scuffed-code/icu4c/source/tools/makeconv/genmbcs.c

1492 lines
55 KiB
C

/*
*******************************************************************************
*
* Copyright (C) 2000, International Business Machines
* Corporation and others. All Rights Reserved.
*
*******************************************************************************
* file name: genmbcs.c
* encoding: US-ASCII
* tab size: 8 (not used)
* indentation:4
*
* created on: 2000jul06
* created by: Markus W. Scherer
*/
#include <stdio.h>
#include "unicode/utypes.h"
#include "cstring.h"
#include "cmemory.h"
#include "unewdata.h"
#include "ucnvmbcs.h"
#include "makeconv.h"
#include "genmbcs.h"
enum {
MBCS_STATE_FLAG_DIRECT=1,
MBCS_STATE_FLAG_SURROGATES,
MBCS_STATE_FLAG_READY=16
};
enum {
MBCS_STAGE_2_BLOCK_SIZE=0x80, /* 128=64*2, 2 16-bit words per stage 3 block; 64=1<<6 for 6 bits in stage 2 */
MBCS_STAGE_2_BLOCK_SIZE_SHIFT=7, /* log2(MBCS_STAGE_2_BLOCK_SIZE) */
MBCS_STAGE_1_SIZE=0x440, /* 0x110000>>10, or 17*64 for one entry per 1k code points */
MBCS_STAGE_2_MAX_BLOCKS=MBCS_STAGE_1_SIZE+1, /* one block per stage 1 entry plus one all-unassigned block */
MBCS_STAGE_2_ALL_UNASSIGNED_INDEX=MBCS_STAGE_1_SIZE/MBCS_STAGE_2_MULTIPLIER, /* stage 1 entry for the all-unassigned stage 2 block */
MBCS_STAGE_2_FIRST_ASSIGNED=MBCS_STAGE_1_SIZE+MBCS_STAGE_2_BLOCK_SIZE, /* start of the first stage 2 block after the all-unassigned one */
MBCS_MAX_STATE_COUNT=128,
MBCS_MAX_FALLBACK_COUNT=1000
};
/*
* the maximum stage2Top is
* the stage 2 assigned-blocks base=MBCS_STAGE_2_FIRST_ASSIGNED=(stage 1 size plus one all-unassigned block)
* plus the maximum number of assigned stage 2 blocks (=stage 1 size) times the block length (*MBCS_STAGE_2_BLOCK_SIZE, or <<MBCS_STAGE_2_BLOCK_SIZE_SHIFT)
* or
* the size of stage 1 plus the maximum number of all stage 2 blocks (=stage 1 size+1) times the block length
*/
#define MBCS_MAX_STAGE_2_TOP (MBCS_STAGE_1_SIZE+((uint32_t)MBCS_STAGE_2_MAX_BLOCKS<<MBCS_STAGE_2_BLOCK_SIZE_SHIFT))
typedef struct MBCSData {
NewConverter newConverter;
/* toUnicode */
int32_t stateTable[MBCS_MAX_STATE_COUNT][256];
uint32_t stateFlags[MBCS_MAX_STATE_COUNT],
stateOffsetSum[MBCS_MAX_STATE_COUNT];
_MBCSToUFallback toUFallbacks[MBCS_MAX_FALLBACK_COUNT];
uint16_t *unicodeCodeUnits;
_MBCSHeader header;
int32_t countToUCodeUnits;
/* fromUnicode */
uint16_t table[MBCS_MAX_STAGE_2_TOP];
uint8_t *fromUBytes;
uint32_t stage2Top, stage3Top, maxCharLength;
} MBCSData;
/* prototypes */
static void
MBCSClose(NewConverter *cnvData);
static UBool
MBCSProcessStates(NewConverter *cnvData);
static UBool
MBCSAddToUnicode(NewConverter *cnvData,
const uint8_t *bytes, int32_t length,
UChar32 c, uint32_t b,
int8_t isFallback);
static UBool
MBCSIsValid(NewConverter *cnvData,
const uint8_t *bytes, int32_t length,
uint32_t b);
static UBool
MBCSAddFromUnicode(NewConverter *cnvData,
const uint8_t *bytes, int32_t length,
UChar32 c, uint32_t b,
int8_t isFallback);
static void
MBCSPostprocess(NewConverter *cnvData, const UConverterStaticData *staticData);
static uint32_t
MBCSWrite(NewConverter *cnvData, const UConverterStaticData *staticData, UNewDataMemory *pData);
/* implementation ----------------------------------------------------------- */
static void
MBCSInit(MBCSData *mbcsData, uint8_t maxCharLength) {
int i;
uprv_memset(mbcsData, 0, sizeof(MBCSData));
mbcsData->newConverter.close=MBCSClose;
mbcsData->newConverter.startMappings=MBCSProcessStates;
mbcsData->newConverter.isValid=MBCSIsValid;
mbcsData->newConverter.addToUnicode=MBCSAddToUnicode;
mbcsData->newConverter.addFromUnicode=MBCSAddFromUnicode;
mbcsData->newConverter.finishMappings=MBCSPostprocess;
mbcsData->newConverter.write=MBCSWrite;
mbcsData->header.version[0]=3;
mbcsData->stateFlags[0]=MBCS_STATE_FLAG_DIRECT;
mbcsData->stage2Top=MBCS_STAGE_2_FIRST_ASSIGNED; /* after stage 1 and one all-unassigned stage 2 block */
mbcsData->stage3Top=16*maxCharLength; /* after one all-unassigned stage 3 block */
mbcsData->maxCharLength=maxCharLength;
mbcsData->header.flags=maxCharLength-1; /* outputType */
/* point all entries in stage 1 to the "all-unassigned" first block in stage 2 */
for(i=0; i<MBCS_STAGE_1_SIZE; ++i) {
mbcsData->table[i]=MBCS_STAGE_2_ALL_UNASSIGNED_INDEX;
}
}
NewConverter *
MBCSOpen(uint8_t maxCharLength) {
MBCSData *mbcsData=(MBCSData *)uprv_malloc(sizeof(MBCSData));
if(mbcsData!=NULL) {
MBCSInit(mbcsData, maxCharLength);
}
return &mbcsData->newConverter;
}
static void
MBCSClose(NewConverter *cnvData) {
MBCSData *mbcsData=(MBCSData *)cnvData;
if(mbcsData!=NULL) {
if(mbcsData->unicodeCodeUnits!=NULL) {
uprv_free(mbcsData->unicodeCodeUnits);
}
if(mbcsData->fromUBytes!=NULL) {
uprv_free(mbcsData->fromUBytes);
}
uprv_free(mbcsData);
}
}
static const char *
skipWhitespace(const char *s) {
while(*s==' ' || *s=='\t') {
++s;
}
return s;
}
/*
* state table row grammar (ebnf-style):
* (whitespace is allowed between all tokens)
*
* row=[firstentry ','] entry (',' entry)*
* firstentry="initial" | "surrogates"
* (initial state (default for state 0), output is all surrogate pairs)
* entry=range [':' nextstate] ['.' action]
* range=number ['-' number]
* nextstate=number
* (0..7f)
* action='u' | 's' | 'p' | 'i'
* (unassigned, state change only, surrogate pair, illegal)
* number=(1- or 2-digit hexadecimal number)
*/
static const char *
parseState(const char *s, int32_t state[256], uint32_t *pFlags) {
const char *t;
uint32_t start, end, i;
int32_t value;
/* initialize the state: all illegal with U+ffff */
for(i=0; i<256; ++i) {
state[i]=0x807fff80|(MBCS_STATE_ILLEGAL<<27);
}
/* skip leading white space */
s=skipWhitespace(s);
/* is there a "direct" or "surrogates" directive? */
if(uprv_strncmp("direct", s, 6)==0) {
*pFlags=MBCS_STATE_FLAG_DIRECT;
s=skipWhitespace(s+6);
if(*s++!=',') {
return s-1;
}
} else if(*pFlags==0 && uprv_strncmp("surrogates", s, 10)==0) {
*pFlags=MBCS_STATE_FLAG_SURROGATES;
s=skipWhitespace(s+10);
if(*s++!=',') {
return s-1;
}
} else if(*s==0) {
/* empty state row: all-illegal */
return NULL;
}
for(;;) {
/* read an entry, the start of the range first */
s=skipWhitespace(s);
start=uprv_strtoul(s, (char **)&t, 16);
if(s==t || 0xff<start) {
return s;
}
s=skipWhitespace(t);
/* read the end of the range if there is one */
if(*s=='-') {
s=skipWhitespace(s+1);
end=uprv_strtoul(s, (char **)&t, 16);
if(s==t || end<start || 0xff<end) {
return s;
}
s=skipWhitespace(t);
} else {
end=start;
}
/* determine the state values for this range */
if(*s!=':' && *s!='.') {
/* the default is: final state with valid entries */
value=0x80000000|(MBCS_STATE_VALID_16<<27UL);
} else {
value=0;
if(*s==':') {
/* get the next state, default to 0 */
s=skipWhitespace(s+1);
i=uprv_strtoul(s, (char **)&t, 16);
if(s!=t) {
if(0x7f<i) {
return s;
}
s=skipWhitespace(t);
value|=i;
}
}
/* get the state action, default to valid */
if(*s=='.') {
/* this is a final state */
value|=0x80000000;
s=skipWhitespace(s+1);
if(*s=='u') {
/* unassigned set U+fffe */
value|=0x7fff00|(MBCS_STATE_UNASSIGNED<<27UL);
s=skipWhitespace(s+1);
} else if(*s=='p') {
if(*pFlags!=MBCS_STATE_FLAG_DIRECT) {
value|=MBCS_STATE_VALID_16_PAIR<<27UL;
} else {
value|=MBCS_STATE_VALID_16<<27UL;
}
s=skipWhitespace(s+1);
} else if(*s=='s') {
value|=MBCS_STATE_CHANGE_ONLY<<27UL;
s=skipWhitespace(s+1);
} else if(*s=='i') {
/* illegal set U+ffff */
value|=0x7fff80|(MBCS_STATE_ILLEGAL<<27UL);
s=skipWhitespace(s+1);
} else {
/* default to valid */
value|=MBCS_STATE_VALID_16<<27UL;
}
} else {
/* this is an intermediate state, nothing to do */
}
}
/* adjust "final valid" states according to the state flags */
if(((uint32_t)value>>27U)==(16|MBCS_STATE_VALID_16)) {
switch(*pFlags) {
case 0:
/* no adjustment */
break;
case MBCS_STATE_FLAG_DIRECT:
/* set the valid-direct code point to "unassigned"==0xfffe */
value=value&0x87ffffff|(MBCS_STATE_VALID_DIRECT_16<<27UL)|(0xfffe<<7L);
break;
case MBCS_STATE_FLAG_SURROGATES:
value=value&0x87ffffff|(MBCS_STATE_VALID_16_PAIR<<27UL);
break;
default:
break;
}
}
/* set this value for the range */
for(i=start; i<=end; ++i) {
state[i]=value;
}
if(*s==',') {
++s;
} else {
return *s==0 ? NULL : s;
}
}
}
UBool
MBCSAddState(NewConverter *cnvData, const char *s) {
MBCSData *mbcsData=(MBCSData *)cnvData;
const char *error;
if(mbcsData->header.countStates==MBCS_MAX_STATE_COUNT) {
fprintf(stderr, "error: too many states (maximum %u)\n", MBCS_MAX_STATE_COUNT);
return FALSE;
}
error=parseState(s, mbcsData->stateTable[mbcsData->header.countStates],
&mbcsData->stateFlags[mbcsData->header.countStates]);
if(error!=NULL) {
fprintf(stderr, "parse error in state definition at '%s'\n", error);
return FALSE;
}
++mbcsData->header.countStates;
return TRUE;
}
static int32_t
sumUpStates(MBCSData *mbcsData) {
int32_t entry, sum;
int state, cell, count;
UBool allStatesReady;
/*
* Sum up the offsets for all states.
* In each final state (where there are only final entries),
* the offsets add up directly.
* In all other state table rows, for each transition entry to another state,
* the offsets sum of that state needs to be added.
* This is achieved in at most countStates iterations.
*/
allStatesReady=FALSE;
for(count=mbcsData->header.countStates; !allStatesReady && count>=0; --count) {
allStatesReady=TRUE;
for(state=mbcsData->header.countStates-1; state>=0; --state) {
if(!(mbcsData->stateFlags[state]&MBCS_STATE_FLAG_READY)) {
allStatesReady=FALSE;
sum=0;
/* at first, add up only the final delta offsets to keep them <512 */
for(cell=0; cell<256; ++cell) {
entry=mbcsData->stateTable[state][cell];
if(entry<0) {
switch((uint32_t)entry>>27U) {
case 16|MBCS_STATE_VALID_16:
mbcsData->stateTable[state][cell]=entry&0xf800007f|(sum<<7L);
sum+=1;
break;
case 16|MBCS_STATE_VALID_16_PAIR:
mbcsData->stateTable[state][cell]=entry&0xf800007f|(sum<<7L);
sum+=2;
break;
default:
/* no addition */
break;
}
}
}
/* now, add up the delta offsets for the transitional entries */
for(cell=0; cell<256; ++cell) {
entry=mbcsData->stateTable[state][cell];
if(entry>=0) {
if(mbcsData->stateFlags[entry&0x7f]&MBCS_STATE_FLAG_READY) {
mbcsData->stateTable[state][cell]=entry&0xf800007f|(sum<<7L);
sum+=mbcsData->stateOffsetSum[entry&0x7f];
} else {
/* that next state does not have a sum yet, we cannot finish the one for this state */
sum=-1;
break;
}
}
}
if(sum!=-1) {
mbcsData->stateOffsetSum[state]=sum;
mbcsData->stateFlags[state]|=MBCS_STATE_FLAG_READY;
}
}
}
}
if(!allStatesReady) {
fprintf(stderr, "error: the state table contains loops\n");
return -1;
}
/*
* For all "direct" (i.e., initial) states>0,
* the offsets need to be increased by the sum of
* the previous initial states.
*/
sum=mbcsData->stateOffsetSum[0];
for(state=1; state<(int)mbcsData->header.countStates; ++state) {
if((mbcsData->stateFlags[state]&0xf)==MBCS_STATE_FLAG_DIRECT) {
int32_t sum2=sum<<7;
sum+=mbcsData->stateOffsetSum[state];
for(cell=0; cell<256; ++cell) {
entry=mbcsData->stateTable[state][cell];
if(entry>=0) {
mbcsData->stateTable[state][cell]=entry+sum2;
}
}
}
}
if(VERBOSE) {
printf("the total number of offsets is 0x%lx=%ld\n", sum, sum);
}
/* round up to the next even number to have the following data 32-bit-aligned */
sum=(sum+1)&~1;
return mbcsData->countToUCodeUnits=sum;
}
static UBool
MBCSProcessStates(NewConverter *cnvData) {
MBCSData *mbcsData=(MBCSData *)cnvData;
int32_t i, entry, sum;
int state, cell;
/*
* first make sure that all "next state" values are within limits
* and that all next states after final ones have the "direct"
* flag of initial states
*/
for(state=mbcsData->header.countStates-1; state>=0; --state) {
for(cell=0; cell<256; ++cell) {
entry=mbcsData->stateTable[state][cell];
if((uint32_t)(entry&0x7f)>=mbcsData->header.countStates) {
fprintf(stderr, "error: state table entry [%x][%x] has a next state of %x that is too high\n",
state, cell, entry&0x7f);
return FALSE;
}
if(entry<0 && (mbcsData->stateFlags[entry&0x7f]&0xf)!=MBCS_STATE_FLAG_DIRECT) {
fprintf(stderr, "error: state table entry [%x][%x] is final but has a non-initial next state of %x\n",
state, cell, entry&0x7f);
return FALSE;
} else if(entry>=0 && (mbcsData->stateFlags[entry&0x7f]&0xf)==MBCS_STATE_FLAG_DIRECT) {
fprintf(stderr, "error: state table entry [%x][%x] is not final but has an initial next state of %x\n",
state, cell, entry&0x7f);
return FALSE;
}
}
}
/* is this an SI/SO (like EBCDIC-stateful) state table? */
if(mbcsData->header.countStates>=2 && (mbcsData->stateFlags[1]&0xf)==MBCS_STATE_FLAG_DIRECT) {
if(mbcsData->maxCharLength!=2) {
fprintf(stderr, "error: SI/SO codepages must have max 2 bytes/char (not %x)\n", mbcsData->maxCharLength);
return FALSE;
}
if(mbcsData->header.countStates<3) {
fprintf(stderr, "error: SI/SO codepages must have at least 3 states (not %x)\n", mbcsData->header.countStates);
return FALSE;
}
/* are the SI/SO all in the right places? */
if( mbcsData->stateTable[0][0xe]==(0x80000001|(MBCS_STATE_CHANGE_ONLY<<27UL)) &&
mbcsData->stateTable[0][0xf]==(0x80000000|(MBCS_STATE_CHANGE_ONLY<<27UL)) &&
mbcsData->stateTable[1][0xe]==(0x80000001|(MBCS_STATE_CHANGE_ONLY<<27UL)) &&
mbcsData->stateTable[1][0xf]==(0x80000000|(MBCS_STATE_CHANGE_ONLY<<27UL))
) {
mbcsData->header.flags=MBCS_OUTPUT_2_SISO;
} else {
fprintf(stderr, "error: SI/SO codepages must have in states 0 and 1 transitions e:1.s, f:0.s\n");
return FALSE;
}
state=2;
} else {
state=1;
}
/* check that no unexpected state is a "direct" one */
while(state<(int)mbcsData->header.countStates) {
if((mbcsData->stateFlags[state]&0xf)==MBCS_STATE_FLAG_DIRECT) {
fprintf(stderr, "error: state %d is 'direct' (initial) - not supported except for SI/SO codepages\n", state);
return FALSE;
}
++state;
}
sum=sumUpStates(mbcsData);
if(sum<0) {
return FALSE;
}
/* allocate the code unit array and prefill it with "unassigned" values */
if(sum>0) {
mbcsData->unicodeCodeUnits=(uint16_t *)uprv_malloc(sum*sizeof(uint16_t));
if(mbcsData->unicodeCodeUnits==NULL) {
fprintf(stderr, "error: out of memory allocating %ld 16-bit code units\n", sum);
return FALSE;
}
for(i=0; i<sum; ++i) {
mbcsData->unicodeCodeUnits[i]=0xfffe;
}
}
/* allocate the codepage mappings and preset the first 16 characters to 0 */
mbcsData->fromUBytes=(uint8_t *)uprv_malloc(0x100000*mbcsData->maxCharLength); /* 1M mappings is the maximum possible */
if(mbcsData->fromUBytes==NULL) {
fprintf(stderr, "error: out of memory allocating %ldMB for target mappings\n", mbcsData->maxCharLength);
return FALSE;
}
/* initialize the all-unassigned first stage 3 block */
uprv_memset(mbcsData->fromUBytes, 0, 16*mbcsData->maxCharLength);
return TRUE;
}
/* find a fallback for this offset; return the index or -1 if not found */
static int32_t
findFallback(MBCSData *mbcsData, uint32_t offset) {
_MBCSToUFallback *toUFallbacks;
int32_t i, limit;
limit=mbcsData->header.countToUFallbacks;
if(limit==0) {
/* shortcut: most codepages do not have fallbacks from codepage to Unicode */
return -1;
}
/* do a linear search for the fallback mapping (the table is not yet sorted) */
toUFallbacks=mbcsData->toUFallbacks;
for(i=0; i<limit; ++i) {
if(offset==toUFallbacks[i].offset) {
return i;
}
}
return -1;
}
/* return TRUE for success */
static UBool
setFallback(MBCSData *mbcsData, uint32_t offset, UChar32 c) {
int32_t i=findFallback(mbcsData, offset);
if(i>=0) {
/* if there is already a fallback for this offset, then overwrite it */
mbcsData->toUFallbacks[i].codePoint=c;
return TRUE;
} else {
/* if there is no fallback for this offset, then add one */
i=mbcsData->header.countToUFallbacks;
if(i>=MBCS_MAX_FALLBACK_COUNT) {
fprintf(stderr, "error: too many toUnicode fallbacks, currently at: U+%lx\n", c);
return FALSE;
} else {
mbcsData->toUFallbacks[i].offset=offset;
mbcsData->toUFallbacks[i].codePoint=c;
mbcsData->header.countToUFallbacks=i+1;
return TRUE;
}
}
}
/* remove fallback if there is one with this offset; return the code point if there was such a fallback, otherwise -1 */
static int32_t
removeFallback(MBCSData *mbcsData, uint32_t offset) {
int32_t i=findFallback(mbcsData, offset);
if(i>=0) {
_MBCSToUFallback *toUFallbacks;
int32_t limit, old;
toUFallbacks=mbcsData->toUFallbacks;
limit=mbcsData->header.countToUFallbacks;
old=(int32_t)toUFallbacks[i].codePoint;
/* copy the last fallback entry here to keep the list contiguous */
toUFallbacks[i].offset=toUFallbacks[limit-1].offset;
toUFallbacks[i].codePoint=toUFallbacks[limit-1].codePoint;
mbcsData->header.countToUFallbacks=limit-1;
return old;
} else {
return -1;
}
}
/*
* isFallback is almost a boolean:
* 1 (TRUE) this is a fallback mapping
* 0 (FALSE) this is a precise mapping
* -1 the precision of this mapping is not specified
*/
static UBool
MBCSAddToUnicode(NewConverter *cnvData,
const uint8_t *bytes, int32_t length,
UChar32 c, uint32_t b,
int8_t isFallback) {
MBCSData *mbcsData=(MBCSData *)cnvData;
uint32_t offset=0;
int32_t i=0, entry, old;
uint8_t state=0;
if(mbcsData->header.countStates==0) {
fprintf(stderr, "error: there is no state information!\n");
return FALSE;
}
/* for SI/SO (like EBCDIC-stateful), double-byte sequences start in state 1 */
if(length==2 && (mbcsData->header.flags&0xff)==MBCS_OUTPUT_2_SISO) {
state=1;
}
/*
* Walk down the state table like in conversion,
* much like getNextUChar().
* We assume that c<=0x10ffff.
*/
for(i=0;;) {
entry=mbcsData->stateTable[state][bytes[i++]];
if(entry>=0) {
if(i==length) {
fprintf(stderr, "error: byte sequence too short, ends in non-final state %hu: 0x%02lx (U+%lx)\n", state, b, c);
return FALSE;
}
state=(uint8_t)(entry&0x7f);
offset+=entry>>7;
} else {
if(i<length) {
fprintf(stderr, "error: byte sequence too long by %d bytes, final state %hu: 0x%02lx (U+%lx)\n", (length-i), state, b, c);
return FALSE;
}
switch((uint32_t)entry>>27U) {
case 16|MBCS_STATE_ILLEGAL:
fprintf(stderr, "error: byte sequence ends in illegal state at U+%04lx<->0x%02lx\n", c, b);
return FALSE;
case 16|MBCS_STATE_CHANGE_ONLY:
fprintf(stderr, "error: byte sequence ends in state-change-only at U+%04lx<->0x%02lx\n", c, b);
return FALSE;
case 16|MBCS_STATE_UNASSIGNED:
fprintf(stderr, "error: byte sequence ends in unassigned state at U+%04lx<->0x%02lx\n", c, b);
return FALSE;
case 16|MBCS_STATE_FALLBACK_DIRECT_16:
case 16|MBCS_STATE_VALID_DIRECT_16:
case 16|MBCS_STATE_FALLBACK_DIRECT_20:
case 16|MBCS_STATE_VALID_DIRECT_20:
if((entry&0xffffff80)!=(0x807fff00|(MBCS_STATE_VALID_DIRECT_16<<27))) {
/* the "direct" action's value is not "valid-direct-16-unassigned" any more */
if((entry&(1L<<27))==0) {
old=entry>>7;
} else {
old=0x10000+(entry>>7);
}
if(isFallback>=0) {
fprintf(stderr, "error: duplicate codepage byte sequence at U+%04lx<->0x%02lx see U+%04lx\n", c, b, old);
return FALSE;
} else if(VERBOSE) {
fprintf(stderr, "duplicate codepage byte sequence at U+%04lx<->0x%02lx see U+%04lx\n", c, b, old);
}
/*
* Continue after the above warning
* if the precision of the mapping is unspecified.
*/
}
/* reassign the correct action code */
entry=
entry&0x8000007f|
(MBCS_STATE_FALLBACK_DIRECT_16+(isFallback>0 ? 0 : 2)+(c>=0x10000 ? 1 : 0))
<<27;
/* put the code point into bits 22..7 for BMP, c-0x10000 into 26..7 for others */
if(c<=0xffff) {
entry|=c<<7;
} else {
entry|=(c-0x10000)<<7;
}
mbcsData->stateTable[state][bytes[i-1]]=entry;
break;
case 16|MBCS_STATE_VALID_16:
/* bits 26..16 are not used, 0 */
/* bits 15..7 contain the final offset delta to one 16-bit code unit */
offset+=(uint16_t)entry>>7;
/* check that this byte sequence is still unassigned */
if((old=mbcsData->unicodeCodeUnits[offset])!=0xfffe || (old=removeFallback(mbcsData, offset))!=-1) {
if(isFallback>=0) {
fprintf(stderr, "error: duplicate codepage byte sequence at U+%04lx<->0x%02lx see U+%04lx\n", c, b, old);
return FALSE;
} else if(VERBOSE) {
fprintf(stderr, "duplicate codepage byte sequence at U+%04lx<->0x%02lx see U+%04lx\n", c, b, old);
}
}
if(isFallback>0) {
/* assign only if there is no precise mapping */
if(mbcsData->unicodeCodeUnits[offset]==0xfffe) {
return setFallback(mbcsData, offset, c);
}
} else {
if(c>=0x10000) {
fprintf(stderr, "error: code point does not fit into valid-16-bit state at U+%04lx<->0x%02lx\n", c, b);
return FALSE;
}
mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
}
break;
case 16|MBCS_STATE_VALID_16_PAIR:
/* bits 26..16 are not used, 0 */
/* bits 15..7 contain the final offset delta to two 16-bit code units */
if(UTF_IS_FIRST_SURROGATE(c)) {
fprintf(stderr, "error: cannot assign single first surrogate to surrogate-pair state at U+%04lx<->0x%02lx\n", c, b);
return FALSE;
}
offset+=(uint16_t)entry>>7;
/* check that this byte sequence is still unassigned */
if((old=mbcsData->unicodeCodeUnits[offset])!=0xfffe || (old=removeFallback(mbcsData, offset))!=-1) {
if(isFallback>=0) {
fprintf(stderr, "error: duplicate codepage byte sequence at U+%04lx<->0x%02lx see U+%04lx\n", c, b, old);
return FALSE;
} else if(VERBOSE) {
fprintf(stderr, "duplicate codepage byte sequence at U+%04lx<->0x%02lx see U+%04lx\n", c, b, old);
}
}
if(isFallback>0) {
/* assign only if there is no precise mapping */
if(mbcsData->unicodeCodeUnits[offset]==0xfffe) {
return setFallback(mbcsData, offset, c);
}
} else {
if(c<=0xffff) {
/* set BMP code point */
mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
} else {
/* set a surrogate pair */
mbcsData->unicodeCodeUnits[offset++]=(uint16_t)(0xd7c0+(c>>10));
mbcsData->unicodeCodeUnits[offset]=(uint16_t)(0xdc00+(c&0x3ff));
}
}
break;
default:
/* reserved, must never occur */
fprintf(stderr, "internal error: byte sequence reached reserved action code, entry0x%02lx: 0x%02lx (U+%lx)\n", entry, b, c);
return FALSE;
}
return TRUE;
}
}
}
/* is this byte sequence valid? (this is almost the same as MBCSAddToUnicode()) */
static UBool
MBCSIsValid(NewConverter *cnvData,
const uint8_t *bytes, int32_t length,
uint32_t b) {
MBCSData *mbcsData=(MBCSData *)cnvData;
uint32_t offset=0;
int32_t i=0, entry;
uint8_t state=0;
if(mbcsData->header.countStates==0) {
fprintf(stderr, "error: there is no state information!\n");
return FALSE;
}
/* for SI/SO (like EBCDIC-stateful), double-byte sequences start in state 1 */
if(length==2 && (mbcsData->header.flags&0xff)==MBCS_OUTPUT_2_SISO) {
state=1;
}
/*
* Walk down the state table like in conversion,
* much like getNextUChar().
* We assume that c<=0x10ffff.
*/
for(i=0;;) {
entry=mbcsData->stateTable[state][bytes[i++]];
if(entry>=0) {
if(i==length) {
fprintf(stderr, "error: byte sequence too short, ends in non-final state %hu: 0x%02lx\n", state, b);
return FALSE;
}
state=(uint8_t)(entry&0x7f);
offset+=entry>>7;
} else {
if(i<length) {
fprintf(stderr, "error: byte sequence too long by %d bytes, final state %hu: 0x%02lx\n", (length-i), state, b);
return FALSE;
}
switch((uint32_t)entry>>27U) {
case 16|MBCS_STATE_ILLEGAL:
fprintf(stderr, "error: byte sequence ends in illegal state: 0x%02lx\n", b);
return FALSE;
case 16|MBCS_STATE_CHANGE_ONLY:
fprintf(stderr, "error: byte sequence ends in state-change-only: 0x%02lx\n", b);
return FALSE;
case 16|MBCS_STATE_UNASSIGNED:
fprintf(stderr, "error: byte sequence ends in unassigned state: 0x%02lx\n", b);
return FALSE;
case 16|MBCS_STATE_FALLBACK_DIRECT_16:
case 16|MBCS_STATE_VALID_DIRECT_16:
case 16|MBCS_STATE_FALLBACK_DIRECT_20:
case 16|MBCS_STATE_VALID_DIRECT_20:
case 16|MBCS_STATE_VALID_16:
case 16|MBCS_STATE_VALID_16_PAIR:
return TRUE;
default:
/* reserved, must never occur */
fprintf(stderr, "internal error: byte sequence reached reserved action code, entry0x%02lx: 0x%02lx\n", entry, b);
return FALSE;
}
}
}
}
static UBool
MBCSAddFromUnicode(NewConverter *cnvData,
const uint8_t *bytes, int32_t length,
UChar32 c, uint32_t b,
int8_t isFallback) {
MBCSData *mbcsData=(MBCSData *)cnvData;
uint8_t *p;
uint32_t index, old;
if( (mbcsData->header.flags&0xff)==MBCS_OUTPUT_2_SISO &&
(*bytes==0xe || *bytes==0xf)
) {
fprintf(stderr, "error: illegal mapping to SI or SO for SI/SO codepage: U+%04lx<->0x%02lx\n", c, b);
return FALSE;
}
/*
* Walk down the triple-stage compact array ("trie") and
* allocate parts as necessary.
* Note that the first stage 2 and 3 blocks are reserved for all-unassigned mappings.
* We assume that length<=maxCharLength and that c<=0x10ffff.
*/
/* inspect stage 1 */
index=c>>10;
if(mbcsData->table[index]==MBCS_STAGE_2_ALL_UNASSIGNED_INDEX) {
/* allocate another block in stage 2 */
/*
* It is not necessary to check for an overflow in stage 2 because it is allocated
* with its maximum possible size. (It is here always mbcsData->stage2Top<MBCS_MAX_STAGE_2_TOP .)
*/
/*
* each stage 2 block contains 64*2 16-bit words:
* 6 code point bits 9..4 with 1 flags value and 1 stage 3 index
*
* stage 1 entries contain a quarter of the beginning of the
* addressed stage 2 blocks; for details about this multiplier,
* see the comments at the beginning of ucnvmbcs.c
*/
mbcsData->table[index]=(uint16_t)(mbcsData->stage2Top/MBCS_STAGE_2_MULTIPLIER);
mbcsData->stage2Top+=MBCS_STAGE_2_BLOCK_SIZE;
}
/* inspect stage 2 */
index=MBCS_STAGE_2_MULTIPLIER*(uint32_t)mbcsData->table[index]+((c>>3)&0x7e);
if(mbcsData->table[index+1]==0) {
/* allocate another block in stage 3 */
if(mbcsData->stage3Top>=0x100000*mbcsData->maxCharLength) {
fprintf(stderr, "error: too many code points at U+%04lx<->0x%02lx\n", c, b);
return FALSE;
}
/* each block has 16*maxCharLength bytes */
mbcsData->table[index+1]=(uint16_t)((mbcsData->stage3Top/16)/mbcsData->maxCharLength);
uprv_memset(mbcsData->fromUBytes+mbcsData->stage3Top, 0, 16*mbcsData->maxCharLength);
mbcsData->stage3Top+=16*mbcsData->maxCharLength;
}
/* write the codepage bytes into stage 3 and get the previous bytes */
old=0;
p=mbcsData->fromUBytes+(16*(uint32_t)mbcsData->table[index+1]+(c&0xf))*mbcsData->maxCharLength;
switch(mbcsData->maxCharLength) {
case 4:
old=*p;
*p++=(uint8_t)(b>>24);
case 3:
old=(old<<8)|*p;
*p++=(uint8_t)(b>>16);
case 2:
old=(old<<8)|*p;
*p++=(uint8_t)(b>>8);
case 1:
old=(old<<8)|*p;
*p=(uint8_t)b;
default:
break;
}
/* check that this Unicode code point was still unassigned */
if((mbcsData->table[index]&(1<<(c&0xf)))!=0 || old!=0) {
if(isFallback>=0) {
fprintf(stderr, "error: duplicate Unicode code point at U+%04lx<->0x%02lx see 0x%02lx\n", c, b, old);
return FALSE;
} else if(VERBOSE) {
fprintf(stderr, "duplicate Unicode code point at U+%04lx<->0x%02lx see 0x%02lx\n", c, b, old);
}
/* continue after the above warning if the precision of the mapping is unspecified */
}
if(isFallback<=0) {
/* set the "assigned" flag */
mbcsData->table[index]|=(1<<(c&0xf));
}
return TRUE;
}
static int
compareFallbacks(const void *fb1, const void *fb2) {
return ((const _MBCSToUFallback *)fb1)->offset-((const _MBCSToUFallback *)fb2)->offset;
}
/*
* This function tries to compact toUnicode tables for 2-byte codepages
* by finding lead bytes with all-unassigned trail bytes and adding another state
* for them.
*/
static void
compactToUnicode2(MBCSData *mbcsData) {
int32_t (*oldStateTable)[256];
uint16_t count[256];
uint16_t *oldUnicodeCodeUnits;
int32_t entry, offset, oldOffset, trailOffset, oldTrailOffset, savings, sum;
int32_t i, j, leadState, trailState, newState, fallback;
uint16_t unit;
/* find the lead state */
if((mbcsData->header.flags&0xff)==MBCS_OUTPUT_2_SISO) {
/* use the DBCS lead state for SI/SO codepages */
leadState=1;
} else {
leadState=0;
}
/* find the main trail state: the most used target state */
uprv_memset(count, 0, sizeof(count));
for(i=0; i<256; ++i) {
entry=mbcsData->stateTable[leadState][i];
if(entry>=0) {
++count[entry&0x7f];
}
}
trailState=0;
for(i=1; i<(int)mbcsData->header.countStates; ++i) {
if(count[i]>count[trailState]) {
trailState=i;
}
}
/* count possible savings from lead bytes with all-unassigned results in all trail bytes */
uprv_memset(count, 0, sizeof(count));
savings=0;
/* for each lead byte */
for(i=0; i<256; ++i) {
entry=mbcsData->stateTable[leadState][i];
if(entry>=0 && (entry&0x7f)==trailState) {
/* the offset is different for each lead byte */
offset=entry>>7;
/* for each trail byte for this lead byte */
for(j=0; j<256; ++j) {
entry=mbcsData->stateTable[trailState][j];
switch((uint32_t)entry>>27U) {
case 16|MBCS_STATE_VALID_16:
entry=offset+((uint16_t)entry>>7);
if(mbcsData->unicodeCodeUnits[entry]==0xfffe && findFallback(mbcsData, entry)<0) {
++count[i];
} else {
j=999; /* do not count for this lead byte because there are assignments */
}
break;
case 16|MBCS_STATE_VALID_16_PAIR:
entry=offset+((uint16_t)entry>>7);
if(mbcsData->unicodeCodeUnits[entry]==0xfffe && findFallback(mbcsData, entry)<0) {
count[i]+=2;
} else {
j=999; /* do not count for this lead byte because there are assignments */
}
break;
default:
break;
}
}
if(j==256) {
/* all trail bytes for this lead byte are unassigned */
savings+=count[i];
} else {
count[i]=0;
}
}
}
/* subtract from the possible savings the cost of an additional state */
savings=savings*2-1024; /* count bytes, not 16-bit words */
if(savings<=0) {
return;
}
if(VERBOSE) {
printf("compacting toUnicode data saves %ld bytes\n", savings);
}
if(mbcsData->header.countStates>=MBCS_MAX_STATE_COUNT) {
fprintf(stderr, "cannot compact toUnicode because the maximum number of states is reached\n");
return;
}
/* make a copy of the state table */
oldStateTable=(int32_t (*)[256])uprv_malloc(mbcsData->header.countStates*1024);
if(oldStateTable==NULL) {
fprintf(stderr, "cannot compact toUnicode: out of memory\n");
return;
}
uprv_memcpy(oldStateTable, mbcsData->stateTable, mbcsData->header.countStates*1024);
/* add the new state */
/*
* this function does not catch the degenerate case where all lead bytes
* have all-unassigned trail bytes and the lead state could be removed
*/
newState=mbcsData->header.countStates++;
mbcsData->stateFlags[newState]=0;
/* copy the old trail state, turning all assigned states into unassigned ones */
for(i=0; i<256; ++i) {
entry=mbcsData->stateTable[trailState][i];
switch((uint32_t)entry>>27U) {
case 16|MBCS_STATE_VALID_16:
case 16|MBCS_STATE_VALID_16_PAIR:
mbcsData->stateTable[newState][i]=(entry&0x8000007f)|0x7fff00|(MBCS_STATE_UNASSIGNED<<27UL);
break;
default:
mbcsData->stateTable[newState][i]=entry;
break;
}
}
/* in the lead state, redirect all lead bytes with all-unassigned trail bytes to the new state */
for(i=0; i<256; ++i) {
if(count[i]>0) {
mbcsData->stateTable[leadState][i]=(mbcsData->stateTable[leadState][i]&0xffffff80)|newState;
}
}
/* sum up the new state table */
for(i=0; i<(int)mbcsData->header.countStates; ++i) {
mbcsData->stateFlags[i]&=~MBCS_STATE_FLAG_READY;
}
sum=sumUpStates(mbcsData);
/* allocate a new, smaller code units array */
oldUnicodeCodeUnits=mbcsData->unicodeCodeUnits;
if(sum==0) {
mbcsData->unicodeCodeUnits=NULL;
if(oldUnicodeCodeUnits!=NULL) {
uprv_free(oldUnicodeCodeUnits);
}
uprv_free(oldStateTable);
return;
}
mbcsData->unicodeCodeUnits=(uint16_t *)uprv_malloc(sum*sizeof(uint16_t));
if(mbcsData->unicodeCodeUnits==NULL) {
fprintf(stderr, "cannot compact toUnicode: out of memory allocating %ld 16-bit code units\n", sum);
/* revert to the old state table */
mbcsData->unicodeCodeUnits=oldUnicodeCodeUnits;
--mbcsData->header.countStates;
uprv_memcpy(mbcsData->stateTable, oldStateTable, mbcsData->header.countStates*1024);
uprv_free(oldStateTable);
return;
}
for(i=0; i<sum; ++i) {
mbcsData->unicodeCodeUnits[i]=0xfffe;
}
/* copy the code units for all assigned characters */
/*
* The old state table has the same lead _and_ trail states for assigned characters!
* The differences are in the offsets, and in the trail states for some unassigned characters.
* For each character with an assigned state in the new table, it was assigned in the old one.
* Only still-assigned characters are copied.
* Note that fallback mappings need to get their offset values adjusted.
*/
/* for each initial state */
for(leadState=0; leadState<(int)mbcsData->header.countStates; ++leadState) {
if((mbcsData->stateFlags[leadState]&0xf)==MBCS_STATE_FLAG_DIRECT) {
/* for each lead byte from there */
for(i=0; i<256; ++i) {
entry=mbcsData->stateTable[leadState][i];
if(entry>=0) {
trailState=(uint8_t)(entry&0x7f);
/* the new state does not have assigned states */
if(trailState!=newState) {
trailOffset=entry>>7;
oldTrailOffset=oldStateTable[leadState][i]>>7;
/* for each trail byte */
for(j=0; j<256; ++j) {
entry=mbcsData->stateTable[trailState][j];
/* copy assigned-character code units and adjust fallback offsets */
switch((uint32_t)entry>>27U) {
case 16|MBCS_STATE_VALID_16:
offset=trailOffset+((uint16_t)entry>>7);
/* find the old offset according to the old state table */
oldOffset=oldTrailOffset+((uint16_t)oldStateTable[trailState][j]>>7);
unit=mbcsData->unicodeCodeUnits[offset]=oldUnicodeCodeUnits[oldOffset];
if(unit==0xfffe && (fallback=findFallback(mbcsData, oldOffset))>=0) {
mbcsData->toUFallbacks[fallback].offset=0x80000000|offset;
}
break;
case 16|MBCS_STATE_VALID_16_PAIR:
offset=trailOffset+((uint16_t)entry>>7);
/* find the old offset according to the old state table */
oldOffset=oldTrailOffset+((uint16_t)oldStateTable[trailState][j]>>7);
unit=mbcsData->unicodeCodeUnits[offset++]=oldUnicodeCodeUnits[oldOffset++];
mbcsData->unicodeCodeUnits[offset]=oldUnicodeCodeUnits[oldOffset];
if(unit==0xfffe && (fallback=findFallback(mbcsData, oldOffset))>=0) {
mbcsData->toUFallbacks[fallback].offset=0x80000000|offset;
}
break;
default:
break;
}
}
}
}
}
}
}
/* remove temporary flags from fallback offsets that protected them from being modified twice */
sum=mbcsData->header.countToUFallbacks;
for(i=0; i<sum; ++i) {
mbcsData->toUFallbacks[i].offset&=0x7fffffff;
}
/* free temporary memory */
uprv_free(oldUnicodeCodeUnits);
uprv_free(oldStateTable);
}
/*
* recursive sub-function of compactToUnicodeHelper()
* returns:
* >0 number of bytes that are used in unicodeCodeUnits[] that could be saved,
* if all sequences from this state are unassigned, returns the
* <0 there are assignments in unicodeCodeUnits[]
* 0 no use of unicodeCodeUnits[]
*/
static int32_t
findUnassigned(MBCSData *mbcsData, int32_t state, int32_t offset, uint32_t b) {
int32_t i, entry, savings, localSavings, belowSavings;
UBool haveAssigned;
localSavings=belowSavings=0;
haveAssigned=FALSE;
for(i=0; i<256; ++i) {
entry=mbcsData->stateTable[state][i];
if(entry>=0) {
savings=findUnassigned(mbcsData, entry&0x7f, offset+(entry>>7), (b<<8)|(uint32_t)i);
if(savings<0) {
haveAssigned=TRUE;
} else if(savings>0) {
printf(" all-unassigned sequences from prefix 0x%02lx state %ld use %ld bytes\n", (b<<8)|(uint32_t)i, state, savings);
belowSavings+=savings;
}
} else if(!haveAssigned) {
switch((uint32_t)entry>>27U) {
case 16|MBCS_STATE_VALID_16:
entry=offset+((uint16_t)entry>>7);
if(mbcsData->unicodeCodeUnits[entry]==0xfffe && findFallback(mbcsData, entry)<0) {
localSavings+=2;
} else {
haveAssigned=TRUE;
}
break;
case 16|MBCS_STATE_VALID_16_PAIR:
entry=offset+((uint16_t)entry>>7);
if(mbcsData->unicodeCodeUnits[entry]==0xfffe && findFallback(mbcsData, entry)<0) {
localSavings+=4;
} else {
haveAssigned=TRUE;
}
break;
default:
break;
}
}
}
if(haveAssigned) {
return -1;
} else {
return localSavings+belowSavings;
}
}
/* helper function for finding compaction opportunities */
static void
compactToUnicodeHelper(MBCSData *mbcsData) {
int32_t state, savings;
if(!VERBOSE) {
return;
}
/* for each initial state */
for(state=0; state<(int)mbcsData->header.countStates; ++state) {
if((mbcsData->stateFlags[state]&0xf)==MBCS_STATE_FLAG_DIRECT) {
savings=findUnassigned(mbcsData, state, 0, 0);
if(savings>0) {
printf(" all-unassigned sequences from initial state %ld use %ld bytes\n", state, savings);
}
}
}
}
static UBool
transformEUC(MBCSData *mbcsData) {
uint8_t *p, *q;
uint32_t i, oldLength=mbcsData->maxCharLength, old3Top=mbcsData->stage3Top, new3Top;
uint8_t b;
if(oldLength<3) {
return FALSE;
}
/* test if all first bytes are in {0, 0x8e, 0x8f} */
p=mbcsData->fromUBytes;
for(i=0; i<old3Top; i+=oldLength) {
b=p[i];
if(b!=0 && b!=0x8e && b!=0x8f) {
/* some first byte does not fit the EUC pattern, nothing to be done */
return FALSE;
}
}
/* modify outputType and adjust stage3Top */
mbcsData->header.flags=MBCS_OUTPUT_3_EUC+oldLength-3;
mbcsData->stage3Top=new3Top=(old3Top*(oldLength-1))/oldLength;
/*
* EUC-encode all byte sequences;
* see "CJKV Information Processing" (1st ed. 1999) from Ken Lunde, O'Reilly,
* p. 161 in chapter 4 "Encoding Methods"
*/
q=p;
for(i=0; i<old3Top; i+=oldLength) {
b=*p++;
if(b==0) {
/* short sequences are stored directly */
/* code set 0 or 1 */
*q++=*p++;
*q++=*p++;
} else if(b==0x8e) {
/* code set 2 */
*q++=(uint8_t)(*p++&0x7f);
*q++=*p++;
} else /* b==0x8f */ {
/* code set 3 */
*q++=*p++;
*q++=(uint8_t)(*p++&0x7f);
}
if(oldLength==4) {
*q++=*p++;
}
}
return TRUE;
}
/*
* Compact stage 2 by overlapping adjacent stage 2 blocks as far
* as possible. Overlapping is done on unassigned head and tail
* parts of blocks in steps of MBCS_STAGE_2_MULTIPLIER.
* Stage 1 indexes need to be adjusted accordingly.
* This function is very similar to genprops/store.c/compactStage().
*/
static void
compactStage2(MBCSData *mbcsData) {
/* this array maps the ordinal number of a stage 2 block to its new stage 1 index */
uint16_t map[MBCS_STAGE_2_MAX_BLOCKS];
uint16_t i, start, prevEnd, newStart;
/* enter the all-unassigned first stage 2 block into the map */
map[0]=MBCS_STAGE_2_ALL_UNASSIGNED_INDEX;
/* begin with the first block after the all-unassigned one */
start=newStart=MBCS_STAGE_2_FIRST_ASSIGNED;
while(start<mbcsData->stage2Top) {
prevEnd=(uint16_t)(newStart-1);
/* find the size of the overlap */
for(i=0; i<MBCS_STAGE_2_BLOCK_SIZE && mbcsData->table[start+i]==0 && mbcsData->table[prevEnd-i]==0; ++i) {}
/* overlap by i, adjust it to be a multiple of MBCS_STAGE_2_MULTIPLIER */
i&=~(MBCS_STAGE_2_MULTIPLIER-1);
if(i>0) {
map[(start-MBCS_STAGE_1_SIZE)>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=(uint16_t)(newStart-i)/MBCS_STAGE_2_MULTIPLIER;
/* move the non-overlapping indexes to their new positions */
start+=i;
for(i=(uint16_t)(MBCS_STAGE_2_BLOCK_SIZE-i); i>0; --i) {
mbcsData->table[newStart++]=mbcsData->table[start++];
}
} else if(newStart<start) {
/* move the indexes to their new positions */
map[(start-MBCS_STAGE_1_SIZE)>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=newStart/MBCS_STAGE_2_MULTIPLIER;
for(i=MBCS_STAGE_2_BLOCK_SIZE; i>0; --i) {
mbcsData->table[newStart++]=mbcsData->table[start++];
}
} else /* no overlap && newStart==start */ {
map[(start-MBCS_STAGE_1_SIZE)>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=start/MBCS_STAGE_2_MULTIPLIER;
start=newStart+=MBCS_STAGE_2_BLOCK_SIZE;
}
}
/* adjust stage2Top */
if(VERBOSE && newStart<mbcsData->stage2Top) {
printf("compacting stage 2 from stage2Top=0x%lx to 0x%lx, saving %ld bytes\n",
mbcsData->stage2Top, newStart, (mbcsData->stage2Top-newStart)*2);
}
mbcsData->stage2Top=newStart;
/* now adjust stage 1 */
for(i=0; i<MBCS_STAGE_1_SIZE; ++i) {
/*
* map indexing: get stage 2 block ordinals as array indexes -
* multiply for the full index, then subtract the base and divide by the block size
*/
mbcsData->table[i]=map[(mbcsData->table[i]*MBCS_STAGE_2_MULTIPLIER-MBCS_STAGE_1_SIZE)>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT];
}
}
static void
MBCSPostprocess(NewConverter *cnvData, const UConverterStaticData *staticData) {
MBCSData *mbcsData=(MBCSData *)cnvData;
int32_t entry;
int state, cell;
/* this needs to be printed before the EUC transformation because later maxCharLength might not be correct */
if(VERBOSE) {
printf("number of codepage characters in 16-blocks: 0x%lx=%lu\n",
mbcsData->stage3Top/mbcsData->maxCharLength,
mbcsData->stage3Top/mbcsData->maxCharLength);
}
/* test each state table entry */
for(state=0; state<(int)mbcsData->header.countStates; ++state) {
for(cell=0; cell<256; ++cell) {
entry=mbcsData->stateTable[state][cell];
/*
* if the entry is a final one with an MBCS_STATE_VALID_DIRECT_16 action code
* and the code point is "unassigned" (0xfffe), then change it to
* the "unassigned" action code with bits 26..23 set to zero and U+fffe.
*/
if((entry&0xffffff80)==(0x807fff00|(MBCS_STATE_VALID_DIRECT_16<<27))) {
mbcsData->stateTable[state][cell]=(entry&0x87ffffff)|(MBCS_STATE_UNASSIGNED<<27UL);
}
}
}
/* try to compact the toUnicode tables */
if(mbcsData->maxCharLength==2) {
compactToUnicode2(mbcsData);
} else if(mbcsData->maxCharLength>2) {
compactToUnicodeHelper(mbcsData);
}
/* sort toUFallbacks */
/*
* It should be safe to sort them before compactToUnicode2() is called,
* because it should not change the relative order of the offset values
* that it adjusts, but they need to be sorted at some point, and
* it is safest here.
*/
if(mbcsData->header.countToUFallbacks>0) {
qsort(mbcsData->toUFallbacks, mbcsData->header.countToUFallbacks, sizeof(_MBCSToUFallback), compareFallbacks);
}
/* try to compact the fromUnicode tables */
transformEUC(mbcsData);
compactStage2(mbcsData);
}
static uint32_t
MBCSWrite(NewConverter *cnvData, const UConverterStaticData *staticData, UNewDataMemory *pData) {
MBCSData *mbcsData=(MBCSData *)cnvData;
int32_t stage1Top;
if(staticData->unicodeMask&UCNV_HAS_SUPPLEMENTARY) {
stage1Top=MBCS_STAGE_1_SIZE; /* 0x440==1088 */
} else {
int32_t i;
stage1Top=0x40; /* 0x40==64 */
/* adjust stage 1 entries to include a smaller stage 1 length */
for(i=0; i<0x40; ++i) {
mbcsData->table[i]-=(MBCS_STAGE_1_SIZE-0x40)/MBCS_STAGE_2_MULTIPLIER;
}
}
/* fill the header */
mbcsData->header.offsetToUCodeUnits=
sizeof(_MBCSHeader)+
mbcsData->header.countStates*1024+
mbcsData->header.countToUFallbacks*sizeof(_MBCSToUFallback);
mbcsData->header.offsetFromUTable=
mbcsData->header.offsetToUCodeUnits+
mbcsData->countToUCodeUnits*2;
mbcsData->header.offsetFromUBytes=
mbcsData->header.offsetFromUTable-
2*(MBCS_STAGE_1_SIZE-stage1Top)+
mbcsData->stage2Top*2;
/* write the MBCS data */
udata_writeBlock(pData, &mbcsData->header, sizeof(_MBCSHeader));
udata_writeBlock(pData, mbcsData->stateTable, mbcsData->header.countStates*1024);
udata_writeBlock(pData, mbcsData->toUFallbacks, mbcsData->header.countToUFallbacks*sizeof(_MBCSToUFallback));
udata_writeBlock(pData, mbcsData->unicodeCodeUnits, mbcsData->countToUCodeUnits*2);
udata_writeBlock(pData, mbcsData->table, stage1Top*2);
udata_writeBlock(pData, mbcsData->table+MBCS_STAGE_1_SIZE, (mbcsData->stage2Top-MBCS_STAGE_1_SIZE)*2);
udata_writeBlock(pData, mbcsData->fromUBytes, mbcsData->stage3Top);
/* return the number of bytes that should have been written */
return mbcsData->header.offsetFromUBytes+mbcsData->stage3Top;
}
#if 0
/* test code, uses only this file and genmbcs.h */
extern int
main(int argc, const char *argv[]) {
MBCSData *mbcsData;
static uint8_t bytes[4];
int32_t entry;
int i, j;
/*
* sample arguments for shift-jis (max 2):
* 0-7f,81-9f:1,a1-df,e0-ef:1 40-7e,80-fc
*
* sample arguments for euc-jp (max 3):
* 0-7f,8e:2,8f:3,a1-fe:1 a1-fe a1-df a1-fe:1
*/
if(argc>=2) {
mbcsData=MBCSOpen(3);
for(i=1; i<argc; ++i) {
if(!MBCSAddState(mbcsData, argv[i])) {
return 2;
}
}
MBCSProcessStates(mbcsData);
bytes[0]=0x5c;
MBCSAddToUnicode(mbcsData, bytes, 1, 0xa5, TRUE);
MBCSAddFromUnicode(mbcsData, bytes, 1, 0xa5, TRUE);
bytes[0]=0xe2;
bytes[1]=0xa3;
MBCSAddToUnicode(mbcsData, bytes, 2, 0x4e00, FALSE);
MBCSAddFromUnicode(mbcsData, bytes, 2, 0x4e00, FALSE);
bytes[0]=0x8e;
bytes[1]=0xdf;
MBCSAddToUnicode(mbcsData, bytes, 2, 0x3415, FALSE);
MBCSAddFromUnicode(mbcsData, bytes, 2, 0x3415, FALSE);
bytes[0]=0x8f;
bytes[1]=0xbb;
bytes[2]=0xcc;
MBCSAddToUnicode(mbcsData, bytes, 3, 0x9876, FALSE);
MBCSAddFromUnicode(mbcsData, bytes, 3, 0x9876, FALSE);
MBCSPostprocess(mbcsData, NULL);
for(i=0; i<(int)mbcsData->header.countStates; ++i) {
printf("state=%x: flags=%x\n", i, mbcsData->stateFlags[i]);
for(j=0; j<256; ++j) {
entry=mbcsData->stateTable[i][j];
printf("%2lx %8lx = %u.%x.%5x.%2x\n", j, entry,
(uint32_t)entry>>31, entry>>27&0xf, entry>>7&0xfffff, entry&0x7f);
}
}
MBCSClose(mbcsData);
} else {
fprintf(stderr, "error: missing state table arguments\n");
return 1;
}
return 0;
}
#endif