e7042af1b8
X-SVN-Rev: 5653
1321 lines
46 KiB
C++
1321 lines
46 KiB
C++
/*
|
|
**********************************************************************
|
|
* Copyright (C) 1999-2001, International Business Machines
|
|
* Corporation and others. All Rights Reserved.
|
|
**********************************************************************
|
|
* Date Name Description
|
|
* 11/17/99 aliu Creation.
|
|
**********************************************************************
|
|
*/
|
|
#include "cstring.h"
|
|
#include "hash.h"
|
|
#include "quant.h"
|
|
#include "rbt_data.h"
|
|
#include "rbt_pars.h"
|
|
#include "rbt_rule.h"
|
|
#include "strmatch.h"
|
|
#include "symtable.h"
|
|
#include "unirange.h"
|
|
#include "unicode/parseerr.h"
|
|
#include "unicode/parsepos.h"
|
|
#include "unicode/putil.h"
|
|
#include "unicode/rbt.h"
|
|
#include "unicode/uchar.h"
|
|
#include "unicode/ustring.h"
|
|
#include "unicode/uniset.h"
|
|
|
|
// Operators
|
|
#define VARIABLE_DEF_OP ((UChar)0x003D) /*=*/
|
|
#define FORWARD_RULE_OP ((UChar)0x003E) /*>*/
|
|
#define REVERSE_RULE_OP ((UChar)0x003C) /*<*/
|
|
#define FWDREV_RULE_OP ((UChar)0x007E) /*~*/ // internal rep of <> op
|
|
|
|
// Other special characters
|
|
#define QUOTE ((UChar)0x0027) /*'*/
|
|
#define ESCAPE ((UChar)0x005C) /*\*/
|
|
#define END_OF_RULE ((UChar)0x003B) /*;*/
|
|
#define RULE_COMMENT_CHAR ((UChar)0x0023) /*#*/
|
|
|
|
#define SEGMENT_OPEN ((UChar)0x0028) /*(*/
|
|
#define SEGMENT_CLOSE ((UChar)0x0029) /*)*/
|
|
#define CONTEXT_ANTE ((UChar)0x007B) /*{*/
|
|
#define CONTEXT_POST ((UChar)0x007D) /*}*/
|
|
#define SET_OPEN ((UChar)0x005B) /*[*/
|
|
#define SET_CLOSE ((UChar)0x005D) /*]*/
|
|
#define CURSOR_POS ((UChar)0x007C) /*|*/
|
|
#define CURSOR_OFFSET ((UChar)0x0040) /*@*/
|
|
#define ANCHOR_START ((UChar)0x005E) /*^*/
|
|
#define KLEENE_STAR ((UChar)0x002A) /***/
|
|
#define ONE_OR_MORE ((UChar)0x002B) /*+*/
|
|
#define ZERO_OR_ONE ((UChar)0x003F) /*?*/
|
|
|
|
// By definition, the ANCHOR_END special character is a
|
|
// trailing SymbolTable.SYMBOL_REF character.
|
|
// private static final char ANCHOR_END = '$';
|
|
|
|
static const UChar gOPERATORS[] = {
|
|
0x3D, 0x3E, 0x3C, 0 // "=><"
|
|
};
|
|
|
|
// These are also used in Transliterator::toRules()
|
|
static const int32_t ID_TOKEN_LEN = 2;
|
|
static const UChar ID_TOKEN[] = { 0x3A, 0x3A }; // ':', ':'
|
|
|
|
//----------------------------------------------------------------------
|
|
// BEGIN ParseData
|
|
//----------------------------------------------------------------------
|
|
|
|
/**
|
|
* This class implements the SymbolTable interface. It is used
|
|
* during parsing to give UnicodeSet access to variables that
|
|
* have been defined so far. Note that it uses variablesVector,
|
|
* _not_ data.setVariables.
|
|
*/
|
|
class ParseData : public SymbolTable {
|
|
public:
|
|
const TransliterationRuleData* data; // alias
|
|
|
|
const UVector* variablesVector; // alias
|
|
|
|
ParseData(const TransliterationRuleData* data = 0,
|
|
const UVector* variablesVector = 0);
|
|
|
|
virtual const UnicodeString* lookup(const UnicodeString& s) const;
|
|
|
|
virtual const UnicodeSet* lookupSet(UChar32 ch) const;
|
|
|
|
virtual UnicodeString parseReference(const UnicodeString& text,
|
|
ParsePosition& pos, int32_t limit) const;
|
|
};
|
|
|
|
ParseData::ParseData(const TransliterationRuleData* d,
|
|
const UVector* sets) :
|
|
data(d), variablesVector(sets) {}
|
|
|
|
/**
|
|
* Implement SymbolTable API.
|
|
*/
|
|
const UnicodeString* ParseData::lookup(const UnicodeString& name) const {
|
|
return (const UnicodeString*) data->variableNames->get(name);
|
|
}
|
|
|
|
/**
|
|
* Implement SymbolTable API.
|
|
*/
|
|
const UnicodeSet* ParseData::lookupSet(UChar32 ch) const {
|
|
// Note that we cannot use data.lookupSet() because the
|
|
// set array has not been constructed yet.
|
|
const UnicodeSet* set = NULL;
|
|
int32_t i = ch - data->variablesBase;
|
|
if (i >= 0 && i < variablesVector->size()) {
|
|
int32_t i = ch - data->variablesBase;
|
|
set = (i < variablesVector->size()) ?
|
|
(UnicodeSet*) variablesVector->elementAt(i) : 0;
|
|
}
|
|
return set;
|
|
}
|
|
|
|
/**
|
|
* Implement SymbolTable API. Parse out a symbol reference
|
|
* name.
|
|
*/
|
|
UnicodeString ParseData::parseReference(const UnicodeString& text,
|
|
ParsePosition& pos, int32_t limit) const {
|
|
int32_t start = pos.getIndex();
|
|
int32_t i = start;
|
|
UnicodeString result;
|
|
while (i < limit) {
|
|
UChar c = text.charAt(i);
|
|
if ((i==start && !u_isIDStart(c)) || !u_isIDPart(c)) {
|
|
break;
|
|
}
|
|
++i;
|
|
}
|
|
if (i == start) { // No valid name chars
|
|
return result; // Indicate failure with empty string
|
|
}
|
|
pos.setIndex(i);
|
|
text.extractBetween(start, i, result);
|
|
return result;
|
|
}
|
|
|
|
//----------------------------------------------------------------------
|
|
// Segments
|
|
//----------------------------------------------------------------------
|
|
|
|
/**
|
|
* Segments are parentheses-enclosed regions of the input string.
|
|
* These are referenced in the output string using the notation $1,
|
|
* $2, etc. Numbering is in order of appearance of the left
|
|
* parenthesis. Number is one-based. Segments are defined as start,
|
|
* limit pairs. Segments may nest.
|
|
*
|
|
* During parsing, segment data is encoded in an object of class
|
|
* Segments. At runtime, the same data is encoded in compact form as
|
|
* an array of integers in a TransliterationRule. The runtime encoding
|
|
* must satisfy three goals:
|
|
*
|
|
* 1. Iterate over the offsets in a pattern, from left to right,
|
|
* and indicate all segment boundaries, in order. This is done
|
|
* during matching.
|
|
*
|
|
* 2. Given a reference $n, produce the start and limit offsets
|
|
* for that segment. This is done during replacement.
|
|
*
|
|
* 3. Similar to goal 1, but in addition, indicate whether each
|
|
* segment boundary is a start or a limit, in other words, whether
|
|
* each is an open paren or a close paren. This is required by
|
|
* the toRule() method.
|
|
*
|
|
* Goal 1 must be satisfied at high speed since this is done during
|
|
* matching. Goal 2 is next most important. Goal 3 is not performance
|
|
* critical since it is only needed by toRule().
|
|
*
|
|
* The array of integers is actually two arrays concatenated. The
|
|
* first gives the index values of the open and close parentheses in
|
|
* the order they appear. The second maps segment numbers to the
|
|
* indices of the first array. The two arrays have the same length.
|
|
* Iterating over the first array satisfies goal 1. Indexing into the
|
|
* second array satisfies goal 2. Goal 3 is satisfied by iterating
|
|
* over the second array and constructing the required data when
|
|
* needed. This is what toRule() does.
|
|
*
|
|
* Example: (a b(c d)e f)
|
|
* 0 1 2 3 4 5 6
|
|
*
|
|
* First array: Indices are 0, 2, 4, and 6.
|
|
|
|
* Second array: $1 is at 0 and 6, and $2 is at 2 and 4, so the
|
|
* second array is 0, 3, 1 2 -- these give the indices in the
|
|
* first array at which $1:open, $1:close, $2:open, and $2:close
|
|
* occur.
|
|
*
|
|
* The final array is: 2, 7, 0, 2, 4, 6, -1, 2, 5, 3, 4, -1
|
|
*
|
|
* Each subarray is terminated with a -1, and two leading entries
|
|
* give the number of segments and the offset to the first entry
|
|
* of the second array. In addition, the second array value are
|
|
* all offset by 2 so they index directly into the final array.
|
|
* The total array size is 4*segments[0] + 4. The second index is
|
|
* 2*segments[0] + 3.
|
|
*
|
|
* In the output string, a segment reference is indicated by a
|
|
* character in a special range, as defined by
|
|
* RuleBasedTransliterator.Data.
|
|
*
|
|
* Most rules have no segments, in which case segments is null, and the
|
|
* output string need not be checked for segment reference characters.
|
|
*
|
|
* See also rbt_rule.h/cpp.
|
|
*/
|
|
class Segments {
|
|
UVector offsets;
|
|
UVector isOpenParen;
|
|
public:
|
|
Segments(UErrorCode &status);
|
|
~Segments();
|
|
void addParenthesisAt(int32_t offset, UBool isOpenParen, UErrorCode &status);
|
|
int32_t getLastParenOffset(UBool& isOpenParen) const;
|
|
UBool extractLastParenSubstring(int32_t& start, int32_t& limit);
|
|
int32_t* createArray(UErrorCode &status) const;
|
|
UBool validate() const;
|
|
int32_t count() const; // number of segments
|
|
private:
|
|
int32_t offset(int32_t i) const;
|
|
UBool isOpen(int32_t i) const;
|
|
int32_t size() const; // size of the UVectors
|
|
};
|
|
|
|
int32_t Segments::offset(int32_t i) const {
|
|
return offsets.elementAti(i);
|
|
}
|
|
|
|
UBool Segments::isOpen(int32_t i) const {
|
|
return isOpenParen.elementAti(i) != 0;
|
|
}
|
|
|
|
int32_t Segments::size() const {
|
|
// assert(offset.size() == isOpenParen.size());
|
|
return offsets.size();
|
|
}
|
|
|
|
Segments::Segments(UErrorCode &status)
|
|
: offsets(status),
|
|
isOpenParen(status)
|
|
{}
|
|
Segments::~Segments() {}
|
|
|
|
void Segments::addParenthesisAt(int32_t offset, UBool isOpen, UErrorCode &status) {
|
|
offsets.addElement(offset, status);
|
|
isOpenParen.addElement(isOpen ? 1 : 0, status);
|
|
}
|
|
|
|
int32_t Segments::getLastParenOffset(UBool& isOpenParen) const {
|
|
if (size() == 0) {
|
|
return -1;
|
|
}
|
|
isOpenParen = isOpen(size()-1);
|
|
return offset(size()-1);
|
|
}
|
|
|
|
// Remove the last (rightmost) segment. Store its offsets in start
|
|
// and limit, and then convert all offsets at or after start to be
|
|
// equal to start. Upon failure, return FALSE. Assume that the
|
|
// caller has already called getLastParenOffset() and validated that
|
|
// there is at least one parenthesis and that the last one is a close
|
|
// paren.
|
|
UBool Segments::extractLastParenSubstring(int32_t& start, int32_t& limit) {
|
|
// assert(offsets.size() > 0);
|
|
// assert(isOpenParen.elementAt(isOpenParen.size()-1) == 0);
|
|
int32_t i = size() - 1;
|
|
int32_t n = 1; // count of close parens we need to match
|
|
// Record position of the last close paren
|
|
limit = offset(i);
|
|
--i; // back up to the one before the last one
|
|
while (i >= 0 && n != 0) {
|
|
n += isOpen(i) ? -1 : 1;
|
|
}
|
|
if (n != 0) {
|
|
return FALSE;
|
|
}
|
|
// assert(i>=0);
|
|
start = offset(i);
|
|
// Reset all segment pairs from i to size() - 1 to [start, start+1).
|
|
while (i<size()) {
|
|
int32_t o = isOpen(i) ? start : (start+1);
|
|
offsets.setElementAt(o, i);
|
|
++i;
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
// Assume caller has already gotten a TRUE validate().
|
|
int32_t* Segments::createArray(UErrorCode &status) const {
|
|
int32_t c = count(); // number of segments
|
|
int32_t arrayLen = 4*c + 4;
|
|
int32_t *array = new int32_t[arrayLen];
|
|
int32_t a2offset = 2*c + 3; // offset to array 2
|
|
|
|
if (array == NULL) {
|
|
status = U_MEMORY_ALLOCATION_ERROR;
|
|
return NULL;
|
|
}
|
|
array[0] = c;
|
|
array[1] = a2offset;
|
|
int32_t i;
|
|
for (i=0; i<2*c; ++i) {
|
|
array[2+i] = offset(i);
|
|
}
|
|
array[a2offset-1] = -1;
|
|
array[arrayLen-1] = -1;
|
|
// Now walk through and match up segment numbers with parentheses.
|
|
// Number segments from 0. We're going to offset all entries by 2
|
|
// to skip the first two elements, array[0] and array[1].
|
|
UStack stack(status);
|
|
int32_t nextOpen = 0; // seg # of next open, 0-based
|
|
// int32_t j = a2offset; // index of start of array 2
|
|
if (U_FAILURE(status)) {
|
|
return NULL;
|
|
}
|
|
for (i=0; i<2*c; ++i) {
|
|
UBool open = isOpen(i);
|
|
// Let seg be the zero-based segment number.
|
|
// Open parens are at 2*seg in array 2.
|
|
// Close parens are at 2*seg+1 in array 2.
|
|
if (open) {
|
|
array[a2offset + 2*nextOpen] = 2+i;
|
|
stack.push(nextOpen, status);
|
|
++nextOpen;
|
|
} else {
|
|
int32_t nextClose = stack.popi();
|
|
array[a2offset + 2*nextClose+1] = 2+i;
|
|
}
|
|
}
|
|
// assert(stack.empty());
|
|
return array;
|
|
}
|
|
|
|
UBool Segments::validate() const {
|
|
// want number of parens >= 2
|
|
// want number of parens to be even
|
|
// want first paren '('
|
|
// want parens to match up in the end
|
|
if ((size() < 2) || (size() % 2 != 0) || !isOpen(0)) {
|
|
return FALSE;
|
|
}
|
|
int32_t n = 0;
|
|
for (int32_t i=0; i<size(); ++i) {
|
|
n += isOpen(i) ? 1 : -1;
|
|
if (n < 0) {
|
|
return FALSE;
|
|
}
|
|
}
|
|
return n == 0;
|
|
}
|
|
|
|
// Assume caller has already gotten a TRUE validate().
|
|
int32_t Segments::count() const {
|
|
// assert(validate());
|
|
return size() / 2;
|
|
}
|
|
|
|
//----------------------------------------------------------------------
|
|
// BEGIN RuleHalf
|
|
//----------------------------------------------------------------------
|
|
|
|
/**
|
|
* A class representing one side of a rule. This class knows how to
|
|
* parse half of a rule. It is tightly coupled to the method
|
|
* RuleBasedTransliterator.Parser.parseRule().
|
|
*/
|
|
class RuleHalf {
|
|
|
|
public:
|
|
|
|
UnicodeString text;
|
|
|
|
int32_t cursor; // position of cursor in text
|
|
int32_t ante; // position of ante context marker '{' in text
|
|
int32_t post; // position of post context marker '}' in text
|
|
|
|
// Record the position of the segment substrings and references. A
|
|
// given side should have segments or segment references, but not
|
|
// both.
|
|
Segments* segments;
|
|
int32_t maxRef; // index of largest ref ($n) on the right
|
|
|
|
// Record the offset to the cursor either to the left or to the
|
|
// right of the key. This is indicated by characters on the output
|
|
// side that allow the cursor to be positioned arbitrarily within
|
|
// the matching text. For example, abc{def} > | @@@ xyz; changes
|
|
// def to xyz and moves the cursor to before abc. Offset characters
|
|
// must be at the start or end, and they cannot move the cursor past
|
|
// the ante- or postcontext text. Placeholders are only valid in
|
|
// output text.
|
|
int32_t cursorOffset; // only nonzero on output side
|
|
|
|
UBool anchorStart;
|
|
UBool anchorEnd;
|
|
|
|
TransliteratorParser& parser;
|
|
|
|
//--------------------------------------------------
|
|
// Methods
|
|
|
|
RuleHalf(TransliteratorParser& parser);
|
|
~RuleHalf();
|
|
|
|
/**
|
|
* Parse one side of a rule, stopping at either the limit,
|
|
* the END_OF_RULE character, or an operator. Return
|
|
* the pos of the terminating character (or limit).
|
|
*/
|
|
int32_t parse(const UnicodeString& rule, int32_t pos, int32_t limit);
|
|
|
|
/**
|
|
* Remove context.
|
|
*/
|
|
void removeContext();
|
|
|
|
/**
|
|
* Create and return an int[] array of segments.
|
|
*/
|
|
int32_t* createSegments(UErrorCode& status) const;
|
|
|
|
int syntaxError(UErrorCode code,
|
|
const UnicodeString& rule,
|
|
int32_t start) {
|
|
return parser.syntaxError(code, rule, start);
|
|
}
|
|
|
|
private:
|
|
// Disallowed methods; no impl.
|
|
RuleHalf(const RuleHalf&);
|
|
RuleHalf& operator=(const RuleHalf&);
|
|
};
|
|
|
|
RuleHalf::RuleHalf(TransliteratorParser& p) : parser(p) {
|
|
cursor = -1;
|
|
ante = -1;
|
|
post = -1;
|
|
segments = NULL;
|
|
maxRef = -1;
|
|
cursorOffset = 0;
|
|
anchorStart = anchorEnd = FALSE;
|
|
}
|
|
|
|
RuleHalf::~RuleHalf() {
|
|
delete segments;
|
|
}
|
|
|
|
/**
|
|
* Parse one side of a rule, stopping at either the limit,
|
|
* the END_OF_RULE character, or an operator. Return
|
|
* the pos of the terminating character (or limit).
|
|
*/
|
|
int32_t RuleHalf::parse(const UnicodeString& rule, int32_t pos, int32_t limit) {
|
|
int32_t start = pos;
|
|
UnicodeString& buf = text;
|
|
ParsePosition pp;
|
|
int32_t cursorOffsetPos = 0; // Position of first CURSOR_OFFSET on _right_
|
|
UnicodeString scratch;
|
|
bool_t done = FALSE;
|
|
int32_t quoteStart = -1; // Most recent 'single quoted string'
|
|
int32_t quoteLimit = -1;
|
|
int32_t varStart = -1; // Most recent $variableReference
|
|
int32_t varLimit = -1;
|
|
|
|
while (pos < limit && !done) {
|
|
UChar c = rule.charAt(pos++);
|
|
if (u_isWhitespace(c)) {
|
|
// Ignore whitespace. Note that this is not Unicode
|
|
// spaces, but Java spaces -- a subset, representing
|
|
// whitespace likely to be seen in code.
|
|
continue;
|
|
}
|
|
if (u_strchr(gOPERATORS, c) != NULL) {
|
|
--pos; // Backup to point to operator
|
|
break;
|
|
}
|
|
if (anchorEnd) {
|
|
// Text after a presumed end anchor is a syntax err
|
|
return syntaxError(U_MALFORMED_VARIABLE_REFERENCE, rule, start);
|
|
}
|
|
// Handle escapes
|
|
if (c == ESCAPE) {
|
|
if (pos == limit) {
|
|
return syntaxError(U_TRAILING_BACKSLASH, rule, start);
|
|
}
|
|
UChar32 escaped = rule.unescapeAt(pos); // pos is already past '\\'
|
|
if (escaped == (UChar32) -1) {
|
|
return syntaxError(U_MALFORMED_UNICODE_ESCAPE, rule, start);
|
|
}
|
|
buf.append(escaped);
|
|
continue;
|
|
}
|
|
// Handle quoted matter
|
|
if (c == QUOTE) {
|
|
int32_t iq = rule.indexOf(QUOTE, pos);
|
|
if (iq == pos) {
|
|
buf.append(c); // Parse [''] outside quotes as [']
|
|
++pos;
|
|
} else {
|
|
/* This loop picks up a segment of quoted text of the
|
|
* form 'aaaa' each time through. If this segment
|
|
* hasn't really ended ('aaaa''bbbb') then it keeps
|
|
* looping, each time adding on a new segment. When it
|
|
* reaches the final quote it breaks.
|
|
*/
|
|
quoteStart = buf.length();
|
|
for (;;) {
|
|
if (iq < 0) {
|
|
return syntaxError(U_UNTERMINATED_QUOTE, rule, start);
|
|
}
|
|
scratch.truncate(0);
|
|
rule.extractBetween(pos, iq, scratch);
|
|
buf.append(scratch);
|
|
pos = iq+1;
|
|
if (pos < limit && rule.charAt(pos) == QUOTE) {
|
|
// Parse [''] inside quotes as [']
|
|
iq = rule.indexOf(QUOTE, pos+1);
|
|
// Continue looping
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
quoteLimit = buf.length();
|
|
}
|
|
continue;
|
|
}
|
|
switch (c) {
|
|
case ANCHOR_START:
|
|
if (buf.length() == 0 && !anchorStart) {
|
|
anchorStart = TRUE;
|
|
} else {
|
|
return syntaxError(U_MISPLACED_ANCHOR_START,
|
|
rule, start);
|
|
}
|
|
break;
|
|
case SEGMENT_OPEN:
|
|
case SEGMENT_CLOSE:
|
|
// Handle segment definitions "(" and ")"
|
|
// Parse "(", ")"
|
|
if (segments == NULL) {
|
|
segments = new Segments(parser.status);
|
|
}
|
|
segments->addParenthesisAt(buf.length(), c == SEGMENT_OPEN, parser.status);
|
|
break;
|
|
case END_OF_RULE:
|
|
--pos; // Backup to point to END_OF_RULE
|
|
done = TRUE;
|
|
break;
|
|
case SymbolTable::SYMBOL_REF:
|
|
// Handle variable references and segment references "$1" .. "$9"
|
|
{
|
|
// A variable reference must be followed immediately
|
|
// by a Unicode identifier start and zero or more
|
|
// Unicode identifier part characters, or by a digit
|
|
// 1..9 if it is a segment reference.
|
|
if (pos == limit) {
|
|
// A variable ref character at the end acts as
|
|
// an anchor to the context limit, as in perl.
|
|
anchorEnd = TRUE;
|
|
break;
|
|
}
|
|
// Parse "$1" "$2" .. "$9" .. (no upper limit)
|
|
c = rule.charAt(pos);
|
|
int32_t r = u_charDigitValue(c);
|
|
if (r >= 1 && r <= 9) {
|
|
++pos;
|
|
for (;;) {
|
|
c = rule.charAt(pos);
|
|
int32_t d = u_charDigitValue(c);
|
|
if (d < 0) {
|
|
break;
|
|
}
|
|
if (r > 214748364 ||
|
|
(r == 214748364 && d > 7)) {
|
|
return syntaxError(U_UNDEFINED_SEGMENT_REFERENCE,
|
|
rule, start);
|
|
}
|
|
r = 10*r + d;
|
|
}
|
|
if (r > maxRef) {
|
|
maxRef = r;
|
|
}
|
|
buf.append(parser.getSegmentStandin(r));
|
|
} else {
|
|
pp.setIndex(pos);
|
|
UnicodeString name = parser.parseData->
|
|
parseReference(rule, pp, limit);
|
|
if (name.length() == 0) {
|
|
// This means the '$' was not followed by a
|
|
// valid name. Try to interpret it as an
|
|
// end anchor then. If this also doesn't work
|
|
// (if we see a following character) then signal
|
|
// an error.
|
|
anchorEnd = TRUE;
|
|
break;
|
|
}
|
|
pos = pp.getIndex();
|
|
// If this is a variable definition statement,
|
|
// then the LHS variable will be undefined. In
|
|
// that case appendVariableDef() will append the
|
|
// special placeholder char variableLimit-1.
|
|
varStart = buf.length();
|
|
parser.appendVariableDef(name, buf);
|
|
varLimit = buf.length();
|
|
}
|
|
}
|
|
break;
|
|
case CONTEXT_ANTE:
|
|
if (ante >= 0) {
|
|
return syntaxError(U_MULTIPLE_ANTE_CONTEXTS, rule, start);
|
|
}
|
|
ante = buf.length();
|
|
break;
|
|
case CONTEXT_POST:
|
|
if (post >= 0) {
|
|
return syntaxError(U_MULTIPLE_POST_CONTEXTS, rule, start);
|
|
}
|
|
post = buf.length();
|
|
break;
|
|
case SET_OPEN:
|
|
pp.setIndex(pos-1); // Backup to opening '['
|
|
buf.append(parser.parseSet(rule, pp));
|
|
if (U_FAILURE(parser.status)) {
|
|
return syntaxError(U_MALFORMED_SET, rule, start);
|
|
}
|
|
pos = pp.getIndex();
|
|
break;
|
|
case CURSOR_POS:
|
|
if (cursor >= 0) {
|
|
return syntaxError(U_MULTIPLE_CURSORS, rule, start);
|
|
}
|
|
cursor = buf.length();
|
|
break;
|
|
case CURSOR_OFFSET:
|
|
if (cursorOffset < 0) {
|
|
if (buf.length() > 0) {
|
|
return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start);
|
|
}
|
|
--cursorOffset;
|
|
} else if (cursorOffset > 0) {
|
|
if (buf.length() != cursorOffsetPos || cursor >= 0) {
|
|
return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start);
|
|
}
|
|
++cursorOffset;
|
|
} else {
|
|
if (cursor == 0 && buf.length() == 0) {
|
|
cursorOffset = -1;
|
|
} else if (cursor < 0) {
|
|
cursorOffsetPos = buf.length();
|
|
cursorOffset = 1;
|
|
} else {
|
|
return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start);
|
|
}
|
|
}
|
|
break;
|
|
case KLEENE_STAR:
|
|
case ONE_OR_MORE:
|
|
case ZERO_OR_ONE:
|
|
// Quantifiers. We handle single characters, quoted strings,
|
|
// variable references, and segments.
|
|
// a+ matches aaa
|
|
// 'foo'+ matches foofoofoo
|
|
// $v+ matches xyxyxy if $v == xy
|
|
// (seg)+ matches segsegseg
|
|
{
|
|
int32_t start, limit;
|
|
UBool isOpenParen;
|
|
UBool isSegment = FALSE;
|
|
if (segments != 0 &&
|
|
segments->getLastParenOffset(isOpenParen) == buf.length()) {
|
|
// The */+ immediately follows a segment
|
|
if (isOpenParen) {
|
|
return syntaxError(U_MISPLACED_QUANTIFIER, rule, start);
|
|
}
|
|
if (!segments->extractLastParenSubstring(start, limit)) {
|
|
return syntaxError(U_MISMATCHED_SEGMENT_DELIMITERS, rule, start);
|
|
}
|
|
isSegment = TRUE;
|
|
} else {
|
|
// The */+ follows an isolated character or quote
|
|
// or variable reference
|
|
if (buf.length() == quoteLimit) {
|
|
// The */+ follows a 'quoted string'
|
|
start = quoteStart;
|
|
limit = quoteLimit;
|
|
} else if (buf.length() == varLimit) {
|
|
// The */+ follows a $variableReference
|
|
start = varStart;
|
|
limit = varLimit;
|
|
} else {
|
|
// The */+ follows a single character
|
|
start = buf.length() - 1;
|
|
limit = start + 1;
|
|
}
|
|
}
|
|
UnicodeMatcher *m =
|
|
new StringMatcher(buf, start, limit, isSegment, *parser.data);
|
|
int32_t min = 0;
|
|
int32_t max = Quantifier::MAX;
|
|
switch (c) {
|
|
case ONE_OR_MORE:
|
|
min = 1;
|
|
break;
|
|
case ZERO_OR_ONE:
|
|
min = 0;
|
|
max = 1;
|
|
break;
|
|
// case KLEENE_STAR:
|
|
// do nothing -- min, max already set
|
|
}
|
|
m = new Quantifier(m, min, max);
|
|
buf.truncate(start);
|
|
buf.append(parser.generateStandInFor(m));
|
|
}
|
|
break;
|
|
// case SET_CLOSE:
|
|
default:
|
|
// Disallow unquoted characters other than [0-9A-Za-z]
|
|
// in the printable ASCII range. These characters are
|
|
// reserved for possible future use.
|
|
if (c >= 0x0021 && c <= 0x007E &&
|
|
!((c >= 0x0030/*'0'*/ && c <= 0x0039/*'9'*/) ||
|
|
(c >= 0x0041/*'A'*/ && c <= 0x005A/*'Z'*/) ||
|
|
(c >= 0x0061/*'a'*/ && c <= 0x007A/*'z'*/))) {
|
|
return syntaxError(U_UNQUOTED_SPECIAL, rule, start);
|
|
}
|
|
buf.append(c);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (cursorOffset > 0 && cursor != cursorOffsetPos) {
|
|
return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start);
|
|
}
|
|
// text = buf.toString();
|
|
return pos;
|
|
}
|
|
|
|
/**
|
|
* Remove context.
|
|
*/
|
|
void RuleHalf::removeContext() {
|
|
//text = text.substring(ante < 0 ? 0 : ante,
|
|
// post < 0 ? text.length() : post);
|
|
if (post >= 0) {
|
|
text.remove(post);
|
|
}
|
|
if (ante >= 0) {
|
|
text.removeBetween(0, ante);
|
|
}
|
|
ante = post = -1;
|
|
anchorStart = anchorEnd = FALSE;
|
|
}
|
|
|
|
/**
|
|
* Create and return an int32_t[] array of segments.
|
|
*/
|
|
int32_t* RuleHalf::createSegments(UErrorCode& status) const {
|
|
return (segments == 0) ? 0 : segments->createArray(status);
|
|
}
|
|
|
|
//----------------------------------------------------------------------
|
|
// END RuleHalf
|
|
//----------------------------------------------------------------------
|
|
|
|
TransliterationRuleData*
|
|
TransliteratorParser::parse(const UnicodeString& rules,
|
|
UTransDirection direction,
|
|
UParseError& parseError,
|
|
UErrorCode& ec) {
|
|
TransliteratorParser parser(rules, direction, parseError);
|
|
UnicodeString idBlock;
|
|
int32_t idSplitPoint, count;
|
|
parser.parseRules(idBlock, idSplitPoint, count);
|
|
if (U_FAILURE(parser.status) || idBlock.length() != 0) {
|
|
delete parser.data;
|
|
parser.data = 0;
|
|
ec = parser.status;
|
|
}
|
|
return parser.data;
|
|
}
|
|
|
|
/**
|
|
* Parse a given set of rules. Return up to three pieces of
|
|
* parsed data. These are the header ::id block, the rule block,
|
|
* and the footer ::id block. Any or all of these may be empty.
|
|
* If the ::id blocks are empty, their corresponding parameters
|
|
* are returned as the empty string. If there are no rules, the
|
|
* TransliterationRuleData result is 0.
|
|
* @param ruleDataResult caller owns the pointer stored here.
|
|
* May be NULL.
|
|
* @param headerRule string including semicolons for the header
|
|
* ::id block. May be empty.
|
|
* @param footerRule string including semicolons for the footer
|
|
* ::id block. May be empty.
|
|
*/
|
|
void TransliteratorParser::parse(const UnicodeString& rules,
|
|
UTransDirection direction,
|
|
TransliterationRuleData*& ruleDataResult,
|
|
UnicodeString& idBlockResult,
|
|
int32_t& idSplitPointResult,
|
|
UParseError& parseError,
|
|
UErrorCode& ec) {
|
|
if (U_FAILURE(ec)) {
|
|
ruleDataResult = 0;
|
|
return;
|
|
}
|
|
TransliteratorParser parser(rules, direction, parseError);
|
|
int32_t count;
|
|
parser.parseRules(idBlockResult, idSplitPointResult, count);
|
|
if (U_FAILURE(parser.status) || count == 0) {
|
|
delete parser.data;
|
|
parser.data = 0;
|
|
}
|
|
ruleDataResult = parser.data;
|
|
ec = parser.status;
|
|
}
|
|
|
|
/**
|
|
* @param rules list of rules, separated by newline characters
|
|
* @exception IllegalArgumentException if there is a syntax error in the
|
|
* rules
|
|
*/
|
|
|
|
/* Ram: Reordered member initializers to match declaration order and make GCC happy */
|
|
TransliteratorParser::TransliteratorParser(
|
|
const UnicodeString& theRules,
|
|
UTransDirection theDirection,
|
|
UParseError& theParseError)
|
|
:
|
|
rules(theRules), direction(theDirection),data(0),parseError(theParseError), variablesVector(status)
|
|
{
|
|
parseData = new ParseData(0, &variablesVector);
|
|
if (parseData == NULL) {
|
|
status = U_MEMORY_ALLOCATION_ERROR;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Destructor.
|
|
*/
|
|
TransliteratorParser::~TransliteratorParser() {
|
|
delete parseData;
|
|
}
|
|
|
|
/**
|
|
* Parse the given string as a sequence of rules, separated by newline
|
|
* characters ('\n'), and cause this object to implement those rules. Any
|
|
* previous rules are discarded. Typically this method is called exactly
|
|
* once, during construction.
|
|
* @exception IllegalArgumentException if there is a syntax error in the
|
|
* rules
|
|
*/
|
|
void TransliteratorParser::parseRules(UnicodeString& idBlockResult,
|
|
int32_t& idSplitPointResult,
|
|
int32_t& ruleCount) {
|
|
status = U_ZERO_ERROR;
|
|
ruleCount = 0;
|
|
|
|
// Clear error struct
|
|
//if (parseError != 0) {
|
|
//parseError->code = parseError->line = 0;
|
|
parseError.offset = 0;
|
|
parseError.preContext[0] = parseError.postContext[0] = (UChar)0;
|
|
//}
|
|
|
|
delete data;
|
|
data = new TransliterationRuleData(status);
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
|
|
parseData->data = data;
|
|
variablesVector.removeAllElements();
|
|
/* if (parseError != 0) {
|
|
parseError->code = 0;
|
|
}
|
|
*/
|
|
determineVariableRange();
|
|
|
|
UnicodeString str; // scratch
|
|
idBlockResult.truncate(0);
|
|
idSplitPointResult = -1;
|
|
int32_t pos = 0;
|
|
int32_t limit = rules.length();
|
|
// The mode marks whether we are in the header ::id block, the
|
|
// rule block, or the footer ::id block.
|
|
// mode == 0: start: rule->1, ::id->0
|
|
// mode == 1: in rules: rule->1, ::id->2
|
|
// mode == 2: in footer rule block: rule->ERROR, ::id->2
|
|
int32_t mode = 0;
|
|
while (pos < limit && U_SUCCESS(status)) {
|
|
UChar c = rules.charAt(pos++);
|
|
if (u_isWhitespace(c)) {
|
|
// Ignore leading whitespace.
|
|
continue;
|
|
}
|
|
// Skip lines starting with the comment character
|
|
if (c == RULE_COMMENT_CHAR) {
|
|
pos = rules.indexOf((UChar)0x000A /*\n*/, pos) + 1;
|
|
if (pos == 0) {
|
|
break; // No "\n" found; rest of rule is a commnet
|
|
}
|
|
continue; // Either fall out or restart with next line
|
|
}
|
|
// We've found the start of a rule or ID. c is its first
|
|
// character, and pos points past c.
|
|
--pos;
|
|
// Look for an ID token. Must have at least ID_TOKEN_LEN + 1
|
|
// chars left.
|
|
if ((pos + ID_TOKEN_LEN + 1) <= limit &&
|
|
rules.compare(pos, ID_TOKEN_LEN, ID_TOKEN) == 0) {
|
|
pos += ID_TOKEN_LEN;
|
|
c = rules.charAt(pos);
|
|
while (u_isWhitespace(c) && pos < limit) {
|
|
++pos;
|
|
c = rules.charAt(pos);
|
|
}
|
|
int32_t p = pos;
|
|
UBool sawDelim;
|
|
UnicodeString regenID;
|
|
Transliterator::parseID(rules, regenID, p, sawDelim, direction,parseError, FALSE,status);
|
|
//if (p == pos || !sawDelim) {
|
|
// Invalid ::id
|
|
//status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
//else {
|
|
if(p != pos || sawDelim) {
|
|
if (mode == 1) {
|
|
mode = 2;
|
|
idSplitPointResult = idBlockResult.length();
|
|
}
|
|
rules.extractBetween(pos, p, str);
|
|
idBlockResult.append(str);
|
|
if (!sawDelim) {
|
|
idBlockResult.append((UChar)0x003B /*;*/);
|
|
}
|
|
pos = p;
|
|
}
|
|
} else {
|
|
// Parse a rule
|
|
pos = parseRule(pos, limit);
|
|
if (U_SUCCESS(status)) {
|
|
++ruleCount;
|
|
if (mode == 2) {
|
|
// ::id in illegal position (because a rule
|
|
// occurred after the ::id footer block)
|
|
syntaxError(U_ILLEGAL_ARGUMENT_ERROR,rules,pos);
|
|
}
|
|
}else{
|
|
syntaxError(status,rules,pos);
|
|
}
|
|
mode = 1;
|
|
}
|
|
}
|
|
|
|
// Convert the set vector to an array
|
|
data->variablesLength = variablesVector.size();
|
|
data->variables = data->variablesLength == 0 ? 0 : new UnicodeMatcher*[data->variablesLength];
|
|
// orphanElement removes the given element and shifts all other
|
|
// elements down. For performance (and code clarity) we work from
|
|
// the end back to index 0.
|
|
int32_t i;
|
|
for (i=data->variablesLength; i>0; ) {
|
|
--i;
|
|
data->variables[i] =
|
|
(UnicodeSet*) variablesVector.orphanElementAt(i);
|
|
}
|
|
|
|
// Index the rules
|
|
if (U_SUCCESS(status)) {
|
|
data->ruleSet.freeze(parseError,status);
|
|
if (idSplitPointResult < 0) {
|
|
idSplitPointResult = idBlockResult.length();
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* MAIN PARSER. Parse the next rule in the given rule string, starting
|
|
* at pos. Return the index after the last character parsed. Do not
|
|
* parse characters at or after limit.
|
|
*
|
|
* Important: The character at pos must be a non-whitespace character
|
|
* that is not the comment character.
|
|
*
|
|
* This method handles quoting, escaping, and whitespace removal. It
|
|
* parses the end-of-rule character. It recognizes context and cursor
|
|
* indicators. Once it does a lexical breakdown of the rule at pos, it
|
|
* creates a rule object and adds it to our rule list.
|
|
*/
|
|
int32_t TransliteratorParser::parseRule(int32_t pos, int32_t limit) {
|
|
// Locate the left side, operator, and right side
|
|
int32_t start = pos;
|
|
UChar op = 0;
|
|
const UnicodeString& rule = rules; // TEMPORARY: FIX LATER
|
|
|
|
// Use pointers to automatics to make swapping possible.
|
|
RuleHalf _left(*this), _right(*this);
|
|
RuleHalf* left = &_left;
|
|
RuleHalf* right = &_right;
|
|
|
|
undefinedVariableName.remove();
|
|
pos = left->parse(rule, pos, limit);
|
|
if (U_FAILURE(status)) {
|
|
return start;
|
|
}
|
|
|
|
if (pos == limit || u_strchr(gOPERATORS, (op = rule.charAt(pos++))) == NULL) {
|
|
return syntaxError(U_MISSING_OPERATOR, rule, start);
|
|
}
|
|
|
|
// Found an operator char. Check for forward-reverse operator.
|
|
if (op == REVERSE_RULE_OP &&
|
|
(pos < limit && rule.charAt(pos) == FORWARD_RULE_OP)) {
|
|
++pos;
|
|
op = FWDREV_RULE_OP;
|
|
}
|
|
|
|
pos = right->parse(rule, pos, limit);
|
|
if (U_FAILURE(status)) {
|
|
return start;
|
|
}
|
|
|
|
if (pos < limit) {
|
|
if (rule.charAt(pos) == END_OF_RULE) {
|
|
++pos;
|
|
} else {
|
|
// RuleHalf parser must have terminated at an operator
|
|
return syntaxError(U_UNQUOTED_SPECIAL, rule, start);
|
|
}
|
|
}
|
|
|
|
if (op == VARIABLE_DEF_OP) {
|
|
// LHS is the name. RHS is a single character, either a literal
|
|
// or a set (already parsed). If RHS is longer than one
|
|
// character, it is either a multi-character string, or multiple
|
|
// sets, or a mixture of chars and sets -- syntax error.
|
|
|
|
// We expect to see a single undefined variable (the one being
|
|
// defined).
|
|
if (undefinedVariableName.length() == 0) {
|
|
// "Missing '$' or duplicate definition"
|
|
return syntaxError(U_BAD_VARIABLE_DEFINITION, rule, start);
|
|
}
|
|
if (left->text.length() != 1 || left->text.charAt(0) != variableLimit) {
|
|
// "Malformed LHS"
|
|
return syntaxError(U_MALFORMED_VARIABLE_DEFINITION, rule, start);
|
|
}
|
|
if (left->anchorStart || left->anchorEnd ||
|
|
right->anchorStart || right->anchorEnd) {
|
|
return syntaxError(U_MALFORMED_VARIABLE_DEFINITION, rule, start);
|
|
}
|
|
// We allow anything on the right, including an empty string.
|
|
UnicodeString* value = new UnicodeString(right->text);
|
|
data->variableNames->put(undefinedVariableName, value, status);
|
|
++variableLimit;
|
|
return pos;
|
|
}
|
|
|
|
// If this is not a variable definition rule, we shouldn't have
|
|
// any undefined variable names.
|
|
if (undefinedVariableName.length() != 0) {
|
|
return syntaxError(// "Undefined variable $" + undefinedVariableName,
|
|
U_UNDEFINED_VARIABLE,
|
|
rule, start);
|
|
}
|
|
|
|
// If the direction we want doesn't match the rule
|
|
// direction, do nothing.
|
|
if (op != FWDREV_RULE_OP &&
|
|
((direction == UTRANS_FORWARD) != (op == FORWARD_RULE_OP))) {
|
|
return pos;
|
|
}
|
|
|
|
// Transform the rule into a forward rule by swapping the
|
|
// sides if necessary.
|
|
if (direction == UTRANS_REVERSE) {
|
|
left = &_right;
|
|
right = &_left;
|
|
}
|
|
|
|
// Remove non-applicable elements in forward-reverse
|
|
// rules. Bidirectional rules ignore elements that do not
|
|
// apply.
|
|
if (op == FWDREV_RULE_OP) {
|
|
right->removeContext();
|
|
delete right->segments;
|
|
right->segments = NULL;
|
|
left->cursor = left->maxRef = -1;
|
|
left->cursorOffset = 0;
|
|
}
|
|
|
|
// Normalize context
|
|
if (left->ante < 0) {
|
|
left->ante = 0;
|
|
}
|
|
if (left->post < 0) {
|
|
left->post = left->text.length();
|
|
}
|
|
|
|
// Context is only allowed on the input side. Cursors are only
|
|
// allowed on the output side. Segment delimiters can only appear
|
|
// on the left, and references on the right. Cursor offset
|
|
// cannot appear without an explicit cursor. Cursor offset
|
|
// cannot place the cursor outside the limits of the context.
|
|
// Anchors are only allowed on the input side.
|
|
if (right->ante >= 0 || right->post >= 0 || left->cursor >= 0 ||
|
|
right->segments != NULL || left->maxRef >= 0 ||
|
|
(right->cursorOffset != 0 && right->cursor < 0) ||
|
|
// - The following two checks were used to ensure that the
|
|
// - the cursor offset stayed within the ante- or postcontext.
|
|
// - However, with the addition of quantifiers, we have to
|
|
// - allow arbitrary cursor offsets and do runtime checking.
|
|
//(right->cursorOffset > (left->text.length() - left->post)) ||
|
|
//(-right->cursorOffset > left->ante) ||
|
|
right->anchorStart || right->anchorEnd) {
|
|
|
|
return syntaxError(U_MALFORMED_RULE, rule, start);
|
|
}
|
|
|
|
// Check integrity of segments and segment references. Each
|
|
// segment's start must have a corresponding limit, and the
|
|
// references must not refer to segments that do not exist.
|
|
if (left->segments != NULL) {
|
|
if (!left->segments->validate()) {
|
|
return syntaxError(U_MISSING_SEGMENT_CLOSE, rule, start);
|
|
}
|
|
int32_t n = left->segments->count();
|
|
if (right->maxRef > n) {
|
|
return syntaxError(U_UNDEFINED_SEGMENT_REFERENCE, rule, start);
|
|
}
|
|
}
|
|
|
|
data->ruleSet.addRule(new TransliterationRule(
|
|
left->text, left->ante, left->post,
|
|
right->text, right->cursor, right->cursorOffset,
|
|
left->createSegments(status),
|
|
left->anchorStart, left->anchorEnd,
|
|
*data,
|
|
status), status);
|
|
|
|
return pos;
|
|
}
|
|
|
|
/**
|
|
* Called by main parser upon syntax error. Search the rule string
|
|
* for the probable end of the rule. Of course, if the error is that
|
|
* the end of rule marker is missing, then the rule end will not be found.
|
|
* In any case the rule start will be correctly reported.
|
|
* @param msg error description
|
|
* @param rule pattern string
|
|
* @param start position of first character of current rule
|
|
*/
|
|
int32_t TransliteratorParser::syntaxError(UErrorCode parseErrorCode,
|
|
const UnicodeString& rule,
|
|
int32_t pos) {
|
|
// if (parseError != 0) {
|
|
/* parseError->line = 0; // We don't return a line #
|
|
parseError->offset = start; // Character offset from rule start
|
|
int32_t end = quotedIndexOf(rule, start, rule.length(), END_OF_RULE);
|
|
if (end < 0) {
|
|
end = rule.length();
|
|
}
|
|
int32_t len = uprv_min(end - start, U_PARSE_CONTEXT_LEN-1);
|
|
// Extract everything into the preContext and leave the postContext
|
|
// blank, since we don't have precise error position.
|
|
// TODO: Fix this.
|
|
rule.extract(start, len, parseError->preContext); // Current rule
|
|
parseError->preContext[len] = 0;
|
|
parseError->postContext[0] = 0;
|
|
*/
|
|
parseError.offset = pos;
|
|
parseError.line = 0 ; /* we are not using line numbers */
|
|
|
|
// for pre-context
|
|
int32_t start = (pos <=U_PARSE_CONTEXT_LEN)? 0 : (pos - (U_PARSE_CONTEXT_LEN-1));
|
|
int32_t stop = pos;
|
|
|
|
rule.extract(start,stop-start,parseError.preContext);
|
|
//null terminate the buffer
|
|
parseError.preContext[stop-start] = 0;
|
|
|
|
//for post-context
|
|
start = pos+1;
|
|
stop = ((pos+U_PARSE_CONTEXT_LEN)<= rule.length() )? (pos+(U_PARSE_CONTEXT_LEN-1)) :
|
|
rule.length();
|
|
|
|
rule.extract(start,stop-start,parseError.postContext);
|
|
//null terminate the buffer
|
|
parseError.postContext[stop-start]= 0;
|
|
// }
|
|
status = (UErrorCode)parseErrorCode;
|
|
return pos;
|
|
|
|
}
|
|
|
|
/**
|
|
* Parse a UnicodeSet out, store it, and return the stand-in character
|
|
* used to represent it.
|
|
*/
|
|
UChar TransliteratorParser::parseSet(const UnicodeString& rule,
|
|
ParsePosition& pos) {
|
|
UnicodeSet* set = new UnicodeSet(rule, pos, *parseData, status);
|
|
set->compact();
|
|
return generateStandInFor(set);
|
|
}
|
|
|
|
/**
|
|
* Generate and return a stand-in for a new UnicodeMatcher. Store
|
|
* the matcher (adopt it).
|
|
*/
|
|
UChar TransliteratorParser::generateStandInFor(UnicodeMatcher* adopted) {
|
|
// assert(adopted != 0);
|
|
if (variableNext >= variableLimit) {
|
|
// throw new RuntimeException("Private use variables exhausted");
|
|
delete adopted;
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
return 0;
|
|
}
|
|
variablesVector.addElement(adopted, status);
|
|
return variableNext++;
|
|
}
|
|
|
|
/**
|
|
* Append the value of the given variable name to the given
|
|
* UnicodeString.
|
|
*/
|
|
void TransliteratorParser::appendVariableDef(const UnicodeString& name,
|
|
UnicodeString& buf) {
|
|
const UnicodeString* s = (const UnicodeString*) data->variableNames->get(name);
|
|
if (s == NULL) {
|
|
// We allow one undefined variable so that variable definition
|
|
// statements work. For the first undefined variable we return
|
|
// the special placeholder variableLimit-1, and save the variable
|
|
// name.
|
|
if (undefinedVariableName.length() == 0) {
|
|
undefinedVariableName = name;
|
|
if (variableNext >= variableLimit) {
|
|
// throw new RuntimeException("Private use variables exhausted");
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
return;
|
|
}
|
|
buf.append((UChar) --variableLimit);
|
|
} else {
|
|
//throw new IllegalArgumentException("Undefined variable $"
|
|
// + name);
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
return;
|
|
}
|
|
} else {
|
|
buf.append(*s);
|
|
}
|
|
}
|
|
|
|
UChar TransliteratorParser::getSegmentStandin(int32_t r) {
|
|
// assert(r>=1);
|
|
if (r > data->segmentCount) {
|
|
data->segmentCount = r;
|
|
variableLimit = data->segmentBase - r + 1;
|
|
if (variableNext >= variableLimit) {
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
}
|
|
}
|
|
return data->getSegmentStandin(r);
|
|
}
|
|
|
|
/**
|
|
* Determines what part of the private use region of Unicode we can use for
|
|
* variable stand-ins. The correct way to do this is as follows: Parse each
|
|
* rule, and for forward and reverse rules, take the FROM expression, and
|
|
* make a hash of all characters used. The TO expression should be ignored.
|
|
* When done, everything not in the hash is available for use. In practice,
|
|
* this method may employ some other algorithm for improved speed.
|
|
*/
|
|
void TransliteratorParser::determineVariableRange(void) {
|
|
UnicodeRange privateUse(0xE000, 0x1900); // Private use area
|
|
|
|
UnicodeRange* r = privateUse.largestUnusedSubrange(rules, status);
|
|
|
|
data->variablesBase = variableNext = variableLimit = (UChar) 0;
|
|
|
|
if (r != 0) {
|
|
// Segment references work down; variables work up. We don't
|
|
// know how many of each we will need.
|
|
data->segmentBase = (UChar) (r->start + r->length - 1);
|
|
data->segmentCount = 0;
|
|
data->variablesBase = variableNext = (UChar) r->start;
|
|
variableLimit = (UChar) (r->start + r->length);
|
|
delete r;
|
|
}
|
|
|
|
if (variableNext >= variableLimit) {
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns the index of a character, ignoring quoted text.
|
|
* For example, in the string "abc'hide'h", the 'h' in "hide" will not be
|
|
* found by a search for 'h'.
|
|
*/
|
|
int32_t TransliteratorParser::quotedIndexOf(const UnicodeString& text,
|
|
int32_t start, int32_t limit,
|
|
UChar charToFind) {
|
|
for (int32_t i=start; i<limit; ++i) {
|
|
UChar c = text.charAt(i);
|
|
if (c == ESCAPE) {
|
|
++i;
|
|
} else if (c == QUOTE) {
|
|
while (++i < limit
|
|
&& text.charAt(i) != QUOTE) {}
|
|
} else if (c == charToFind) {
|
|
return i;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|