423411ca70
X-SVN-Rev: 13932
925 lines
29 KiB
C++
925 lines
29 KiB
C++
//
|
|
// rbbitblb.cpp
|
|
//
|
|
|
|
/*
|
|
**********************************************************************
|
|
* Copyright (c) 2002-2003, International Business Machines
|
|
* Corporation and others. All Rights Reserved.
|
|
**********************************************************************
|
|
*/
|
|
|
|
#include "unicode/utypes.h"
|
|
|
|
#if !UCONFIG_NO_BREAK_ITERATION
|
|
|
|
#include "unicode/unistr.h"
|
|
#include "rbbitblb.h"
|
|
#include "rbbirb.h"
|
|
#include "rbbisetb.h"
|
|
#include "rbbidata.h"
|
|
#include "cstring.h"
|
|
#include "uassert.h"
|
|
|
|
U_NAMESPACE_BEGIN
|
|
|
|
RBBITableBuilder::RBBITableBuilder(RBBIRuleBuilder *rb, RBBINode **rootNode) :
|
|
fTree(*rootNode) {
|
|
fRB = rb;
|
|
fStatus = fRB->fStatus;
|
|
UErrorCode status = U_ZERO_ERROR;
|
|
fDStates = new UVector(status);
|
|
if (U_FAILURE(*fStatus)) {
|
|
return;
|
|
}
|
|
if (U_FAILURE(status)) {
|
|
*fStatus = status;
|
|
return;
|
|
}
|
|
if (fDStates == NULL) {
|
|
*fStatus = U_MEMORY_ALLOCATION_ERROR;;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
RBBITableBuilder::~RBBITableBuilder() {
|
|
int i;
|
|
for (i=0; i<fDStates->size(); i++) {
|
|
delete (RBBIStateDescriptor *)fDStates->elementAt(i);
|
|
}
|
|
delete fDStates;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// RBBITableBuilder::build - This is the main function for building the DFA state transtion
|
|
// table from the RBBI rules parse tree.
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
void RBBITableBuilder::build() {
|
|
|
|
if (U_FAILURE(*fStatus)) {
|
|
return;
|
|
}
|
|
|
|
// If there were no rules, just return. This situation can easily arise
|
|
// for the reverse rules.
|
|
if (fTree==NULL) {
|
|
return;
|
|
}
|
|
|
|
//
|
|
// Walk through the tree, replacing any references to $variables with a copy of the
|
|
// parse tree for the substition expression.
|
|
//
|
|
fTree = fTree->flattenVariables();
|
|
if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "ftree")) {
|
|
RBBIDebugPrintf("Parse tree after flattening variable references.\n");
|
|
fTree->printTree(TRUE);
|
|
}
|
|
|
|
//
|
|
// Add a unique right-end marker to the expression.
|
|
// Appears as a cat-node, left child being the original tree,
|
|
// right child being the end marker.
|
|
//
|
|
RBBINode *cn = new RBBINode(RBBINode::opCat);
|
|
cn->fLeftChild = fTree;
|
|
fTree->fParent = cn;
|
|
cn->fRightChild = new RBBINode(RBBINode::endMark);
|
|
cn->fRightChild->fParent = cn;
|
|
fTree = cn;
|
|
|
|
//
|
|
// Replace all references to UnicodeSets with the tree for the equivalent
|
|
// expression.
|
|
//
|
|
fTree->flattenSets();
|
|
if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "stree")) {
|
|
RBBIDebugPrintf("Parse tree after flattening Unicode Set references.\n");
|
|
fTree->printTree(TRUE);
|
|
}
|
|
|
|
|
|
//
|
|
// calculate the functions nullable, firstpos, lastpos and followpos on
|
|
// nodes in the parse tree.
|
|
// See the alogrithm description in Aho.
|
|
// Understanding how this works by looking at the code alone will be
|
|
// nearly impossible.
|
|
//
|
|
calcNullable(fTree);
|
|
calcFirstPos(fTree);
|
|
calcLastPos(fTree);
|
|
calcFollowPos(fTree);
|
|
if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "pos")) {
|
|
RBBIDebugPrintf("\n\n");
|
|
printPosSets(fTree);
|
|
}
|
|
|
|
//
|
|
// For "chained" rules, modify the followPos sets
|
|
//
|
|
if (fRB->fChainRules) {
|
|
calcChainedFollowPos(fTree);
|
|
}
|
|
|
|
//
|
|
// Build the DFA state transition tables.
|
|
//
|
|
buildStateTable();
|
|
flagAcceptingStates();
|
|
flagLookAheadStates();
|
|
flagTaggedStates();
|
|
if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "states")) {printStates();};
|
|
|
|
}
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// calcNullable. Impossible to explain succinctly. See Aho, section 3.9
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
void RBBITableBuilder::calcNullable(RBBINode *n) {
|
|
if (n == NULL) {
|
|
return;
|
|
}
|
|
if (n->fType == RBBINode::setRef ||
|
|
n->fType == RBBINode::endMark ) {
|
|
// These are non-empty leaf node types.
|
|
n->fNullable = FALSE;
|
|
return;
|
|
}
|
|
|
|
if (n->fType == RBBINode::lookAhead || n->fType == RBBINode::tag) {
|
|
// Lookahead marker node. It's a leaf, so no recursion on children.
|
|
// It's nullable because it does not match any literal text from the input stream.
|
|
n->fNullable = TRUE;
|
|
return;
|
|
}
|
|
|
|
|
|
// The node is not a leaf.
|
|
// Calculate nullable on its children.
|
|
calcNullable(n->fLeftChild);
|
|
calcNullable(n->fRightChild);
|
|
|
|
// Apply functions from table 3.40 in Aho
|
|
if (n->fType == RBBINode::opOr) {
|
|
n->fNullable = n->fLeftChild->fNullable || n->fRightChild->fNullable;
|
|
}
|
|
else if (n->fType == RBBINode::opCat) {
|
|
n->fNullable = n->fLeftChild->fNullable && n->fRightChild->fNullable;
|
|
}
|
|
else if (n->fType == RBBINode::opStar || n->fType == RBBINode::opQuestion) {
|
|
n->fNullable = TRUE;
|
|
}
|
|
else {
|
|
n->fNullable = FALSE;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// calcFirstPos. Impossible to explain succinctly. See Aho, section 3.9
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
void RBBITableBuilder::calcFirstPos(RBBINode *n) {
|
|
if (n == NULL) {
|
|
return;
|
|
}
|
|
if (n->fType == RBBINode::leafChar ||
|
|
n->fType == RBBINode::endMark ||
|
|
n->fType == RBBINode::lookAhead ||
|
|
n->fType == RBBINode::tag) {
|
|
// These are non-empty leaf node types.
|
|
n->fFirstPosSet->addElement(n, *fStatus);
|
|
return;
|
|
}
|
|
|
|
// The node is not a leaf.
|
|
// Calculate firstPos on its children.
|
|
calcFirstPos(n->fLeftChild);
|
|
calcFirstPos(n->fRightChild);
|
|
|
|
// Apply functions from table 3.40 in Aho
|
|
if (n->fType == RBBINode::opOr) {
|
|
setAdd(n->fFirstPosSet, n->fLeftChild->fFirstPosSet);
|
|
setAdd(n->fFirstPosSet, n->fRightChild->fFirstPosSet);
|
|
}
|
|
else if (n->fType == RBBINode::opCat) {
|
|
setAdd(n->fFirstPosSet, n->fLeftChild->fFirstPosSet);
|
|
if (n->fLeftChild->fNullable) {
|
|
setAdd(n->fFirstPosSet, n->fRightChild->fFirstPosSet);
|
|
}
|
|
}
|
|
else if (n->fType == RBBINode::opStar ||
|
|
n->fType == RBBINode::opQuestion ||
|
|
n->fType == RBBINode::opPlus) {
|
|
setAdd(n->fFirstPosSet, n->fLeftChild->fFirstPosSet);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// calcLastPos. Impossible to explain succinctly. See Aho, section 3.9
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
void RBBITableBuilder::calcLastPos(RBBINode *n) {
|
|
if (n == NULL) {
|
|
return;
|
|
}
|
|
if (n->fType == RBBINode::leafChar ||
|
|
n->fType == RBBINode::endMark ||
|
|
n->fType == RBBINode::lookAhead ||
|
|
n->fType == RBBINode::tag) {
|
|
// These are non-empty leaf node types.
|
|
n->fLastPosSet->addElement(n, *fStatus);
|
|
return;
|
|
}
|
|
|
|
// The node is not a leaf.
|
|
// Calculate lastPos on its children.
|
|
calcLastPos(n->fLeftChild);
|
|
calcLastPos(n->fRightChild);
|
|
|
|
// Apply functions from table 3.40 in Aho
|
|
if (n->fType == RBBINode::opOr) {
|
|
setAdd(n->fLastPosSet, n->fLeftChild->fLastPosSet);
|
|
setAdd(n->fLastPosSet, n->fRightChild->fLastPosSet);
|
|
}
|
|
else if (n->fType == RBBINode::opCat) {
|
|
setAdd(n->fLastPosSet, n->fRightChild->fLastPosSet);
|
|
if (n->fRightChild->fNullable) {
|
|
setAdd(n->fLastPosSet, n->fLeftChild->fLastPosSet);
|
|
}
|
|
}
|
|
else if (n->fType == RBBINode::opStar ||
|
|
n->fType == RBBINode::opQuestion ||
|
|
n->fType == RBBINode::opPlus) {
|
|
setAdd(n->fLastPosSet, n->fLeftChild->fLastPosSet);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// calcFollowPos. Impossible to explain succinctly. See Aho, section 3.9
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
void RBBITableBuilder::calcFollowPos(RBBINode *n) {
|
|
if (n == NULL ||
|
|
n->fType == RBBINode::leafChar ||
|
|
n->fType == RBBINode::endMark) {
|
|
return;
|
|
}
|
|
|
|
calcFollowPos(n->fLeftChild);
|
|
calcFollowPos(n->fRightChild);
|
|
|
|
// Aho rule #1
|
|
if (n->fType == RBBINode::opCat) {
|
|
RBBINode *i; // is 'i' in Aho's description
|
|
uint32_t ix;
|
|
|
|
UVector *LastPosOfLeftChild = n->fLeftChild->fLastPosSet;
|
|
|
|
for (ix=0; ix<(uint32_t)LastPosOfLeftChild->size(); ix++) {
|
|
i = (RBBINode *)LastPosOfLeftChild->elementAt(ix);
|
|
setAdd(i->fFollowPos, n->fRightChild->fFirstPosSet);
|
|
}
|
|
}
|
|
|
|
// Aho rule #2
|
|
if (n->fType == RBBINode::opStar ||
|
|
n->fType == RBBINode::opPlus) {
|
|
RBBINode *i; // again, n and i are the names from Aho's description.
|
|
uint32_t ix;
|
|
|
|
for (ix=0; ix<(uint32_t)n->fLastPosSet->size(); ix++) {
|
|
i = (RBBINode *)n->fLastPosSet->elementAt(ix);
|
|
setAdd(i->fFollowPos, n->fFirstPosSet);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// calcChainedFollowPos. Modify the previously calculated followPos sets
|
|
// to implement rule chaining. NOT described by Aho
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
void RBBITableBuilder::calcChainedFollowPos(RBBINode *fTree) {
|
|
|
|
UVector endMarkerNodes(*fStatus);
|
|
UVector leafNodes(*fStatus);
|
|
int32_t i;
|
|
|
|
if (U_FAILURE(*fStatus)) {
|
|
return;
|
|
}
|
|
|
|
// get a list of all endmarker nodes.
|
|
fTree->findNodes(&endMarkerNodes, RBBINode::endMark, *fStatus);
|
|
|
|
// get a list all leaf nodes
|
|
fTree->findNodes(&leafNodes, RBBINode::leafChar, *fStatus);
|
|
if (U_FAILURE(*fStatus)) {
|
|
return;
|
|
}
|
|
|
|
// Get all nodes that can be the start a match, which is FirstPosition(root)
|
|
UVector *matchStartNodes = fTree->fFirstPosSet;
|
|
|
|
|
|
// Iteratate over all leaf nodes,
|
|
//
|
|
int32_t endNodeIx;
|
|
int32_t startNodeIx;
|
|
|
|
for (endNodeIx=0; endNodeIx<leafNodes.size(); endNodeIx++) {
|
|
RBBINode *tNode = (RBBINode *)leafNodes.elementAt(endNodeIx);
|
|
RBBINode *endNode = NULL;
|
|
|
|
// Identify leaf nodes that correspond to overall rule match positions.
|
|
// These include an endMarkerNode in their followPos sets.
|
|
for (i=0; i<endMarkerNodes.size(); i++) {
|
|
if (tNode->fFollowPos->contains(endMarkerNodes.elementAt(i))) {
|
|
endNode = tNode;
|
|
break;
|
|
}
|
|
}
|
|
if (endNode == NULL) {
|
|
// node wasn't an end node. Try again with the next.
|
|
continue;
|
|
}
|
|
|
|
// We've got a node that can end a match.
|
|
|
|
// Line Break Specific hack: If this node's val correspond to the $CM char class,
|
|
// don't chain from it.
|
|
// TODO: Add rule syntax for this behavior, get specifics out of here and
|
|
// into the rule file.
|
|
if (fRB->fLBCMNoChain) {
|
|
UChar32 c = this->fRB->fSetBuilder->getFirstChar(endNode->fVal);
|
|
U_ASSERT(c != -1);
|
|
ULineBreak cLBProp = (ULineBreak)u_getIntPropertyValue(c, UCHAR_LINE_BREAK);
|
|
if (cLBProp == U_LB_COMBINING_MARK) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
|
|
// Now iterate over the nodes that can start a match, looking for ones
|
|
// with the same char class as our ending node.
|
|
RBBINode *startNode;
|
|
for (startNodeIx = 0; startNodeIx<matchStartNodes->size(); startNodeIx++) {
|
|
startNode = (RBBINode *)matchStartNodes->elementAt(startNodeIx);
|
|
if (startNode->fType != RBBINode::leafChar) {
|
|
continue;
|
|
}
|
|
|
|
if (endNode->fVal == startNode->fVal) {
|
|
// The end val (character class) of one possible match is the
|
|
// same as the start of another.
|
|
|
|
// Add all nodes from the followPos of the start node to the
|
|
// followPos set of the end node, which will have the effect of
|
|
// letting matches transition from a match state at endNode
|
|
// to the second char of a match starting with startNode.
|
|
setAdd(endNode->fFollowPos, startNode->fFollowPos);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// buildStateTable() Determine the set of runtime DFA states and the
|
|
// transition tables for these states, by the algorithm
|
|
// of fig. 3.44 in Aho.
|
|
//
|
|
// Most of the comments are quotes of Aho's psuedo-code.
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
void RBBITableBuilder::buildStateTable() {
|
|
if (U_FAILURE(*fStatus)) {
|
|
return;
|
|
}
|
|
//
|
|
// Add a dummy state 0 - the stop state. Not from Aho.
|
|
int lastInputSymbol = fRB->fSetBuilder->getNumCharCategories() - 1;
|
|
RBBIStateDescriptor *failState = new RBBIStateDescriptor(lastInputSymbol, fStatus);
|
|
failState->fPositions = new UVector(*fStatus);
|
|
if (U_FAILURE(*fStatus)) {
|
|
return;
|
|
}
|
|
fDStates->addElement(failState, *fStatus);
|
|
if (U_FAILURE(*fStatus)) {
|
|
return;
|
|
}
|
|
|
|
// initially, the only unmarked state in Dstates is firstpos(root),
|
|
// where toot is the root of the syntax tree for (r)#;
|
|
RBBIStateDescriptor *initialState = new RBBIStateDescriptor(lastInputSymbol, fStatus);
|
|
if (U_FAILURE(*fStatus)) {
|
|
return;
|
|
}
|
|
initialState->fPositions = new UVector(*fStatus);
|
|
if (U_FAILURE(*fStatus)) {
|
|
return;
|
|
}
|
|
setAdd(initialState->fPositions, fTree->fFirstPosSet);
|
|
fDStates->addElement(initialState, *fStatus);
|
|
if (U_FAILURE(*fStatus)) {
|
|
return;
|
|
}
|
|
|
|
// while there is an unmarked state T in Dstates do begin
|
|
for (;;) {
|
|
RBBIStateDescriptor *T = NULL;
|
|
int32_t tx;
|
|
for (tx=1; tx<fDStates->size(); tx++) {
|
|
RBBIStateDescriptor *temp;
|
|
temp = (RBBIStateDescriptor *)fDStates->elementAt(tx);
|
|
if (temp->fMarked == FALSE) {
|
|
T = temp;
|
|
break;
|
|
}
|
|
}
|
|
if (T == NULL) {
|
|
break;
|
|
}
|
|
|
|
// mark T;
|
|
T->fMarked = TRUE;
|
|
|
|
// for each input symbol a do begin
|
|
int32_t a;
|
|
for (a = 1; a<=lastInputSymbol; a++) {
|
|
// let U be the set of positions that are in followpos(p)
|
|
// for some position p in T
|
|
// such that the symbol at position p is a;
|
|
UVector *U = NULL;
|
|
RBBINode *p;
|
|
int32_t px;
|
|
for (px=0; px<T->fPositions->size(); px++) {
|
|
p = (RBBINode *)T->fPositions->elementAt(px);
|
|
if ((p->fType == RBBINode::leafChar) && (p->fVal == a)) {
|
|
if (U == NULL) {
|
|
U = new UVector(*fStatus);
|
|
}
|
|
setAdd(U, p->fFollowPos);
|
|
}
|
|
}
|
|
|
|
// if U is not empty and not in DStates then
|
|
int32_t ux = 0;
|
|
UBool UinDstates = FALSE;
|
|
if (U != NULL) {
|
|
U_ASSERT(U->size() > 0);
|
|
int ix;
|
|
for (ix=0; ix<fDStates->size(); ix++) {
|
|
RBBIStateDescriptor *temp2;
|
|
temp2 = (RBBIStateDescriptor *)fDStates->elementAt(ix);
|
|
if (setEquals(U, temp2->fPositions)) {
|
|
delete U;
|
|
U = temp2->fPositions;
|
|
ux = ix;
|
|
UinDstates = TRUE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Add U as an unmarked state to Dstates
|
|
if (!UinDstates)
|
|
{
|
|
RBBIStateDescriptor *newState = new RBBIStateDescriptor(lastInputSymbol, fStatus);
|
|
if (U_FAILURE(*fStatus)) {
|
|
return;
|
|
}
|
|
newState->fPositions = U;
|
|
fDStates->addElement(newState, *fStatus);
|
|
if (U_FAILURE(*fStatus)) {
|
|
return;
|
|
}
|
|
ux = fDStates->size()-1;
|
|
}
|
|
|
|
// Dtran[T, a] := U;
|
|
T->fDtran->setElementAt(ux, a);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// flagAcceptingStates Identify accepting states.
|
|
// First get a list of all of the end marker nodes.
|
|
// Then, for each state s,
|
|
// if s contains one of the end marker nodes in its list of tree positions then
|
|
// s is an accepting state.
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
void RBBITableBuilder::flagAcceptingStates() {
|
|
if (U_FAILURE(*fStatus)) {
|
|
return;
|
|
}
|
|
UVector endMarkerNodes(*fStatus);
|
|
RBBINode *endMarker;
|
|
int32_t i;
|
|
int32_t n;
|
|
|
|
if (U_FAILURE(*fStatus)) {
|
|
return;
|
|
}
|
|
|
|
fTree->findNodes(&endMarkerNodes, RBBINode::endMark, *fStatus);
|
|
if (U_FAILURE(*fStatus)) {
|
|
return;
|
|
}
|
|
|
|
for (i=0; i<endMarkerNodes.size(); i++) {
|
|
endMarker = (RBBINode *)endMarkerNodes.elementAt(i);
|
|
for (n=0; n<fDStates->size(); n++) {
|
|
RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n);
|
|
if (sd->fPositions->indexOf(endMarker) >= 0) {
|
|
// Any non-zero value for fAccepting means this is an accepting node.
|
|
// The value is what will be returned to the user as the break status.
|
|
// If no other value was specified, force it to -1.
|
|
sd->fAccepting = endMarker->fVal;
|
|
if (sd->fAccepting == 0) {
|
|
sd->fAccepting = -1;
|
|
}
|
|
|
|
// If the end marker node is from a look-ahead rule, set
|
|
// the fLookAhead field or this state also.
|
|
if (endMarker->fLookAheadEnd) {
|
|
sd->fLookAhead = sd->fAccepting;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// flagLookAheadStates Very similar to flagAcceptingStates, above.
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
void RBBITableBuilder::flagLookAheadStates() {
|
|
if (U_FAILURE(*fStatus)) {
|
|
return;
|
|
}
|
|
UVector lookAheadNodes(*fStatus);
|
|
RBBINode *lookAheadNode;
|
|
int32_t i;
|
|
int32_t n;
|
|
|
|
fTree->findNodes(&lookAheadNodes, RBBINode::lookAhead, *fStatus);
|
|
if (U_FAILURE(*fStatus)) {
|
|
return;
|
|
}
|
|
for (i=0; i<lookAheadNodes.size(); i++) {
|
|
lookAheadNode = (RBBINode *)lookAheadNodes.elementAt(i);
|
|
|
|
for (n=0; n<fDStates->size(); n++) {
|
|
RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n);
|
|
if (sd->fPositions->indexOf(lookAheadNode) >= 0) {
|
|
sd->fLookAhead = lookAheadNode->fVal;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// flagTaggedStates
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
void RBBITableBuilder::flagTaggedStates() {
|
|
if (U_FAILURE(*fStatus)) {
|
|
return;
|
|
}
|
|
UVector tagNodes(*fStatus);
|
|
RBBINode *tagNode;
|
|
int32_t i;
|
|
int32_t n;
|
|
|
|
if (U_FAILURE(*fStatus)) {
|
|
return;
|
|
}
|
|
fTree->findNodes(&tagNodes, RBBINode::tag, *fStatus);
|
|
if (U_FAILURE(*fStatus)) {
|
|
return;
|
|
}
|
|
for (i=0; i<tagNodes.size(); i++) { // For each tag node t (all of 'em)
|
|
tagNode = (RBBINode *)tagNodes.elementAt(i);
|
|
|
|
for (n=0; n<fDStates->size(); n++) { // For each state s (row in the state table)
|
|
RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n);
|
|
if (sd->fPositions->indexOf(tagNode) >= 0) { // if s include the tag node t
|
|
if (sd->fTagVal < tagNode->fVal) {
|
|
// If more than one rule tag applies to this state, the larger
|
|
// tag takes precedence.
|
|
sd->fTagVal = tagNode->fVal;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// setAdd Set operation on UVector
|
|
// dest = dest union source
|
|
// Elements may only appear once. Order is unimportant.
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
void RBBITableBuilder::setAdd(UVector *dest, UVector *source) {
|
|
int destOriginalSize = dest->size();
|
|
int sourceSize = source->size();
|
|
int32_t si, di;
|
|
|
|
for (si=0; si<sourceSize && U_SUCCESS(*fStatus); si++) {
|
|
void *elToAdd = source->elementAt(si);
|
|
for (di=0; di<destOriginalSize; di++) {
|
|
if (dest->elementAt(di) == elToAdd) {
|
|
goto elementAlreadyInDest;
|
|
}
|
|
}
|
|
dest->addElement(elToAdd, *fStatus);
|
|
elementAlreadyInDest: ;
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// setEqual Set operation on UVector.
|
|
// Compare for equality.
|
|
// Elements may appear only once.
|
|
// Elements may appear in any order.
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
UBool RBBITableBuilder::setEquals(UVector *a, UVector *b) {
|
|
int32_t aSize = a->size();
|
|
int32_t bSize = b->size();
|
|
|
|
if (aSize != bSize) {
|
|
return FALSE;
|
|
}
|
|
|
|
int32_t ax;
|
|
int32_t bx;
|
|
int32_t firstBx = 0;
|
|
void *aVal;
|
|
void *bVal = NULL;
|
|
|
|
for (ax=0; ax<aSize; ax++) {
|
|
aVal = a->elementAt(ax);
|
|
for (bx=firstBx; bx<bSize; bx++) {
|
|
bVal = b->elementAt(bx);
|
|
if (aVal == bVal) {
|
|
if (bx==firstBx) {
|
|
firstBx++;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
if (aVal != bVal) {
|
|
return FALSE;
|
|
}
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// printPosSets Debug function. Dump Nullable, firstpos, lastpos and followpos
|
|
// for each node in the tree.
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
void RBBITableBuilder::printPosSets(RBBINode *n) {
|
|
#ifdef RBBI_DEBUG
|
|
if (n==NULL) {
|
|
return;
|
|
}
|
|
n->print();
|
|
RBBIDebugPrintf(" Nullable: %s\n", n->fNullable?"TRUE":"FALSE");
|
|
|
|
RBBIDebugPrintf(" firstpos: ");
|
|
printSet(n->fFirstPosSet);
|
|
|
|
RBBIDebugPrintf(" lastpos: ");
|
|
printSet(n->fLastPosSet);
|
|
|
|
RBBIDebugPrintf(" followpos: ");
|
|
printSet(n->fFollowPos);
|
|
|
|
printPosSets(n->fLeftChild);
|
|
printPosSets(n->fRightChild);
|
|
#endif
|
|
}
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// getTableSize() Calculate the size of the runtime form of this
|
|
// state transition table.
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
int32_t RBBITableBuilder::getTableSize() {
|
|
int32_t size = 0;
|
|
int32_t numRows;
|
|
int32_t numCols;
|
|
int32_t rowSize;
|
|
|
|
if (fTree == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
size = sizeof(RBBIStateTable) - 4; // The header, with no rows to the table.
|
|
|
|
numRows = fDStates->size();
|
|
numCols = fRB->fSetBuilder->getNumCharCategories();
|
|
|
|
// Note The declaration of RBBIStateTableRow is for a table of two columns.
|
|
// Therefore we subtract two from numCols when determining
|
|
// how much storage to add to a row for the total columns.
|
|
rowSize = sizeof(RBBIStateTableRow) + sizeof(uint16_t)*(numCols-2);
|
|
size += numRows * rowSize;
|
|
return size;
|
|
}
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// exportTable() export the state transition table in the format required
|
|
// by the runtime engine. getTableSize() bytes of memory
|
|
// must be available at the output address "where".
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
void RBBITableBuilder::exportTable(void *where) {
|
|
RBBIStateTable *table = (RBBIStateTable *)where;
|
|
uint32_t state;
|
|
int col;
|
|
|
|
if (U_FAILURE(*fStatus) || fTree == NULL) {
|
|
return;
|
|
}
|
|
|
|
if (fRB->fSetBuilder->getNumCharCategories() > 0x7fff ||
|
|
fDStates->size() > 0x7fff) {
|
|
*fStatus = U_BRK_INTERNAL_ERROR;
|
|
return;
|
|
}
|
|
|
|
table->fRowLen = sizeof(RBBIStateTableRow) +
|
|
sizeof(uint16_t) * (fRB->fSetBuilder->getNumCharCategories() - 2);
|
|
table->fNumStates = fDStates->size();
|
|
|
|
for (state=0; state<table->fNumStates; state++) {
|
|
RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(state);
|
|
RBBIStateTableRow *row = (RBBIStateTableRow *)(table->fTableData + state*table->fRowLen);
|
|
U_ASSERT (-32768 < sd->fAccepting && sd->fAccepting <= 32767);
|
|
U_ASSERT (-32768 < sd->fLookAhead && sd->fLookAhead <= 32767);
|
|
row->fAccepting = (int16_t)sd->fAccepting;
|
|
row->fLookAhead = (int16_t)sd->fLookAhead;
|
|
row->fTag = (int16_t)sd->fTagVal;
|
|
for (col=0; col<fRB->fSetBuilder->getNumCharCategories(); col++) {
|
|
row->fNextState[col] = (uint16_t)sd->fDtran->elementAti(col);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// printSet Debug function. Print the contents of a UVector
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
#ifdef RBBI_DEBUG
|
|
void RBBITableBuilder::printSet(UVector *s) {
|
|
int32_t i;
|
|
for (i=0; i<s->size(); i++) {
|
|
void *v = s->elementAt(i);
|
|
RBBIDebugPrintf("%10p", v);
|
|
}
|
|
RBBIDebugPrintf("\n");
|
|
}
|
|
#else
|
|
/* Use an empty function for non-debug builds to ignore warnings. */
|
|
void RBBITableBuilder::printSet(UVector *) {}
|
|
#endif
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// printStates Debug Function. Dump the fully constructed state transition table.
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
void RBBITableBuilder::printStates() {
|
|
#ifdef RBBI_DEBUG
|
|
int c; // input "character"
|
|
int n; // state number
|
|
|
|
RBBIDebugPrintf("state | i n p u t s y m b o l s \n");
|
|
RBBIDebugPrintf(" | Acc LA Tag");
|
|
for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) {RBBIDebugPrintf(" %2d", c);};
|
|
RBBIDebugPrintf("\n");
|
|
RBBIDebugPrintf(" |---------------");
|
|
for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) {RBBIDebugPrintf("---");};
|
|
RBBIDebugPrintf("\n");
|
|
|
|
for (n=0; n<fDStates->size(); n++) {
|
|
RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n);
|
|
RBBIDebugPrintf(" %3d | " , n);
|
|
RBBIDebugPrintf("%3d %3d %5d ", sd->fAccepting, sd->fLookAhead, sd->fTagVal);
|
|
for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) {
|
|
RBBIDebugPrintf(" %2d", sd->fDtran->elementAti(c));
|
|
}
|
|
RBBIDebugPrintf("\n");
|
|
}
|
|
RBBIDebugPrintf("\n\n");
|
|
#endif
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// RBBIStateDescriptor Methods. This is a very struct-like class
|
|
// Most access is directly to the fields.
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
|
|
RBBIStateDescriptor::RBBIStateDescriptor(int lastInputSymbol, UErrorCode *fStatus) {
|
|
fMarked = FALSE;
|
|
fAccepting = 0;
|
|
fLookAhead = 0;
|
|
fTagVal = 0;
|
|
fPositions = NULL;
|
|
fDtran = NULL;
|
|
|
|
UErrorCode status = U_ZERO_ERROR;
|
|
fDtran = new UVector(lastInputSymbol+1, status);
|
|
if (U_FAILURE(*fStatus)) {
|
|
return;
|
|
}
|
|
if (U_FAILURE(status)) {
|
|
*fStatus = status;
|
|
return;
|
|
}
|
|
if (fDtran == NULL) {
|
|
*fStatus = U_MEMORY_ALLOCATION_ERROR;
|
|
return;
|
|
}
|
|
fDtran->setSize(lastInputSymbol+1); // fDtran needs to be pre-sized.
|
|
// It is indexed by input symbols, and will
|
|
// hold the next state number for each
|
|
// symbol.
|
|
}
|
|
|
|
|
|
RBBIStateDescriptor::~RBBIStateDescriptor() {
|
|
delete fPositions;
|
|
delete fDtran;
|
|
fPositions = NULL;
|
|
fDtran = NULL;
|
|
}
|
|
|
|
U_NAMESPACE_END
|
|
|
|
#endif /* #if !UCONFIG_NO_BREAK_ITERATION */
|