scuffed-code/icu4c/source/i18n/ucol_res.cpp

1389 lines
51 KiB
C++

/*
*******************************************************************************
* Copyright (C) 1996-2013, International Business Machines
* Corporation and others. All Rights Reserved.
*******************************************************************************
* file name: ucol_res.cpp
* encoding: US-ASCII
* tab size: 8 (not used)
* indentation:4
*
* Description:
* This file contains dependencies that the collation run-time doesn't normally
* need. This mainly contains resource bundle usage and collation meta information
*
* Modification history
* Date Name Comments
* 1996-1999 various members of ICU team maintained C API for collation framework
* 02/16/2001 synwee Added internal method getPrevSpecialCE
* 03/01/2001 synwee Added maxexpansion functionality.
* 03/16/2001 weiv Collation framework is rewritten in C and made UCA compliant
* 12/08/2004 grhoten Split part of ucol.cpp into ucol_res.cpp
*/
#include "unicode/utypes.h"
#if !UCONFIG_NO_COLLATION
#include "unicode/uloc.h"
#include "unicode/coll.h"
#include "unicode/tblcoll.h"
#include "unicode/caniter.h"
#include "unicode/uscript.h"
#include "unicode/ustring.h"
#include "ucol_bld.h"
#include "ucol_imp.h"
#include "ucol_tok.h"
#include "ucol_elm.h"
#include "uresimp.h"
#include "ustr_imp.h"
#include "cstring.h"
#include "umutex.h"
#include "ucln_in.h"
#include "ustrenum.h"
#include "putilimp.h"
#include "utracimp.h"
#include "cmemory.h"
#include "uassert.h"
#include "uenumimp.h"
#include "ulist.h"
U_NAMESPACE_USE
static void ucol_setReorderCodesFromParser(UCollator *coll, UColTokenParser *parser, UErrorCode *status);
// static UCA. There is only one. Collators don't use it.
// It is referenced only in ucol_initUCA and ucol_cleanup
static UCollator* _staticUCA = NULL;
static UInitOnce gStaticUCAInitOnce = U_INITONCE_INITIALIZER;
// static pointer to udata memory. Inited in ucol_initUCA
// used for cleanup in ucol_cleanup
static UDataMemory* UCA_DATA_MEM = NULL;
U_CDECL_BEGIN
static UBool U_CALLCONV
ucol_res_cleanup(void)
{
if (UCA_DATA_MEM) {
udata_close(UCA_DATA_MEM);
UCA_DATA_MEM = NULL;
}
if (_staticUCA) {
ucol_close(_staticUCA);
_staticUCA = NULL;
}
gStaticUCAInitOnce.reset();
return TRUE;
}
static UBool U_CALLCONV
isAcceptableUCA(void * /*context*/,
const char * /*type*/, const char * /*name*/,
const UDataInfo *pInfo){
/* context, type & name are intentionally not used */
if( pInfo->size>=20 &&
pInfo->isBigEndian==U_IS_BIG_ENDIAN &&
pInfo->charsetFamily==U_CHARSET_FAMILY &&
pInfo->dataFormat[0]==UCA_DATA_FORMAT_0 && /* dataFormat="UCol" */
pInfo->dataFormat[1]==UCA_DATA_FORMAT_1 &&
pInfo->dataFormat[2]==UCA_DATA_FORMAT_2 &&
pInfo->dataFormat[3]==UCA_DATA_FORMAT_3 &&
pInfo->formatVersion[0]==UCA_FORMAT_VERSION_0
#if UCA_FORMAT_VERSION_1!=0
&& pInfo->formatVersion[1]>=UCA_FORMAT_VERSION_1
#endif
//pInfo->formatVersion[1]==UCA_FORMAT_VERSION_1 &&
//pInfo->formatVersion[2]==UCA_FORMAT_VERSION_2 && // Too harsh
//pInfo->formatVersion[3]==UCA_FORMAT_VERSION_3 && // Too harsh
) {
return TRUE;
// Note: In ICU 51 and earlier,
// we used to check that the UCA data version (pInfo->dataVersion)
// matches the UCD version (u_getUnicodeVersion())
// but that complicated version updates, and
// a mismatch is "only" a problem for handling canonical equivalence.
// It need not be a fatal error.
} else {
return FALSE;
}
}
U_CDECL_END
static void U_CALLCONV ucol_initStaticUCA(UErrorCode &status) {
U_ASSERT(_staticUCA == NULL);
U_ASSERT(UCA_DATA_MEM == NULL);
ucln_i18n_registerCleanup(UCLN_I18N_UCOL_RES, ucol_res_cleanup);
UDataMemory *result = udata_openChoice(U_ICUDATA_COLL, UCA_DATA_TYPE, UCA_DATA_NAME, isAcceptableUCA, NULL, &status);
if(U_FAILURE(status)){
udata_close(result);
return;
}
_staticUCA = ucol_initCollator((const UCATableHeader *)udata_getMemory(result), NULL, NULL, &status);
if(U_SUCCESS(status)){
// Initalize variables for implicit generation
uprv_uca_initImplicitConstants(&status);
UCA_DATA_MEM = result;
}else{
ucol_close(_staticUCA);
_staticUCA = NULL;
udata_close(result);
}
}
/* do not close UCA returned by ucol_initUCA! */
UCollator *
ucol_initUCA(UErrorCode *status) {
umtx_initOnce(gStaticUCAInitOnce, &ucol_initStaticUCA, *status);
return _staticUCA;
}
U_CAPI void U_EXPORT2
ucol_forgetUCA(void)
{
_staticUCA = NULL;
UCA_DATA_MEM = NULL;
gStaticUCAInitOnce.reset();
}
/****************************************************************************/
/* Following are the open/close functions */
/* */
/****************************************************************************/
static UCollator*
tryOpeningFromRules(UResourceBundle *collElem, UErrorCode *status) {
int32_t rulesLen = 0;
const UChar *rules = ures_getStringByKey(collElem, "Sequence", &rulesLen, status);
return ucol_openRules(rules, rulesLen, UCOL_DEFAULT, UCOL_DEFAULT, NULL, status);
}
// API in ucol_imp.h
U_CFUNC UCollator*
ucol_open_internal(const char *loc,
UErrorCode *status)
{
UErrorCode intStatus = U_ZERO_ERROR;
const UCollator* UCA = ucol_initUCA(status);
/* New version */
if(U_FAILURE(*status)) return 0;
UCollator *result = NULL;
UResourceBundle *b = ures_open(U_ICUDATA_COLL, loc, status);
/* we try to find stuff from keyword */
UResourceBundle *collations = ures_getByKey(b, "collations", NULL, status);
UResourceBundle *collElem = NULL;
char keyBuffer[256];
// if there is a keyword, we pick it up and try to get elements
if(!uloc_getKeywordValue(loc, "collation", keyBuffer, 256, status) ||
!uprv_strcmp(keyBuffer,"default")) { /* Treat 'zz@collation=default' as 'zz'. */
// no keyword. we try to find the default setting, which will give us the keyword value
intStatus = U_ZERO_ERROR;
// finding default value does not affect collation fallback status
UResourceBundle *defaultColl = ures_getByKeyWithFallback(collations, "default", NULL, &intStatus);
if(U_SUCCESS(intStatus)) {
int32_t defaultKeyLen = 0;
const UChar *defaultKey = ures_getString(defaultColl, &defaultKeyLen, &intStatus);
u_UCharsToChars(defaultKey, keyBuffer, defaultKeyLen);
keyBuffer[defaultKeyLen] = 0;
} else {
*status = U_INTERNAL_PROGRAM_ERROR;
return NULL;
}
ures_close(defaultColl);
}
collElem = ures_getByKeyWithFallback(collations, keyBuffer, collations, status);
collations = NULL; // We just reused the collations object as collElem.
UResourceBundle *binary = NULL;
UResourceBundle *reorderRes = NULL;
if(*status == U_MISSING_RESOURCE_ERROR) { /* We didn't find the tailoring data, we fallback to the UCA */
*status = U_USING_DEFAULT_WARNING;
result = ucol_initCollator(UCA->image, result, UCA, status);
if (U_FAILURE(*status)) {
goto clean;
}
// if we use UCA, real locale is root
ures_close(b);
b = ures_open(U_ICUDATA_COLL, "", status);
ures_close(collElem);
collElem = ures_open(U_ICUDATA_COLL, "", status);
if(U_FAILURE(*status)) {
goto clean;
}
result->hasRealData = FALSE;
} else if(U_SUCCESS(*status)) {
intStatus = U_ZERO_ERROR;
binary = ures_getByKey(collElem, "%%CollationBin", NULL, &intStatus);
if(intStatus == U_MISSING_RESOURCE_ERROR) { /* we didn't find the binary image, we should use the rules */
binary = NULL;
result = tryOpeningFromRules(collElem, status);
if(U_FAILURE(*status)) {
goto clean;
}
} else if(U_SUCCESS(intStatus)) { /* otherwise, we'll pick a collation data that exists */
int32_t len = 0;
const uint8_t *inData = ures_getBinary(binary, &len, status);
if(U_FAILURE(*status)) {
goto clean;
}
UCATableHeader *colData = (UCATableHeader *)inData;
if(uprv_memcmp(colData->UCAVersion, UCA->image->UCAVersion, sizeof(UVersionInfo)) != 0 ||
uprv_memcmp(colData->UCDVersion, UCA->image->UCDVersion, sizeof(UVersionInfo)) != 0 ||
colData->version[0] != UCOL_BUILDER_VERSION)
{
*status = U_DIFFERENT_UCA_VERSION;
result = tryOpeningFromRules(collElem, status);
} else {
if(U_FAILURE(*status)){
goto clean;
}
if((uint32_t)len > (paddedsize(sizeof(UCATableHeader)) + paddedsize(sizeof(UColOptionSet)))) {
result = ucol_initCollator((const UCATableHeader *)inData, result, UCA, status);
if(U_FAILURE(*status)){
goto clean;
}
result->hasRealData = TRUE;
} else {
result = ucol_initCollator(UCA->image, result, UCA, status);
ucol_setOptionsFromHeader(result, (UColOptionSet *)(inData+((const UCATableHeader *)inData)->options), status);
if(U_FAILURE(*status)){
goto clean;
}
result->hasRealData = FALSE;
}
result->freeImageOnClose = FALSE;
reorderRes = ures_getByKey(collElem, "%%ReorderCodes", NULL, &intStatus);
if (U_SUCCESS(intStatus)) {
int32_t reorderCodesLen = 0;
const int32_t* reorderCodes = ures_getIntVector(reorderRes, &reorderCodesLen, status);
if (reorderCodesLen > 0) {
ucol_setReorderCodes(result, reorderCodes, reorderCodesLen, status);
// copy the reorder codes into the default reorder codes
result->defaultReorderCodesLength = result->reorderCodesLength;
result->defaultReorderCodes = (int32_t*) uprv_malloc(result->defaultReorderCodesLength * sizeof(int32_t));
uprv_memcpy(result->defaultReorderCodes, result->reorderCodes, result->defaultReorderCodesLength * sizeof(int32_t));
result->freeDefaultReorderCodesOnClose = TRUE;
}
if (U_FAILURE(*status)) {
goto clean;
}
}
}
} else { // !U_SUCCESS(binaryStatus)
if(U_SUCCESS(*status)) {
*status = intStatus; // propagate underlying error
}
goto clean;
}
intStatus = U_ZERO_ERROR;
result->rules = ures_getStringByKey(collElem, "Sequence", &result->rulesLength, &intStatus);
result->freeRulesOnClose = FALSE;
} else { /* There is another error, and we're just gonna clean up */
goto clean;
}
intStatus = U_ZERO_ERROR;
result->ucaRules = ures_getStringByKey(b,"UCARules",NULL,&intStatus);
if(loc == NULL) {
loc = ures_getLocaleByType(b, ULOC_ACTUAL_LOCALE, status);
}
result->requestedLocale = uprv_strdup(loc);
/* test for NULL */
if (result->requestedLocale == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
goto clean;
}
loc = ures_getLocaleByType(collElem, ULOC_ACTUAL_LOCALE, status);
result->actualLocale = uprv_strdup(loc);
/* test for NULL */
if (result->actualLocale == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
goto clean;
}
loc = ures_getLocaleByType(b, ULOC_ACTUAL_LOCALE, status);
result->validLocale = uprv_strdup(loc);
/* test for NULL */
if (result->validLocale == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
goto clean;
}
ures_close(b);
ures_close(collElem);
ures_close(binary);
ures_close(reorderRes);
return result;
clean:
ures_close(b);
ures_close(collElem);
ures_close(binary);
ures_close(reorderRes);
ucol_close(result);
return NULL;
}
U_CAPI UCollator*
ucol_open(const char *loc,
UErrorCode *status)
{
U_NAMESPACE_USE
UTRACE_ENTRY_OC(UTRACE_UCOL_OPEN);
UTRACE_DATA1(UTRACE_INFO, "locale = \"%s\"", loc);
UCollator *result = NULL;
#if !UCONFIG_NO_SERVICE
result = Collator::createUCollator(loc, status);
if (result == NULL)
#endif
{
result = ucol_open_internal(loc, status);
}
UTRACE_EXIT_PTR_STATUS(result, *status);
return result;
}
UCollator*
ucol_openRulesForImport( const UChar *rules,
int32_t rulesLength,
UColAttributeValue normalizationMode,
UCollationStrength strength,
UParseError *parseError,
GetCollationRulesFunction importFunc,
void* context,
UErrorCode *status)
{
UColTokenParser src;
UColAttributeValue norm;
UParseError tErr;
if(status == NULL || U_FAILURE(*status)){
return 0;
}
if(rules == NULL || rulesLength < -1) {
*status = U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
if(rulesLength == -1) {
rulesLength = u_strlen(rules);
}
if(parseError == NULL){
parseError = &tErr;
}
switch(normalizationMode) {
case UCOL_OFF:
case UCOL_ON:
case UCOL_DEFAULT:
norm = normalizationMode;
break;
default:
*status = U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
UCollator *result = NULL;
UCATableHeader *table = NULL;
UCollator *UCA = ucol_initUCA(status);
if(U_FAILURE(*status)){
return NULL;
}
ucol_tok_initTokenList(&src, rules, rulesLength, UCA, importFunc, context, status);
ucol_tok_assembleTokenList(&src,parseError, status);
if(U_FAILURE(*status)) {
/* if status is U_ILLEGAL_ARGUMENT_ERROR, src->current points at the offending option */
/* if status is U_INVALID_FORMAT_ERROR, src->current points after the problematic part of the rules */
/* so something might be done here... or on lower level */
#ifdef UCOL_DEBUG
if(*status == U_ILLEGAL_ARGUMENT_ERROR) {
fprintf(stderr, "bad option starting at offset %i\n", (int)(src.current-src.source));
} else {
fprintf(stderr, "invalid rule just before offset %i\n", (int)(src.current-src.source));
}
#endif
goto cleanup;
}
/* if we have a set of rules, let's make something of it */
if(src.resultLen > 0 || src.removeSet != NULL) {
/* also, if we wanted to remove some contractions, we should make a tailoring */
table = ucol_assembleTailoringTable(&src, status);
if(U_SUCCESS(*status)) {
// builder version
table->version[0] = UCOL_BUILDER_VERSION;
// no tailoring information on this level
table->version[1] = table->version[2] = table->version[3] = 0;
// set UCD version
u_getUnicodeVersion(table->UCDVersion);
// set UCA version
uprv_memcpy(table->UCAVersion, UCA->image->UCAVersion, sizeof(UVersionInfo));
result = ucol_initCollator(table, 0, UCA, status);
if (U_FAILURE(*status)) {
goto cleanup;
}
result->hasRealData = TRUE;
result->freeImageOnClose = TRUE;
} else {
goto cleanup;
}
} else { /* no rules, but no error either */
// must be only options
// We will init the collator from UCA
result = ucol_initCollator(UCA->image, 0, UCA, status);
// Check for null result
if (U_FAILURE(*status)) {
goto cleanup;
}
// And set only the options
UColOptionSet *opts = (UColOptionSet *)uprv_malloc(sizeof(UColOptionSet));
/* test for NULL */
if (opts == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
goto cleanup;
}
uprv_memcpy(opts, src.opts, sizeof(UColOptionSet));
ucol_setOptionsFromHeader(result, opts, status);
result->freeOptionsOnClose = TRUE;
result->hasRealData = FALSE;
result->freeImageOnClose = FALSE;
}
ucol_setReorderCodesFromParser(result, &src, status);
if(U_SUCCESS(*status)) {
UChar *newRules;
result->dataVersion[0] = UCOL_BUILDER_VERSION;
if(rulesLength > 0) {
newRules = (UChar *)uprv_malloc((rulesLength+1)*U_SIZEOF_UCHAR);
/* test for NULL */
if (newRules == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
goto cleanup;
}
uprv_memcpy(newRules, rules, rulesLength*U_SIZEOF_UCHAR);
newRules[rulesLength]=0;
result->rules = newRules;
result->rulesLength = rulesLength;
result->freeRulesOnClose = TRUE;
}
result->ucaRules = NULL;
result->actualLocale = NULL;
result->validLocale = NULL;
result->requestedLocale = NULL;
ucol_buildPermutationTable(result, status);
ucol_setAttribute(result, UCOL_STRENGTH, strength, status);
ucol_setAttribute(result, UCOL_NORMALIZATION_MODE, norm, status);
} else {
cleanup:
if(result != NULL) {
ucol_close(result);
} else {
if(table != NULL) {
uprv_free(table);
}
}
result = NULL;
}
ucol_tok_closeTokenList(&src);
return result;
}
U_CAPI UCollator* U_EXPORT2
ucol_openRules( const UChar *rules,
int32_t rulesLength,
UColAttributeValue normalizationMode,
UCollationStrength strength,
UParseError *parseError,
UErrorCode *status)
{
return ucol_openRulesForImport(rules,
rulesLength,
normalizationMode,
strength,
parseError,
ucol_tok_getRulesFromBundle,
NULL,
status);
}
U_CAPI int32_t U_EXPORT2
ucol_getRulesEx(const UCollator *coll, UColRuleOption delta, UChar *buffer, int32_t bufferLen) {
UErrorCode status = U_ZERO_ERROR;
int32_t len = 0;
int32_t UCAlen = 0;
const UChar* ucaRules = 0;
const UChar *rules = ucol_getRules(coll, &len);
if(delta == UCOL_FULL_RULES) {
/* take the UCA rules and append real rules at the end */
/* UCA rules will be probably coming from the root RB */
ucaRules = coll->ucaRules;
if (ucaRules) {
UCAlen = u_strlen(ucaRules);
}
/*
ucaRules = ures_getStringByKey(coll->rb,"UCARules",&UCAlen,&status);
UResourceBundle* cresb = ures_getByKeyWithFallback(coll->rb, "collations", NULL, &status);
UResourceBundle* uca = ures_getByKeyWithFallback(cresb, "UCA", NULL, &status);
ucaRules = ures_getStringByKey(uca,"Sequence",&UCAlen,&status);
ures_close(uca);
ures_close(cresb);
*/
}
if(U_FAILURE(status)) {
return 0;
}
if(buffer!=0 && bufferLen>0){
*buffer=0;
if(UCAlen > 0) {
u_memcpy(buffer, ucaRules, uprv_min(UCAlen, bufferLen));
}
if(len > 0 && bufferLen > UCAlen) {
u_memcpy(buffer+UCAlen, rules, uprv_min(len, bufferLen-UCAlen));
}
}
return u_terminateUChars(buffer, bufferLen, len+UCAlen, &status);
}
static const UChar _NUL = 0;
U_CAPI const UChar* U_EXPORT2
ucol_getRules( const UCollator *coll,
int32_t *length)
{
if(coll->rules != NULL) {
*length = coll->rulesLength;
return coll->rules;
}
else {
*length = 0;
return &_NUL;
}
}
U_CAPI UBool U_EXPORT2
ucol_equals(const UCollator *source, const UCollator *target) {
UErrorCode status = U_ZERO_ERROR;
// if pointers are equal, collators are equal
if(source == target) {
return TRUE;
}
int32_t i = 0, j = 0;
// if any of attributes are different, collators are not equal
for(i = 0; i < UCOL_ATTRIBUTE_COUNT; i++) {
if(ucol_getAttribute(source, (UColAttribute)i, &status) != ucol_getAttribute(target, (UColAttribute)i, &status) || U_FAILURE(status)) {
return FALSE;
}
}
if (source->reorderCodesLength != target->reorderCodesLength){
return FALSE;
}
for (i = 0; i < source->reorderCodesLength; i++) {
if(source->reorderCodes[i] != target->reorderCodes[i]) {
return FALSE;
}
}
int32_t sourceRulesLen = 0, targetRulesLen = 0;
const UChar *sourceRules = ucol_getRules(source, &sourceRulesLen);
const UChar *targetRules = ucol_getRules(target, &targetRulesLen);
if(sourceRulesLen == targetRulesLen && u_strncmp(sourceRules, targetRules, sourceRulesLen) == 0) {
// all the attributes are equal and the rules are equal - collators are equal
return(TRUE);
}
// hard part, need to construct tree from rules and see if they yield the same tailoring
UBool result = TRUE;
UParseError parseError;
UColTokenParser sourceParser, targetParser;
int32_t sourceListLen = 0, targetListLen = 0;
ucol_tok_initTokenList(&sourceParser, sourceRules, sourceRulesLen, source->UCA, ucol_tok_getRulesFromBundle, NULL, &status);
ucol_tok_initTokenList(&targetParser, targetRules, targetRulesLen, target->UCA, ucol_tok_getRulesFromBundle, NULL, &status);
sourceListLen = ucol_tok_assembleTokenList(&sourceParser, &parseError, &status);
targetListLen = ucol_tok_assembleTokenList(&targetParser, &parseError, &status);
if(sourceListLen != targetListLen) {
// different number of resets
result = FALSE;
} else {
UColToken *sourceReset = NULL, *targetReset = NULL;
UChar *sourceResetString = NULL, *targetResetString = NULL;
int32_t sourceStringLen = 0, targetStringLen = 0;
for(i = 0; i < sourceListLen; i++) {
sourceReset = sourceParser.lh[i].reset;
sourceResetString = sourceParser.source+(sourceReset->source & 0xFFFFFF);
sourceStringLen = sourceReset->source >> 24;
for(j = 0; j < sourceListLen; j++) {
targetReset = targetParser.lh[j].reset;
targetResetString = targetParser.source+(targetReset->source & 0xFFFFFF);
targetStringLen = targetReset->source >> 24;
if(sourceStringLen == targetStringLen && (u_strncmp(sourceResetString, targetResetString, sourceStringLen) == 0)) {
sourceReset = sourceParser.lh[i].first;
targetReset = targetParser.lh[j].first;
while(sourceReset != NULL && targetReset != NULL) {
sourceResetString = sourceParser.source+(sourceReset->source & 0xFFFFFF);
sourceStringLen = sourceReset->source >> 24;
targetResetString = targetParser.source+(targetReset->source & 0xFFFFFF);
targetStringLen = targetReset->source >> 24;
if(sourceStringLen != targetStringLen || (u_strncmp(sourceResetString, targetResetString, sourceStringLen) != 0)) {
result = FALSE;
goto returnResult;
}
// probably also need to check the expansions
if(sourceReset->expansion) {
if(!targetReset->expansion) {
result = FALSE;
goto returnResult;
} else {
// compare expansions
sourceResetString = sourceParser.source+(sourceReset->expansion& 0xFFFFFF);
sourceStringLen = sourceReset->expansion >> 24;
targetResetString = targetParser.source+(targetReset->expansion & 0xFFFFFF);
targetStringLen = targetReset->expansion >> 24;
if(sourceStringLen != targetStringLen || (u_strncmp(sourceResetString, targetResetString, sourceStringLen) != 0)) {
result = FALSE;
goto returnResult;
}
}
} else {
if(targetReset->expansion) {
result = FALSE;
goto returnResult;
}
}
sourceReset = sourceReset->next;
targetReset = targetReset->next;
}
if(sourceReset != targetReset) { // at least one is not NULL
// there are more tailored elements in one list
result = FALSE;
goto returnResult;
}
break;
}
}
// couldn't find the reset anchor, so the collators are not equal
if(j == sourceListLen) {
result = FALSE;
goto returnResult;
}
}
}
returnResult:
ucol_tok_closeTokenList(&sourceParser);
ucol_tok_closeTokenList(&targetParser);
return result;
}
U_CAPI int32_t U_EXPORT2
ucol_getDisplayName( const char *objLoc,
const char *dispLoc,
UChar *result,
int32_t resultLength,
UErrorCode *status)
{
U_NAMESPACE_USE
if(U_FAILURE(*status)) return -1;
UnicodeString dst;
if(!(result==NULL && resultLength==0)) {
// NULL destination for pure preflighting: empty dummy string
// otherwise, alias the destination buffer
dst.setTo(result, 0, resultLength);
}
Collator::getDisplayName(Locale(objLoc), Locale(dispLoc), dst);
return dst.extract(result, resultLength, *status);
}
U_CAPI const char* U_EXPORT2
ucol_getAvailable(int32_t index)
{
int32_t count = 0;
const Locale *loc = Collator::getAvailableLocales(count);
if (loc != NULL && index < count) {
return loc[index].getName();
}
return NULL;
}
U_CAPI int32_t U_EXPORT2
ucol_countAvailable()
{
int32_t count = 0;
Collator::getAvailableLocales(count);
return count;
}
#if !UCONFIG_NO_SERVICE
U_CAPI UEnumeration* U_EXPORT2
ucol_openAvailableLocales(UErrorCode *status) {
U_NAMESPACE_USE
// This is a wrapper over Collator::getAvailableLocales()
if (U_FAILURE(*status)) {
return NULL;
}
StringEnumeration *s = icu::Collator::getAvailableLocales();
if (s == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return NULL;
}
return uenum_openFromStringEnumeration(s, status);
}
#endif
// Note: KEYWORDS[0] != RESOURCE_NAME - alan
static const char RESOURCE_NAME[] = "collations";
static const char* const KEYWORDS[] = { "collation" };
#define KEYWORD_COUNT (sizeof(KEYWORDS)/sizeof(KEYWORDS[0]))
U_CAPI UEnumeration* U_EXPORT2
ucol_getKeywords(UErrorCode *status) {
UEnumeration *result = NULL;
if (U_SUCCESS(*status)) {
return uenum_openCharStringsEnumeration(KEYWORDS, KEYWORD_COUNT, status);
}
return result;
}
U_CAPI UEnumeration* U_EXPORT2
ucol_getKeywordValues(const char *keyword, UErrorCode *status) {
if (U_FAILURE(*status)) {
return NULL;
}
// hard-coded to accept exactly one collation keyword
// modify if additional collation keyword is added later
if (keyword==NULL || uprv_strcmp(keyword, KEYWORDS[0])!=0)
{
*status = U_ILLEGAL_ARGUMENT_ERROR;
return NULL;
}
return ures_getKeywordValues(U_ICUDATA_COLL, RESOURCE_NAME, status);
}
static const UEnumeration defaultKeywordValues = {
NULL,
NULL,
ulist_close_keyword_values_iterator,
ulist_count_keyword_values,
uenum_unextDefault,
ulist_next_keyword_value,
ulist_reset_keyword_values_iterator
};
#include <stdio.h>
U_CAPI UEnumeration* U_EXPORT2
ucol_getKeywordValuesForLocale(const char* /*key*/, const char* locale,
UBool /*commonlyUsed*/, UErrorCode* status) {
/* Get the locale base name. */
char localeBuffer[ULOC_FULLNAME_CAPACITY] = "";
uloc_getBaseName(locale, localeBuffer, sizeof(localeBuffer), status);
/* Create the 2 lists
* -values is the temp location for the keyword values
* -results hold the actual list used by the UEnumeration object
*/
UList *values = ulist_createEmptyList(status);
UList *results = ulist_createEmptyList(status);
UEnumeration *en = (UEnumeration *)uprv_malloc(sizeof(UEnumeration));
if (U_FAILURE(*status) || en == NULL) {
if (en == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
} else {
uprv_free(en);
}
ulist_deleteList(values);
ulist_deleteList(results);
return NULL;
}
memcpy(en, &defaultKeywordValues, sizeof(UEnumeration));
en->context = results;
/* Open the resource bundle for collation with the given locale. */
UResourceBundle bundle, collations, collres, defres;
ures_initStackObject(&bundle);
ures_initStackObject(&collations);
ures_initStackObject(&collres);
ures_initStackObject(&defres);
ures_openFillIn(&bundle, U_ICUDATA_COLL, localeBuffer, status);
while (U_SUCCESS(*status)) {
ures_getByKey(&bundle, RESOURCE_NAME, &collations, status);
ures_resetIterator(&collations);
while (U_SUCCESS(*status) && ures_hasNext(&collations)) {
ures_getNextResource(&collations, &collres, status);
const char *key = ures_getKey(&collres);
/* If the key is default, get the string and store it in results list only
* if results list is empty.
*/
if (uprv_strcmp(key, "default") == 0) {
if (ulist_getListSize(results) == 0) {
char *defcoll = (char *)uprv_malloc(sizeof(char) * ULOC_KEYWORDS_CAPACITY);
int32_t defcollLength = ULOC_KEYWORDS_CAPACITY;
ures_getNextResource(&collres, &defres, status);
#if U_CHARSET_FAMILY==U_ASCII_FAMILY
/* optimize - use the utf-8 string */
ures_getUTF8String(&defres, defcoll, &defcollLength, TRUE, status);
#else
{
const UChar* defString = ures_getString(&defres, &defcollLength, status);
if(U_SUCCESS(*status)) {
if(defcollLength+1 > ULOC_KEYWORDS_CAPACITY) {
*status = U_BUFFER_OVERFLOW_ERROR;
} else {
u_UCharsToChars(defString, defcoll, defcollLength+1);
}
}
}
#endif
ulist_addItemBeginList(results, defcoll, TRUE, status);
}
} else {
ulist_addItemEndList(values, key, FALSE, status);
}
}
/* If the locale is "" this is root so exit. */
if (uprv_strlen(localeBuffer) == 0) {
break;
}
/* Get the parent locale and open a new resource bundle. */
uloc_getParent(localeBuffer, localeBuffer, sizeof(localeBuffer), status);
ures_openFillIn(&bundle, U_ICUDATA_COLL, localeBuffer, status);
}
ures_close(&defres);
ures_close(&collres);
ures_close(&collations);
ures_close(&bundle);
if (U_SUCCESS(*status)) {
char *value = NULL;
ulist_resetList(values);
while ((value = (char *)ulist_getNext(values)) != NULL) {
if (!ulist_containsString(results, value, (int32_t)uprv_strlen(value))) {
ulist_addItemEndList(results, value, FALSE, status);
if (U_FAILURE(*status)) {
break;
}
}
}
}
ulist_deleteList(values);
if (U_FAILURE(*status)){
uenum_close(en);
en = NULL;
} else {
ulist_resetList(results);
}
return en;
}
U_CAPI int32_t U_EXPORT2
ucol_getFunctionalEquivalent(char* result, int32_t resultCapacity,
const char* keyword, const char* locale,
UBool* isAvailable, UErrorCode* status)
{
// N.B.: Resource name is "collations" but keyword is "collation"
return ures_getFunctionalEquivalent(result, resultCapacity, U_ICUDATA_COLL,
"collations", keyword, locale,
isAvailable, TRUE, status);
}
/* returns the locale name the collation data comes from */
U_CAPI const char * U_EXPORT2
ucol_getLocale(const UCollator *coll, ULocDataLocaleType type, UErrorCode *status) {
return ucol_getLocaleByType(coll, type, status);
}
U_CAPI const char * U_EXPORT2
ucol_getLocaleByType(const UCollator *coll, ULocDataLocaleType type, UErrorCode *status) {
const char *result = NULL;
if(status == NULL || U_FAILURE(*status)) {
return NULL;
}
UTRACE_ENTRY(UTRACE_UCOL_GETLOCALE);
UTRACE_DATA1(UTRACE_INFO, "coll=%p", coll);
if(coll->delegate!=NULL) {
return ((const Collator*)coll->delegate)->getLocale(type, *status).getName();
}
switch(type) {
case ULOC_ACTUAL_LOCALE:
result = coll->actualLocale;
break;
case ULOC_VALID_LOCALE:
result = coll->validLocale;
break;
case ULOC_REQUESTED_LOCALE:
result = coll->requestedLocale;
break;
default:
*status = U_ILLEGAL_ARGUMENT_ERROR;
}
UTRACE_DATA1(UTRACE_INFO, "result = %s", result);
UTRACE_EXIT_STATUS(*status);
return result;
}
U_CFUNC void U_EXPORT2
ucol_setReqValidLocales(UCollator *coll, char *requestedLocaleToAdopt, char *validLocaleToAdopt, char *actualLocaleToAdopt)
{
if (coll) {
if (coll->validLocale) {
uprv_free(coll->validLocale);
}
coll->validLocale = validLocaleToAdopt;
if (coll->requestedLocale) { // should always have
uprv_free(coll->requestedLocale);
}
coll->requestedLocale = requestedLocaleToAdopt;
if (coll->actualLocale) {
uprv_free(coll->actualLocale);
}
coll->actualLocale = actualLocaleToAdopt;
}
}
U_CAPI USet * U_EXPORT2
ucol_getTailoredSet(const UCollator *coll, UErrorCode *status)
{
U_NAMESPACE_USE
if(status == NULL || U_FAILURE(*status)) {
return NULL;
}
if(coll == NULL || coll->UCA == NULL) {
*status = U_ILLEGAL_ARGUMENT_ERROR;
return NULL;
}
UParseError parseError;
UColTokenParser src;
int32_t rulesLen = 0;
const UChar *rules = ucol_getRules(coll, &rulesLen);
UBool startOfRules = TRUE;
// we internally use the C++ class, for the following reasons:
// 1. we need to utilize canonical iterator, which is a C++ only class
// 2. canonical iterator returns UnicodeStrings - USet cannot take them
// 3. USet is internally really UnicodeSet, C is just a wrapper
UnicodeSet *tailored = new UnicodeSet();
UnicodeString pattern;
UnicodeString empty;
CanonicalIterator it(empty, *status);
// The idea is to tokenize the rule set. For each non-reset token,
// we add all the canonicaly equivalent FCD sequences
ucol_tok_initTokenList(&src, rules, rulesLen, coll->UCA, ucol_tok_getRulesFromBundle, NULL, status);
while (ucol_tok_parseNextToken(&src, startOfRules, &parseError, status) != NULL) {
startOfRules = FALSE;
if(src.parsedToken.strength != UCOL_TOK_RESET) {
const UChar *stuff = src.source+(src.parsedToken.charsOffset);
it.setSource(UnicodeString(stuff, src.parsedToken.charsLen), *status);
pattern = it.next();
while(!pattern.isBogus()) {
if(Normalizer::quickCheck(pattern, UNORM_FCD, *status) != UNORM_NO) {
tailored->add(pattern);
}
pattern = it.next();
}
}
}
ucol_tok_closeTokenList(&src);
return (USet *)tailored;
}
/*
* Collation Reordering
*/
void ucol_setReorderCodesFromParser(UCollator *coll, UColTokenParser *parser, UErrorCode *status) {
if (U_FAILURE(*status)) {
return;
}
if (parser->reorderCodesLength == 0 || parser->reorderCodes == NULL) {
return;
}
coll->reorderCodesLength = 0;
if (coll->reorderCodes != NULL && coll->freeReorderCodesOnClose == TRUE) {
uprv_free(coll->reorderCodes);
}
if (coll->defaultReorderCodes != NULL && coll->freeDefaultReorderCodesOnClose == TRUE) {
uprv_free(coll->defaultReorderCodes);
}
coll->defaultReorderCodesLength = parser->reorderCodesLength;
coll->defaultReorderCodes = (int32_t*) uprv_malloc(coll->defaultReorderCodesLength * sizeof(int32_t));
if (coll->defaultReorderCodes == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return;
}
uprv_memcpy(coll->defaultReorderCodes, parser->reorderCodes, coll->defaultReorderCodesLength * sizeof(int32_t));
coll->freeDefaultReorderCodesOnClose = TRUE;
coll->reorderCodesLength = parser->reorderCodesLength;
coll->reorderCodes = (int32_t*) uprv_malloc(coll->reorderCodesLength * sizeof(int32_t));
if (coll->reorderCodes == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return;
}
uprv_memcpy(coll->reorderCodes, parser->reorderCodes, coll->reorderCodesLength * sizeof(int32_t));
coll->freeReorderCodesOnClose = TRUE;
}
/*
* Data is stored in the reorder code to lead byte table as:
* index count - unsigned short (2 bytes) - number of index entries
* data size - unsigned short (2 bytes) - number of unsigned short data elements
* index[index count] - array of 2 unsigned shorts (4 bytes each entry)
* - reorder code, offset
* - index is sorted by reorder code
* - if an offset has the high bit set then it is not an offset but a single data entry
* once the high bit is stripped off
* data[data size] - array of unsigned short (2 bytes each entry)
* - the data is an usigned short count followed by count number
* of lead bytes stored in an unsigned short
*/
U_CFUNC int U_EXPORT2
ucol_getLeadBytesForReorderCode(const UCollator *uca, int reorderCode, uint16_t* returnLeadBytes, int returnCapacity) {
uint16_t reorderCodeIndexLength = *((uint16_t*) ((uint8_t *)uca->image + uca->image->scriptToLeadByte));
uint16_t* reorderCodeIndex = (uint16_t*) ((uint8_t *)uca->image + uca->image->scriptToLeadByte + 2 *sizeof(uint16_t));
// reorder code index is 2 uint16_t's - reorder code + offset
for (int i = 0; i < reorderCodeIndexLength; i++) {
if (reorderCode == reorderCodeIndex[i*2]) {
uint16_t dataOffset = reorderCodeIndex[(i*2) + 1];
if ((dataOffset & 0x8000) == 0x8000) {
// offset isn't offset but instead is a single data element
if (returnCapacity >= 1) {
returnLeadBytes[0] = dataOffset & ~0x8000;
return 1;
}
return 0;
}
uint16_t* dataOffsetBase = (uint16_t*) ((uint8_t *)reorderCodeIndex + reorderCodeIndexLength * (2 * sizeof(uint16_t)));
uint16_t leadByteCount = *(dataOffsetBase + dataOffset);
leadByteCount = leadByteCount > returnCapacity ? returnCapacity : leadByteCount;
uprv_memcpy(returnLeadBytes, dataOffsetBase + dataOffset + 1, leadByteCount * sizeof(uint16_t));
return leadByteCount;
}
}
return 0;
}
/*
* Data is stored in the lead byte to reorder code table as:
* index count - unsigned short (2 bytes) - number of index entries
* data size - unsigned short (2 bytes) - number of unsigned short data elements
* index[index count] - array of unsigned short (2 bytes each entry)
* - index is sorted by lead byte
* - if an index has the high bit set then it is not an index but a single data entry
* once the high bit is stripped off
* data[data size] - array of unsigned short (2 bytes each entry)
* - the data is an usigned short count followed by count number of reorder codes
*/
U_CFUNC int U_EXPORT2
ucol_getReorderCodesForLeadByte(const UCollator *uca, int leadByte, int16_t* returnReorderCodes, int returnCapacity) {
uint16_t* leadByteTable = ((uint16_t*) ((uint8_t *)uca->image + uca->image->leadByteToScript));
uint16_t leadByteIndexLength = *leadByteTable;
if (leadByte >= leadByteIndexLength) {
return 0;
}
uint16_t leadByteIndex = *(leadByteTable + (2 + leadByte));
if ((leadByteIndex & 0x8000) == 0x8000) {
// offset isn't offset but instead is a single data element
if (returnCapacity >= 1) {
returnReorderCodes[0] = leadByteIndex & ~0x8000;
return 1;
}
return 0;
}
//uint16_t* dataOffsetBase = leadByteTable + (2 + leadByteIndexLength);
uint16_t* reorderCodeData = leadByteTable + (2 + leadByteIndexLength) + leadByteIndex;
uint16_t reorderCodeCount = *reorderCodeData > returnCapacity ? returnCapacity : *reorderCodeData;
uprv_memcpy(returnReorderCodes, reorderCodeData + 1, reorderCodeCount * sizeof(uint16_t));
return reorderCodeCount;
}
// used to mark ignorable reorder code slots
static const int32_t UCOL_REORDER_CODE_IGNORE = UCOL_REORDER_CODE_LIMIT + 1;
U_CFUNC void U_EXPORT2
ucol_buildPermutationTable(UCollator *coll, UErrorCode *status) {
uint16_t leadBytesSize = 256;
uint16_t leadBytes[256];
int32_t internalReorderCodesLength = coll->reorderCodesLength + (UCOL_REORDER_CODE_LIMIT - UCOL_REORDER_CODE_FIRST);
int32_t* internalReorderCodes;
// The lowest byte that hasn't been assigned a mapping
int toBottom = 0x03;
// The highest byte that hasn't been assigned a mapping - don't include the special or trailing
int toTop = 0xe4;
// are we filling from the bottom?
bool fromTheBottom = true;
int32_t reorderCodesIndex = -1;
// lead bytes that have alread been assigned to the permutation table
bool newLeadByteUsed[256];
// permutation table slots that have already been filled
bool permutationSlotFilled[256];
// nothing to do
if(U_FAILURE(*status) || coll == NULL) {
return;
}
// clear the reordering
if (coll->reorderCodes == NULL || coll->reorderCodesLength == 0
|| (coll->reorderCodesLength == 1 && coll->reorderCodes[0] == UCOL_REORDER_CODE_NONE)) {
if (coll->leadBytePermutationTable != NULL) {
if (coll->freeLeadBytePermutationTableOnClose) {
uprv_free(coll->leadBytePermutationTable);
}
coll->leadBytePermutationTable = NULL;
coll->reorderCodesLength = 0;
}
return;
}
// set reordering to the default reordering
if (coll->reorderCodes[0] == UCOL_REORDER_CODE_DEFAULT) {
if (coll->reorderCodesLength != 1) {
*status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
if (coll->freeReorderCodesOnClose == TRUE) {
uprv_free(coll->reorderCodes);
}
coll->reorderCodes = NULL;
if (coll->leadBytePermutationTable != NULL && coll->freeLeadBytePermutationTableOnClose == TRUE) {
uprv_free(coll->leadBytePermutationTable);
}
coll->leadBytePermutationTable = NULL;
if (coll->defaultReorderCodesLength == 0) {
return;
}
coll->reorderCodes = (int32_t*)uprv_malloc(coll->defaultReorderCodesLength * sizeof(int32_t));
coll->freeReorderCodesOnClose = TRUE;
if (coll->reorderCodes == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return;
}
coll->reorderCodesLength = coll->defaultReorderCodesLength;
uprv_memcpy(coll->defaultReorderCodes, coll->reorderCodes, coll->reorderCodesLength * sizeof(int32_t));
}
if (coll->leadBytePermutationTable == NULL) {
coll->leadBytePermutationTable = (uint8_t*)uprv_malloc(256*sizeof(uint8_t));
coll->freeLeadBytePermutationTableOnClose = TRUE;
if (coll->leadBytePermutationTable == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return;
}
}
// prefill the reordering codes with the leading entries
internalReorderCodes = (int32_t*)uprv_malloc(internalReorderCodesLength * sizeof(int32_t));
if (internalReorderCodes == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
if (coll->leadBytePermutationTable != NULL && coll->freeLeadBytePermutationTableOnClose == TRUE) {
uprv_free(coll->leadBytePermutationTable);
}
coll->leadBytePermutationTable = NULL;
return;
}
for (uint32_t codeIndex = 0; codeIndex < (UCOL_REORDER_CODE_LIMIT - UCOL_REORDER_CODE_FIRST); codeIndex++) {
internalReorderCodes[codeIndex] = UCOL_REORDER_CODE_FIRST + codeIndex;
}
for (int32_t codeIndex = 0; codeIndex < coll->reorderCodesLength; codeIndex++) {
uint32_t reorderCodesCode = coll->reorderCodes[codeIndex];
internalReorderCodes[codeIndex + (UCOL_REORDER_CODE_LIMIT - UCOL_REORDER_CODE_FIRST)] = reorderCodesCode;
if (reorderCodesCode >= UCOL_REORDER_CODE_FIRST && reorderCodesCode < UCOL_REORDER_CODE_LIMIT) {
internalReorderCodes[reorderCodesCode - UCOL_REORDER_CODE_FIRST] = UCOL_REORDER_CODE_IGNORE;
}
}
for (int i = 0; i < 256; i++) {
if (i < toBottom || i > toTop) {
permutationSlotFilled[i] = true;
newLeadByteUsed[i] = true;
coll->leadBytePermutationTable[i] = i;
} else {
permutationSlotFilled[i] = false;
newLeadByteUsed[i] = false;
coll->leadBytePermutationTable[i] = 0;
}
}
/* Start from the front of the list and place each script we encounter at the
* earliest possible locatation in the permutation table. If we encounter
* UNKNOWN, start processing from the back, and place each script in the last
* possible location. At each step, we also need to make sure that any scripts
* that need to not be moved are copied to their same location in the final table.
*/
for (int reorderCodesCount = 0; reorderCodesCount < internalReorderCodesLength; reorderCodesCount++) {
reorderCodesIndex += fromTheBottom ? 1 : -1;
int32_t next = internalReorderCodes[reorderCodesIndex];
if (next == UCOL_REORDER_CODE_IGNORE) {
continue;
}
if (next == USCRIPT_UNKNOWN) {
if (fromTheBottom == false) {
// double turnaround
*status = U_ILLEGAL_ARGUMENT_ERROR;
if (coll->leadBytePermutationTable != NULL && coll->freeLeadBytePermutationTableOnClose == TRUE) {
uprv_free(coll->leadBytePermutationTable);
}
coll->leadBytePermutationTable = NULL;
coll->reorderCodesLength = 0;
if (internalReorderCodes != NULL) {
uprv_free(internalReorderCodes);
}
return;
}
fromTheBottom = false;
reorderCodesIndex = internalReorderCodesLength;
continue;
}
uint16_t leadByteCount = ucol_getLeadBytesForReorderCode(coll->UCA, next, leadBytes, leadBytesSize);
if (fromTheBottom) {
for (int leadByteIndex = 0; leadByteIndex < leadByteCount; leadByteIndex++) {
// don't place a lead byte twice in the permutation table
if (permutationSlotFilled[leadBytes[leadByteIndex]]) {
// lead byte already used
*status = U_ILLEGAL_ARGUMENT_ERROR;
if (coll->leadBytePermutationTable != NULL && coll->freeLeadBytePermutationTableOnClose == TRUE) {
uprv_free(coll->leadBytePermutationTable);
}
coll->leadBytePermutationTable = NULL;
coll->reorderCodesLength = 0;
if (internalReorderCodes != NULL) {
uprv_free(internalReorderCodes);
}
return;
}
coll->leadBytePermutationTable[leadBytes[leadByteIndex]] = toBottom;
newLeadByteUsed[toBottom] = true;
permutationSlotFilled[leadBytes[leadByteIndex]] = true;
toBottom++;
}
} else {
for (int leadByteIndex = leadByteCount - 1; leadByteIndex >= 0; leadByteIndex--) {
// don't place a lead byte twice in the permutation table
if (permutationSlotFilled[leadBytes[leadByteIndex]]) {
// lead byte already used
*status = U_ILLEGAL_ARGUMENT_ERROR;
if (coll->leadBytePermutationTable != NULL && coll->freeLeadBytePermutationTableOnClose == TRUE) {
uprv_free(coll->leadBytePermutationTable);
}
coll->leadBytePermutationTable = NULL;
coll->reorderCodesLength = 0;
if (internalReorderCodes != NULL) {
uprv_free(internalReorderCodes);
}
return;
}
coll->leadBytePermutationTable[leadBytes[leadByteIndex]] = toTop;
newLeadByteUsed[toTop] = true;
permutationSlotFilled[leadBytes[leadByteIndex]] = true;
toTop--;
}
}
}
#ifdef REORDER_DEBUG
fprintf(stdout, "\n@@@@ Partial Script Reordering Table\n");
for (int i = 0; i < 256; i++) {
fprintf(stdout, "\t%02x = %02x\n", i, coll->leadBytePermutationTable[i]);
}
fprintf(stdout, "\n@@@@ Lead Byte Used Table\n");
for (int i = 0; i < 256; i++) {
fprintf(stdout, "\t%02x = %02x\n", i, newLeadByteUsed[i]);
}
fprintf(stdout, "\n@@@@ Permutation Slot Filled Table\n");
for (int i = 0; i < 256; i++) {
fprintf(stdout, "\t%02x = %02x\n", i, permutationSlotFilled[i]);
}
#endif
/* Copy everything that's left over */
int reorderCode = 0;
for (int i = 0; i < 256; i++) {
if (!permutationSlotFilled[i]) {
while (reorderCode < 256 && newLeadByteUsed[reorderCode]) {
reorderCode++;
}
coll->leadBytePermutationTable[i] = reorderCode;
permutationSlotFilled[i] = true;
newLeadByteUsed[reorderCode] = true;
}
}
#ifdef REORDER_DEBUG
fprintf(stdout, "\n@@@@ Script Reordering Table\n");
for (int i = 0; i < 256; i++) {
fprintf(stdout, "\t%02x = %02x\n", i, coll->leadBytePermutationTable[i]);
}
#endif
if (internalReorderCodes != NULL) {
uprv_free(internalReorderCodes);
}
// force a regen of the latin one table since it is affected by the script reordering
coll->latinOneRegenTable = TRUE;
ucol_updateInternalState(coll, status);
}
#endif /* #if !UCONFIG_NO_COLLATION */