scuffed-code/icu4c/source/test/intltest/transtst.cpp
George Rhoten a15b66a53d ICU-535 fixed some compiler warnings
X-SVN-Rev: 2339
2000-08-23 19:11:16 +00:00

948 lines
29 KiB
C++

/*
**********************************************************************
* Copyright (C) 1999, International Business Machines
* Corporation and others. All Rights Reserved.
**********************************************************************
* Date Name Description
* 11/10/99 aliu Creation.
**********************************************************************
*/
#include "transtst.h"
#include "unicode/utypes.h"
#include "unicode/translit.h"
#include "unicode/rbt.h"
#include "unicode/unifilt.h"
#include "unicode/cpdtrans.h"
#include "unicode/dtfmtsym.h"
#include "unicode/hextouni.h"
#include "unicode/unitohex.h"
#include "unicode/ucnv.h"
#include "unicode/ucnv_err.h"
// Define character constants thusly to be EBCDIC-friendly
enum {
LEFT_BRACE=((UChar)0x007B), /*{*/
PIPE =((UChar)0x007C), /*|*/
ZERO =((UChar)0x0030), /*0*/
UPPER_A =((UChar)0x0041) /*A*/
};
#define CASE(id,test) case id: \
name = #test; \
if (exec) { \
logln(#test "---"); \
logln((UnicodeString)""); \
test(); \
} \
break
void
TransliteratorTest::runIndexedTest(int32_t index, UBool exec,
const char* &name, char* /*par*/) {
switch (index) {
CASE(0,TestInstantiation);
CASE(1,TestSimpleRules);
CASE(2,TestRuleBasedInverse);
CASE(3,TestKeyboard);
CASE(4,TestKeyboard2);
CASE(5,TestKeyboard3);
CASE(6,TestArabic);
CASE(7,TestCompoundKana);
CASE(8,TestCompoundHex);
CASE(9,TestFiltering);
CASE(10,TestInlineSet);
CASE(11,TestPatternQuoting);
CASE(12,TestJ277);
CASE(13,TestJ243);
CASE(14,TestJ329);
CASE(15,TestSegments);
CASE(16,TestCursorOffset);
CASE(17,TestArbitraryVariableValues);
CASE(18,TestPositionHandling);
CASE(19,TestHiraganaKatakana);
CASE(20,TestCopyJ476);
default: name = ""; break;
}
}
void TransliteratorTest::TestInstantiation() {
int32_t n = Transliterator::countAvailableIDs();
UnicodeString name;
for (int32_t i=0; i<n; ++i) {
UnicodeString id = Transliterator::getAvailableID(i);
if (id.length() < 1) {
errln(UnicodeString("FAIL: getAvailableID(") +
i + ") returned empty string");
continue;
}
UParseError parseError;
Transliterator* t = Transliterator::createInstance(id,
UTRANS_FORWARD, &parseError);
name.truncate(0);
Transliterator::getDisplayName(id, name);
if (t == 0) {
errln(UnicodeString("FAIL: Couldn't create ") + id +
", parse error " + parseError.code +
", line " + parseError.line +
", offset " + parseError.offset +
", context " + prettify(parseError.preContext));
// When createInstance fails, it deletes the failing
// entry from the available ID list. We detect this
// here by looking for a change in countAvailableIDs.
int32_t nn = Transliterator::countAvailableIDs();
if (nn == (n - 1)) {
n = nn;
--i; // Compensate for deleted entry
}
} else {
logln(UnicodeString("OK: ") + name + " (" + id + ")");
}
delete t;
}
// Now test the failure path
UnicodeString id("<Not a valid Transliterator ID>");
Transliterator* t = Transliterator::createInstance(id);
if (t != 0) {
errln("FAIL: " + id + " returned a transliterator");
delete t;
} else {
logln("OK: Bogus ID handled properly");
}
}
void TransliteratorTest::TestSimpleRules(void) {
/* Example: rules 1. ab>x|y
* 2. yc>z
*
* []|eabcd start - no match, copy e to tranlated buffer
* [e]|abcd match rule 1 - copy output & adjust cursor
* [ex|y]cd match rule 2 - copy output & adjust cursor
* [exz]|d no match, copy d to transliterated buffer
* [exzd]| done
*/
expect(UnicodeString("ab>x|y;", "") +
"yc>z",
"eabcd", "exzd"); /* Another set of rules:
* 1. ab>x|yzacw
* 2. za>q
* 3. qc>r
* 4. cw>n
*
* []|ab Rule 1
* [x|yzacw] No match
* [xy|zacw] Rule 2
* [xyq|cw] Rule 4
* [xyqn]| Done
*/
expect(UnicodeString("ab>x|yzacw;") +
"za>q;" +
"qc>r;" +
"cw>n",
"ab", "xyqn");
/* Test categories
*/
UErrorCode status = U_ZERO_ERROR;
RuleBasedTransliterator t(
"<ID>",
UnicodeString("$dummy=").append((UChar)0xE100) +
UnicodeString(";"
"$vowel=[aeiouAEIOU];"
"$lu=[:Lu:];"
"$vowel } $lu > '!';"
"$vowel > '&';"
"'!' { $lu > '^';"
"$lu > '*';"
"a > ERROR", ""),
status);
if (U_FAILURE(status)) {
errln("FAIL: RBT constructor failed");
return;
}
expect(t, "abcdefgABCDEFGU", "&bcd&fg!^**!^*&");
}
/**
* Test inline set syntax and set variable syntax.
*/
void TransliteratorTest::TestInlineSet(void) {
expect("{ [:Ll:] } x > y; [:Ll:] > z;", "aAbxq", "zAyzz");
expect("a[0-9]b > qrs", "1a7b9", "1qrs9");
expect(UnicodeString(
"$digit = [0-9];"
"$alpha = [a-zA-Z];"
"$alphanumeric = [$digit $alpha];" // ***
"$special = [^$alphanumeric];" // ***
"$alphanumeric > '-';"
"$special > '*';", ""),
"thx-1138", "---*----");
}
/**
* Create some inverses and confirm that they work. We have to be
* careful how we do this, since the inverses will not be true
* inverses -- we can't throw any random string at the composition
* of the transliterators and expect the identity function. F x
* F' != I. However, if we are careful about the input, we will
* get the expected results.
*/
void TransliteratorTest::TestRuleBasedInverse(void) {
UnicodeString RULES =
UnicodeString("abc>zyx;") +
"ab>yz;" +
"bc>zx;" +
"ca>xy;" +
"a>x;" +
"b>y;" +
"c>z;" +
"abc<zyx;" +
"ab<yz;" +
"bc<zx;" +
"ca<xy;" +
"a<x;" +
"b<y;" +
"c<z;" +
"";
const char* DATA[] = {
// Careful here -- random strings will not work. If we keep
// the left side to the domain and the right side to the range
// we will be okay though (left, abc; right xyz).
"a", "x",
"abcacab", "zyxxxyy",
"caccb", "xyzzy",
};
int32_t DATA_length = sizeof(DATA) / sizeof(DATA[0]);
UErrorCode status = U_ZERO_ERROR;
RuleBasedTransliterator fwd("<ID>", RULES, status);
RuleBasedTransliterator rev("<ID>", RULES,
UTRANS_REVERSE, status);
if (U_FAILURE(status)) {
errln("FAIL: RBT constructor failed");
return;
}
for (int32_t i=0; i<DATA_length; i+=2) {
expect(fwd, DATA[i], DATA[i+1]);
expect(rev, DATA[i+1], DATA[i]);
}
}
/**
* Basic test of keyboard.
*/
void TransliteratorTest::TestKeyboard(void) {
UErrorCode status = U_ZERO_ERROR;
RuleBasedTransliterator t("<ID>",
UnicodeString("psch>Y;")
+"ps>y;"
+"ch>x;"
+"a>A;",
status);
if (U_FAILURE(status)) {
errln("FAIL: RBT constructor failed");
return;
}
const char* DATA[] = {
// insertion, buffer
"a", "A",
"p", "Ap",
"s", "Aps",
"c", "Apsc",
"a", "AycA",
"psch", "AycAY",
0, "AycAY", // null means finishKeyboardTransliteration
};
keyboardAux(t, DATA, sizeof(DATA)/sizeof(DATA[0]));
}
/**
* Basic test of keyboard with cursor.
*/
void TransliteratorTest::TestKeyboard2(void) {
UErrorCode status = U_ZERO_ERROR;
RuleBasedTransliterator t("<ID>",
UnicodeString("ych>Y;")
+"ps>|y;"
+"ch>x;"
+"a>A;",
status);
if (U_FAILURE(status)) {
errln("FAIL: RBT constructor failed");
return;
}
const char* DATA[] = {
// insertion, buffer
"a", "A",
"p", "Ap",
"s", "Ay",
"c", "Ayc",
"a", "AycA",
"p", "AycAp",
"s", "AycAy",
"c", "AycAyc",
"h", "AycAY",
0, "AycAY", // null means finishKeyboardTransliteration
};
keyboardAux(t, DATA, sizeof(DATA)/sizeof(DATA[0]));
}
/**
* Test keyboard transliteration with back-replacement.
*/
void TransliteratorTest::TestKeyboard3(void) {
// We want th>z but t>y. Furthermore, during keyboard
// transliteration we want t>y then yh>z if t, then h are
// typed.
UnicodeString RULES("t>|y;"
"yh>z;");
const char* DATA[] = {
// Column 1: characters to add to buffer (as if typed)
// Column 2: expected appearance of buffer after
// keyboard xliteration.
"a", "a",
"b", "ab",
"t", "aby",
"c", "abyc",
"t", "abycy",
"h", "abycz",
0, "abycz", // null means finishKeyboardTransliteration
};
UErrorCode status = U_ZERO_ERROR;
RuleBasedTransliterator t("<ID>", RULES, status);
if (U_FAILURE(status)) {
errln("FAIL: RBT constructor failed");
return;
}
keyboardAux(t, DATA, sizeof(DATA)/sizeof(DATA[0]));
}
void TransliteratorTest::keyboardAux(const Transliterator& t,
const char* DATA[], int32_t DATA_length) {
UErrorCode status = U_ZERO_ERROR;
UTransPosition index={0, 0, 0, 0};
UnicodeString s;
for (int32_t i=0; i<DATA_length; i+=2) {
UnicodeString log;
if (DATA[i] != 0) {
log = s + " + "
+ DATA[i]
+ " -> ";
t.transliterate(s, index, DATA[i], status);
} else {
log = s + " => ";
t.finishTransliteration(s, index);
}
// Show the start index '{' and the cursor '|'
UnicodeString a, b, c;
s.extractBetween(0, index.contextStart, a);
s.extractBetween(index.contextStart, index.start, b);
s.extractBetween(index.start, s.length(), c);
log.append(a).
append((UChar)LEFT_BRACE).
append(b).
append((UChar)PIPE).
append(c);
if (s == DATA[i+1] && U_SUCCESS(status)) {
logln(log);
} else {
errln(UnicodeString("FAIL: ") + log + ", expected " + DATA[i+1]);
}
}
}
void TransliteratorTest::TestArabic(void) {
/*
const char* DATA[] = {
"Arabic", "\u062a\u062a\u0645\u062a\u0639\u0020"+
"\u0627\u0644\u0644\u063a\u0629\u0020"+
"\u0627\u0644\u0639\u0631\u0628\u0628\u064a\u0629\u0020"+
"\u0628\u0628\u0646\u0638\u0645\u0020"+
"\u0643\u062a\u0627\u0628\u0628\u064a\u0629\u0020"+
"\u062c\u0645\u064a\u0644\u0629",
};
*/
UChar ar_raw[] = {
0x062a, 0x062a, 0x0645, 0x062a, 0x0639, 0x0020, 0x0627,
0x0644, 0x0644, 0x063a, 0x0629, 0x0020, 0x0627, 0x0644,
0x0639, 0x0631, 0x0628, 0x0628, 0x064a, 0x0629, 0x0020,
0x0628, 0x0628, 0x0646, 0x0638, 0x0645, 0x0020, 0x0643,
0x062a, 0x0627, 0x0628, 0x0628, 0x064a, 0x0629, 0x0020,
0x062c, 0x0645, 0x064a, 0x0644, 0x0629, 0
};
UnicodeString ar(ar_raw);
Transliterator *t = Transliterator::createInstance("Latin-Arabic");
if (t == 0) {
errln("FAIL: createInstance failed");
return;
}
expect(*t, "Arabic", ar);
delete t;
}
/**
* Compose the Kana transliterator forward and reverse and try
* some strings that should come out unchanged.
*/
void TransliteratorTest::TestCompoundKana(void) {
Transliterator* t = Transliterator::createInstance("Latin-Kana;Kana-Latin");
if (t == 0) {
errln("FAIL: construction of Latin-Kana;Kana-Latin failed");
} else {
expect(*t, "aaaaa", "aaaaa");
delete t;
}
}
/**
* Compose the hex transliterators forward and reverse.
*/
void TransliteratorTest::TestCompoundHex(void) {
Transliterator* a = Transliterator::createInstance("Unicode-Hex");
Transliterator* b = Transliterator::createInstance("Hex-Unicode");
Transliterator* transab[] = { a, b };
Transliterator* transba[] = { b, a };
if (a == 0 || b == 0) {
errln("FAIL: construction failed");
delete a;
delete b;
return;
}
// Do some basic tests of a
expect(*a, "01", UnicodeString("\\u0030\\u0031", ""));
// Do some basic tests of b
expect(*b, UnicodeString("\\u0030\\u0031", ""), "01");
Transliterator* ab = new CompoundTransliterator(transab, 2);
UnicodeString s("abcde", "");
expect(*ab, s, s);
UnicodeString str(s);
a->transliterate(str);
Transliterator* ba = new CompoundTransliterator(transba, 2);
expect(*ba, str, str);
delete ab;
delete ba;
delete a;
delete b;
}
/**
* Used by TestFiltering().
*/
class TestFilter : public UnicodeFilter {
virtual UnicodeFilter* clone() const {
return new TestFilter(*this);
}
virtual UBool contains(UChar c) const {
return c != (UChar)0x0063 /*c*/;
}
};
/**
* Do some basic tests of filtering.
*/
void TransliteratorTest::TestFiltering(void) {
Transliterator* hex = Transliterator::createInstance("Unicode-Hex");
if (hex == 0) {
errln("FAIL: createInstance(Unicode-Hex) failed");
return;
}
hex->adoptFilter(new TestFilter());
UnicodeString s("abcde");
hex->transliterate(s);
UnicodeString exp("\\u0061\\u0062c\\u0064\\u0065", "");
if (s == exp) {
logln(UnicodeString("Ok: \"") + exp + "\"");
} else {
logln(UnicodeString("FAIL: \"") + s + "\", wanted \"" + exp + "\"");
}
delete hex;
}
/**
* Test pattern quoting and escape mechanisms.
*/
void TransliteratorTest::TestPatternQuoting(void) {
// Array of 3n items
// Each item is <rules>, <input>, <expected output>
const UnicodeString DATA[] = {
UnicodeString(UChar(0x4E01)) + ">'[male adult]'",
UnicodeString(UChar(0x4E01)),
"[male adult]"
};
for (int32_t i=0; i<3; i+=3) {
logln(UnicodeString("Pattern: ") + prettify(DATA[i]));
UErrorCode status = U_ZERO_ERROR;
RuleBasedTransliterator t("<ID>", DATA[i], status);
if (U_FAILURE(status)) {
errln("RBT constructor failed");
} else {
expect(t, DATA[i+1], DATA[i+2]);
}
}
}
/**
* Regression test for bugs found in Greek transliteration.
*/
void TransliteratorTest::TestJ277(void) {
UErrorCode status = U_ZERO_ERROR;
Transliterator *gl = Transliterator::createInstance("Greek-Latin");
if (gl == NULL) {
errln("FAIL: createInstance(Greek-Latin) returned NULL");
return;
}
UChar sigma = 0x3C3;
UChar upsilon = 0x3C5;
UChar nu = 0x3BD;
// UChar PHI = 0x3A6;
UChar alpha = 0x3B1;
// UChar omega = 0x3C9;
// UChar omicron = 0x3BF;
// UChar epsilon = 0x3B5;
// sigma upsilon nu -> syn
UnicodeString syn;
syn.append(sigma).append(upsilon).append(nu);
expect(*gl, syn, "syn");
// sigma alpha upsilon nu -> saun
UnicodeString sayn;
sayn.append(sigma).append(alpha).append(upsilon).append(nu);
expect(*gl, sayn, "saun");
// Again, using a smaller rule set
UnicodeString rules(
"$alpha = \\u03B1;"
"$nu = \\u03BD;"
"$sigma = \\u03C3;"
"$ypsilon = \\u03C5;"
"$vowel = [aeiouAEIOU$alpha$ypsilon];"
"s <> $sigma;"
"a <> $alpha;"
"u <> $vowel { $ypsilon;"
"y <> $ypsilon;"
"n <> $nu;",
"");
RuleBasedTransliterator mini("mini", rules, UTRANS_REVERSE, status);
if (U_FAILURE(status)) { errln("FAIL: Transliterator constructor failed"); return; }
expect(mini, syn, "syn");
expect(mini, sayn, "saun");
// Transliterate the Greek locale data
Locale el("el");
DateFormatSymbols syms(el, status);
if (U_FAILURE(status)) { errln("FAIL: Transliterator constructor failed"); return; }
int32_t i, count;
const UnicodeString* data = syms.getMonths(count);
for (i=0; i<count; ++i) {
if (data[i].length() == 0) {
continue;
}
UnicodeString out(data[i]);
gl->transliterate(out);
UBool ok = TRUE;
if (data[i].length() >= 2 && out.length() >= 2 &&
u_isupper(data[i].charAt(0)) && u_islower(data[i].charAt(1))) {
if (!(u_isupper(out.charAt(0)) && u_islower(out.charAt(1)))) {
ok = FALSE;
}
}
if (ok) {
logln(prettify(data[i] + " -> " + out));
} else {
errln(UnicodeString("FAIL: ") + prettify(data[i] + " -> " + out));
}
}
delete gl;
}
/**
* Prefix, suffix support in hex transliterators
*/
void TransliteratorTest::TestJ243(void) {
UErrorCode status = U_ZERO_ERROR;
#if !defined(HPUX)
// Test default Hex-Unicode, which should handle
// \u, \U, u+, and U+
HexToUnicodeTransliterator hex;
expect(hex, UnicodeString("\\u0041+\\U0042,u+0043uu+0044z", ""), "A+B,CuDz");
// Try a custom Hex-Unicode
// \uXXXX and &#xXXXX;
status = U_ZERO_ERROR;
HexToUnicodeTransliterator hex2(UnicodeString("\\\\u###0;&\\#x###0\\;", ""), status);
expect(hex2, UnicodeString("\\u61\\u062\\u0063\\u00645\\u66x&#x30;&#x031;&#x0032;&#x00033;", ""),
"abcd5fx012&#x00033;");
// Try custom Unicode-Hex (default is tested elsewhere)
status = U_ZERO_ERROR;
UnicodeToHexTransliterator hex3(UnicodeString("&\\#x###0;", ""), status);
expect(hex3, "012", "&#x30;&#x31;&#x32;");
#endif
}
/**
* Parsers need better syntax error messages.
*/
void TransliteratorTest::TestJ329(void) {
struct { UBool containsErrors; const char* rule; } DATA[] = {
{ FALSE, "a > b; c > d" },
{ TRUE, "a > b; no operator; c > d" },
};
int32_t DATA_length = sizeof(DATA) / sizeof(DATA[0]);
for (int32_t i=0; i<DATA_length; ++i) {
UErrorCode status = U_ZERO_ERROR;
UParseError parseError;
RuleBasedTransliterator rbt("<ID>",
DATA[i].rule,
UTRANS_FORWARD,
0,
parseError,
status);
UBool gotError = U_FAILURE(status);
UnicodeString desc(DATA[i].rule);
desc.append(gotError ? " -> error" : " -> no error");
if (gotError) {
desc = desc + ", ParseError code=" + parseError.code +
" line=" + parseError.line +
" offset=" + parseError.offset +
" context=" + parseError.preContext;
}
if (gotError == DATA[i].containsErrors) {
logln(UnicodeString("Ok: ") + desc);
} else {
errln(UnicodeString("FAIL: ") + desc);
}
}
}
/**
* Test segments and segment references.
*/
void TransliteratorTest::TestSegments(void) {
// Array of 3n items
// Each item is <rules>, <input>, <expected output>
UnicodeString DATA[] = {
"([a-z]) '.' ([0-9]) > $2 '-' $1",
"abc.123.xyz.456",
"ab1-c23.xy4-z56",
};
int32_t DATA_length = sizeof(DATA)/sizeof(*DATA);
for (int32_t i=0; i<DATA_length; i+=3) {
logln("Pattern: " + prettify(DATA[i]));
UErrorCode status = U_ZERO_ERROR;
RuleBasedTransliterator t("<ID>", DATA[i], status);
if (U_FAILURE(status)) {
errln("FAIL: RBT constructor");
} else {
expect(t, DATA[i+1], DATA[i+2]);
}
}
}
/**
* Test cursor positioning outside of the key
*/
void TransliteratorTest::TestCursorOffset(void) {
// Array of 3n items
// Each item is <rules>, <input>, <expected output>
UnicodeString DATA[] = {
"pre {alpha} post > | @ ALPHA ;"
"eALPHA > beta ;"
"pre {beta} post > BETA @@ | ;"
"post > xyz",
"prealphapost prebetapost",
"prbetaxyz preBETApost",
};
int32_t DATA_length = sizeof(DATA)/sizeof(*DATA);
for (int32_t i=0; i<DATA_length; i+=3) {
logln("Pattern: " + prettify(DATA[i]));
UErrorCode status = U_ZERO_ERROR;
RuleBasedTransliterator t("<ID>", DATA[i], status);
if (U_FAILURE(status)) {
errln("FAIL: RBT constructor");
} else {
expect(t, DATA[i+1], DATA[i+2]);
}
}
}
/**
* Test zero length and > 1 char length variable values. Test
* use of variable refs in UnicodeSets.
*/
void TransliteratorTest::TestArbitraryVariableValues(void) {
// Array of 3n items
// Each item is <rules>, <input>, <expected output>
UnicodeString DATA[] = {
"$abe = ab;"
"$pat = x[yY]z;"
"$ll = 'a-z';"
"$llZ = [$ll];"
"$llY = [$ll$pat];"
"$emp = ;"
"$abe > ABE;"
"$pat > END;"
"$llZ > 1;"
"$llY > 2;"
"7$emp 8 > 9;"
"",
"ab xYzxyz stY78",
"ABE ENDEND 1129",
};
int32_t DATA_length = sizeof(DATA)/sizeof(*DATA);
for (int32_t i=0; i<DATA_length; i+=3) {
logln("Pattern: " + prettify(DATA[i]));
UErrorCode status = U_ZERO_ERROR;
RuleBasedTransliterator t("<ID>", DATA[i], status);
if (U_FAILURE(status)) {
errln("FAIL: RBT constructor");
} else {
expect(t, DATA[i+1], DATA[i+2]);
}
}
}
/**
* Confirm that the contextStart, contextLimit, start, and limit
* behave correctly. J474.
*/
void TransliteratorTest::TestPositionHandling(void) {
// Array of 3n items
// Each item is <rules>, <input>, <expected output>
const char* DATA[] = {
"a{t} > SS ; {t}b > UU ; {t} > TT ;",
"xtat txtb", // pos 0,9,0,9
"xTTaSS TTxUUb",
"a{t} > SS ; {t}b > UU ; {t} > TT ; a > A ; b > B ;",
"xtat txtb", // pos 2,9,3,8
"xtaSS TTxUUb",
"a{t} > SS ; {t}b > UU ; {t} > TT ; a > A ; b > B ;",
"xtat txtb", // pos 3,8,3,8
"xtaTT TTxTTb",
};
// Array of 4n positions -- these go with the DATA array
// They are: contextStart, contextLimit, start, limit
int32_t POS[] = {
0, 9, 0, 9,
2, 9, 3, 8,
3, 8, 3, 8,
};
int32_t n = sizeof(DATA) / sizeof(DATA[0]) / 3;
for (int32_t i=0; i<n; i++) {
UErrorCode status = U_ZERO_ERROR;
Transliterator *t = new RuleBasedTransliterator("<ID>",
DATA[3*i], status);
if (U_FAILURE(status)) {
delete t;
errln("FAIL: RBT constructor");
return;
}
UTransPosition pos;
pos.contextStart= POS[4*i];
pos.contextLimit = POS[4*i+1];
pos.start = POS[4*i+2];
pos.limit = POS[4*i+3];
UnicodeString rsource(DATA[3*i+1]);
t->transliterate(rsource, pos, status);
if (U_FAILURE(status)) {
delete t;
errln("FAIL: transliterate");
return;
}
t->finishTransliteration(rsource, pos);
expectAux(DATA[3*i],
DATA[3*i+1],
rsource,
DATA[3*i+2]);
delete t;
}
}
/**
* Test the Hiragana-Katakana transliterator.
*/
void TransliteratorTest::TestHiraganaKatakana(void) {
Transliterator* hk = Transliterator::createInstance("Hiragana-Katakana");
Transliterator* kh = Transliterator::createInstance("Katakana-Hiragana");
if (hk == 0 || kh == 0) {
errln("FAIL: createInstance failed");
delete hk;
delete kh;
return;
}
// Array of 3n items
// Each item is "hk"|"kh"|"both", <Hiragana>, <Katakana>
const char* DATA[] = {
"both",
"\\u3042\\u3090\\u3099\\u3092\\u3050",
"\\u30A2\\u30F8\\u30F2\\u30B0",
"kh",
"\\u307C\\u3051\\u3060\\u3042\\u3093\\u30FC",
"\\u30DC\\u30F6\\u30C0\\u30FC\\u30F3\\u30FC",
};
int32_t DATA_length = sizeof(DATA) / sizeof(DATA[0]);
for (int32_t i=0; i<DATA_length; i+=3) {
UnicodeString h = CharsToUnicodeString(DATA[i+1]);
UnicodeString k = CharsToUnicodeString(DATA[i+2]);
switch (*DATA[i]) {
case 0x68: //'h': // Hiragana-Katakana
expect(*hk, h, k);
break;
case 0x6B: //'k': // Katakana-Hiragana
expect(*kh, k, h);
break;
case 0x62: //'b': // both
expect(*hk, h, k);
expect(*kh, k, h);
break;
}
}
}
/**
* Test cloning / copy constructor of RBT.
*/
void TransliteratorTest::TestCopyJ476(void) {
// The real test here is what happens when the destructors are
// called. So we let one object get destructed, and check to
// see that its copy still works.
RuleBasedTransliterator *t2 = 0;
{
UErrorCode status = U_ZERO_ERROR;
RuleBasedTransliterator t1("t1", "a>A;b>B;", status);
if (U_FAILURE(status)) {
errln("FAIL: RBT constructor");
return;
}
t2 = new RuleBasedTransliterator(t1);
expect(t1, "abc", "ABc");
}
expect(*t2, "abc", "ABc");
delete t2;
}
//======================================================================
// Support methods
//======================================================================
void TransliteratorTest::expect(const UnicodeString& rules,
const UnicodeString& source,
const UnicodeString& expectedResult) {
UErrorCode status = U_ZERO_ERROR;
Transliterator *t = new RuleBasedTransliterator("<ID>", rules, status);
if (U_FAILURE(status)) {
errln("FAIL: Transliterator constructor failed");
} else {
expect(*t, source, expectedResult);
}
delete t;
}
void TransliteratorTest::expect(const Transliterator& t,
const UnicodeString& source,
const UnicodeString& expectedResult,
const Transliterator& reverseTransliterator) {
expect(t, source, expectedResult);
expect(reverseTransliterator, expectedResult, source);
}
void TransliteratorTest::expect(const Transliterator& t,
const UnicodeString& source,
const UnicodeString& expectedResult) {
UnicodeString result(source);
t.transliterate(result);
expectAux(t.getID() + ":String", source, result, expectedResult);
UnicodeString rsource(source);
t.transliterate(rsource);
expectAux(t.getID() + ":Replaceable", source, rsource, expectedResult);
// Test keyboard (incremental) transliteration -- this result
// must be the same after we finalize (see below).
rsource.remove();
UTransPosition index={0, 0, 0, 0};
UnicodeString log;
for (int32_t i=0; i<source.length(); ++i) {
if (i != 0) {
log.append(" + ");
}
log.append(source.charAt(i)).append(" -> ");
UErrorCode status = U_ZERO_ERROR;
t.transliterate(rsource, index, source.charAt(i), status);
// Append the string buffer with a vertical bar '|' where
// the committed index is.
UnicodeString left, right;
rsource.extractBetween(0, index.start, left);
rsource.extractBetween(index.start, rsource.length(), right);
log.append(left).append((UChar)PIPE).append(right);
}
// As a final step in keyboard transliteration, we must call
// transliterate to finish off any pending partial matches that
// were waiting for more input.
t.finishTransliteration(rsource, index);
log.append(" => ").append(rsource);
expectAux(t.getID() + ":Keyboard", log,
rsource == expectedResult,
expectedResult);
}
void TransliteratorTest::expectAux(const UnicodeString& tag,
const UnicodeString& source,
const UnicodeString& result,
const UnicodeString& expectedResult) {
expectAux(tag, source + " -> " + result,
result == expectedResult,
expectedResult);
}
void TransliteratorTest::expectAux(const UnicodeString& tag,
const UnicodeString& summary, UBool pass,
const UnicodeString& expectedResult) {
if (pass) {
logln(UnicodeString("(")+tag+") " + prettify(summary));
} else {
errln(UnicodeString("FAIL: (")+tag+") "
+ prettify(summary)
+ ", expected " + prettify(expectedResult));
}
}
/*static UChar toHexString(int32_t i) { return (UChar)(i + (i < 10 ? ZERO : (UPPER_A - 10))); }*/