scuffed-code/icu4c/source/tools/genrb/reslist.c
Steven R. Loomis 7e6c572256 ICU-10774 fix a knownissue: Collator::getAvailableLocales calculation.
Also, replace uhash_nextElement's parameter "-1" with UHASH_FIRST for clarity.
Also, improve service registration debugging code

X-SVN-Rev: 36836
2014-12-09 23:54:56 +00:00

1815 lines
60 KiB
C

/*
*******************************************************************************
*
* Copyright (C) 2000-2014, International Business Machines
* Corporation and others. All Rights Reserved.
*
*******************************************************************************
*
* File reslist.c
*
* Modification History:
*
* Date Name Description
* 02/21/00 weiv Creation.
*******************************************************************************
*/
#include <assert.h>
#include <stdio.h>
#include "reslist.h"
#include "unewdata.h"
#include "unicode/ures.h"
#include "unicode/putil.h"
#include "errmsg.h"
#include "uarrsort.h"
#include "uelement.h"
#include "uhash.h"
#include "uinvchar.h"
#include "ustr_imp.h"
#include "unicode/utf16.h"
/*
* Align binary data at a 16-byte offset from the start of the resource bundle,
* to be safe for any data type it may contain.
*/
#define BIN_ALIGNMENT 16
static UBool gIncludeCopyright = FALSE;
static UBool gUsePoolBundle = FALSE;
static int32_t gFormatVersion = 2;
static UChar gEmptyString = 0;
/* How do we store string values? */
enum {
STRINGS_UTF16_V1, /* formatVersion 1: int length + UChars + NUL + padding to 4 bytes */
STRINGS_UTF16_V2 /* formatVersion 2: optional length in 1..3 UChars + UChars + NUL */
};
enum {
MAX_IMPLICIT_STRING_LENGTH = 40 /* do not store the length explicitly for such strings */
};
/*
* res_none() returns the address of kNoResource,
* for use in non-error cases when no resource is to be added to the bundle.
* (NULL is used in error cases.)
*/
static const struct SResource kNoResource = { URES_NONE };
static UDataInfo dataInfo= {
sizeof(UDataInfo),
0,
U_IS_BIG_ENDIAN,
U_CHARSET_FAMILY,
sizeof(UChar),
0,
{0x52, 0x65, 0x73, 0x42}, /* dataFormat="ResB" */
{1, 3, 0, 0}, /* formatVersion */
{1, 4, 0, 0} /* dataVersion take a look at version inside parsed resb*/
};
static const UVersionInfo gFormatVersions[3] = { /* indexed by a major-formatVersion integer */
{ 0, 0, 0, 0 },
{ 1, 3, 0, 0 },
{ 2, 0, 0, 0 }
};
static uint8_t calcPadding(uint32_t size) {
/* returns space we need to pad */
return (uint8_t) ((size % sizeof(uint32_t)) ? (sizeof(uint32_t) - (size % sizeof(uint32_t))) : 0);
}
void setIncludeCopyright(UBool val){
gIncludeCopyright=val;
}
UBool getIncludeCopyright(void){
return gIncludeCopyright;
}
void setFormatVersion(int32_t formatVersion) {
gFormatVersion = formatVersion;
}
void setUsePoolBundle(UBool use) {
gUsePoolBundle = use;
}
static void
bundle_compactStrings(struct SRBRoot *bundle, UErrorCode *status);
/* Writing Functions */
/*
* Preflight strings.
* Find duplicates and count the total number of string code units
* so that they can be written first to the 16-bit array,
* for minimal string and container storage.
*
* We walk the final parse tree, rather than collecting this information while building it,
* so that we need not deal with changes to the parse tree (especially removing resources).
*/
static void
res_preflightStrings(struct SRBRoot *bundle, struct SResource *res, UHashtable *stringSet,
UErrorCode *status);
/*
* type_write16() functions write resource values into f16BitUnits
* and determine the resource item word, if possible.
*/
static void
res_write16(struct SRBRoot *bundle, struct SResource *res,
UErrorCode *status);
/*
* type_preWrite() functions calculate ("preflight") and advance the *byteOffset
* by the size of their data in the binary file and
* determine the resource item word.
* Most type_preWrite() functions may add any number of bytes, but res_preWrite()
* will always pad it to a multiple of 4.
* The resource item type may be a related subtype of the fType.
*
* The type_preWrite() and type_write() functions start and end at the same
* byteOffset values.
* Prewriting allows bundle_write() to determine the root resource item word,
* before actually writing the bundle contents to the file,
* which is necessary because the root item is stored at the beginning.
*/
static void
res_preWrite(uint32_t *byteOffset,
struct SRBRoot *bundle, struct SResource *res,
UErrorCode *status);
/*
* type_write() functions write their data to mem and update the byteOffset
* in parallel.
* (A kingdom for C++ and polymorphism...)
*/
static void
res_write(UNewDataMemory *mem, uint32_t *byteOffset,
struct SRBRoot *bundle, struct SResource *res,
UErrorCode *status);
static void
string_preflightStrings(struct SRBRoot *bundle, struct SResource *res, UHashtable *stringSet,
UErrorCode *status) {
res->u.fString.fSame = uhash_get(stringSet, res);
if (res->u.fString.fSame != NULL) {
return; /* This is a duplicate of an earlier-visited string. */
}
/* Put this string into the set for finding duplicates. */
uhash_put(stringSet, res, res, status);
if (bundle->fStringsForm != STRINGS_UTF16_V1) {
const UChar *s = res->u.fString.fChars;
int32_t len = res->u.fString.fLength;
if (len <= MAX_IMPLICIT_STRING_LENGTH && !U16_IS_TRAIL(s[0]) && len == u_strlen(s)) {
/*
* This string will be stored without an explicit length.
* Runtime will detect !U16_IS_TRAIL(s[0]) and call u_strlen().
*/
res->u.fString.fNumCharsForLength = 0;
} else if (len <= 0x3ee) {
res->u.fString.fNumCharsForLength = 1;
} else if (len <= 0xfffff) {
res->u.fString.fNumCharsForLength = 2;
} else {
res->u.fString.fNumCharsForLength = 3;
}
bundle->f16BitUnitsLength += res->u.fString.fNumCharsForLength + len + 1; /* +1 for the NUL */
}
}
static void
array_preflightStrings(struct SRBRoot *bundle, struct SResource *res, UHashtable *stringSet,
UErrorCode *status) {
struct SResource *current;
if (U_FAILURE(*status)) {
return;
}
for (current = res->u.fArray.fFirst; current != NULL; current = current->fNext) {
res_preflightStrings(bundle, current, stringSet, status);
}
}
static void
table_preflightStrings(struct SRBRoot *bundle, struct SResource *res, UHashtable *stringSet,
UErrorCode *status) {
struct SResource *current;
if (U_FAILURE(*status)) {
return;
}
for (current = res->u.fTable.fFirst; current != NULL; current = current->fNext) {
res_preflightStrings(bundle, current, stringSet, status);
}
}
static void
res_preflightStrings(struct SRBRoot *bundle, struct SResource *res, UHashtable *stringSet,
UErrorCode *status) {
if (U_FAILURE(*status) || res == NULL) {
return;
}
if (res->fRes != RES_BOGUS) {
/*
* The resource item word was already precomputed, which means
* no further data needs to be written.
* This might be an integer, or an empty string/binary/etc.
*/
return;
}
switch (res->fType) {
case URES_STRING:
string_preflightStrings(bundle, res, stringSet, status);
break;
case URES_ARRAY:
array_preflightStrings(bundle, res, stringSet, status);
break;
case URES_TABLE:
table_preflightStrings(bundle, res, stringSet, status);
break;
default:
/* Neither a string nor a container. */
break;
}
}
static uint16_t *
reserve16BitUnits(struct SRBRoot *bundle, int32_t length, UErrorCode *status) {
if (U_FAILURE(*status)) {
return NULL;
}
if ((bundle->f16BitUnitsLength + length) > bundle->f16BitUnitsCapacity) {
uint16_t *newUnits;
int32_t capacity = 2 * bundle->f16BitUnitsCapacity + length + 1024;
capacity &= ~1; /* ensures padding fits if f16BitUnitsLength needs it */
newUnits = (uint16_t *)uprv_malloc(capacity * 2);
if (newUnits == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return NULL;
}
if (bundle->f16BitUnitsLength > 0) {
uprv_memcpy(newUnits, bundle->f16BitUnits, bundle->f16BitUnitsLength * 2);
} else {
newUnits[0] = 0;
bundle->f16BitUnitsLength = 1;
}
uprv_free(bundle->f16BitUnits);
bundle->f16BitUnits = newUnits;
bundle->f16BitUnitsCapacity = capacity;
}
return bundle->f16BitUnits + bundle->f16BitUnitsLength;
}
static int32_t
makeRes16(uint32_t resWord) {
uint32_t type, offset;
if (resWord == 0) {
return 0; /* empty string */
}
type = RES_GET_TYPE(resWord);
offset = RES_GET_OFFSET(resWord);
if (type == URES_STRING_V2 && offset <= 0xffff) {
return (int32_t)offset;
}
return -1;
}
static int32_t
mapKey(struct SRBRoot *bundle, int32_t oldpos) {
const KeyMapEntry *map = bundle->fKeyMap;
int32_t i, start, limit;
/* do a binary search for the old, pre-bundle_compactKeys() key offset */
start = bundle->fPoolBundleKeysCount;
limit = start + bundle->fKeysCount;
while (start < limit - 1) {
i = (start + limit) / 2;
if (oldpos < map[i].oldpos) {
limit = i;
} else {
start = i;
}
}
assert(oldpos == map[start].oldpos);
return map[start].newpos;
}
static uint16_t
makeKey16(struct SRBRoot *bundle, int32_t key) {
if (key >= 0) {
return (uint16_t)key;
} else {
return (uint16_t)(key + bundle->fLocalKeyLimit); /* offset in the pool bundle */
}
}
/*
* Only called for UTF-16 v1 strings and duplicate UTF-16 v2 strings.
* For unique UTF-16 v2 strings, res_write16() sees fRes != RES_BOGUS
* and exits early.
*/
static void
string_write16(struct SRBRoot *bundle, struct SResource *res, UErrorCode *status) {
struct SResource *same;
if ((same = res->u.fString.fSame) != NULL) {
/* This is a duplicate. */
assert(same->fRes != RES_BOGUS && same->fWritten);
res->fRes = same->fRes;
res->fWritten = same->fWritten;
}
}
static void
array_write16(struct SRBRoot *bundle, struct SResource *res,
UErrorCode *status) {
struct SResource *current;
int32_t res16 = 0;
if (U_FAILURE(*status)) {
return;
}
if (res->u.fArray.fCount == 0 && gFormatVersion > 1) {
res->fRes = URES_MAKE_EMPTY_RESOURCE(URES_ARRAY);
res->fWritten = TRUE;
return;
}
for (current = res->u.fArray.fFirst; current != NULL; current = current->fNext) {
res_write16(bundle, current, status);
res16 |= makeRes16(current->fRes);
}
if (U_SUCCESS(*status) && res->u.fArray.fCount <= 0xffff && res16 >= 0 && gFormatVersion > 1) {
uint16_t *p16 = reserve16BitUnits(bundle, 1 + res->u.fArray.fCount, status);
if (U_SUCCESS(*status)) {
res->fRes = URES_MAKE_RESOURCE(URES_ARRAY16, bundle->f16BitUnitsLength);
*p16++ = (uint16_t)res->u.fArray.fCount;
for (current = res->u.fArray.fFirst; current != NULL; current = current->fNext) {
*p16++ = (uint16_t)makeRes16(current->fRes);
}
bundle->f16BitUnitsLength += 1 + res->u.fArray.fCount;
res->fWritten = TRUE;
}
}
}
static void
table_write16(struct SRBRoot *bundle, struct SResource *res,
UErrorCode *status) {
struct SResource *current;
int32_t maxKey = 0, maxPoolKey = 0x80000000;
int32_t res16 = 0;
UBool hasLocalKeys = FALSE, hasPoolKeys = FALSE;
if (U_FAILURE(*status)) {
return;
}
if (res->u.fTable.fCount == 0 && gFormatVersion > 1) {
res->fRes = URES_MAKE_EMPTY_RESOURCE(URES_TABLE);
res->fWritten = TRUE;
return;
}
/* Find the smallest table type that fits the data. */
for (current = res->u.fTable.fFirst; current != NULL; current = current->fNext) {
int32_t key;
res_write16(bundle, current, status);
if (bundle->fKeyMap == NULL) {
key = current->fKey;
} else {
key = current->fKey = mapKey(bundle, current->fKey);
}
if (key >= 0) {
hasLocalKeys = TRUE;
if (key > maxKey) {
maxKey = key;
}
} else {
hasPoolKeys = TRUE;
if (key > maxPoolKey) {
maxPoolKey = key;
}
}
res16 |= makeRes16(current->fRes);
}
if (U_FAILURE(*status)) {
return;
}
if(res->u.fTable.fCount > (uint32_t)bundle->fMaxTableLength) {
bundle->fMaxTableLength = res->u.fTable.fCount;
}
maxPoolKey &= 0x7fffffff;
if (res->u.fTable.fCount <= 0xffff &&
(!hasLocalKeys || maxKey < bundle->fLocalKeyLimit) &&
(!hasPoolKeys || maxPoolKey < (0x10000 - bundle->fLocalKeyLimit))
) {
if (res16 >= 0 && gFormatVersion > 1) {
uint16_t *p16 = reserve16BitUnits(bundle, 1 + res->u.fTable.fCount * 2, status);
if (U_SUCCESS(*status)) {
/* 16-bit count, key offsets and values */
res->fRes = URES_MAKE_RESOURCE(URES_TABLE16, bundle->f16BitUnitsLength);
*p16++ = (uint16_t)res->u.fTable.fCount;
for (current = res->u.fTable.fFirst; current != NULL; current = current->fNext) {
*p16++ = makeKey16(bundle, current->fKey);
}
for (current = res->u.fTable.fFirst; current != NULL; current = current->fNext) {
*p16++ = (uint16_t)makeRes16(current->fRes);
}
bundle->f16BitUnitsLength += 1 + res->u.fTable.fCount * 2;
res->fWritten = TRUE;
}
} else {
/* 16-bit count, 16-bit key offsets, 32-bit values */
res->u.fTable.fType = URES_TABLE;
}
} else {
/* 32-bit count, key offsets and values */
res->u.fTable.fType = URES_TABLE32;
}
}
static void
res_write16(struct SRBRoot *bundle, struct SResource *res,
UErrorCode *status) {
if (U_FAILURE(*status) || res == NULL) {
return;
}
if (res->fRes != RES_BOGUS) {
/*
* The resource item word was already precomputed, which means
* no further data needs to be written.
* This might be an integer, or an empty or UTF-16 v2 string,
* an empty binary, etc.
*/
return;
}
switch (res->fType) {
case URES_STRING:
string_write16(bundle, res, status);
break;
case URES_ARRAY:
array_write16(bundle, res, status);
break;
case URES_TABLE:
table_write16(bundle, res, status);
break;
default:
/* Only a few resource types write 16-bit units. */
break;
}
}
/*
* Only called for UTF-16 v1 strings.
* For UTF-16 v2 strings, res_preWrite() sees fRes != RES_BOGUS
* and exits early.
*/
static void
string_preWrite(uint32_t *byteOffset,
struct SRBRoot *bundle, struct SResource *res,
UErrorCode *status) {
/* Write the UTF-16 v1 string. */
res->fRes = URES_MAKE_RESOURCE(URES_STRING, *byteOffset >> 2);
*byteOffset += 4 + (res->u.fString.fLength + 1) * U_SIZEOF_UCHAR;
}
static void
bin_preWrite(uint32_t *byteOffset,
struct SRBRoot *bundle, struct SResource *res,
UErrorCode *status) {
uint32_t pad = 0;
uint32_t dataStart = *byteOffset + sizeof(res->u.fBinaryValue.fLength);
if (dataStart % BIN_ALIGNMENT) {
pad = (BIN_ALIGNMENT - dataStart % BIN_ALIGNMENT);
*byteOffset += pad; /* pad == 4 or 8 or 12 */
}
res->fRes = URES_MAKE_RESOURCE(URES_BINARY, *byteOffset >> 2);
*byteOffset += 4 + res->u.fBinaryValue.fLength;
}
static void
array_preWrite(uint32_t *byteOffset,
struct SRBRoot *bundle, struct SResource *res,
UErrorCode *status) {
struct SResource *current;
if (U_FAILURE(*status)) {
return;
}
for (current = res->u.fArray.fFirst; current != NULL; current = current->fNext) {
res_preWrite(byteOffset, bundle, current, status);
}
res->fRes = URES_MAKE_RESOURCE(URES_ARRAY, *byteOffset >> 2);
*byteOffset += (1 + res->u.fArray.fCount) * 4;
}
static void
table_preWrite(uint32_t *byteOffset,
struct SRBRoot *bundle, struct SResource *res,
UErrorCode *status) {
struct SResource *current;
if (U_FAILURE(*status)) {
return;
}
for (current = res->u.fTable.fFirst; current != NULL; current = current->fNext) {
res_preWrite(byteOffset, bundle, current, status);
}
if (res->u.fTable.fType == URES_TABLE) {
/* 16-bit count, 16-bit key offsets, 32-bit values */
res->fRes = URES_MAKE_RESOURCE(URES_TABLE, *byteOffset >> 2);
*byteOffset += 2 + res->u.fTable.fCount * 6;
} else {
/* 32-bit count, key offsets and values */
res->fRes = URES_MAKE_RESOURCE(URES_TABLE32, *byteOffset >> 2);
*byteOffset += 4 + res->u.fTable.fCount * 8;
}
}
static void
res_preWrite(uint32_t *byteOffset,
struct SRBRoot *bundle, struct SResource *res,
UErrorCode *status) {
if (U_FAILURE(*status) || res == NULL) {
return;
}
if (res->fRes != RES_BOGUS) {
/*
* The resource item word was already precomputed, which means
* no further data needs to be written.
* This might be an integer, or an empty or UTF-16 v2 string,
* an empty binary, etc.
*/
return;
}
switch (res->fType) {
case URES_STRING:
string_preWrite(byteOffset, bundle, res, status);
break;
case URES_ALIAS:
res->fRes = URES_MAKE_RESOURCE(URES_ALIAS, *byteOffset >> 2);
*byteOffset += 4 + (res->u.fString.fLength + 1) * U_SIZEOF_UCHAR;
break;
case URES_INT_VECTOR:
if (res->u.fIntVector.fCount == 0 && gFormatVersion > 1) {
res->fRes = URES_MAKE_EMPTY_RESOURCE(URES_INT_VECTOR);
res->fWritten = TRUE;
} else {
res->fRes = URES_MAKE_RESOURCE(URES_INT_VECTOR, *byteOffset >> 2);
*byteOffset += (1 + res->u.fIntVector.fCount) * 4;
}
break;
case URES_BINARY:
bin_preWrite(byteOffset, bundle, res, status);
break;
case URES_INT:
break;
case URES_ARRAY:
array_preWrite(byteOffset, bundle, res, status);
break;
case URES_TABLE:
table_preWrite(byteOffset, bundle, res, status);
break;
default:
*status = U_INTERNAL_PROGRAM_ERROR;
break;
}
*byteOffset += calcPadding(*byteOffset);
}
/*
* Only called for UTF-16 v1 strings. For UTF-16 v2 strings,
* res_write() sees fWritten and exits early.
*/
static void string_write(UNewDataMemory *mem, uint32_t *byteOffset,
struct SRBRoot *bundle, struct SResource *res,
UErrorCode *status) {
/* Write the UTF-16 v1 string. */
int32_t length = res->u.fString.fLength;
udata_write32(mem, length);
udata_writeUString(mem, res->u.fString.fChars, length + 1);
*byteOffset += 4 + (length + 1) * U_SIZEOF_UCHAR;
res->fWritten = TRUE;
}
static void alias_write(UNewDataMemory *mem, uint32_t *byteOffset,
struct SRBRoot *bundle, struct SResource *res,
UErrorCode *status) {
int32_t length = res->u.fString.fLength;
udata_write32(mem, length);
udata_writeUString(mem, res->u.fString.fChars, length + 1);
*byteOffset += 4 + (length + 1) * U_SIZEOF_UCHAR;
}
static void array_write(UNewDataMemory *mem, uint32_t *byteOffset,
struct SRBRoot *bundle, struct SResource *res,
UErrorCode *status) {
uint32_t i;
struct SResource *current = NULL;
if (U_FAILURE(*status)) {
return;
}
for (i = 0, current = res->u.fArray.fFirst; current != NULL; ++i, current = current->fNext) {
res_write(mem, byteOffset, bundle, current, status);
}
assert(i == res->u.fArray.fCount);
udata_write32(mem, res->u.fArray.fCount);
for (current = res->u.fArray.fFirst; current != NULL; current = current->fNext) {
udata_write32(mem, current->fRes);
}
*byteOffset += (1 + res->u.fArray.fCount) * 4;
}
static void intvector_write(UNewDataMemory *mem, uint32_t *byteOffset,
struct SRBRoot *bundle, struct SResource *res,
UErrorCode *status) {
uint32_t i = 0;
udata_write32(mem, res->u.fIntVector.fCount);
for(i = 0; i<res->u.fIntVector.fCount; i++) {
udata_write32(mem, res->u.fIntVector.fArray[i]);
}
*byteOffset += (1 + res->u.fIntVector.fCount) * 4;
}
static void bin_write(UNewDataMemory *mem, uint32_t *byteOffset,
struct SRBRoot *bundle, struct SResource *res,
UErrorCode *status) {
uint32_t pad = 0;
uint32_t dataStart = *byteOffset + sizeof(res->u.fBinaryValue.fLength);
if (dataStart % BIN_ALIGNMENT) {
pad = (BIN_ALIGNMENT - dataStart % BIN_ALIGNMENT);
udata_writePadding(mem, pad); /* pad == 4 or 8 or 12 */
*byteOffset += pad;
}
udata_write32(mem, res->u.fBinaryValue.fLength);
if (res->u.fBinaryValue.fLength > 0) {
udata_writeBlock(mem, res->u.fBinaryValue.fData, res->u.fBinaryValue.fLength);
}
*byteOffset += 4 + res->u.fBinaryValue.fLength;
}
static void table_write(UNewDataMemory *mem, uint32_t *byteOffset,
struct SRBRoot *bundle, struct SResource *res,
UErrorCode *status) {
struct SResource *current;
uint32_t i;
if (U_FAILURE(*status)) {
return;
}
for (i = 0, current = res->u.fTable.fFirst; current != NULL; ++i, current = current->fNext) {
assert(i < res->u.fTable.fCount);
res_write(mem, byteOffset, bundle, current, status);
}
assert(i == res->u.fTable.fCount);
if(res->u.fTable.fType == URES_TABLE) {
udata_write16(mem, (uint16_t)res->u.fTable.fCount);
for (current = res->u.fTable.fFirst; current != NULL; current = current->fNext) {
udata_write16(mem, makeKey16(bundle, current->fKey));
}
*byteOffset += (1 + res->u.fTable.fCount)* 2;
if ((res->u.fTable.fCount & 1) == 0) {
/* 16-bit count and even number of 16-bit key offsets need padding before 32-bit resource items */
udata_writePadding(mem, 2);
*byteOffset += 2;
}
} else /* URES_TABLE32 */ {
udata_write32(mem, res->u.fTable.fCount);
for (current = res->u.fTable.fFirst; current != NULL; current = current->fNext) {
udata_write32(mem, (uint32_t)current->fKey);
}
*byteOffset += (1 + res->u.fTable.fCount)* 4;
}
for (current = res->u.fTable.fFirst; current != NULL; current = current->fNext) {
udata_write32(mem, current->fRes);
}
*byteOffset += res->u.fTable.fCount * 4;
}
void res_write(UNewDataMemory *mem, uint32_t *byteOffset,
struct SRBRoot *bundle, struct SResource *res,
UErrorCode *status) {
uint8_t paddingSize;
if (U_FAILURE(*status) || res == NULL) {
return;
}
if (res->fWritten) {
assert(res->fRes != RES_BOGUS);
return;
}
switch (res->fType) {
case URES_STRING:
string_write (mem, byteOffset, bundle, res, status);
break;
case URES_ALIAS:
alias_write (mem, byteOffset, bundle, res, status);
break;
case URES_INT_VECTOR:
intvector_write (mem, byteOffset, bundle, res, status);
break;
case URES_BINARY:
bin_write (mem, byteOffset, bundle, res, status);
break;
case URES_INT:
break; /* fRes was set by int_open() */
case URES_ARRAY:
array_write (mem, byteOffset, bundle, res, status);
break;
case URES_TABLE:
table_write (mem, byteOffset, bundle, res, status);
break;
default:
*status = U_INTERNAL_PROGRAM_ERROR;
break;
}
paddingSize = calcPadding(*byteOffset);
if (paddingSize > 0) {
udata_writePadding(mem, paddingSize);
*byteOffset += paddingSize;
}
res->fWritten = TRUE;
}
void bundle_write(struct SRBRoot *bundle,
const char *outputDir, const char *outputPkg,
char *writtenFilename, int writtenFilenameLen,
UErrorCode *status) {
UNewDataMemory *mem = NULL;
uint32_t byteOffset = 0;
uint32_t top, size;
char dataName[1024];
int32_t indexes[URES_INDEX_TOP];
bundle_compactKeys(bundle, status);
/*
* Add padding bytes to fKeys so that fKeysTop is 4-aligned.
* Safe because the capacity is a multiple of 4.
*/
while (bundle->fKeysTop & 3) {
bundle->fKeys[bundle->fKeysTop++] = (char)0xaa;
}
/*
* In URES_TABLE, use all local key offsets that fit into 16 bits,
* and use the remaining 16-bit offsets for pool key offsets
* if there are any.
* If there are no local keys, then use the whole 16-bit space
* for pool key offsets.
* Note: This cannot be changed without changing the major formatVersion.
*/
if (bundle->fKeysBottom < bundle->fKeysTop) {
if (bundle->fKeysTop <= 0x10000) {
bundle->fLocalKeyLimit = bundle->fKeysTop;
} else {
bundle->fLocalKeyLimit = 0x10000;
}
} else {
bundle->fLocalKeyLimit = 0;
}
bundle_compactStrings(bundle, status);
res_write16(bundle, bundle->fRoot, status);
if (bundle->f16BitUnitsLength & 1) {
bundle->f16BitUnits[bundle->f16BitUnitsLength++] = 0xaaaa; /* pad to multiple of 4 bytes */
}
/* all keys have been mapped */
uprv_free(bundle->fKeyMap);
bundle->fKeyMap = NULL;
byteOffset = bundle->fKeysTop + bundle->f16BitUnitsLength * 2;
res_preWrite(&byteOffset, bundle, bundle->fRoot, status);
/* total size including the root item */
top = byteOffset;
if (U_FAILURE(*status)) {
return;
}
if (writtenFilename && writtenFilenameLen) {
*writtenFilename = 0;
}
if (writtenFilename) {
int32_t off = 0, len = 0;
if (outputDir) {
len = (int32_t)uprv_strlen(outputDir);
if (len > writtenFilenameLen) {
len = writtenFilenameLen;
}
uprv_strncpy(writtenFilename, outputDir, len);
}
if (writtenFilenameLen -= len) {
off += len;
writtenFilename[off] = U_FILE_SEP_CHAR;
if (--writtenFilenameLen) {
++off;
if(outputPkg != NULL)
{
uprv_strcpy(writtenFilename+off, outputPkg);
off += (int32_t)uprv_strlen(outputPkg);
writtenFilename[off] = '_';
++off;
}
len = (int32_t)uprv_strlen(bundle->fLocale);
if (len > writtenFilenameLen) {
len = writtenFilenameLen;
}
uprv_strncpy(writtenFilename + off, bundle->fLocale, len);
if (writtenFilenameLen -= len) {
off += len;
len = 5;
if (len > writtenFilenameLen) {
len = writtenFilenameLen;
}
uprv_strncpy(writtenFilename + off, ".res", len);
}
}
}
}
if(outputPkg)
{
uprv_strcpy(dataName, outputPkg);
uprv_strcat(dataName, "_");
uprv_strcat(dataName, bundle->fLocale);
}
else
{
uprv_strcpy(dataName, bundle->fLocale);
}
uprv_memcpy(dataInfo.formatVersion, gFormatVersions + gFormatVersion, sizeof(UVersionInfo));
mem = udata_create(outputDir, "res", dataName, &dataInfo, (gIncludeCopyright==TRUE)? U_COPYRIGHT_STRING:NULL, status);
if(U_FAILURE(*status)){
return;
}
/* write the root item */
udata_write32(mem, bundle->fRoot->fRes);
/*
* formatVersion 1.1 (ICU 2.8):
* write int32_t indexes[] after root and before the strings
* to make it easier to parse resource bundles in icuswap or from Java etc.
*/
uprv_memset(indexes, 0, sizeof(indexes));
indexes[URES_INDEX_LENGTH]= bundle->fIndexLength;
indexes[URES_INDEX_KEYS_TOP]= bundle->fKeysTop>>2;
indexes[URES_INDEX_RESOURCES_TOP]= (int32_t)(top>>2);
indexes[URES_INDEX_BUNDLE_TOP]= indexes[URES_INDEX_RESOURCES_TOP];
indexes[URES_INDEX_MAX_TABLE_LENGTH]= bundle->fMaxTableLength;
/*
* formatVersion 1.2 (ICU 3.6):
* write indexes[URES_INDEX_ATTRIBUTES] with URES_ATT_NO_FALLBACK set or not set
* the memset() above initialized all indexes[] to 0
*/
if (bundle->noFallback) {
indexes[URES_INDEX_ATTRIBUTES]=URES_ATT_NO_FALLBACK;
}
/*
* formatVersion 2.0 (ICU 4.4):
* more compact string value storage, optional pool bundle
*/
if (URES_INDEX_16BIT_TOP < bundle->fIndexLength) {
indexes[URES_INDEX_16BIT_TOP] = (bundle->fKeysTop>>2) + (bundle->f16BitUnitsLength>>1);
}
if (URES_INDEX_POOL_CHECKSUM < bundle->fIndexLength) {
if (bundle->fIsPoolBundle) {
indexes[URES_INDEX_ATTRIBUTES] |= URES_ATT_IS_POOL_BUNDLE | URES_ATT_NO_FALLBACK;
indexes[URES_INDEX_POOL_CHECKSUM] =
(int32_t)computeCRC((char *)(bundle->fKeys + bundle->fKeysBottom),
(uint32_t)(bundle->fKeysTop - bundle->fKeysBottom),
0);
} else if (gUsePoolBundle) {
indexes[URES_INDEX_ATTRIBUTES] |= URES_ATT_USES_POOL_BUNDLE;
indexes[URES_INDEX_POOL_CHECKSUM] = bundle->fPoolChecksum;
}
}
/* write the indexes[] */
udata_writeBlock(mem, indexes, bundle->fIndexLength*4);
/* write the table key strings */
udata_writeBlock(mem, bundle->fKeys+bundle->fKeysBottom,
bundle->fKeysTop-bundle->fKeysBottom);
/* write the v2 UTF-16 strings, URES_TABLE16 and URES_ARRAY16 */
udata_writeBlock(mem, bundle->f16BitUnits, bundle->f16BitUnitsLength*2);
/* write all of the bundle contents: the root item and its children */
byteOffset = bundle->fKeysTop + bundle->f16BitUnitsLength * 2;
res_write(mem, &byteOffset, bundle, bundle->fRoot, status);
assert(byteOffset == top);
size = udata_finish(mem, status);
if(top != size) {
fprintf(stderr, "genrb error: wrote %u bytes but counted %u\n",
(int)size, (int)top);
*status = U_INTERNAL_PROGRAM_ERROR;
}
}
/* Opening Functions */
/* gcc 4.2 complained "no previous prototype for res_open" without this prototype... */
struct SResource* res_open(struct SRBRoot *bundle, const char *tag,
const struct UString* comment, UErrorCode* status);
struct SResource* res_open(struct SRBRoot *bundle, const char *tag,
const struct UString* comment, UErrorCode* status){
struct SResource *res;
int32_t key = bundle_addtag(bundle, tag, status);
if (U_FAILURE(*status)) {
return NULL;
}
res = (struct SResource *) uprv_malloc(sizeof(struct SResource));
if (res == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return NULL;
}
uprv_memset(res, 0, sizeof(struct SResource));
res->fKey = key;
res->fRes = RES_BOGUS;
ustr_init(&res->fComment);
if(comment != NULL){
ustr_cpy(&res->fComment, comment, status);
if (U_FAILURE(*status)) {
res_close(res);
return NULL;
}
}
return res;
}
struct SResource* res_none() {
return (struct SResource*)&kNoResource;
}
struct SResource* table_open(struct SRBRoot *bundle, const char *tag, const struct UString* comment, UErrorCode *status) {
struct SResource *res = res_open(bundle, tag, comment, status);
if (U_FAILURE(*status)) {
return NULL;
}
res->fType = URES_TABLE;
res->u.fTable.fRoot = bundle;
return res;
}
struct SResource* array_open(struct SRBRoot *bundle, const char *tag, const struct UString* comment, UErrorCode *status) {
struct SResource *res = res_open(bundle, tag, comment, status);
if (U_FAILURE(*status)) {
return NULL;
}
res->fType = URES_ARRAY;
return res;
}
static int32_t U_CALLCONV
string_hash(const UElement key) {
const struct SResource *res = (struct SResource *)key.pointer;
return ustr_hashUCharsN(res->u.fString.fChars, res->u.fString.fLength);
}
static UBool U_CALLCONV
string_comp(const UElement key1, const UElement key2) {
const struct SResource *res1 = (struct SResource *)key1.pointer;
const struct SResource *res2 = (struct SResource *)key2.pointer;
return 0 == u_strCompare(res1->u.fString.fChars, res1->u.fString.fLength,
res2->u.fString.fChars, res2->u.fString.fLength,
FALSE);
}
static struct SResource *
stringbase_open(struct SRBRoot *bundle, const char *tag, int8_t type,
const UChar *value, int32_t len, const struct UString* comment,
UErrorCode *status) {
struct SResource *res = res_open(bundle, tag, comment, status);
if (U_FAILURE(*status)) {
return NULL;
}
res->fType = type;
if (len == 0 && gFormatVersion > 1) {
res->u.fString.fChars = &gEmptyString;
res->fRes = URES_MAKE_EMPTY_RESOURCE(type);
res->fWritten = TRUE;
return res;
}
res->u.fString.fLength = len;
res->u.fString.fChars = (UChar *) uprv_malloc(sizeof(UChar) * (len + 1));
if (res->u.fString.fChars == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
uprv_free(res);
return NULL;
}
uprv_memcpy(res->u.fString.fChars, value, sizeof(UChar) * len);
res->u.fString.fChars[len] = 0;
return res;
}
struct SResource *string_open(struct SRBRoot *bundle, const char *tag, const UChar *value, int32_t len, const struct UString* comment, UErrorCode *status) {
return stringbase_open(bundle, tag, URES_STRING, value, len, comment, status);
}
struct SResource *alias_open(struct SRBRoot *bundle, const char *tag, UChar *value, int32_t len, const struct UString* comment, UErrorCode *status) {
return stringbase_open(bundle, tag, URES_ALIAS, value, len, comment, status);
}
struct SResource* intvector_open(struct SRBRoot *bundle, const char *tag, const struct UString* comment, UErrorCode *status) {
struct SResource *res = res_open(bundle, tag, comment, status);
if (U_FAILURE(*status)) {
return NULL;
}
res->fType = URES_INT_VECTOR;
res->u.fIntVector.fCount = 0;
res->u.fIntVector.fArray = (uint32_t *) uprv_malloc(sizeof(uint32_t) * RESLIST_MAX_INT_VECTOR);
if (res->u.fIntVector.fArray == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
uprv_free(res);
return NULL;
}
return res;
}
struct SResource *int_open(struct SRBRoot *bundle, const char *tag, int32_t value, const struct UString* comment, UErrorCode *status) {
struct SResource *res = res_open(bundle, tag, comment, status);
if (U_FAILURE(*status)) {
return NULL;
}
res->fType = URES_INT;
res->u.fIntValue.fValue = value;
res->fRes = URES_MAKE_RESOURCE(URES_INT, value & 0x0FFFFFFF);
res->fWritten = TRUE;
return res;
}
struct SResource *bin_open(struct SRBRoot *bundle, const char *tag, uint32_t length, uint8_t *data, const char* fileName, const struct UString* comment, UErrorCode *status) {
struct SResource *res = res_open(bundle, tag, comment, status);
if (U_FAILURE(*status)) {
return NULL;
}
res->fType = URES_BINARY;
res->u.fBinaryValue.fLength = length;
res->u.fBinaryValue.fFileName = NULL;
if(fileName!=NULL && uprv_strcmp(fileName, "") !=0){
res->u.fBinaryValue.fFileName = (char*) uprv_malloc(sizeof(char) * (uprv_strlen(fileName)+1));
uprv_strcpy(res->u.fBinaryValue.fFileName,fileName);
}
if (length > 0) {
res->u.fBinaryValue.fData = (uint8_t *) uprv_malloc(sizeof(uint8_t) * length);
if (res->u.fBinaryValue.fData == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
uprv_free(res);
return NULL;
}
uprv_memcpy(res->u.fBinaryValue.fData, data, length);
}
else {
res->u.fBinaryValue.fData = NULL;
if (gFormatVersion > 1) {
res->fRes = URES_MAKE_EMPTY_RESOURCE(URES_BINARY);
res->fWritten = TRUE;
}
}
return res;
}
struct SRBRoot *bundle_open(const struct UString* comment, UBool isPoolBundle, UErrorCode *status) {
struct SRBRoot *bundle;
if (U_FAILURE(*status)) {
return NULL;
}
bundle = (struct SRBRoot *) uprv_malloc(sizeof(struct SRBRoot));
if (bundle == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return 0;
}
uprv_memset(bundle, 0, sizeof(struct SRBRoot));
bundle->fKeys = (char *) uprv_malloc(sizeof(char) * KEY_SPACE_SIZE);
bundle->fRoot = table_open(bundle, NULL, comment, status);
if (bundle->fKeys == NULL || bundle->fRoot == NULL || U_FAILURE(*status)) {
if (U_SUCCESS(*status)) {
*status = U_MEMORY_ALLOCATION_ERROR;
}
bundle_close(bundle, status);
return NULL;
}
bundle->fLocale = NULL;
bundle->fKeysCapacity = KEY_SPACE_SIZE;
/* formatVersion 1.1: start fKeysTop after the root item and indexes[] */
bundle->fIsPoolBundle = isPoolBundle;
if (gUsePoolBundle || isPoolBundle) {
bundle->fIndexLength = URES_INDEX_POOL_CHECKSUM + 1;
} else if (gFormatVersion >= 2) {
bundle->fIndexLength = URES_INDEX_16BIT_TOP + 1;
} else /* formatVersion 1 */ {
bundle->fIndexLength = URES_INDEX_ATTRIBUTES + 1;
}
bundle->fKeysBottom = (1 /* root */ + bundle->fIndexLength) * 4;
uprv_memset(bundle->fKeys, 0, bundle->fKeysBottom);
bundle->fKeysTop = bundle->fKeysBottom;
if (gFormatVersion == 1) {
bundle->fStringsForm = STRINGS_UTF16_V1;
} else {
bundle->fStringsForm = STRINGS_UTF16_V2;
}
return bundle;
}
/* Closing Functions */
static void table_close(struct SResource *table) {
struct SResource *current = NULL;
struct SResource *prev = NULL;
current = table->u.fTable.fFirst;
while (current != NULL) {
prev = current;
current = current->fNext;
res_close(prev);
}
table->u.fTable.fFirst = NULL;
}
static void array_close(struct SResource *array) {
struct SResource *current = NULL;
struct SResource *prev = NULL;
if(array==NULL){
return;
}
current = array->u.fArray.fFirst;
while (current != NULL) {
prev = current;
current = current->fNext;
res_close(prev);
}
array->u.fArray.fFirst = NULL;
}
static void string_close(struct SResource *string) {
if (string->u.fString.fChars != NULL &&
string->u.fString.fChars != &gEmptyString) {
uprv_free(string->u.fString.fChars);
string->u.fString.fChars =NULL;
}
}
static void alias_close(struct SResource *alias) {
if (alias->u.fString.fChars != NULL) {
uprv_free(alias->u.fString.fChars);
alias->u.fString.fChars =NULL;
}
}
static void intvector_close(struct SResource *intvector) {
if (intvector->u.fIntVector.fArray != NULL) {
uprv_free(intvector->u.fIntVector.fArray);
intvector->u.fIntVector.fArray =NULL;
}
}
static void int_close(struct SResource *intres) {
/* Intentionally left blank */
}
static void bin_close(struct SResource *binres) {
if (binres->u.fBinaryValue.fData != NULL) {
uprv_free(binres->u.fBinaryValue.fData);
binres->u.fBinaryValue.fData = NULL;
}
if (binres->u.fBinaryValue.fFileName != NULL) {
uprv_free(binres->u.fBinaryValue.fFileName);
binres->u.fBinaryValue.fFileName = NULL;
}
}
void res_close(struct SResource *res) {
if (res != NULL) {
switch(res->fType) {
case URES_STRING:
string_close(res);
break;
case URES_ALIAS:
alias_close(res);
break;
case URES_INT_VECTOR:
intvector_close(res);
break;
case URES_BINARY:
bin_close(res);
break;
case URES_INT:
int_close(res);
break;
case URES_ARRAY:
array_close(res);
break;
case URES_TABLE:
table_close(res);
break;
default:
/* Shouldn't happen */
break;
}
ustr_deinit(&res->fComment);
uprv_free(res);
}
}
void bundle_close(struct SRBRoot *bundle, UErrorCode *status) {
res_close(bundle->fRoot);
uprv_free(bundle->fLocale);
uprv_free(bundle->fKeys);
uprv_free(bundle->fKeyMap);
uprv_free(bundle->f16BitUnits);
uprv_free(bundle);
}
/* Adding Functions */
void table_add(struct SResource *table, struct SResource *res, int linenumber, UErrorCode *status) {
struct SResource *current = NULL;
struct SResource *prev = NULL;
struct SResTable *list;
const char *resKeyString;
if (U_FAILURE(*status)) {
return;
}
if (res == &kNoResource) {
return;
}
/* remember this linenumber to report to the user if there is a duplicate key */
res->line = linenumber;
/* here we need to traverse the list */
list = &(table->u.fTable);
++(list->fCount);
/* is list still empty? */
if (list->fFirst == NULL) {
list->fFirst = res;
res->fNext = NULL;
return;
}
resKeyString = list->fRoot->fKeys + res->fKey;
current = list->fFirst;
while (current != NULL) {
const char *currentKeyString = list->fRoot->fKeys + current->fKey;
int diff;
/*
* formatVersion 1: compare key strings in native-charset order
* formatVersion 2 and up: compare key strings in ASCII order
*/
if (gFormatVersion == 1 || U_CHARSET_FAMILY == U_ASCII_FAMILY) {
diff = uprv_strcmp(currentKeyString, resKeyString);
} else {
diff = uprv_compareInvCharsAsAscii(currentKeyString, resKeyString);
}
if (diff < 0) {
prev = current;
current = current->fNext;
} else if (diff > 0) {
/* we're either in front of list, or in middle */
if (prev == NULL) {
/* front of the list */
list->fFirst = res;
} else {
/* middle of the list */
prev->fNext = res;
}
res->fNext = current;
return;
} else {
/* Key already exists! ERROR! */
error(linenumber, "duplicate key '%s' in table, first appeared at line %d", currentKeyString, current->line);
*status = U_UNSUPPORTED_ERROR;
return;
}
}
/* end of list */
prev->fNext = res;
res->fNext = NULL;
}
void array_add(struct SResource *array, struct SResource *res, UErrorCode *status) {
if (U_FAILURE(*status)) {
return;
}
if (array->u.fArray.fFirst == NULL) {
array->u.fArray.fFirst = res;
array->u.fArray.fLast = res;
} else {
array->u.fArray.fLast->fNext = res;
array->u.fArray.fLast = res;
}
(array->u.fArray.fCount)++;
}
void intvector_add(struct SResource *intvector, int32_t value, UErrorCode *status) {
if (U_FAILURE(*status)) {
return;
}
*(intvector->u.fIntVector.fArray + intvector->u.fIntVector.fCount) = value;
intvector->u.fIntVector.fCount++;
}
/* Misc Functions */
void bundle_setlocale(struct SRBRoot *bundle, UChar *locale, UErrorCode *status) {
if(U_FAILURE(*status)) {
return;
}
if (bundle->fLocale!=NULL) {
uprv_free(bundle->fLocale);
}
bundle->fLocale= (char*) uprv_malloc(sizeof(char) * (u_strlen(locale)+1));
if(bundle->fLocale == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return;
}
/*u_strcpy(bundle->fLocale, locale);*/
u_UCharsToChars(locale, bundle->fLocale, u_strlen(locale)+1);
}
static const char *
getKeyString(const struct SRBRoot *bundle, int32_t key) {
if (key < 0) {
return bundle->fPoolBundleKeys + (key & 0x7fffffff);
} else {
return bundle->fKeys + key;
}
}
const char *
res_getKeyString(const struct SRBRoot *bundle, const struct SResource *res, char temp[8]) {
if (res->fKey == -1) {
return NULL;
}
return getKeyString(bundle, res->fKey);
}
const char *
bundle_getKeyBytes(struct SRBRoot *bundle, int32_t *pLength) {
*pLength = bundle->fKeysTop - bundle->fKeysBottom;
return bundle->fKeys + bundle->fKeysBottom;
}
int32_t
bundle_addKeyBytes(struct SRBRoot *bundle, const char *keyBytes, int32_t length, UErrorCode *status) {
int32_t keypos;
if (U_FAILURE(*status)) {
return -1;
}
if (length < 0 || (keyBytes == NULL && length != 0)) {
*status = U_ILLEGAL_ARGUMENT_ERROR;
return -1;
}
if (length == 0) {
return bundle->fKeysTop;
}
keypos = bundle->fKeysTop;
bundle->fKeysTop += length;
if (bundle->fKeysTop >= bundle->fKeysCapacity) {
/* overflow - resize the keys buffer */
bundle->fKeysCapacity += KEY_SPACE_SIZE;
bundle->fKeys = uprv_realloc(bundle->fKeys, bundle->fKeysCapacity);
if(bundle->fKeys == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return -1;
}
}
uprv_memcpy(bundle->fKeys + keypos, keyBytes, length);
return keypos;
}
int32_t
bundle_addtag(struct SRBRoot *bundle, const char *tag, UErrorCode *status) {
int32_t keypos;
if (U_FAILURE(*status)) {
return -1;
}
if (tag == NULL) {
/* no error: the root table and array items have no keys */
return -1;
}
keypos = bundle_addKeyBytes(bundle, tag, (int32_t)(uprv_strlen(tag) + 1), status);
if (U_SUCCESS(*status)) {
++bundle->fKeysCount;
}
return keypos;
}
static int32_t
compareInt32(int32_t lPos, int32_t rPos) {
/*
* Compare possibly-negative key offsets. Don't just return lPos - rPos
* because that is prone to negative-integer underflows.
*/
if (lPos < rPos) {
return -1;
} else if (lPos > rPos) {
return 1;
} else {
return 0;
}
}
static int32_t U_CALLCONV
compareKeySuffixes(const void *context, const void *l, const void *r) {
const struct SRBRoot *bundle=(const struct SRBRoot *)context;
int32_t lPos = ((const KeyMapEntry *)l)->oldpos;
int32_t rPos = ((const KeyMapEntry *)r)->oldpos;
const char *lStart = getKeyString(bundle, lPos);
const char *lLimit = lStart;
const char *rStart = getKeyString(bundle, rPos);
const char *rLimit = rStart;
int32_t diff;
while (*lLimit != 0) { ++lLimit; }
while (*rLimit != 0) { ++rLimit; }
/* compare keys in reverse character order */
while (lStart < lLimit && rStart < rLimit) {
diff = (int32_t)(uint8_t)*--lLimit - (int32_t)(uint8_t)*--rLimit;
if (diff != 0) {
return diff;
}
}
/* sort equal suffixes by descending key length */
diff = (int32_t)(rLimit - rStart) - (int32_t)(lLimit - lStart);
if (diff != 0) {
return diff;
}
/* Sort pool bundle keys first (negative oldpos), and otherwise keys in parsing order. */
return compareInt32(lPos, rPos);
}
static int32_t U_CALLCONV
compareKeyNewpos(const void *context, const void *l, const void *r) {
return compareInt32(((const KeyMapEntry *)l)->newpos, ((const KeyMapEntry *)r)->newpos);
}
static int32_t U_CALLCONV
compareKeyOldpos(const void *context, const void *l, const void *r) {
return compareInt32(((const KeyMapEntry *)l)->oldpos, ((const KeyMapEntry *)r)->oldpos);
}
void
bundle_compactKeys(struct SRBRoot *bundle, UErrorCode *status) {
KeyMapEntry *map;
char *keys;
int32_t i;
int32_t keysCount = bundle->fPoolBundleKeysCount + bundle->fKeysCount;
if (U_FAILURE(*status) || bundle->fKeysCount == 0 || bundle->fKeyMap != NULL) {
return;
}
map = (KeyMapEntry *)uprv_malloc(keysCount * sizeof(KeyMapEntry));
if (map == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return;
}
keys = (char *)bundle->fPoolBundleKeys;
for (i = 0; i < bundle->fPoolBundleKeysCount; ++i) {
map[i].oldpos =
(int32_t)(keys - bundle->fPoolBundleKeys) | 0x80000000; /* negative oldpos */
map[i].newpos = 0;
while (*keys != 0) { ++keys; } /* skip the key */
++keys; /* skip the NUL */
}
keys = bundle->fKeys + bundle->fKeysBottom;
for (; i < keysCount; ++i) {
map[i].oldpos = (int32_t)(keys - bundle->fKeys);
map[i].newpos = 0;
while (*keys != 0) { ++keys; } /* skip the key */
++keys; /* skip the NUL */
}
/* Sort the keys so that each one is immediately followed by all of its suffixes. */
uprv_sortArray(map, keysCount, (int32_t)sizeof(KeyMapEntry),
compareKeySuffixes, bundle, FALSE, status);
/*
* Make suffixes point into earlier, longer strings that contain them
* and mark the old, now unused suffix bytes as deleted.
*/
if (U_SUCCESS(*status)) {
keys = bundle->fKeys;
for (i = 0; i < keysCount;) {
/*
* This key is not a suffix of the previous one;
* keep this one and delete the following ones that are
* suffixes of this one.
*/
const char *key;
const char *keyLimit;
int32_t j = i + 1;
map[i].newpos = map[i].oldpos;
if (j < keysCount && map[j].oldpos < 0) {
/* Key string from the pool bundle, do not delete. */
i = j;
continue;
}
key = getKeyString(bundle, map[i].oldpos);
for (keyLimit = key; *keyLimit != 0; ++keyLimit) {}
for (; j < keysCount && map[j].oldpos >= 0; ++j) {
const char *k;
char *suffix;
const char *suffixLimit;
int32_t offset;
suffix = keys + map[j].oldpos;
for (suffixLimit = suffix; *suffixLimit != 0; ++suffixLimit) {}
offset = (int32_t)(keyLimit - key) - (suffixLimit - suffix);
if (offset < 0) {
break; /* suffix cannot be longer than the original */
}
/* Is it a suffix of the earlier, longer key? */
for (k = keyLimit; suffix < suffixLimit && *--k == *--suffixLimit;) {}
if (suffix == suffixLimit && *k == *suffixLimit) {
map[j].newpos = map[i].oldpos + offset; /* yes, point to the earlier key */
/* mark the suffix as deleted */
while (*suffix != 0) { *suffix++ = 1; }
*suffix = 1;
} else {
break; /* not a suffix, restart from here */
}
}
i = j;
}
/*
* Re-sort by newpos, then modify the key characters array in-place
* to squeeze out unused bytes, and readjust the newpos offsets.
*/
uprv_sortArray(map, keysCount, (int32_t)sizeof(KeyMapEntry),
compareKeyNewpos, NULL, FALSE, status);
if (U_SUCCESS(*status)) {
int32_t oldpos, newpos, limit;
oldpos = newpos = bundle->fKeysBottom;
limit = bundle->fKeysTop;
/* skip key offsets that point into the pool bundle rather than this new bundle */
for (i = 0; i < keysCount && map[i].newpos < 0; ++i) {}
if (i < keysCount) {
while (oldpos < limit) {
if (keys[oldpos] == 1) {
++oldpos; /* skip unused bytes */
} else {
/* adjust the new offsets for keys starting here */
while (i < keysCount && map[i].newpos == oldpos) {
map[i++].newpos = newpos;
}
/* move the key characters to their new position */
keys[newpos++] = keys[oldpos++];
}
}
assert(i == keysCount);
}
bundle->fKeysTop = newpos;
/* Re-sort once more, by old offsets for binary searching. */
uprv_sortArray(map, keysCount, (int32_t)sizeof(KeyMapEntry),
compareKeyOldpos, NULL, FALSE, status);
if (U_SUCCESS(*status)) {
/* key size reduction by limit - newpos */
bundle->fKeyMap = map;
map = NULL;
}
}
}
uprv_free(map);
}
static int32_t U_CALLCONV
compareStringSuffixes(const void *context, const void *l, const void *r) {
struct SResource *left = *((struct SResource **)l);
struct SResource *right = *((struct SResource **)r);
const UChar *lStart = left->u.fString.fChars;
const UChar *lLimit = lStart + left->u.fString.fLength;
const UChar *rStart = right->u.fString.fChars;
const UChar *rLimit = rStart + right->u.fString.fLength;
int32_t diff;
/* compare keys in reverse character order */
while (lStart < lLimit && rStart < rLimit) {
diff = (int32_t)*--lLimit - (int32_t)*--rLimit;
if (diff != 0) {
return diff;
}
}
/* sort equal suffixes by descending string length */
return right->u.fString.fLength - left->u.fString.fLength;
}
static int32_t U_CALLCONV
compareStringLengths(const void *context, const void *l, const void *r) {
struct SResource *left = *((struct SResource **)l);
struct SResource *right = *((struct SResource **)r);
int32_t diff;
/* Make "is suffix of another string" compare greater than a non-suffix. */
diff = (int)(left->u.fString.fSame != NULL) - (int)(right->u.fString.fSame != NULL);
if (diff != 0) {
return diff;
}
/* sort by ascending string length */
return left->u.fString.fLength - right->u.fString.fLength;
}
static int32_t
string_writeUTF16v2(struct SRBRoot *bundle, struct SResource *res, int32_t utf16Length) {
int32_t length = res->u.fString.fLength;
res->fRes = URES_MAKE_RESOURCE(URES_STRING_V2, utf16Length);
res->fWritten = TRUE;
switch(res->u.fString.fNumCharsForLength) {
case 0:
break;
case 1:
bundle->f16BitUnits[utf16Length++] = (uint16_t)(0xdc00 + length);
break;
case 2:
bundle->f16BitUnits[utf16Length] = (uint16_t)(0xdfef + (length >> 16));
bundle->f16BitUnits[utf16Length + 1] = (uint16_t)length;
utf16Length += 2;
break;
case 3:
bundle->f16BitUnits[utf16Length] = 0xdfff;
bundle->f16BitUnits[utf16Length + 1] = (uint16_t)(length >> 16);
bundle->f16BitUnits[utf16Length + 2] = (uint16_t)length;
utf16Length += 3;
break;
default:
break; /* will not occur */
}
u_memcpy(bundle->f16BitUnits + utf16Length, res->u.fString.fChars, length + 1);
return utf16Length + length + 1;
}
static void
bundle_compactStrings(struct SRBRoot *bundle, UErrorCode *status) {
UHashtable *stringSet;
if (gFormatVersion > 1) {
stringSet = uhash_open(string_hash, string_comp, string_comp, status);
res_preflightStrings(bundle, bundle->fRoot, stringSet, status);
} else {
stringSet = NULL;
}
if (U_FAILURE(*status)) {
uhash_close(stringSet);
return;
}
switch(bundle->fStringsForm) {
case STRINGS_UTF16_V2:
if (bundle->f16BitUnitsLength > 0) {
struct SResource **array;
int32_t count = uhash_count(stringSet);
int32_t i, pos;
/*
* Allocate enough space for the initial NUL and the UTF-16 v2 strings,
* and some extra for URES_TABLE16 and URES_ARRAY16 values.
* Round down to an even number.
*/
int32_t utf16Length = (bundle->f16BitUnitsLength + 20000) & ~1;
bundle->f16BitUnits = (UChar *)uprv_malloc(utf16Length * U_SIZEOF_UCHAR);
array = (struct SResource **)uprv_malloc(count * sizeof(struct SResource **));
if (bundle->f16BitUnits == NULL || array == NULL) {
uprv_free(bundle->f16BitUnits);
bundle->f16BitUnits = NULL;
uprv_free(array);
uhash_close(stringSet);
*status = U_MEMORY_ALLOCATION_ERROR;
return;
}
bundle->f16BitUnitsCapacity = utf16Length;
/* insert the initial NUL */
bundle->f16BitUnits[0] = 0;
utf16Length = 1;
++bundle->f16BitUnitsLength;
for (pos = UHASH_FIRST, i = 0; i < count; ++i) {
array[i] = (struct SResource *)uhash_nextElement(stringSet, &pos)->key.pointer;
}
/* Sort the strings so that each one is immediately followed by all of its suffixes. */
uprv_sortArray(array, count, (int32_t)sizeof(struct SResource **),
compareStringSuffixes, NULL, FALSE, status);
/*
* Make suffixes point into earlier, longer strings that contain them.
* Temporarily use fSame and fSuffixOffset for suffix strings to
* refer to the remaining ones.
*/
if (U_SUCCESS(*status)) {
for (i = 0; i < count;) {
/*
* This string is not a suffix of the previous one;
* write this one and subsume the following ones that are
* suffixes of this one.
*/
struct SResource *res = array[i];
const UChar *strLimit = res->u.fString.fChars + res->u.fString.fLength;
int32_t j;
for (j = i + 1; j < count; ++j) {
struct SResource *suffixRes = array[j];
const UChar *s;
const UChar *suffix = suffixRes->u.fString.fChars;
const UChar *suffixLimit = suffix + suffixRes->u.fString.fLength;
int32_t offset = res->u.fString.fLength - suffixRes->u.fString.fLength;
if (offset < 0) {
break; /* suffix cannot be longer than the original */
}
/* Is it a suffix of the earlier, longer key? */
for (s = strLimit; suffix < suffixLimit && *--s == *--suffixLimit;) {}
if (suffix == suffixLimit && *s == *suffixLimit) {
if (suffixRes->u.fString.fNumCharsForLength == 0) {
/* yes, point to the earlier string */
suffixRes->u.fString.fSame = res;
suffixRes->u.fString.fSuffixOffset = offset;
} else {
/* write the suffix by itself if we need explicit length */
}
} else {
break; /* not a suffix, restart from here */
}
}
i = j;
}
}
/*
* Re-sort the strings by ascending length (except suffixes last)
* to optimize for URES_TABLE16 and URES_ARRAY16:
* Keep as many as possible within reach of 16-bit offsets.
*/
uprv_sortArray(array, count, (int32_t)sizeof(struct SResource **),
compareStringLengths, NULL, FALSE, status);
if (U_SUCCESS(*status)) {
/* Write the non-suffix strings. */
for (i = 0; i < count && array[i]->u.fString.fSame == NULL; ++i) {
utf16Length = string_writeUTF16v2(bundle, array[i], utf16Length);
}
/* Write the suffix strings. Make each point to the real string. */
for (; i < count; ++i) {
struct SResource *res = array[i];
struct SResource *same = res->u.fString.fSame;
res->fRes = same->fRes + same->u.fString.fNumCharsForLength + res->u.fString.fSuffixOffset;
res->u.fString.fSame = NULL;
res->fWritten = TRUE;
}
}
assert(utf16Length <= bundle->f16BitUnitsLength);
bundle->f16BitUnitsLength = utf16Length;
uprv_free(array);
}
break;
default:
break;
}
uhash_close(stringSet);
}