c9f199a30f
X-SVN-Rev: 38761
1077 lines
34 KiB
C
1077 lines
34 KiB
C
/*
|
|
*******************************************************************************
|
|
*
|
|
* Copyright (C) 2016 and later: Unicode, Inc. and others.
|
|
* License & terms of use: http://www.unicode.org/copyright.html
|
|
*
|
|
*******************************************************************************
|
|
* file name: gencnvex.c
|
|
* encoding: US-ASCII
|
|
* tab size: 8 (not used)
|
|
* indentation:4
|
|
*
|
|
* created on: 2003oct12
|
|
* created by: Markus W. Scherer
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include "unicode/utypes.h"
|
|
#include "unicode/ustring.h"
|
|
#include "cstring.h"
|
|
#include "cmemory.h"
|
|
#include "ucnv_cnv.h"
|
|
#include "ucnvmbcs.h"
|
|
#include "toolutil.h"
|
|
#include "unewdata.h"
|
|
#include "ucm.h"
|
|
#include "makeconv.h"
|
|
#include "genmbcs.h"
|
|
|
|
static void
|
|
CnvExtClose(NewConverter *cnvData);
|
|
|
|
static UBool
|
|
CnvExtIsValid(NewConverter *cnvData,
|
|
const uint8_t *bytes, int32_t length);
|
|
|
|
static UBool
|
|
CnvExtAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData);
|
|
|
|
static uint32_t
|
|
CnvExtWrite(NewConverter *cnvData, const UConverterStaticData *staticData,
|
|
UNewDataMemory *pData, int32_t tableType);
|
|
|
|
typedef struct CnvExtData {
|
|
NewConverter newConverter;
|
|
|
|
UCMFile *ucm;
|
|
|
|
/* toUnicode (state table in ucm->states) */
|
|
UToolMemory *toUTable, *toUUChars;
|
|
|
|
/* fromUnicode */
|
|
UToolMemory *fromUTableUChars, *fromUTableValues, *fromUBytes;
|
|
|
|
uint16_t stage1[MBCS_STAGE_1_SIZE];
|
|
uint16_t stage2[MBCS_STAGE_2_SIZE];
|
|
uint16_t stage3[0x10000<<UCNV_EXT_STAGE_2_LEFT_SHIFT]; /* 0x10000 because of 16-bit stage 2/3 indexes */
|
|
uint32_t stage3b[0x10000];
|
|
|
|
int32_t stage1Top, stage2Top, stage3Top, stage3bTop;
|
|
|
|
/* for stage3 compaction of <subchar1> |2 mappings */
|
|
uint16_t stage3Sub1Block;
|
|
|
|
/* statistics */
|
|
int32_t
|
|
maxInBytes, maxOutBytes, maxBytesPerUChar,
|
|
maxInUChars, maxOutUChars, maxUCharsPerByte;
|
|
} CnvExtData;
|
|
|
|
NewConverter *
|
|
CnvExtOpen(UCMFile *ucm) {
|
|
CnvExtData *extData;
|
|
|
|
extData=(CnvExtData *)uprv_malloc(sizeof(CnvExtData));
|
|
if(extData==NULL) {
|
|
printf("out of memory\n");
|
|
exit(U_MEMORY_ALLOCATION_ERROR);
|
|
}
|
|
uprv_memset(extData, 0, sizeof(CnvExtData));
|
|
|
|
extData->ucm=ucm; /* aliased, not owned */
|
|
|
|
extData->newConverter.close=CnvExtClose;
|
|
extData->newConverter.isValid=CnvExtIsValid;
|
|
extData->newConverter.addTable=CnvExtAddTable;
|
|
extData->newConverter.write=CnvExtWrite;
|
|
return &extData->newConverter;
|
|
}
|
|
|
|
static void
|
|
CnvExtClose(NewConverter *cnvData) {
|
|
CnvExtData *extData=(CnvExtData *)cnvData;
|
|
if(extData!=NULL) {
|
|
utm_close(extData->toUTable);
|
|
utm_close(extData->toUUChars);
|
|
utm_close(extData->fromUTableUChars);
|
|
utm_close(extData->fromUTableValues);
|
|
utm_close(extData->fromUBytes);
|
|
uprv_free(extData);
|
|
}
|
|
}
|
|
|
|
/* we do not expect this to be called */
|
|
static UBool
|
|
CnvExtIsValid(NewConverter *cnvData,
|
|
const uint8_t *bytes, int32_t length) {
|
|
return FALSE;
|
|
}
|
|
|
|
static uint32_t
|
|
CnvExtWrite(NewConverter *cnvData, const UConverterStaticData *staticData,
|
|
UNewDataMemory *pData, int32_t tableType) {
|
|
CnvExtData *extData=(CnvExtData *)cnvData;
|
|
int32_t length, top, headerSize;
|
|
|
|
int32_t indexes[UCNV_EXT_INDEXES_MIN_LENGTH]={ 0 };
|
|
|
|
if(tableType&TABLE_BASE) {
|
|
headerSize=0;
|
|
} else {
|
|
_MBCSHeader header={ { 0, 0, 0, 0 }, 0, 0, 0, 0, 0, 0, 0 };
|
|
|
|
/* write the header and base table name for an extension-only table */
|
|
length=(int32_t)uprv_strlen(extData->ucm->baseName)+1;
|
|
while(length&3) {
|
|
/* add padding */
|
|
extData->ucm->baseName[length++]=0;
|
|
}
|
|
|
|
headerSize=MBCS_HEADER_V4_LENGTH*4+length;
|
|
|
|
/* fill the header */
|
|
header.version[0]=4;
|
|
header.version[1]=2;
|
|
header.flags=(uint32_t)((headerSize<<8)|MBCS_OUTPUT_EXT_ONLY);
|
|
|
|
/* write the header and the base table name */
|
|
udata_writeBlock(pData, &header, MBCS_HEADER_V4_LENGTH*4);
|
|
udata_writeBlock(pData, extData->ucm->baseName, length);
|
|
}
|
|
|
|
/* fill indexes[] - offsets/indexes are in units of the target array */
|
|
top=0;
|
|
|
|
indexes[UCNV_EXT_INDEXES_LENGTH]=length=UCNV_EXT_INDEXES_MIN_LENGTH;
|
|
top+=length*4;
|
|
|
|
indexes[UCNV_EXT_TO_U_INDEX]=top;
|
|
indexes[UCNV_EXT_TO_U_LENGTH]=length=utm_countItems(extData->toUTable);
|
|
top+=length*4;
|
|
|
|
indexes[UCNV_EXT_TO_U_UCHARS_INDEX]=top;
|
|
indexes[UCNV_EXT_TO_U_UCHARS_LENGTH]=length=utm_countItems(extData->toUUChars);
|
|
top+=length*2;
|
|
|
|
indexes[UCNV_EXT_FROM_U_UCHARS_INDEX]=top;
|
|
length=utm_countItems(extData->fromUTableUChars);
|
|
top+=length*2;
|
|
|
|
if(top&3) {
|
|
/* add padding */
|
|
*((UChar *)utm_alloc(extData->fromUTableUChars))=0;
|
|
*((uint32_t *)utm_alloc(extData->fromUTableValues))=0;
|
|
++length;
|
|
top+=2;
|
|
}
|
|
indexes[UCNV_EXT_FROM_U_LENGTH]=length;
|
|
|
|
indexes[UCNV_EXT_FROM_U_VALUES_INDEX]=top;
|
|
top+=length*4;
|
|
|
|
indexes[UCNV_EXT_FROM_U_BYTES_INDEX]=top;
|
|
length=utm_countItems(extData->fromUBytes);
|
|
top+=length;
|
|
|
|
if(top&1) {
|
|
/* add padding */
|
|
*((uint8_t *)utm_alloc(extData->fromUBytes))=0;
|
|
++length;
|
|
++top;
|
|
}
|
|
indexes[UCNV_EXT_FROM_U_BYTES_LENGTH]=length;
|
|
|
|
indexes[UCNV_EXT_FROM_U_STAGE_12_INDEX]=top;
|
|
indexes[UCNV_EXT_FROM_U_STAGE_1_LENGTH]=length=extData->stage1Top;
|
|
indexes[UCNV_EXT_FROM_U_STAGE_12_LENGTH]=length+=extData->stage2Top;
|
|
top+=length*2;
|
|
|
|
indexes[UCNV_EXT_FROM_U_STAGE_3_INDEX]=top;
|
|
length=extData->stage3Top;
|
|
top+=length*2;
|
|
|
|
if(top&3) {
|
|
/* add padding */
|
|
extData->stage3[extData->stage3Top++]=0;
|
|
++length;
|
|
top+=2;
|
|
}
|
|
indexes[UCNV_EXT_FROM_U_STAGE_3_LENGTH]=length;
|
|
|
|
indexes[UCNV_EXT_FROM_U_STAGE_3B_INDEX]=top;
|
|
indexes[UCNV_EXT_FROM_U_STAGE_3B_LENGTH]=length=extData->stage3bTop;
|
|
top+=length*4;
|
|
|
|
indexes[UCNV_EXT_SIZE]=top;
|
|
|
|
/* statistics */
|
|
indexes[UCNV_EXT_COUNT_BYTES]=
|
|
(extData->maxInBytes<<16)|
|
|
(extData->maxOutBytes<<8)|
|
|
extData->maxBytesPerUChar;
|
|
indexes[UCNV_EXT_COUNT_UCHARS]=
|
|
(extData->maxInUChars<<16)|
|
|
(extData->maxOutUChars<<8)|
|
|
extData->maxUCharsPerByte;
|
|
|
|
indexes[UCNV_EXT_FLAGS]=extData->ucm->ext->unicodeMask;
|
|
|
|
/* write the extension data */
|
|
udata_writeBlock(pData, indexes, sizeof(indexes));
|
|
udata_writeBlock(pData, utm_getStart(extData->toUTable), indexes[UCNV_EXT_TO_U_LENGTH]*4);
|
|
udata_writeBlock(pData, utm_getStart(extData->toUUChars), indexes[UCNV_EXT_TO_U_UCHARS_LENGTH]*2);
|
|
|
|
udata_writeBlock(pData, utm_getStart(extData->fromUTableUChars), indexes[UCNV_EXT_FROM_U_LENGTH]*2);
|
|
udata_writeBlock(pData, utm_getStart(extData->fromUTableValues), indexes[UCNV_EXT_FROM_U_LENGTH]*4);
|
|
udata_writeBlock(pData, utm_getStart(extData->fromUBytes), indexes[UCNV_EXT_FROM_U_BYTES_LENGTH]);
|
|
|
|
udata_writeBlock(pData, extData->stage1, extData->stage1Top*2);
|
|
udata_writeBlock(pData, extData->stage2, extData->stage2Top*2);
|
|
udata_writeBlock(pData, extData->stage3, extData->stage3Top*2);
|
|
udata_writeBlock(pData, extData->stage3b, extData->stage3bTop*4);
|
|
|
|
#if 0
|
|
{
|
|
int32_t i, j;
|
|
|
|
length=extData->stage1Top;
|
|
printf("\nstage1[%x]:\n", length);
|
|
|
|
for(i=0; i<length; ++i) {
|
|
if(extData->stage1[i]!=length) {
|
|
printf("stage1[%04x]=%04x\n", i, extData->stage1[i]);
|
|
}
|
|
}
|
|
|
|
j=length;
|
|
length=extData->stage2Top;
|
|
printf("\nstage2[%x]:\n", length);
|
|
|
|
for(i=0; i<length; ++j, ++i) {
|
|
if(extData->stage2[i]!=0) {
|
|
printf("stage12[%04x]=%04x\n", j, extData->stage2[i]);
|
|
}
|
|
}
|
|
|
|
length=extData->stage3Top;
|
|
printf("\nstage3[%x]:\n", length);
|
|
|
|
for(i=0; i<length; ++i) {
|
|
if(extData->stage3[i]!=0) {
|
|
printf("stage3[%04x]=%04x\n", i, extData->stage3[i]);
|
|
}
|
|
}
|
|
|
|
length=extData->stage3bTop;
|
|
printf("\nstage3b[%x]:\n", length);
|
|
|
|
for(i=0; i<length; ++i) {
|
|
if(extData->stage3b[i]!=0) {
|
|
printf("stage3b[%04x]=%08x\n", i, extData->stage3b[i]);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if(VERBOSE) {
|
|
printf("size of extension data: %ld\n", (long)top);
|
|
}
|
|
|
|
/* return the number of bytes that should have been written */
|
|
return (uint32_t)(headerSize+top);
|
|
}
|
|
|
|
/* to Unicode --------------------------------------------------------------- */
|
|
|
|
/*
|
|
* Remove fromUnicode fallbacks and SUB mappings which are irrelevant for
|
|
* the toUnicode table.
|
|
* This includes mappings with MBCS_FROM_U_EXT_FLAG which were suitable
|
|
* for the base toUnicode table but not for the base fromUnicode table.
|
|
* The table must be sorted.
|
|
* Modifies previous data in the reverseMap.
|
|
*/
|
|
static int32_t
|
|
reduceToUMappings(UCMTable *table) {
|
|
UCMapping *mappings;
|
|
int32_t *map;
|
|
int32_t i, j, count;
|
|
int8_t flag;
|
|
|
|
mappings=table->mappings;
|
|
map=table->reverseMap;
|
|
count=table->mappingsLength;
|
|
|
|
/* leave the map alone for the initial mappings with desired flags */
|
|
for(i=j=0; i<count; ++i) {
|
|
flag=mappings[map[i]].f;
|
|
if(flag!=0 && flag!=3) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* reduce from here to the rest */
|
|
for(j=i; i<count; ++i) {
|
|
flag=mappings[map[i]].f;
|
|
if(flag==0 || flag==3) {
|
|
map[j++]=map[i];
|
|
}
|
|
}
|
|
|
|
return j;
|
|
}
|
|
|
|
static uint32_t
|
|
getToUnicodeValue(CnvExtData *extData, UCMTable *table, UCMapping *m) {
|
|
UChar32 *u32;
|
|
UChar *u;
|
|
uint32_t value;
|
|
int32_t u16Length, ratio;
|
|
UErrorCode errorCode;
|
|
|
|
/* write the Unicode result code point or string index */
|
|
if(m->uLen==1) {
|
|
u16Length=U16_LENGTH(m->u);
|
|
value=(uint32_t)(UCNV_EXT_TO_U_MIN_CODE_POINT+m->u);
|
|
} else {
|
|
/* the parser enforces m->uLen<=UCNV_EXT_MAX_UCHARS */
|
|
|
|
/* get the result code point string and its 16-bit string length */
|
|
u32=UCM_GET_CODE_POINTS(table, m);
|
|
errorCode=U_ZERO_ERROR;
|
|
u_strFromUTF32(NULL, 0, &u16Length, u32, m->uLen, &errorCode);
|
|
if(U_FAILURE(errorCode) && errorCode!=U_BUFFER_OVERFLOW_ERROR) {
|
|
exit(errorCode);
|
|
}
|
|
|
|
/* allocate it and put its length and index into the value */
|
|
value=
|
|
(((uint32_t)u16Length+UCNV_EXT_TO_U_LENGTH_OFFSET)<<UCNV_EXT_TO_U_LENGTH_SHIFT)|
|
|
((uint32_t)utm_countItems(extData->toUUChars));
|
|
u=utm_allocN(extData->toUUChars, u16Length);
|
|
|
|
/* write the result 16-bit string */
|
|
errorCode=U_ZERO_ERROR;
|
|
u_strFromUTF32(u, u16Length, NULL, u32, m->uLen, &errorCode);
|
|
if(U_FAILURE(errorCode) && errorCode!=U_BUFFER_OVERFLOW_ERROR) {
|
|
exit(errorCode);
|
|
}
|
|
}
|
|
if(m->f==0) {
|
|
value|=UCNV_EXT_TO_U_ROUNDTRIP_FLAG;
|
|
}
|
|
|
|
/* update statistics */
|
|
if(m->bLen>extData->maxInBytes) {
|
|
extData->maxInBytes=m->bLen;
|
|
}
|
|
if(u16Length>extData->maxOutUChars) {
|
|
extData->maxOutUChars=u16Length;
|
|
}
|
|
|
|
ratio=(u16Length+(m->bLen-1))/m->bLen;
|
|
if(ratio>extData->maxUCharsPerByte) {
|
|
extData->maxUCharsPerByte=ratio;
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
/*
|
|
* Recursive toUTable generator core function.
|
|
* Preconditions:
|
|
* - start<limit (There is at least one mapping.)
|
|
* - The mappings are sorted lexically. (Access is through the reverseMap.)
|
|
* - All mappings between start and limit have input sequences that share
|
|
* the same prefix of unitIndex length, and therefore all of these sequences
|
|
* are at least unitIndex+1 long.
|
|
* - There are only relevant mappings available through the reverseMap,
|
|
* see reduceToUMappings().
|
|
*
|
|
* One function invocation generates one section table.
|
|
*
|
|
* Steps:
|
|
* 1. Count the number of unique unit values and get the low/high unit values
|
|
* that occur at unitIndex.
|
|
* 2. Allocate the section table with possible optimization for linear access.
|
|
* 3. Write temporary version of the section table with start indexes of
|
|
* subsections, each corresponding to one unit value at unitIndex.
|
|
* 4. Iterate through the table once more, and depending on the subsection length:
|
|
* 0: write 0 as a result value (unused byte in linear-access section table)
|
|
* >0: if there is one mapping with an input unit sequence of unitIndex+1
|
|
* then defaultValue=compute the mapping result for this whole sequence
|
|
* else defaultValue=0
|
|
*
|
|
* recurse into the subsection
|
|
*/
|
|
static UBool
|
|
generateToUTable(CnvExtData *extData, UCMTable *table,
|
|
int32_t start, int32_t limit, int32_t unitIndex,
|
|
uint32_t defaultValue) {
|
|
UCMapping *mappings, *m;
|
|
int32_t *map;
|
|
int32_t i, j, uniqueCount, count, subStart, subLimit;
|
|
|
|
uint8_t *bytes;
|
|
int32_t low, high, prev;
|
|
|
|
uint32_t *section;
|
|
|
|
mappings=table->mappings;
|
|
map=table->reverseMap;
|
|
|
|
/* step 1: examine the input units; set low, high, uniqueCount */
|
|
m=mappings+map[start];
|
|
bytes=UCM_GET_BYTES(table, m);
|
|
low=bytes[unitIndex];
|
|
uniqueCount=1;
|
|
|
|
prev=high=low;
|
|
for(i=start+1; i<limit; ++i) {
|
|
m=mappings+map[i];
|
|
bytes=UCM_GET_BYTES(table, m);
|
|
high=bytes[unitIndex];
|
|
|
|
if(high!=prev) {
|
|
prev=high;
|
|
++uniqueCount;
|
|
}
|
|
}
|
|
|
|
/* step 2: allocate the section; set count, section */
|
|
count=(high-low)+1;
|
|
if(count<0x100 && (unitIndex==0 || uniqueCount>=(3*count)/4)) {
|
|
/*
|
|
* for the root table and for fairly full tables:
|
|
* allocate for direct, linear array access
|
|
* by keeping count, to write an entry for each unit value
|
|
* from low to high
|
|
* exception: use a compact table if count==0x100 because
|
|
* that cannot be encoded in the length byte
|
|
*/
|
|
} else {
|
|
count=uniqueCount;
|
|
}
|
|
|
|
if(count>=0x100) {
|
|
fprintf(stderr, "error: toUnicode extension table section overflow: %ld section entries\n", (long)count);
|
|
return FALSE;
|
|
}
|
|
|
|
/* allocate the section: 1 entry for the header + count for the items */
|
|
section=(uint32_t *)utm_allocN(extData->toUTable, 1+count);
|
|
|
|
/* write the section header */
|
|
*section++=((uint32_t)count<<UCNV_EXT_TO_U_BYTE_SHIFT)|defaultValue;
|
|
|
|
/* step 3: write temporary section table with subsection starts */
|
|
prev=low-1; /* just before low to prevent empty subsections before low */
|
|
j=0; /* section table index */
|
|
for(i=start; i<limit; ++i) {
|
|
m=mappings+map[i];
|
|
bytes=UCM_GET_BYTES(table, m);
|
|
high=bytes[unitIndex];
|
|
|
|
if(high!=prev) {
|
|
/* start of a new subsection for unit high */
|
|
if(count>uniqueCount) {
|
|
/* write empty subsections for unused units in a linear table */
|
|
while(++prev<high) {
|
|
section[j++]=((uint32_t)prev<<UCNV_EXT_TO_U_BYTE_SHIFT)|(uint32_t)i;
|
|
}
|
|
} else {
|
|
prev=high;
|
|
}
|
|
|
|
/* write the entry with the subsection start */
|
|
section[j++]=((uint32_t)high<<UCNV_EXT_TO_U_BYTE_SHIFT)|(uint32_t)i;
|
|
}
|
|
}
|
|
/* assert(j==count) */
|
|
|
|
/* step 4: recurse and write results */
|
|
subLimit=UCNV_EXT_TO_U_GET_VALUE(section[0]);
|
|
for(j=0; j<count; ++j) {
|
|
subStart=subLimit;
|
|
subLimit= (j+1)<count ? UCNV_EXT_TO_U_GET_VALUE(section[j+1]) : limit;
|
|
|
|
/* remove the subStart temporary value */
|
|
section[j]&=~UCNV_EXT_TO_U_VALUE_MASK;
|
|
|
|
if(subStart==subLimit) {
|
|
/* leave the value zero: empty subsection for unused unit in a linear table */
|
|
continue;
|
|
}
|
|
|
|
/* see if there is exactly one input unit sequence of length unitIndex+1 */
|
|
defaultValue=0;
|
|
m=mappings+map[subStart];
|
|
if(m->bLen==unitIndex+1) {
|
|
/* do not include this in generateToUTable() */
|
|
++subStart;
|
|
|
|
if(subStart<subLimit && mappings[map[subStart]].bLen==unitIndex+1) {
|
|
/* print error for multiple same-input-sequence mappings */
|
|
fprintf(stderr, "error: multiple mappings from same bytes\n");
|
|
ucm_printMapping(table, m, stderr);
|
|
ucm_printMapping(table, mappings+map[subStart], stderr);
|
|
return FALSE;
|
|
}
|
|
|
|
defaultValue=getToUnicodeValue(extData, table, m);
|
|
}
|
|
|
|
if(subStart==subLimit) {
|
|
/* write the result for the input sequence ending here */
|
|
section[j]|=defaultValue;
|
|
} else {
|
|
/* write the index to the subsection table */
|
|
section[j]|=(uint32_t)utm_countItems(extData->toUTable);
|
|
|
|
/* recurse */
|
|
if(!generateToUTable(extData, table, subStart, subLimit, unitIndex+1, defaultValue)) {
|
|
return FALSE;
|
|
}
|
|
}
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
/*
|
|
* Generate the toUTable and toUUChars from the input table.
|
|
* The input table must be sorted, and all precision flags must be 0..3.
|
|
* This function will modify the table's reverseMap.
|
|
*/
|
|
static UBool
|
|
makeToUTable(CnvExtData *extData, UCMTable *table) {
|
|
int32_t toUCount;
|
|
|
|
toUCount=reduceToUMappings(table);
|
|
|
|
extData->toUTable=utm_open("cnv extension toUTable", 0x10000, UCNV_EXT_TO_U_MIN_CODE_POINT, 4);
|
|
extData->toUUChars=utm_open("cnv extension toUUChars", 0x10000, UCNV_EXT_TO_U_INDEX_MASK+1, 2);
|
|
|
|
return generateToUTable(extData, table, 0, toUCount, 0, 0);
|
|
}
|
|
|
|
/* from Unicode ------------------------------------------------------------- */
|
|
|
|
/*
|
|
* preprocessing:
|
|
* rebuild reverseMap with mapping indexes for mappings relevant for from Unicode
|
|
* change each Unicode string to encode all but the first code point in 16-bit form
|
|
*
|
|
* generation:
|
|
* for each unique code point
|
|
* write an entry in the 3-stage trie
|
|
* check that there is only one single-code point sequence
|
|
* start recursion for following 16-bit input units
|
|
*/
|
|
|
|
/*
|
|
* Remove toUnicode fallbacks and non-<subchar1> SUB mappings
|
|
* which are irrelevant for the fromUnicode extension table.
|
|
* Remove MBCS_FROM_U_EXT_FLAG bits.
|
|
* Overwrite the reverseMap with an index array to the relevant mappings.
|
|
* Modify the code point sequences to a generator-friendly format where
|
|
* the first code points remains unchanged but the following are recoded
|
|
* into 16-bit Unicode string form.
|
|
* The table must be sorted.
|
|
* Destroys previous data in the reverseMap.
|
|
*/
|
|
static int32_t
|
|
prepareFromUMappings(UCMTable *table) {
|
|
UCMapping *mappings, *m;
|
|
int32_t *map;
|
|
int32_t i, j, count;
|
|
int8_t flag;
|
|
|
|
mappings=table->mappings;
|
|
map=table->reverseMap;
|
|
count=table->mappingsLength;
|
|
|
|
/*
|
|
* we do not go through the map on input because the mappings are
|
|
* sorted lexically
|
|
*/
|
|
m=mappings;
|
|
|
|
for(i=j=0; i<count; ++m, ++i) {
|
|
flag=m->f;
|
|
if(flag>=0) {
|
|
flag&=MBCS_FROM_U_EXT_MASK;
|
|
m->f=flag;
|
|
}
|
|
if(flag==0 || flag==1 || (flag==2 && m->bLen==1) || flag==4) {
|
|
map[j++]=i;
|
|
|
|
if(m->uLen>1) {
|
|
/* recode all but the first code point to 16-bit Unicode */
|
|
UChar32 *u32;
|
|
UChar *u;
|
|
UChar32 c;
|
|
int32_t q, r;
|
|
|
|
u32=UCM_GET_CODE_POINTS(table, m);
|
|
u=(UChar *)u32; /* destructive in-place recoding */
|
|
for(r=2, q=1; q<m->uLen; ++q) {
|
|
c=u32[q];
|
|
U16_APPEND_UNSAFE(u, r, c);
|
|
}
|
|
|
|
/* counts the first code point always at 2 - the first 16-bit unit is at 16-bit index 2 */
|
|
m->uLen=(int8_t)r;
|
|
}
|
|
}
|
|
}
|
|
|
|
return j;
|
|
}
|
|
|
|
static uint32_t
|
|
getFromUBytesValue(CnvExtData *extData, UCMTable *table, UCMapping *m) {
|
|
uint8_t *bytes, *resultBytes;
|
|
uint32_t value;
|
|
int32_t u16Length, ratio;
|
|
|
|
if(m->f==2) {
|
|
/*
|
|
* no mapping, <subchar1> preferred
|
|
*
|
|
* no need to count in statistics because the subchars are already
|
|
* counted for maxOutBytes and maxBytesPerUChar in UConverterStaticData,
|
|
* and this non-mapping does not count for maxInUChars which are always
|
|
* trivially at least two if counting unmappable supplementary code points
|
|
*/
|
|
return UCNV_EXT_FROM_U_SUBCHAR1;
|
|
}
|
|
|
|
bytes=UCM_GET_BYTES(table, m);
|
|
value=0;
|
|
switch(m->bLen) {
|
|
/* 1..3: store the bytes in the value word */
|
|
case 3:
|
|
value=((uint32_t)*bytes++)<<16;
|
|
case 2:
|
|
value|=((uint32_t)*bytes++)<<8;
|
|
case 1:
|
|
value|=*bytes;
|
|
break;
|
|
default:
|
|
/* the parser enforces m->bLen<=UCNV_EXT_MAX_BYTES */
|
|
/* store the bytes in fromUBytes[] and the index in the value word */
|
|
value=(uint32_t)utm_countItems(extData->fromUBytes);
|
|
resultBytes=utm_allocN(extData->fromUBytes, m->bLen);
|
|
uprv_memcpy(resultBytes, bytes, m->bLen);
|
|
break;
|
|
}
|
|
value|=(uint32_t)m->bLen<<UCNV_EXT_FROM_U_LENGTH_SHIFT;
|
|
if(m->f==0) {
|
|
value|=UCNV_EXT_FROM_U_ROUNDTRIP_FLAG;
|
|
} else if(m->f==4) {
|
|
value|=UCNV_EXT_FROM_U_GOOD_ONE_WAY_FLAG;
|
|
}
|
|
|
|
/* calculate the real UTF-16 length (see recoding in prepareFromUMappings()) */
|
|
if(m->uLen==1) {
|
|
u16Length=U16_LENGTH(m->u);
|
|
} else {
|
|
u16Length=U16_LENGTH(UCM_GET_CODE_POINTS(table, m)[0])+(m->uLen-2);
|
|
}
|
|
|
|
/* update statistics */
|
|
if(u16Length>extData->maxInUChars) {
|
|
extData->maxInUChars=u16Length;
|
|
}
|
|
if(m->bLen>extData->maxOutBytes) {
|
|
extData->maxOutBytes=m->bLen;
|
|
}
|
|
|
|
ratio=(m->bLen+(u16Length-1))/u16Length;
|
|
if(ratio>extData->maxBytesPerUChar) {
|
|
extData->maxBytesPerUChar=ratio;
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
/*
|
|
* works like generateToUTable(), except that the
|
|
* output section consists of two arrays, one for input UChars and one
|
|
* for result values
|
|
*
|
|
* also, fromUTable sections are always stored in a compact form for
|
|
* access via binary search
|
|
*/
|
|
static UBool
|
|
generateFromUTable(CnvExtData *extData, UCMTable *table,
|
|
int32_t start, int32_t limit, int32_t unitIndex,
|
|
uint32_t defaultValue) {
|
|
UCMapping *mappings, *m;
|
|
int32_t *map;
|
|
int32_t i, j, uniqueCount, count, subStart, subLimit;
|
|
|
|
UChar *uchars;
|
|
UChar32 low, high, prev;
|
|
|
|
UChar *sectionUChars;
|
|
uint32_t *sectionValues;
|
|
|
|
mappings=table->mappings;
|
|
map=table->reverseMap;
|
|
|
|
/* step 1: examine the input units; set low, high, uniqueCount */
|
|
m=mappings+map[start];
|
|
uchars=(UChar *)UCM_GET_CODE_POINTS(table, m);
|
|
low=uchars[unitIndex];
|
|
uniqueCount=1;
|
|
|
|
prev=high=low;
|
|
for(i=start+1; i<limit; ++i) {
|
|
m=mappings+map[i];
|
|
uchars=(UChar *)UCM_GET_CODE_POINTS(table, m);
|
|
high=uchars[unitIndex];
|
|
|
|
if(high!=prev) {
|
|
prev=high;
|
|
++uniqueCount;
|
|
}
|
|
}
|
|
|
|
/* step 2: allocate the section; set count, section */
|
|
/* the fromUTable always stores for access via binary search */
|
|
count=uniqueCount;
|
|
|
|
/* allocate the section: 1 entry for the header + count for the items */
|
|
sectionUChars=(UChar *)utm_allocN(extData->fromUTableUChars, 1+count);
|
|
sectionValues=(uint32_t *)utm_allocN(extData->fromUTableValues, 1+count);
|
|
|
|
/* write the section header */
|
|
*sectionUChars++=(UChar)count;
|
|
*sectionValues++=defaultValue;
|
|
|
|
/* step 3: write temporary section table with subsection starts */
|
|
prev=low-1; /* just before low to prevent empty subsections before low */
|
|
j=0; /* section table index */
|
|
for(i=start; i<limit; ++i) {
|
|
m=mappings+map[i];
|
|
uchars=(UChar *)UCM_GET_CODE_POINTS(table, m);
|
|
high=uchars[unitIndex];
|
|
|
|
if(high!=prev) {
|
|
/* start of a new subsection for unit high */
|
|
prev=high;
|
|
|
|
/* write the entry with the subsection start */
|
|
sectionUChars[j]=(UChar)high;
|
|
sectionValues[j]=(uint32_t)i;
|
|
++j;
|
|
}
|
|
}
|
|
/* assert(j==count) */
|
|
|
|
/* step 4: recurse and write results */
|
|
subLimit=(int32_t)(sectionValues[0]);
|
|
for(j=0; j<count; ++j) {
|
|
subStart=subLimit;
|
|
subLimit= (j+1)<count ? (int32_t)(sectionValues[j+1]) : limit;
|
|
|
|
/* see if there is exactly one input unit sequence of length unitIndex+1 */
|
|
defaultValue=0;
|
|
m=mappings+map[subStart];
|
|
if(m->uLen==unitIndex+1) {
|
|
/* do not include this in generateToUTable() */
|
|
++subStart;
|
|
|
|
if(subStart<subLimit && mappings[map[subStart]].uLen==unitIndex+1) {
|
|
/* print error for multiple same-input-sequence mappings */
|
|
fprintf(stderr, "error: multiple mappings from same Unicode code points\n");
|
|
ucm_printMapping(table, m, stderr);
|
|
ucm_printMapping(table, mappings+map[subStart], stderr);
|
|
return FALSE;
|
|
}
|
|
|
|
defaultValue=getFromUBytesValue(extData, table, m);
|
|
}
|
|
|
|
if(subStart==subLimit) {
|
|
/* write the result for the input sequence ending here */
|
|
sectionValues[j]=defaultValue;
|
|
} else {
|
|
/* write the index to the subsection table */
|
|
sectionValues[j]=(uint32_t)utm_countItems(extData->fromUTableValues);
|
|
|
|
/* recurse */
|
|
if(!generateFromUTable(extData, table, subStart, subLimit, unitIndex+1, defaultValue)) {
|
|
return FALSE;
|
|
}
|
|
}
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
/*
|
|
* add entries to the fromUnicode trie,
|
|
* assume to be called with code points in ascending order
|
|
* and use that to build the trie in precompacted form
|
|
*/
|
|
static void
|
|
addFromUTrieEntry(CnvExtData *extData, UChar32 c, uint32_t value) {
|
|
int32_t i1, i2, i3, i3b, nextOffset, min, newBlock;
|
|
|
|
if(value==0) {
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* compute the index for each stage,
|
|
* allocate a stage block if necessary,
|
|
* and write the stage value
|
|
*/
|
|
i1=c>>10;
|
|
if(i1>=extData->stage1Top) {
|
|
extData->stage1Top=i1+1;
|
|
}
|
|
|
|
nextOffset=(c>>4)&0x3f;
|
|
|
|
if(extData->stage1[i1]==0) {
|
|
/* allocate another block in stage 2; overlap with the previous block */
|
|
newBlock=extData->stage2Top;
|
|
min=newBlock-nextOffset; /* minimum block start with overlap */
|
|
while(min<newBlock && extData->stage2[newBlock-1]==0) {
|
|
--newBlock;
|
|
}
|
|
|
|
extData->stage1[i1]=(uint16_t)newBlock;
|
|
extData->stage2Top=newBlock+MBCS_STAGE_2_BLOCK_SIZE;
|
|
if(extData->stage2Top>UPRV_LENGTHOF(extData->stage2)) {
|
|
fprintf(stderr, "error: too many stage 2 entries at U+%04x\n", (int)c);
|
|
exit(U_MEMORY_ALLOCATION_ERROR);
|
|
}
|
|
}
|
|
|
|
i2=extData->stage1[i1]+nextOffset;
|
|
nextOffset=c&0xf;
|
|
|
|
if(extData->stage2[i2]==0) {
|
|
/* allocate another block in stage 3; overlap with the previous block */
|
|
newBlock=extData->stage3Top;
|
|
min=newBlock-nextOffset; /* minimum block start with overlap */
|
|
while(min<newBlock && extData->stage3[newBlock-1]==0) {
|
|
--newBlock;
|
|
}
|
|
|
|
/* round up to a multiple of stage 3 granularity >1 (similar to utrie.c) */
|
|
newBlock=(newBlock+(UCNV_EXT_STAGE_3_GRANULARITY-1))&~(UCNV_EXT_STAGE_3_GRANULARITY-1);
|
|
extData->stage2[i2]=(uint16_t)(newBlock>>UCNV_EXT_STAGE_2_LEFT_SHIFT);
|
|
|
|
extData->stage3Top=newBlock+MBCS_STAGE_3_BLOCK_SIZE;
|
|
if(extData->stage3Top>UPRV_LENGTHOF(extData->stage3)) {
|
|
fprintf(stderr, "error: too many stage 3 entries at U+%04x\n", (int)c);
|
|
exit(U_MEMORY_ALLOCATION_ERROR);
|
|
}
|
|
}
|
|
|
|
i3=((int32_t)extData->stage2[i2]<<UCNV_EXT_STAGE_2_LEFT_SHIFT)+nextOffset;
|
|
/*
|
|
* assume extData->stage3[i3]==0 because we get
|
|
* code points in strictly ascending order
|
|
*/
|
|
|
|
if(value==UCNV_EXT_FROM_U_SUBCHAR1) {
|
|
/* <subchar1> SUB mapping, see getFromUBytesValue() and prepareFromUMappings() */
|
|
extData->stage3[i3]=1;
|
|
|
|
/*
|
|
* precompaction is not optimal for <subchar1> |2 mappings because
|
|
* stage3 values for them are all the same, unlike for other mappings
|
|
* which all have unique values;
|
|
* use a simple compaction of reusing a whole block filled with these
|
|
* mappings
|
|
*/
|
|
|
|
/* is the entire block filled with <subchar1> |2 mappings? */
|
|
if(nextOffset==MBCS_STAGE_3_BLOCK_SIZE-1) {
|
|
for(min=i3-nextOffset;
|
|
min<i3 && extData->stage3[min]==1;
|
|
++min) {}
|
|
|
|
if(min==i3) {
|
|
/* the entire block is filled with these mappings */
|
|
if(extData->stage3Sub1Block!=0) {
|
|
/* point to the previous such block and remove this block from stage3 */
|
|
extData->stage2[i2]=extData->stage3Sub1Block;
|
|
extData->stage3Top-=MBCS_STAGE_3_BLOCK_SIZE;
|
|
uprv_memset(extData->stage3+extData->stage3Top, 0, MBCS_STAGE_3_BLOCK_SIZE*2);
|
|
} else {
|
|
/* remember this block's stage2 entry */
|
|
extData->stage3Sub1Block=extData->stage2[i2];
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
if((i3b=extData->stage3bTop++)>=UPRV_LENGTHOF(extData->stage3b)) {
|
|
fprintf(stderr, "error: too many stage 3b entries at U+%04x\n", (int)c);
|
|
exit(U_MEMORY_ALLOCATION_ERROR);
|
|
}
|
|
|
|
/* roundtrip or fallback mapping */
|
|
extData->stage3[i3]=(uint16_t)i3b;
|
|
extData->stage3b[i3b]=value;
|
|
}
|
|
}
|
|
|
|
static UBool
|
|
generateFromUTrie(CnvExtData *extData, UCMTable *table, int32_t mapLength) {
|
|
UCMapping *mappings, *m;
|
|
int32_t *map;
|
|
uint32_t value;
|
|
int32_t subStart, subLimit;
|
|
|
|
UChar32 *codePoints;
|
|
UChar32 c, next;
|
|
|
|
if(mapLength==0) {
|
|
return TRUE;
|
|
}
|
|
|
|
mappings=table->mappings;
|
|
map=table->reverseMap;
|
|
|
|
/*
|
|
* iterate over same-initial-code point mappings,
|
|
* enter the initial code point into the trie,
|
|
* and start a recursion on the corresponding mappings section
|
|
* with generateFromUTable()
|
|
*/
|
|
m=mappings+map[0];
|
|
codePoints=UCM_GET_CODE_POINTS(table, m);
|
|
next=codePoints[0];
|
|
subLimit=0;
|
|
while(subLimit<mapLength) {
|
|
/* get a new subsection of mappings starting with the same code point */
|
|
subStart=subLimit;
|
|
c=next;
|
|
while(next==c && ++subLimit<mapLength) {
|
|
m=mappings+map[subLimit];
|
|
codePoints=UCM_GET_CODE_POINTS(table, m);
|
|
next=codePoints[0];
|
|
}
|
|
|
|
/*
|
|
* compute the value for this code point;
|
|
* if there is a mapping for this code point alone, it is at subStart
|
|
* because the table is sorted lexically
|
|
*/
|
|
value=0;
|
|
m=mappings+map[subStart];
|
|
codePoints=UCM_GET_CODE_POINTS(table, m);
|
|
if(m->uLen==1) {
|
|
/* do not include this in generateFromUTable() */
|
|
++subStart;
|
|
|
|
if(subStart<subLimit && mappings[map[subStart]].uLen==1) {
|
|
/* print error for multiple same-input-sequence mappings */
|
|
fprintf(stderr, "error: multiple mappings from same Unicode code points\n");
|
|
ucm_printMapping(table, m, stderr);
|
|
ucm_printMapping(table, mappings+map[subStart], stderr);
|
|
return FALSE;
|
|
}
|
|
|
|
value=getFromUBytesValue(extData, table, m);
|
|
}
|
|
|
|
if(subStart==subLimit) {
|
|
/* write the result for this one code point */
|
|
addFromUTrieEntry(extData, c, value);
|
|
} else {
|
|
/* write the index to the subsection table */
|
|
addFromUTrieEntry(extData, c, (uint32_t)utm_countItems(extData->fromUTableValues));
|
|
|
|
/* recurse, starting from 16-bit-unit index 2, the first 16-bit unit after c */
|
|
if(!generateFromUTable(extData, table, subStart, subLimit, 2, value)) {
|
|
return FALSE;
|
|
}
|
|
}
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
/*
|
|
* Generate the fromU data structures from the input table.
|
|
* The input table must be sorted, and all precision flags must be 0..3.
|
|
* This function will modify the table's reverseMap.
|
|
*/
|
|
static UBool
|
|
makeFromUTable(CnvExtData *extData, UCMTable *table) {
|
|
uint16_t *stage1;
|
|
int32_t i, stage1Top, fromUCount;
|
|
|
|
fromUCount=prepareFromUMappings(table);
|
|
|
|
extData->fromUTableUChars=utm_open("cnv extension fromUTableUChars", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 2);
|
|
extData->fromUTableValues=utm_open("cnv extension fromUTableValues", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 4);
|
|
extData->fromUBytes=utm_open("cnv extension fromUBytes", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 1);
|
|
|
|
/* allocate all-unassigned stage blocks */
|
|
extData->stage2Top=MBCS_STAGE_2_FIRST_ASSIGNED;
|
|
extData->stage3Top=MBCS_STAGE_3_FIRST_ASSIGNED;
|
|
|
|
/*
|
|
* stage 3b stores only unique values, and in
|
|
* index 0: 0 for "no mapping"
|
|
* index 1: "no mapping" with preference for <subchar1> rather than <subchar>
|
|
*/
|
|
extData->stage3b[1]=UCNV_EXT_FROM_U_SUBCHAR1;
|
|
extData->stage3bTop=2;
|
|
|
|
/* allocate the first entry in the fromUTable because index 0 means "no result" */
|
|
utm_alloc(extData->fromUTableUChars);
|
|
utm_alloc(extData->fromUTableValues);
|
|
|
|
if(!generateFromUTrie(extData, table, fromUCount)) {
|
|
return FALSE;
|
|
}
|
|
|
|
/*
|
|
* offset the stage 1 trie entries by stage1Top because they will
|
|
* be stored in a single array
|
|
*/
|
|
stage1=extData->stage1;
|
|
stage1Top=extData->stage1Top;
|
|
for(i=0; i<stage1Top; ++i) {
|
|
stage1[i]=(uint16_t)(stage1[i]+stage1Top);
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* -------------------------------------------------------------------------- */
|
|
|
|
static UBool
|
|
CnvExtAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData) {
|
|
CnvExtData *extData;
|
|
|
|
if(table->unicodeMask&UCNV_HAS_SURROGATES) {
|
|
fprintf(stderr, "error: contains mappings for surrogate code points\n");
|
|
return FALSE;
|
|
}
|
|
|
|
staticData->conversionType=UCNV_MBCS;
|
|
|
|
extData=(CnvExtData *)cnvData;
|
|
|
|
/*
|
|
* assume that the table is sorted
|
|
*
|
|
* call the functions in this order because
|
|
* makeToUTable() modifies the original reverseMap,
|
|
* makeFromUTable() writes a whole new mapping into reverseMap
|
|
*/
|
|
return
|
|
makeToUTable(extData, table) &&
|
|
makeFromUTable(extData, table);
|
|
}
|