scuffed-code/icu4c/source/i18n/hextouni.cpp
2000-06-27 20:06:52 +00:00

356 lines
12 KiB
C++

/*
**********************************************************************
* Copyright (C) 1999, International Business Machines
* Corporation and others. All Rights Reserved.
**********************************************************************
* Date Name Description
* 11/17/99 aliu Creation.
**********************************************************************
*/
#include "unicode/hextouni.h"
#include "unicode/rep.h"
#include "unicode/unifilt.h"
#include "unicode/unicode.h"
/**
* ID for this transliterator.
*/
const char* HexToUnicodeTransliterator::_ID = "Hex-Unicode";
/**
* This pattern encodes the following specs for the default constructor:
* \\u0000
* \\U0000
* u+0000
* U+0000
* The multiple backslashes resolve to a single backslash
* in the effective prefix.
*/
const UnicodeString HexToUnicodeTransliterator::DEFAULT_PATTERN =
UNICODE_STRING("\\\\u0000;\\\\U0000;u+0000;U+0000", 29);
/**
* Constructs a transliterator.
*/
HexToUnicodeTransliterator::HexToUnicodeTransliterator(UnicodeFilter* adoptedFilter) :
Transliterator(_ID, adoptedFilter) {
// We don't need to pass the status back to the caller because
// we know that the DEFAULT_PATTERN parses.
UErrorCode status = U_ZERO_ERROR;
applyPattern(DEFAULT_PATTERN, status);
}
/**
* Constructs a transliterator.
*/
HexToUnicodeTransliterator::HexToUnicodeTransliterator(const UnicodeString& thePattern,
UErrorCode& status) :
Transliterator(_ID, 0) {
applyPattern(thePattern, status);
}
/**
* Constructs a transliterator.
*/
HexToUnicodeTransliterator::HexToUnicodeTransliterator(const UnicodeString& thePattern,
UnicodeFilter* adoptedFilter,
UErrorCode& status) :
Transliterator(_ID, adoptedFilter) {
applyPattern(thePattern, status);
}
/**
* Copy constructor.
*/
HexToUnicodeTransliterator::HexToUnicodeTransliterator(const HexToUnicodeTransliterator& o) :
Transliterator(o),
pattern(o.pattern),
affixes(o.affixes),
affixCount(o.affixCount) {
}
/**
* Assignment operator.
*/
HexToUnicodeTransliterator& HexToUnicodeTransliterator::operator=(
const HexToUnicodeTransliterator& o) {
Transliterator::operator=(o);
pattern = o.pattern;
affixes = o.affixes;
affixCount = o.affixCount;
return *this;
}
/**
* Transliterator API.
*/
Transliterator* HexToUnicodeTransliterator::clone(void) const {
return new HexToUnicodeTransliterator(*this);
}
void HexToUnicodeTransliterator::applyPattern(const UnicodeString& thePattern,
UErrorCode& status) {
if (U_FAILURE(status)) {
return;
}
/* The pattern is processed and stored in affixes. The pattern
* consists of zero or more affixes. Each affix is parsed to
* determine the prefix, suffix, minimum digit count, and maximum
* digit count. These values are then stored as a four character
* header. That is, their numeric values are cast to UChars and
* stored in the string. Following these four characters, the prefix
* characters, then suffix characters are stored. Each spec takes
* n+4 characters, where n is the total length of the prefix and
* suffix.
*/
// POSSIBILE FUTURE MODIFICATION
// Parse thePattern, and if this succeeds, set pattern to thePattern.
// If it fails, call applyPattern(pattern) to restore the original
// conditions.
pattern = thePattern;
affixes.truncate(0);
affixCount = 0;
/* The mode specifies where we are in each spec.
* mode 0 = in prefix
* mode 1 = in optional digits (#)
* mode 2 = in required digits (0)
* mode 3 = in suffix
*/
int32_t mode = 0;
int32_t prefixLen = 0, suffixLen = 0, minDigits = 0, maxDigits = 0;
int32_t start = 0;
/* To make parsing easier, we append a virtual ';' at the end of
* the pattern string, if there isn't one already. When we get to
* the index pattern.length() (that is, one past the end), we
* create a virtual ';' if necessary.
*/
UChar c; // These are outside the loop so we can see the
UBool isLiteral; // previous character...
for (int32_t i=0; i<=pattern.length(); ++i) {
// Create the virtual trailing ';' if necessary
if (i == pattern.length()) {
// If the last character was not a non-literal ';'...
if (i > 0 && !(c == SEMICOLON && !isLiteral)) {
c = SEMICOLON;
isLiteral = FALSE;
} else {
break;
}
} else {
c = pattern.charAt(i);
isLiteral = FALSE;
}
if (c == BACKSLASH) {
if ((i+1)<pattern.length()) {
isLiteral = TRUE;
c = pattern.charAt(++i);
} else {
// Trailing '\\'
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
}
if (!isLiteral) {
switch (c) {
case POUND:
// Seeing a '#' moves us from mode 0 (prefix) to mode 1
// (optional digits).
if (mode == 0) {
++mode;
} else if (mode != 1) {
// Unquoted '#'
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
++maxDigits;
break;
case ZERO:
// Seeing a '0' moves us to mode 2 (required digits)
if (mode < 2) {
mode = 2;
} else if (mode != 2) {
// Unquoted '0'
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
++minDigits;
++maxDigits;
break;
case SEMICOLON:
if (minDigits < 1 || maxDigits > 4
// Invalid min/max digit count
|| prefixLen > 0xFFFF || suffixLen > 0xFFFF) {
// Suffix or prefix too long
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
// If there was no prefix and no suffix, then the
// header will not have been allocated yet. We need
// allocate the header now.
if (start == affixes.length()) {
affixes.append(UNICODE_STRING("AAAA", 4));
}
// Fill in 4-character header
affixes.setCharAt(start++, (UChar) prefixLen);
affixes.setCharAt(start++, (UChar) suffixLen);
affixes.setCharAt(start++, (UChar) minDigits);
affixes.setCharAt(start++, (UChar) maxDigits);
start = affixes.length();
++affixCount;
prefixLen = suffixLen = minDigits = maxDigits = mode = 0;
break;
default:
isLiteral = TRUE;
break;
}
}
if (isLiteral) {
if (start == affixes.length()) {
// Make space for the header. Append any four
// characters as place holders for the header values.
// We fill these in when we parse the ';'.
affixes.append(UNICODE_STRING("AAAA", 4));
}
affixes.append(c);
if (mode == 0) {
++prefixLen;
} else {
// Any literal outside the prefix moves us into mode 3
// (suffix)
mode = 3;
++suffixLen;
}
}
}
}
const UnicodeString& HexToUnicodeTransliterator::toPattern(void) const {
return pattern;
}
void HexToUnicodeTransliterator::handleTransliterate(Replaceable& text, UTransPosition& offsets,
UBool isIncremental) const {
int32_t cursor = offsets.start;
int32_t limit = offsets.limit;
int32_t i, j, ipat;
// This is a temporary one-character string
UnicodeString str = UNICODE_STRING("A", 1);
while (cursor < limit) {
// Loop over the specs in affixes. If affixCount is zero (an
// empty pattern), then we do nothing. We exit this loop when
// we match one of the specs. We exit this function (by
// jumping to exit: below) if a partial match is detected and
// isIncremental is true.
for (j=0, ipat=0; j<affixCount; ++j) {
// Read the header
int32_t prefixLen = affixes.charAt(ipat++);
int32_t suffixLen = affixes.charAt(ipat++);
int32_t minDigits = affixes.charAt(ipat++);
int32_t maxDigits = affixes.charAt(ipat++);
// curs is a copy of cursor that is advanced over the
// characters as we parse them.
int32_t curs = cursor;
UBool match = TRUE;
for (i=0; i<prefixLen; ++i) {
if (curs >= limit) {
if (i > 0) {
// We've already matched a character. This is
// a partial match, so we return if in
// incremental mode. In non-incremental mode,
// go to the next spec.
if (isIncremental) {
goto exit;
}
match = FALSE;
break;
}
}
UChar c = filteredCharAt(text, curs++);
if (c != affixes.charAt(ipat + i)) {
match = FALSE;
break;
}
}
if (match) {
UChar u = 0;
int32_t digitCount = 0;
for (;;) {
if (curs >= limit) {
// Check for partial match in incremental mode.
if (curs > cursor && isIncremental) {
goto exit;
}
break;
}
int8_t digit = Unicode::digit(filteredCharAt(text, curs), 16);
if (digit < 0) {
break;
}
++curs;
u <<= 4;
u |= digit;
if (++digitCount == maxDigits) {
break;
}
}
match = (digitCount >= minDigits);
if (match) {
for (i=0; i<suffixLen; ++i) {
if (curs >= limit) {
// Check for partial match in incremental mode.
if (curs > cursor && isIncremental) {
goto exit;
}
match = FALSE;
break;
}
UChar c = filteredCharAt(text, curs++);
if (c != affixes.charAt(ipat + prefixLen + i)) {
match = FALSE;
break;
}
}
if (match) {
// At this point, we have a match
str.setCharAt(0, u);
text.handleReplaceBetween(cursor, curs, str);
limit -= curs - cursor - 1;
// The following break statement leaves the
// loop that is traversing the specs in
// affixes. We then parse the next input
// character.
break;
}
}
}
ipat += prefixLen + suffixLen;
}
++cursor;
}
exit:
offsets.contextLimit += limit - offsets.limit;
offsets.limit = limit;
offsets.start = cursor;
}