scuffed-code/icu4c/source/common/normalizer2.cpp

928 lines
32 KiB
C++

/*
*******************************************************************************
*
* Copyright (C) 2009-2011, International Business Machines
* Corporation and others. All Rights Reserved.
*
*******************************************************************************
* file name: normalizer2.cpp
* encoding: US-ASCII
* tab size: 8 (not used)
* indentation:4
*
* created on: 2009nov22
* created by: Markus W. Scherer
*/
#include "unicode/utypes.h"
#if !UCONFIG_NO_NORMALIZATION
#include "unicode/localpointer.h"
#include "unicode/normalizer2.h"
#include "unicode/unistr.h"
#include "unicode/unorm.h"
#include "cpputils.h"
#include "cstring.h"
#include "mutex.h"
#include "normalizer2impl.h"
#include "ucln_cmn.h"
#include "uhash.h"
U_NAMESPACE_BEGIN
// Public API dispatch via Normalizer2 subclasses -------------------------- ***
Normalizer2::~Normalizer2() {}
// Normalizer2 implementation for the old UNORM_NONE.
class NoopNormalizer2 : public Normalizer2 {
virtual ~NoopNormalizer2();
virtual UnicodeString &
normalize(const UnicodeString &src,
UnicodeString &dest,
UErrorCode &errorCode) const {
if(U_SUCCESS(errorCode)) {
if(&dest!=&src) {
dest=src;
} else {
errorCode=U_ILLEGAL_ARGUMENT_ERROR;
}
}
return dest;
}
virtual UnicodeString &
normalizeSecondAndAppend(UnicodeString &first,
const UnicodeString &second,
UErrorCode &errorCode) const {
if(U_SUCCESS(errorCode)) {
if(&first!=&second) {
first.append(second);
} else {
errorCode=U_ILLEGAL_ARGUMENT_ERROR;
}
}
return first;
}
virtual UnicodeString &
append(UnicodeString &first,
const UnicodeString &second,
UErrorCode &errorCode) const {
if(U_SUCCESS(errorCode)) {
if(&first!=&second) {
first.append(second);
} else {
errorCode=U_ILLEGAL_ARGUMENT_ERROR;
}
}
return first;
}
virtual UBool
getDecomposition(UChar32, UnicodeString &) const {
return FALSE;
}
virtual UBool
isNormalized(const UnicodeString &, UErrorCode &) const {
return TRUE;
}
virtual UNormalizationCheckResult
quickCheck(const UnicodeString &, UErrorCode &) const {
return UNORM_YES;
}
virtual int32_t
spanQuickCheckYes(const UnicodeString &s, UErrorCode &) const {
return s.length();
}
virtual UBool hasBoundaryBefore(UChar32) const { return TRUE; }
virtual UBool hasBoundaryAfter(UChar32) const { return TRUE; }
virtual UBool isInert(UChar32) const { return TRUE; }
};
NoopNormalizer2::~NoopNormalizer2() {}
// Intermediate class:
// Has Normalizer2Impl and does boilerplate argument checking and setup.
class Normalizer2WithImpl : public Normalizer2 {
public:
Normalizer2WithImpl(const Normalizer2Impl &ni) : impl(ni) {}
virtual ~Normalizer2WithImpl();
// normalize
virtual UnicodeString &
normalize(const UnicodeString &src,
UnicodeString &dest,
UErrorCode &errorCode) const {
if(U_FAILURE(errorCode)) {
dest.setToBogus();
return dest;
}
const UChar *sArray=src.getBuffer();
if(&dest==&src || sArray==NULL) {
errorCode=U_ILLEGAL_ARGUMENT_ERROR;
dest.setToBogus();
return dest;
}
dest.remove();
ReorderingBuffer buffer(impl, dest);
if(buffer.init(src.length(), errorCode)) {
normalize(sArray, sArray+src.length(), buffer, errorCode);
}
return dest;
}
virtual void
normalize(const UChar *src, const UChar *limit,
ReorderingBuffer &buffer, UErrorCode &errorCode) const = 0;
// normalize and append
virtual UnicodeString &
normalizeSecondAndAppend(UnicodeString &first,
const UnicodeString &second,
UErrorCode &errorCode) const {
return normalizeSecondAndAppend(first, second, TRUE, errorCode);
}
virtual UnicodeString &
append(UnicodeString &first,
const UnicodeString &second,
UErrorCode &errorCode) const {
return normalizeSecondAndAppend(first, second, FALSE, errorCode);
}
UnicodeString &
normalizeSecondAndAppend(UnicodeString &first,
const UnicodeString &second,
UBool doNormalize,
UErrorCode &errorCode) const {
uprv_checkCanGetBuffer(first, errorCode);
if(U_FAILURE(errorCode)) {
return first;
}
const UChar *secondArray=second.getBuffer();
if(&first==&second || secondArray==NULL) {
errorCode=U_ILLEGAL_ARGUMENT_ERROR;
return first;
}
int32_t firstLength=first.length();
UnicodeString safeMiddle;
{
ReorderingBuffer buffer(impl, first);
if(buffer.init(firstLength+second.length(), errorCode)) {
normalizeAndAppend(secondArray, secondArray+second.length(), doNormalize,
safeMiddle, buffer, errorCode);
}
} // The ReorderingBuffer destructor finalizes the first string.
if(U_FAILURE(errorCode)) {
// Restore the modified suffix of the first string.
first.replace(firstLength-safeMiddle.length(), 0x7fffffff, safeMiddle);
}
return first;
}
virtual void
normalizeAndAppend(const UChar *src, const UChar *limit, UBool doNormalize,
UnicodeString &safeMiddle,
ReorderingBuffer &buffer, UErrorCode &errorCode) const = 0;
virtual UBool
getDecomposition(UChar32 c, UnicodeString &decomposition) const {
UChar buffer[4];
int32_t length;
const UChar *d=impl.getDecomposition(c, buffer, length);
if(d==NULL) {
return FALSE;
}
if(d==buffer) {
decomposition.setTo(buffer, length); // copy the string (Jamos from Hangul syllable c)
} else {
decomposition.setTo(FALSE, d, length); // read-only alias
}
return TRUE;
}
virtual uint8_t
getCombiningClass(UChar32 c) const {
return impl.getCC(impl.getNorm16(c));
}
// quick checks
virtual UBool
isNormalized(const UnicodeString &s, UErrorCode &errorCode) const {
if(U_FAILURE(errorCode)) {
return FALSE;
}
const UChar *sArray=s.getBuffer();
if(sArray==NULL) {
errorCode=U_ILLEGAL_ARGUMENT_ERROR;
return FALSE;
}
const UChar *sLimit=sArray+s.length();
return sLimit==spanQuickCheckYes(sArray, sLimit, errorCode);
}
virtual UNormalizationCheckResult
quickCheck(const UnicodeString &s, UErrorCode &errorCode) const {
return Normalizer2WithImpl::isNormalized(s, errorCode) ? UNORM_YES : UNORM_NO;
}
virtual int32_t
spanQuickCheckYes(const UnicodeString &s, UErrorCode &errorCode) const {
if(U_FAILURE(errorCode)) {
return 0;
}
const UChar *sArray=s.getBuffer();
if(sArray==NULL) {
errorCode=U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
return (int32_t)(spanQuickCheckYes(sArray, sArray+s.length(), errorCode)-sArray);
}
virtual const UChar *
spanQuickCheckYes(const UChar *src, const UChar *limit, UErrorCode &errorCode) const = 0;
virtual UNormalizationCheckResult getQuickCheck(UChar32) const {
return UNORM_YES;
}
const Normalizer2Impl &impl;
};
Normalizer2WithImpl::~Normalizer2WithImpl() {}
class DecomposeNormalizer2 : public Normalizer2WithImpl {
public:
DecomposeNormalizer2(const Normalizer2Impl &ni) : Normalizer2WithImpl(ni) {}
virtual ~DecomposeNormalizer2();
private:
virtual void
normalize(const UChar *src, const UChar *limit,
ReorderingBuffer &buffer, UErrorCode &errorCode) const {
impl.decompose(src, limit, &buffer, errorCode);
}
using Normalizer2WithImpl::normalize; // Avoid warning about hiding base class function.
virtual void
normalizeAndAppend(const UChar *src, const UChar *limit, UBool doNormalize,
UnicodeString &safeMiddle,
ReorderingBuffer &buffer, UErrorCode &errorCode) const {
impl.decomposeAndAppend(src, limit, doNormalize, safeMiddle, buffer, errorCode);
}
virtual const UChar *
spanQuickCheckYes(const UChar *src, const UChar *limit, UErrorCode &errorCode) const {
return impl.decompose(src, limit, NULL, errorCode);
}
using Normalizer2WithImpl::spanQuickCheckYes; // Avoid warning about hiding base class function.
virtual UNormalizationCheckResult getQuickCheck(UChar32 c) const {
return impl.isDecompYes(impl.getNorm16(c)) ? UNORM_YES : UNORM_NO;
}
virtual UBool hasBoundaryBefore(UChar32 c) const { return impl.hasDecompBoundary(c, TRUE); }
virtual UBool hasBoundaryAfter(UChar32 c) const { return impl.hasDecompBoundary(c, FALSE); }
virtual UBool isInert(UChar32 c) const { return impl.isDecompInert(c); }
};
DecomposeNormalizer2::~DecomposeNormalizer2() {}
class ComposeNormalizer2 : public Normalizer2WithImpl {
public:
ComposeNormalizer2(const Normalizer2Impl &ni, UBool fcc) :
Normalizer2WithImpl(ni), onlyContiguous(fcc) {}
virtual ~ComposeNormalizer2();
private:
virtual void
normalize(const UChar *src, const UChar *limit,
ReorderingBuffer &buffer, UErrorCode &errorCode) const {
impl.compose(src, limit, onlyContiguous, TRUE, buffer, errorCode);
}
using Normalizer2WithImpl::normalize; // Avoid warning about hiding base class function.
virtual void
normalizeAndAppend(const UChar *src, const UChar *limit, UBool doNormalize,
UnicodeString &safeMiddle,
ReorderingBuffer &buffer, UErrorCode &errorCode) const {
impl.composeAndAppend(src, limit, doNormalize, onlyContiguous, safeMiddle, buffer, errorCode);
}
virtual UBool
isNormalized(const UnicodeString &s, UErrorCode &errorCode) const {
if(U_FAILURE(errorCode)) {
return FALSE;
}
const UChar *sArray=s.getBuffer();
if(sArray==NULL) {
errorCode=U_ILLEGAL_ARGUMENT_ERROR;
return FALSE;
}
UnicodeString temp;
ReorderingBuffer buffer(impl, temp);
if(!buffer.init(5, errorCode)) { // small destCapacity for substring normalization
return FALSE;
}
return impl.compose(sArray, sArray+s.length(), onlyContiguous, FALSE, buffer, errorCode);
}
virtual UNormalizationCheckResult
quickCheck(const UnicodeString &s, UErrorCode &errorCode) const {
if(U_FAILURE(errorCode)) {
return UNORM_MAYBE;
}
const UChar *sArray=s.getBuffer();
if(sArray==NULL) {
errorCode=U_ILLEGAL_ARGUMENT_ERROR;
return UNORM_MAYBE;
}
UNormalizationCheckResult qcResult=UNORM_YES;
impl.composeQuickCheck(sArray, sArray+s.length(), onlyContiguous, &qcResult);
return qcResult;
}
virtual const UChar *
spanQuickCheckYes(const UChar *src, const UChar *limit, UErrorCode &) const {
return impl.composeQuickCheck(src, limit, onlyContiguous, NULL);
}
using Normalizer2WithImpl::spanQuickCheckYes; // Avoid warning about hiding base class function.
virtual UNormalizationCheckResult getQuickCheck(UChar32 c) const {
return impl.getCompQuickCheck(impl.getNorm16(c));
}
virtual UBool hasBoundaryBefore(UChar32 c) const {
return impl.hasCompBoundaryBefore(c);
}
virtual UBool hasBoundaryAfter(UChar32 c) const {
return impl.hasCompBoundaryAfter(c, onlyContiguous, FALSE);
}
virtual UBool isInert(UChar32 c) const {
return impl.hasCompBoundaryAfter(c, onlyContiguous, TRUE);
}
const UBool onlyContiguous;
};
ComposeNormalizer2::~ComposeNormalizer2() {}
class FCDNormalizer2 : public Normalizer2WithImpl {
public:
FCDNormalizer2(const Normalizer2Impl &ni) : Normalizer2WithImpl(ni) {}
virtual ~FCDNormalizer2();
private:
virtual void
normalize(const UChar *src, const UChar *limit,
ReorderingBuffer &buffer, UErrorCode &errorCode) const {
impl.makeFCD(src, limit, &buffer, errorCode);
}
using Normalizer2WithImpl::normalize; // Avoid warning about hiding base class function.
virtual void
normalizeAndAppend(const UChar *src, const UChar *limit, UBool doNormalize,
UnicodeString &safeMiddle,
ReorderingBuffer &buffer, UErrorCode &errorCode) const {
impl.makeFCDAndAppend(src, limit, doNormalize, safeMiddle, buffer, errorCode);
}
virtual const UChar *
spanQuickCheckYes(const UChar *src, const UChar *limit, UErrorCode &errorCode) const {
return impl.makeFCD(src, limit, NULL, errorCode);
}
using Normalizer2WithImpl::spanQuickCheckYes; // Avoid warning about hiding base class function.
virtual UBool hasBoundaryBefore(UChar32 c) const { return impl.hasFCDBoundaryBefore(c); }
virtual UBool hasBoundaryAfter(UChar32 c) const { return impl.hasFCDBoundaryAfter(c); }
virtual UBool isInert(UChar32 c) const { return impl.isFCDInert(c); }
};
FCDNormalizer2::~FCDNormalizer2() {}
// instance cache ---------------------------------------------------------- ***
struct Norm2AllModes : public UMemory {
static Norm2AllModes *createInstance(const char *packageName,
const char *name,
UErrorCode &errorCode);
Norm2AllModes() : comp(impl, FALSE), decomp(impl), fcd(impl), fcc(impl, TRUE) {}
Normalizer2Impl impl;
ComposeNormalizer2 comp;
DecomposeNormalizer2 decomp;
FCDNormalizer2 fcd;
ComposeNormalizer2 fcc;
};
Norm2AllModes *
Norm2AllModes::createInstance(const char *packageName,
const char *name,
UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) {
return NULL;
}
LocalPointer<Norm2AllModes> allModes(new Norm2AllModes);
if(allModes.isNull()) {
errorCode=U_MEMORY_ALLOCATION_ERROR;
return NULL;
}
allModes->impl.load(packageName, name, errorCode);
return U_SUCCESS(errorCode) ? allModes.orphan() : NULL;
}
U_CDECL_BEGIN
static UBool U_CALLCONV uprv_normalizer2_cleanup();
U_CDECL_END
class Norm2AllModesSingleton : public TriStateSingletonWrapper<Norm2AllModes> {
public:
Norm2AllModesSingleton(TriStateSingleton &s, const char *n) :
TriStateSingletonWrapper<Norm2AllModes>(s), name(n) {}
Norm2AllModes *getInstance(UErrorCode &errorCode) {
return TriStateSingletonWrapper<Norm2AllModes>::getInstance(createInstance, name, errorCode);
}
private:
static void *createInstance(const void *context, UErrorCode &errorCode) {
ucln_common_registerCleanup(UCLN_COMMON_NORMALIZER2, uprv_normalizer2_cleanup);
return Norm2AllModes::createInstance(NULL, (const char *)context, errorCode);
}
const char *name;
};
STATIC_TRI_STATE_SINGLETON(nfcSingleton);
STATIC_TRI_STATE_SINGLETON(nfkcSingleton);
STATIC_TRI_STATE_SINGLETON(nfkc_cfSingleton);
class Norm2Singleton : public SimpleSingletonWrapper<Normalizer2> {
public:
Norm2Singleton(SimpleSingleton &s) : SimpleSingletonWrapper<Normalizer2>(s) {}
Normalizer2 *getInstance(UErrorCode &errorCode) {
return SimpleSingletonWrapper<Normalizer2>::getInstance(createInstance, NULL, errorCode);
}
private:
static void *createInstance(const void *, UErrorCode &errorCode) {
Normalizer2 *noop=new NoopNormalizer2;
if(noop==NULL) {
errorCode=U_MEMORY_ALLOCATION_ERROR;
}
ucln_common_registerCleanup(UCLN_COMMON_NORMALIZER2, uprv_normalizer2_cleanup);
return noop;
}
};
STATIC_SIMPLE_SINGLETON(noopSingleton);
static UHashtable *cache=NULL;
U_CDECL_BEGIN
static void U_CALLCONV deleteNorm2AllModes(void *allModes) {
delete (Norm2AllModes *)allModes;
}
static UBool U_CALLCONV uprv_normalizer2_cleanup() {
Norm2AllModesSingleton(nfcSingleton, NULL).deleteInstance();
Norm2AllModesSingleton(nfkcSingleton, NULL).deleteInstance();
Norm2AllModesSingleton(nfkc_cfSingleton, NULL).deleteInstance();
Norm2Singleton(noopSingleton).deleteInstance();
uhash_close(cache);
cache=NULL;
return TRUE;
}
U_CDECL_END
const Normalizer2 *Normalizer2Factory::getNFCInstance(UErrorCode &errorCode) {
Norm2AllModes *allModes=Norm2AllModesSingleton(nfcSingleton, "nfc").getInstance(errorCode);
return allModes!=NULL ? &allModes->comp : NULL;
}
const Normalizer2 *Normalizer2Factory::getNFDInstance(UErrorCode &errorCode) {
Norm2AllModes *allModes=Norm2AllModesSingleton(nfcSingleton, "nfc").getInstance(errorCode);
return allModes!=NULL ? &allModes->decomp : NULL;
}
const Normalizer2 *Normalizer2Factory::getFCDInstance(UErrorCode &errorCode) {
Norm2AllModes *allModes=Norm2AllModesSingleton(nfcSingleton, "nfc").getInstance(errorCode);
if(allModes!=NULL) {
allModes->impl.getFCDTrie(errorCode);
return &allModes->fcd;
} else {
return NULL;
}
}
const Normalizer2 *Normalizer2Factory::getFCCInstance(UErrorCode &errorCode) {
Norm2AllModes *allModes=Norm2AllModesSingleton(nfcSingleton, "nfc").getInstance(errorCode);
return allModes!=NULL ? &allModes->fcc : NULL;
}
const Normalizer2 *Normalizer2Factory::getNFKCInstance(UErrorCode &errorCode) {
Norm2AllModes *allModes=
Norm2AllModesSingleton(nfkcSingleton, "nfkc").getInstance(errorCode);
return allModes!=NULL ? &allModes->comp : NULL;
}
const Normalizer2 *Normalizer2Factory::getNFKDInstance(UErrorCode &errorCode) {
Norm2AllModes *allModes=
Norm2AllModesSingleton(nfkcSingleton, "nfkc").getInstance(errorCode);
return allModes!=NULL ? &allModes->decomp : NULL;
}
const Normalizer2 *Normalizer2Factory::getNFKC_CFInstance(UErrorCode &errorCode) {
Norm2AllModes *allModes=
Norm2AllModesSingleton(nfkc_cfSingleton, "nfkc_cf").getInstance(errorCode);
return allModes!=NULL ? &allModes->comp : NULL;
}
const Normalizer2 *Normalizer2Factory::getNoopInstance(UErrorCode &errorCode) {
return Norm2Singleton(noopSingleton).getInstance(errorCode);
}
const Normalizer2 *
Normalizer2Factory::getInstance(UNormalizationMode mode, UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) {
return NULL;
}
switch(mode) {
case UNORM_NFD:
return getNFDInstance(errorCode);
case UNORM_NFKD:
return getNFKDInstance(errorCode);
case UNORM_NFC:
return getNFCInstance(errorCode);
case UNORM_NFKC:
return getNFKCInstance(errorCode);
case UNORM_FCD:
return getFCDInstance(errorCode);
default: // UNORM_NONE
return getNoopInstance(errorCode);
}
}
const Normalizer2Impl *
Normalizer2Factory::getNFCImpl(UErrorCode &errorCode) {
Norm2AllModes *allModes=
Norm2AllModesSingleton(nfcSingleton, "nfc").getInstance(errorCode);
return allModes!=NULL ? &allModes->impl : NULL;
}
const Normalizer2Impl *
Normalizer2Factory::getNFKCImpl(UErrorCode &errorCode) {
Norm2AllModes *allModes=
Norm2AllModesSingleton(nfkcSingleton, "nfkc").getInstance(errorCode);
return allModes!=NULL ? &allModes->impl : NULL;
}
const Normalizer2Impl *
Normalizer2Factory::getNFKC_CFImpl(UErrorCode &errorCode) {
Norm2AllModes *allModes=
Norm2AllModesSingleton(nfkc_cfSingleton, "nfkc_cf").getInstance(errorCode);
return allModes!=NULL ? &allModes->impl : NULL;
}
const Normalizer2Impl *
Normalizer2Factory::getImpl(const Normalizer2 *norm2) {
return &((Normalizer2WithImpl *)norm2)->impl;
}
const UTrie2 *
Normalizer2Factory::getFCDTrie(UErrorCode &errorCode) {
Norm2AllModes *allModes=
Norm2AllModesSingleton(nfcSingleton, "nfc").getInstance(errorCode);
if(allModes!=NULL) {
return allModes->impl.getFCDTrie(errorCode);
} else {
return NULL;
}
}
const Normalizer2 *
Normalizer2::getInstance(const char *packageName,
const char *name,
UNormalization2Mode mode,
UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) {
return NULL;
}
if(name==NULL || *name==0) {
errorCode=U_ILLEGAL_ARGUMENT_ERROR;
}
Norm2AllModes *allModes=NULL;
if(packageName==NULL) {
if(0==uprv_strcmp(name, "nfc")) {
allModes=Norm2AllModesSingleton(nfcSingleton, "nfc").getInstance(errorCode);
} else if(0==uprv_strcmp(name, "nfkc")) {
allModes=Norm2AllModesSingleton(nfkcSingleton, "nfkc").getInstance(errorCode);
} else if(0==uprv_strcmp(name, "nfkc_cf")) {
allModes=Norm2AllModesSingleton(nfkc_cfSingleton, "nfkc_cf").getInstance(errorCode);
}
}
if(allModes==NULL && U_SUCCESS(errorCode)) {
{
Mutex lock;
if(cache!=NULL) {
allModes=(Norm2AllModes *)uhash_get(cache, name);
}
}
if(allModes==NULL) {
LocalPointer<Norm2AllModes> localAllModes(
Norm2AllModes::createInstance(packageName, name, errorCode));
if(U_SUCCESS(errorCode)) {
Mutex lock;
if(cache==NULL) {
cache=uhash_open(uhash_hashChars, uhash_compareChars, NULL, &errorCode);
if(U_FAILURE(errorCode)) {
return NULL;
}
uhash_setKeyDeleter(cache, uprv_free);
uhash_setValueDeleter(cache, deleteNorm2AllModes);
}
void *temp=uhash_get(cache, name);
if(temp==NULL) {
int32_t keyLength=uprv_strlen(name)+1;
char *nameCopy=(char *)uprv_malloc(keyLength);
if(nameCopy==NULL) {
errorCode=U_MEMORY_ALLOCATION_ERROR;
return NULL;
}
uprv_memcpy(nameCopy, name, keyLength);
uhash_put(cache, nameCopy, allModes=localAllModes.orphan(), &errorCode);
} else {
// race condition
allModes=(Norm2AllModes *)temp;
}
}
}
}
if(allModes!=NULL && U_SUCCESS(errorCode)) {
switch(mode) {
case UNORM2_COMPOSE:
return &allModes->comp;
case UNORM2_DECOMPOSE:
return &allModes->decomp;
case UNORM2_FCD:
allModes->impl.getFCDTrie(errorCode);
return &allModes->fcd;
case UNORM2_COMPOSE_CONTIGUOUS:
return &allModes->fcc;
default:
break; // do nothing
}
}
return NULL;
}
uint8_t
Normalizer2::getCombiningClass(UChar32 /*c*/) const {
return 0;
}
UOBJECT_DEFINE_NO_RTTI_IMPLEMENTATION(Normalizer2)
U_NAMESPACE_END
// C API ------------------------------------------------------------------- ***
U_NAMESPACE_USE
U_DRAFT const UNormalizer2 * U_EXPORT2
unorm2_getInstance(const char *packageName,
const char *name,
UNormalization2Mode mode,
UErrorCode *pErrorCode) {
return (const UNormalizer2 *)Normalizer2::getInstance(packageName, name, mode, *pErrorCode);
}
U_DRAFT void U_EXPORT2
unorm2_close(UNormalizer2 *norm2) {
delete (Normalizer2 *)norm2;
}
U_DRAFT int32_t U_EXPORT2
unorm2_normalize(const UNormalizer2 *norm2,
const UChar *src, int32_t length,
UChar *dest, int32_t capacity,
UErrorCode *pErrorCode) {
if(U_FAILURE(*pErrorCode)) {
return 0;
}
if( (src==NULL ? length!=0 : length<-1) ||
(dest==NULL ? capacity!=0 : capacity<0) ||
(src==dest && src!=NULL)
) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
UnicodeString destString(dest, 0, capacity);
// length==0: Nothing to do, and n2wi->normalize(NULL, NULL, buffer, ...) would crash.
if(length!=0) {
const Normalizer2 *n2=(const Normalizer2 *)norm2;
const Normalizer2WithImpl *n2wi=dynamic_cast<const Normalizer2WithImpl *>(n2);
if(n2wi!=NULL) {
// Avoid duplicate argument checking and support NUL-terminated src.
ReorderingBuffer buffer(n2wi->impl, destString);
if(buffer.init(length, *pErrorCode)) {
n2wi->normalize(src, length>=0 ? src+length : NULL, buffer, *pErrorCode);
}
} else {
UnicodeString srcString(length<0, src, length);
n2->normalize(srcString, destString, *pErrorCode);
}
}
return destString.extract(dest, capacity, *pErrorCode);
}
static int32_t
normalizeSecondAndAppend(const UNormalizer2 *norm2,
UChar *first, int32_t firstLength, int32_t firstCapacity,
const UChar *second, int32_t secondLength,
UBool doNormalize,
UErrorCode *pErrorCode) {
if(U_FAILURE(*pErrorCode)) {
return 0;
}
if( (second==NULL ? secondLength!=0 : secondLength<-1) ||
(first==NULL ? (firstCapacity!=0 || firstLength!=0) :
(firstCapacity<0 || firstLength<-1)) ||
(first==second && first!=NULL)
) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
UnicodeString firstString(first, firstLength, firstCapacity);
firstLength=firstString.length(); // In case it was -1.
// secondLength==0: Nothing to do, and n2wi->normalizeAndAppend(NULL, NULL, buffer, ...) would crash.
if(secondLength!=0) {
const Normalizer2 *n2=(const Normalizer2 *)norm2;
const Normalizer2WithImpl *n2wi=dynamic_cast<const Normalizer2WithImpl *>(n2);
if(n2wi!=NULL) {
// Avoid duplicate argument checking and support NUL-terminated src.
UnicodeString safeMiddle;
{
ReorderingBuffer buffer(n2wi->impl, firstString);
if(buffer.init(firstLength+secondLength+1, *pErrorCode)) { // destCapacity>=-1
n2wi->normalizeAndAppend(second, secondLength>=0 ? second+secondLength : NULL,
doNormalize, safeMiddle, buffer, *pErrorCode);
}
} // The ReorderingBuffer destructor finalizes firstString.
if(U_FAILURE(*pErrorCode) || firstString.length()>firstCapacity) {
// Restore the modified suffix of the first string.
// This does not restore first[] array contents between firstLength and firstCapacity.
// (That might be uninitialized memory, as far as we know.)
safeMiddle.extract(0, 0x7fffffff, first+firstLength-safeMiddle.length());
if(firstLength<firstCapacity) {
first[firstLength]=0; // NUL-terminate in case it was originally.
}
}
} else {
UnicodeString secondString(secondLength<0, second, secondLength);
if(doNormalize) {
n2->normalizeSecondAndAppend(firstString, secondString, *pErrorCode);
} else {
n2->append(firstString, secondString, *pErrorCode);
}
}
}
return firstString.extract(first, firstCapacity, *pErrorCode);
}
U_DRAFT int32_t U_EXPORT2
unorm2_normalizeSecondAndAppend(const UNormalizer2 *norm2,
UChar *first, int32_t firstLength, int32_t firstCapacity,
const UChar *second, int32_t secondLength,
UErrorCode *pErrorCode) {
return normalizeSecondAndAppend(norm2,
first, firstLength, firstCapacity,
second, secondLength,
TRUE, pErrorCode);
}
U_DRAFT int32_t U_EXPORT2
unorm2_append(const UNormalizer2 *norm2,
UChar *first, int32_t firstLength, int32_t firstCapacity,
const UChar *second, int32_t secondLength,
UErrorCode *pErrorCode) {
return normalizeSecondAndAppend(norm2,
first, firstLength, firstCapacity,
second, secondLength,
FALSE, pErrorCode);
}
U_DRAFT int32_t U_EXPORT2
unorm2_getDecomposition(const UNormalizer2 *norm2,
UChar32 c, UChar *decomposition, int32_t capacity,
UErrorCode *pErrorCode) {
if(U_FAILURE(*pErrorCode)) {
return 0;
}
if(decomposition==NULL ? capacity!=0 : capacity<0) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
UnicodeString destString(decomposition, 0, capacity);
if(reinterpret_cast<const Normalizer2 *>(norm2)->getDecomposition(c, destString)) {
return destString.extract(decomposition, capacity, *pErrorCode);
} else {
return -1;
}
}
U_DRAFT uint8_t U_EXPORT2
unorm2_getCombiningClass(const UNormalizer2 *norm2, UChar32 c) {
return reinterpret_cast<const Normalizer2 *>(norm2)->getCombiningClass(c);
}
U_DRAFT UBool U_EXPORT2
unorm2_isNormalized(const UNormalizer2 *norm2,
const UChar *s, int32_t length,
UErrorCode *pErrorCode) {
if(U_FAILURE(*pErrorCode)) {
return 0;
}
if((s==NULL && length!=0) || length<-1) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
UnicodeString sString(length<0, s, length);
return ((const Normalizer2 *)norm2)->isNormalized(sString, *pErrorCode);
}
U_DRAFT UNormalizationCheckResult U_EXPORT2
unorm2_quickCheck(const UNormalizer2 *norm2,
const UChar *s, int32_t length,
UErrorCode *pErrorCode) {
if(U_FAILURE(*pErrorCode)) {
return UNORM_NO;
}
if((s==NULL && length!=0) || length<-1) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return UNORM_NO;
}
UnicodeString sString(length<0, s, length);
return ((const Normalizer2 *)norm2)->quickCheck(sString, *pErrorCode);
}
U_DRAFT int32_t U_EXPORT2
unorm2_spanQuickCheckYes(const UNormalizer2 *norm2,
const UChar *s, int32_t length,
UErrorCode *pErrorCode) {
if(U_FAILURE(*pErrorCode)) {
return 0;
}
if((s==NULL && length!=0) || length<-1) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
UnicodeString sString(length<0, s, length);
return ((const Normalizer2 *)norm2)->spanQuickCheckYes(sString, *pErrorCode);
}
U_DRAFT UBool U_EXPORT2
unorm2_hasBoundaryBefore(const UNormalizer2 *norm2, UChar32 c) {
return ((const Normalizer2 *)norm2)->hasBoundaryBefore(c);
}
U_DRAFT UBool U_EXPORT2
unorm2_hasBoundaryAfter(const UNormalizer2 *norm2, UChar32 c) {
return ((const Normalizer2 *)norm2)->hasBoundaryAfter(c);
}
U_DRAFT UBool U_EXPORT2
unorm2_isInert(const UNormalizer2 *norm2, UChar32 c) {
return ((const Normalizer2 *)norm2)->isInert(c);
}
// Some properties APIs ---------------------------------------------------- ***
U_CAPI uint8_t U_EXPORT2
u_getCombiningClass(UChar32 c) {
UErrorCode errorCode=U_ZERO_ERROR;
const Normalizer2 *nfd=Normalizer2Factory::getNFDInstance(errorCode);
if(U_SUCCESS(errorCode)) {
return nfd->getCombiningClass(c);
} else {
return 0;
}
}
U_CFUNC UNormalizationCheckResult
unorm_getQuickCheck(UChar32 c, UNormalizationMode mode) {
if(mode<=UNORM_NONE || UNORM_FCD<=mode) {
return UNORM_YES;
}
UErrorCode errorCode=U_ZERO_ERROR;
const Normalizer2 *norm2=Normalizer2Factory::getInstance(mode, errorCode);
if(U_SUCCESS(errorCode)) {
return ((const Normalizer2WithImpl *)norm2)->getQuickCheck(c);
} else {
return UNORM_MAYBE;
}
}
U_CFUNC uint16_t
unorm_getFCD16Simple(UChar32 c) {
UErrorCode errorCode=U_ZERO_ERROR;
const UTrie2 *trie=Normalizer2Factory::getFCDTrie(errorCode);
if(U_SUCCESS(errorCode)) {
return UTRIE2_GET16(trie, c);
} else {
return 0;
}
}
U_CAPI const uint16_t * U_EXPORT2
unorm_getFCDTrieIndex(UChar32 &fcdHighStart, UErrorCode *pErrorCode) {
const UTrie2 *trie=Normalizer2Factory::getFCDTrie(*pErrorCode);
if(U_SUCCESS(*pErrorCode)) {
fcdHighStart=trie->highStart;
return trie->index;
} else {
return NULL;
}
}
#endif // !UCONFIG_NO_NORMALIZATION