>>UPROPS_EA_SHIFT;
case UCHAR_GENERAL_CATEGORY:
return (int32_t)u_charType(c);
case UCHAR_JOINING_GROUP:
return (int32_t)(u_getUnicodeProperties(c, 2)&UPROPS_JG_MASK)>>UPROPS_JG_SHIFT;
case UCHAR_JOINING_TYPE:
return (int32_t)(u_getUnicodeProperties(c, 2)&UPROPS_JT_MASK)>>UPROPS_JT_SHIFT;
case UCHAR_LINE_BREAK:
return (int32_t)(u_getUnicodeProperties(c, 0)&UPROPS_LB_MASK)>>UPROPS_LB_SHIFT;
case UCHAR_NUMERIC_TYPE:
return (int32_t)GET_NUMERIC_TYPE(u_getUnicodeProperties(c, -1));
case UCHAR_SCRIPT:
errorCode=U_ZERO_ERROR;
return (int32_t)uscript_getScript(c, &errorCode);
case UCHAR_HANGUL_SYLLABLE_TYPE:
/* purely algorithmic; hardcode known characters, check for assigned new ones */
if(c<JAMO_L_BASE) {
/* NA */
} else if(c<=0x11ff) {
/* Jamo range */
if(c<=0x115f) {
/* Jamo L range, HANGUL CHOSEONG ... */
if(c==0x115f || c<=0x1159 || u_charType(c)==U_OTHER_LETTER) {
return U_HST_LEADING_JAMO;
}
} else if(c<=0x11a7) {
/* Jamo V range, HANGUL JUNGSEONG ... */
if(c<=0x11a2 || u_charType(c)==U_OTHER_LETTER) {
return U_HST_VOWEL_JAMO;
}
} else {
/* Jamo T range */
if(c<=0x11f9 || u_charType(c)==U_OTHER_LETTER) {
return U_HST_TRAILING_JAMO;
}
}
} else if((c-=HANGUL_BASE)<0) {
/* NA */
} else if(c<HANGUL_COUNT) {
/* Hangul syllable */
return c%JAMO_T_COUNT==0 ? U_HST_LV_SYLLABLE : U_HST_LVT_SYLLABLE;
}
return 0; /* NA */
default:
return 0; /* undefined */
}
} else if(which==UCHAR_GENERAL_CATEGORY_MASK) {
return U_MASK(u_charType(c));
} else {
return 0; /* undefined */
}
}
U_CAPI int32_t U_EXPORT2
u_getIntPropertyMinValue(UProperty which) {
return 0; /* all binary/enum/int properties have a minimum value of 0 */
}
U_CAPI int32_t U_EXPORT2
u_getIntPropertyMaxValue(UProperty which) {
int32_t max;
if(which<UCHAR_BINARY_START) {
return -1; /* undefined */
} else if(which<UCHAR_BINARY_LIMIT) {
return 1; /* maximum TRUE for all binary properties */
} else if(which<UCHAR_INT_START) {
return -1; /* undefined */
} else if(which<UCHAR_INT_LIMIT) {
switch(which) {
case UCHAR_BIDI_CLASS:
return (int32_t)U_CHAR_DIRECTION_COUNT-1;
case UCHAR_BLOCK:
max=(uprv_getMaxValues(0)&UPROPS_BLOCK_MASK)>>UPROPS_BLOCK_SHIFT;
return max!=0 ? max : (int32_t)UBLOCK_COUNT-1;
case UCHAR_CANONICAL_COMBINING_CLASS:
return 0xff; /* TODO do we need to be more precise, getting the actual maximum? */
case UCHAR_DECOMPOSITION_TYPE:
max=uprv_getMaxValues(1)&UPROPS_DT_MASK;
return max!=0 ? max : (int32_t)U_DT_COUNT-1;
case UCHAR_EAST_ASIAN_WIDTH:
max=(uprv_getMaxValues(0)&UPROPS_EA_MASK)>>UPROPS_EA_SHIFT;
return max!=0 ? max : (int32_t)U_EA_COUNT-1;
case UCHAR_GENERAL_CATEGORY:
return (int32_t)U_CHAR_CATEGORY_COUNT-1;
case UCHAR_JOINING_GROUP:
max=(uprv_getMaxValues(1)&UPROPS_JG_MASK)>>UPROPS_JG_SHIFT;
return max!=0 ? max : (int32_t)U_JG_COUNT-1;
case UCHAR_JOINING_TYPE:
max=(uprv_getMaxValues(1)&UPROPS_JT_MASK)>>UPROPS_JT_SHIFT;
return max!=0 ? max : (int32_t)U_JT_COUNT-1;
case UCHAR_LINE_BREAK:
max=(uprv_getMaxValues(0)&UPROPS_LB_MASK)>>UPROPS_LB_SHIFT;
return max!=0 ? max : (int32_t)U_LB_COUNT-1;
case UCHAR_NUMERIC_TYPE:
return (int32_t)U_NT_COUNT-1;
case UCHAR_SCRIPT:
max=uprv_getMaxValues(0)&UPROPS_SCRIPT_MASK;
return max!=0 ? max : (int32_t)USCRIPT_CODE_LIMIT-1;
case UCHAR_HANGUL_SYLLABLE_TYPE:
return (int32_t)U_HST_COUNT-1;
default:
return -1; /* undefined */
}
} else {
return -1; /* undefined */
}
}
/*----------------------------------------------------------------
* Inclusions list
*----------------------------------------------------------------*/
/*
* Return a set of characters for property enumeration.
* The set implicitly contains 0x110000 as well, which is one more than the highest
* Unicode code point.
*
* This set is used as an ordered list - its code points are ordered, and
* consecutive code points (in Unicode code point order) in the set define a range.
* For each two consecutive characters (start, limit) in the set,
* all of the UCD/normalization and related properties for
* all code points start..limit-1 are all the same,
* except for character names and ISO comments.
*
* All Unicode code points U+0000..U+10ffff are covered by these ranges.
* The ranges define a partition of the Unicode code space.
* ICU uses the inclusions set to enumerate properties for generating
* UnicodeSets containing all code points that have a certain property value.
*
* The Inclusion List is generated from the UCD. It is generated
* by enumerating the data tries, and code points for hardcoded properties
* are added as well.
*
* --------------------------------------------------------------------------
*
* The following are ideas for getting properties-unique code point ranges,
* with possible optimizations beyond the current implementation.
* These optimizations would require more code and be more fragile.
* The current implementation generates one single list (set) for all properties.
*
* To enumerate properties efficiently, one needs to know ranges of
* repetitive values, so that the value of only each start code point
* can be applied to the whole range.
* This information is in principle available in the uprops.icu/unorm.icu data.
*
* There are two obstacles:
*
* 1. Some properties are computed from multiple data structures,
* making it necessary to get repetitive ranges by intersecting
* ranges from multiple tries.
*
* 2. It is not economical to write code for getting repetitive ranges
* that are precise for each of some 50 properties.
*
* Compromise ideas:
*
* - Get ranges per trie, not per individual property.
* Each range contains the same values for a whole group of properties.
* This would generate currently five range sets, two for uprops.icu tries
* and three for unorm.icu tries.
*
* - Combine sets of ranges for multiple tries to get sufficient sets
* for properties, e.g., the uprops.icu main and auxiliary tries
* for all non-normalization properties.
*
* Ideas for representing ranges and combining them:
*
* - A UnicodeSet could hold just the start code points of ranges.
* Multiple sets are easily combined by or-ing them together.
*
* - Alternatively, a UnicodeSet could hold each even-numbered range.
* All ranges could be enumerated by using each start code point
* (for the even-numbered ranges) as well as each limit (end+1) code point
* (for the odd-numbered ranges).
* It should be possible to combine two such sets by xor-ing them,
* but no more than two.
*
* The second way to represent ranges may(?!) yield smaller UnicodeSet arrays,
* but the first one is certainly simpler and applicable for combining more than
* two range sets.
*
* It is possible to combine all range sets for all uprops/unorm tries into one
* set that can be used for all properties.
* As an optimization, there could be less-combined range sets for certain
* groups of properties.
* The relationship of which less-combined range set to use for which property
* depends on the implementation of the properties and must be hardcoded
* - somewhat error-prone and higher maintenance but can be tested easily
* by building property sets "the simple way" in test code.
*
* ---
*
* Do not use a UnicodeSet pattern because that causes infinite recursion;
* UnicodeSet depends on the inclusions set.
*/
U_CAPI void U_EXPORT2
uprv_getInclusions(USet* set) {
uset_removeRange(set, 0, 0x10ffff);
unorm_addPropertyStarts(set);
uchar_addPropertyStarts(set);
}