scuffed-code/icu4c/source/common/ucmp32.c
Markus Scherer 1966fd0e50 ICU-6 more renaming of constant names
FAILURE -> U_FAILURE etc.

X-SVN-Rev: 80
1999-10-18 23:44:20 +00:00

443 lines
15 KiB
C

/*
*****************************************************************************************
* *
* COPYRIGHT: *
* (C) Copyright Taligent, Inc., 1997 *
* (C) Copyright International Business Machines Corporation, 1999 *
* Licensed Material - Program-Property of IBM - All Rights Reserved. *
* US Government Users Restricted Rights - Use, duplication, or disclosure *
* restricted by GSA ADP Schedule Contract with IBM Corp. *
* *
*****************************************************************************************
*/
/*===============================================================================
*
* File cmpshrta.cpp
*
* Modification History:
*
* Date Name Description
* 2/5/97 aliu Added CompactIntArray streamIn and streamOut methods.
* 3/4/97 aliu Tuned performance of CompactIntArray constructor,
* based on performance data indicating that this_obj was slow.
* 05/07/97 helena Added isBogus()
* 04/26/99 Madhu Ported to C for C Implementation
*===============================================================================
*/
#include "ucmp32.h"
#include "cmemory.h"
#include "filestrm.h"
#include <stdlib.h>
static int32_t ucmp32_findOverlappingPosition(CompactIntArray* this_obj, uint32_t start,
const UChar *tempIndex,
int32_t tempIndexCount,
uint32_t cycle);
/* internal constants*/
#define UCMP32_kUnicodeCount_int 65536
#define UCMP32_kBlockShift_int 7
#define UCMP32_kBlockCount_int (1<<UCMP32_kBlockShift_int)
#define UCMP32_kIndexShift_int 16-UCMP32_kBlockShift_int
#define UCMP32_kIndexCount_int (1<<UCMP32_kIndexShift_int)
#define UCMP32_kBlockMask_int UCMP32_kBlockCount_int-1
const int32_t UCMP32_kUnicodeCount = UCMP32_kUnicodeCount_int;
const int32_t UCMP32_kBlockShift = UCMP32_kBlockShift_int;
const int32_t UCMP32_kBlockCount = UCMP32_kBlockCount_int;
const int32_t UCMP32_kIndexShift = UCMP32_kIndexShift_int;
const int32_t UCMP32_kIndexCount = UCMP32_kIndexCount_int;
const uint32_t UCMP32_kBlockMask = UCMP32_kBlockMask_int;
static bool_t debugSmall = FALSE;
static uint32_t debugSmallLimit = 30000;
/** debug flags
*=======================================================
*/
int32_t ucmp32_getkUnicodeCount() { return UCMP32_kUnicodeCount;}
int32_t ucmp32_getkBlockCount() { return UCMP32_kBlockCount;}
U_CAPI int32_t ucmp32_get(CompactIntArray* array, uint16_t index)
{
return (array->fArray[(array->fIndex[index >> UCMP32_kBlockShift]) +
(index & UCMP32_kBlockMask)]);
}
U_CAPI uint32_t ucmp32_getu(CompactIntArray* array, uint16_t index)
{
return (uint32_t)ucmp32_get(array, index);
}
U_CAPI void ucmp32_streamIn(CompactIntArray* this_obj, FileStream* is)
{
int32_t newCount, len;
char c;
if (!T_FileStream_error(is))
{
T_FileStream_read(is, &newCount, sizeof(newCount));
if (this_obj->fCount != newCount)
{
this_obj->fCount = newCount;
icu_free(this_obj->fArray);
this_obj->fArray = 0;
this_obj->fArray = (int32_t*)icu_malloc(this_obj->fCount * sizeof(int32_t));
if (!this_obj->fArray) {
this_obj->fBogus = TRUE;
return;
}
}
T_FileStream_read(is, this_obj->fArray, sizeof(*(this_obj->fArray)) * this_obj->fCount);
T_FileStream_read(is, &len, sizeof(len));
if (len == 0)
{
icu_free(this_obj->fIndex);
this_obj->fIndex = 0;
}
else if (len == UCMP32_kIndexCount)
{
if (this_obj->fIndex == 0)
this_obj->fIndex =(uint16_t*)icu_malloc(UCMP32_kIndexCount * sizeof(uint16_t));
if (!this_obj->fIndex) {
this_obj->fBogus = TRUE;
icu_free(this_obj->fArray);
this_obj->fArray = 0;
return;
}
T_FileStream_read(is, this_obj->fIndex, sizeof(*(this_obj->fIndex)) * UCMP32_kIndexCount);
}
else
{
this_obj->fBogus = TRUE;
return;
}
/* char instead of int8_t for Mac compilation*/
T_FileStream_read(is, (char*)&c, sizeof(c));
this_obj->fCompact = (c != 0);
}
}
U_CAPI void ucmp32_streamOut(CompactIntArray* this_obj, FileStream* os)
{
char c;
if (!T_FileStream_error(os))
{
if (this_obj->fCount != 0 && this_obj->fArray != 0)
{
T_FileStream_write(os, &(this_obj->fCount), sizeof(this_obj->fCount));
T_FileStream_write(os, this_obj->fArray, sizeof(*(this_obj->fArray)) * this_obj->fCount);
}
else
{
int32_t zero = 0;
T_FileStream_write(os, &zero, sizeof(zero));
}
if (this_obj->fIndex == 0)
{
int32_t len = 0;
T_FileStream_write(os, &len, sizeof(len));
}
else
{
int32_t len = UCMP32_kIndexCount;
T_FileStream_write(os, &len, sizeof(len));
T_FileStream_write(os, this_obj->fIndex, sizeof(*(this_obj->fIndex)) * UCMP32_kIndexCount);
}
c = this_obj->fCompact ? 1 : 0; /* char instead of int8_t for Mac compilation*/
T_FileStream_write(os, (const char*)&c, sizeof(c));
}
}
CompactIntArray* ucmp32_open(int32_t defaultValue)
{
uint16_t i;
int32_t *p, *p_end;
uint16_t *q, *q_end;
CompactIntArray* this_obj = (CompactIntArray*) icu_malloc(sizeof(CompactIntArray));
if (this_obj == NULL) return NULL;
this_obj->fCount = UCMP32_kUnicodeCount;
this_obj->fCompact = FALSE;
this_obj->fBogus = FALSE;
this_obj->fArray = NULL;
this_obj->fIndex = NULL;
/*set up the index array and the data array.
* the index array always points into particular parts of the data array
* it is initially set up to point at regular block boundaries
* The following example uses blocks of 4 for simplicity
* Example: Expanded
* INDEX# 0 1 2 3 4
* INDEX 0 4 8 12 16 ...
* ARRAY abcdeababcedzyabcdea...
* | | | | | |...
* whenever you set an element in the array, it unpacks to this_obj state
* After compression, the index will point to various places in the data array
* wherever there is a runs of the same elements as in the original
* Example: Compressed
* INDEX# 0 1 2 3 4
* INDEX 0 4 1 8 2 ...
* ARRAY abcdeabazyabc...
* If you look at the example, index# 2 in the expanded version points
* to data position number 8, which has elements "bced". In the compressed
* version, index# 2 points to data position 1, which also has "bced"
*/
this_obj->fArray = (int32_t*)icu_malloc(UCMP32_kUnicodeCount * sizeof(int32_t));
if (this_obj->fArray == NULL) {
this_obj->fBogus = TRUE;
return NULL;
}
this_obj->fIndex = (uint16_t*)icu_malloc(UCMP32_kIndexCount * sizeof(uint16_t));
if (!this_obj->fIndex) {
icu_free(this_obj->fArray);
this_obj->fArray = NULL;
this_obj->fBogus = TRUE;
return NULL;
}
p = this_obj->fArray;
p_end = p + UCMP32_kUnicodeCount;
while (p < p_end) *p++ = defaultValue;
q = this_obj->fIndex;
q_end = q + UCMP32_kIndexCount;
i = 0;
while (q < q_end)
{
*q++ = i;
i += (1 << UCMP32_kBlockShift);
}
return this_obj;
}
CompactIntArray* ucmp32_openAdopt(uint16_t *indexArray, int32_t *newValues, int32_t count)
{
CompactIntArray* this_obj = (CompactIntArray*) icu_malloc(sizeof(CompactIntArray));
if (this_obj == NULL) return NULL;
this_obj->fCount = count;
this_obj->fBogus = FALSE;
this_obj->fArray = newValues;
this_obj->fIndex = indexArray;
this_obj->fCompact = (count < UCMP32_kUnicodeCount) ? TRUE : FALSE;
return this_obj;
}
/*=======================================================*/
void ucmp32_close( CompactIntArray* this_obj)
{
icu_free(this_obj->fArray);
this_obj->fArray = NULL;
icu_free(this_obj->fIndex);
this_obj->fIndex = NULL;
this_obj->fCount = 0;
this_obj->fCompact = FALSE;
}
bool_t ucmp32_isBogus(const CompactIntArray* this_obj)
{
return this_obj->fBogus;
}
void ucmp32_expand(CompactIntArray* this_obj) {
/* can optimize later.
* if we have to expand, then walk through the blocks instead of using Get
* this_obj code unpacks the array by copying the blocks to the normalized position.
* Example: Compressed
* INDEX# 0 1 2 3 4
* INDEX 0 4 1 8 2 ...
* ARRAY abcdeabazyabc...
* turns into
* Example: Expanded
* INDEX# 0 1 2 3 4
* INDEX 0 4 8 12 16 ...
* ARRAY abcdeababcedzyabcdea...
*/
int32_t i;
int32_t* tempArray;
if (this_obj->fCompact) {
tempArray = (int32_t*)icu_malloc(UCMP32_kUnicodeCount * sizeof(int32_t));
if (tempArray == NULL) {
this_obj->fBogus = TRUE;
return;
}
for (i = 0; i < UCMP32_kUnicodeCount; ++i) {
tempArray[i] = ucmp32_get(this_obj, (UChar)i); /* HSYS : How expand?*/
}
for (i = 0; i < UCMP32_kIndexCount; ++i) {
this_obj->fIndex[i] = (uint16_t)(i<<UCMP32_kBlockShift);
}
icu_free(this_obj->fArray);
this_obj->fArray = tempArray;
this_obj->fCompact = FALSE;
}
}
uint32_t ucmp32_getCount(const CompactIntArray* this_obj)
{
return this_obj->fCount;
}
const int32_t* ucmp32_getArray(const CompactIntArray* this_obj)
{
return this_obj->fArray;
}
const uint16_t* ucmp32_getIndex(const CompactIntArray* this_obj)
{
return this_obj->fIndex;
}
void ucmp32_set(CompactIntArray* this_obj, UChar c, int32_t value)
{
if (this_obj->fCompact == TRUE) {
ucmp32_expand(this_obj);
if (this_obj->fBogus) return;
}
this_obj->fArray[(int32_t)c] = value;
}
void ucmp32_setRange(CompactIntArray* this_obj, UChar start, UChar end, int32_t value)
{
int32_t i;
if (this_obj->fCompact == TRUE) {
ucmp32_expand(this_obj);
if (this_obj->fBogus) return;
}
for (i = start; i <= end; ++i) {
this_obj->fArray[i] = value;
}
}
/*=======================================================
* this_obj->fArray: an array to be overlapped
* start and count: specify the block to be overlapped
* tempIndex: the overlapped array (actually indices back into inputContents)
* inputHash: an index of hashes for tempIndex, where
* inputHash[i] = XOR of values from i-count+1 to i
*/
int32_t ucmp32_findOverlappingPosition(CompactIntArray* this_obj,
uint32_t start,
const UChar* tempIndex,
int32_t tempIndexCount,
uint32_t cycle) {
/* this_obj is a utility routine for finding blocks that overlap.
* IMPORTANT: the cycle number is very important. Small cycles take a lot
* longer to work. In some cases, they may be able to get better compaction.
*/
int32_t i;
int32_t j;
int32_t currentCount;
for (i = 0; i < tempIndexCount; i += cycle) {
currentCount = UCMP32_kBlockCount;
if (i + UCMP32_kBlockCount > tempIndexCount) {
currentCount = tempIndexCount - i;
}
for (j = 0; j < currentCount; ++j) {
if (this_obj->fArray[start + j] != this_obj->fArray[tempIndex[i + j]]) break;
}
if (j == currentCount) break;
}
return i;
}
/*=======================================================*/
void ucmp32_compact(CompactIntArray* this_obj, int32_t cycle) {
/* this_obj actually does the compaction.
* it walks throught the contents of the expanded array, finding the
* first block in the data that matches the contents of the current index.
* As it works, it keeps an updated pointer to the last position,
* so that it knows how big to make the final array
* If the matching succeeds, then the index will point into the data
* at some earlier position.
* If the matching fails, then last position pointer will be bumped,
* and the index will point to that last block of data.
*/
UChar* tempIndex;
int32_t tempIndexCount;
int32_t* tempArray;
int32_t iBlock, iIndex;
int32_t newCount, firstPosition;
uint32_t block;
if (!this_obj->fCompact) {
/* fix cycle, must be 0 < cycle <= blockcount*/
if (cycle < 0) cycle = 1;
else if (cycle > UCMP32_kBlockCount)
cycle = UCMP32_kBlockCount;
/* make temp storage, larger than we need*/
tempIndex =(UChar*)icu_malloc(UCMP32_kUnicodeCount * sizeof(uint32_t));
if (tempIndex == NULL) {
this_obj->fBogus = TRUE;
return;
}
/* set up first block.*/
tempIndexCount = UCMP32_kBlockCount;
for (iIndex = 0; iIndex < UCMP32_kBlockCount; ++iIndex) {
tempIndex[iIndex] = (uint16_t)iIndex;
}; /* endfor (iIndex = 0; .....)*/
this_obj->fIndex[0] = 0;
/* for each successive block, find out its first position in the compacted array*/
for (iBlock = 1; iBlock < UCMP32_kIndexCount; ++iBlock) {
block = iBlock<<UCMP32_kBlockShift;
if (debugSmall) if (block > debugSmallLimit) break;
firstPosition = ucmp32_findOverlappingPosition(this_obj, block, tempIndex, tempIndexCount, cycle);
/* if not contained in the current list, copy the remainder
* invariant; cumulativeHash[iBlock] = XOR of values from iBlock-kBlockCount+1 to iBlock
* we do this_obj by XORing out cumulativeHash[iBlock-kBlockCount]
*/
newCount = firstPosition + UCMP32_kBlockCount;
if (newCount > tempIndexCount) {
for (iIndex = tempIndexCount; iIndex < newCount; ++iIndex) {
tempIndex[iIndex] = (uint16_t)(iIndex - firstPosition + block);
} /* endfor (iIndex = tempIndexCount....)*/
tempIndexCount = newCount;
} /*endif (newCount > tempIndexCount)*/
this_obj->fIndex[iBlock] = (uint16_t)firstPosition;
} /* endfor (iBlock = 1.....)*/
/* now allocate and copy the items into the array*/
tempArray = (int32_t*)icu_malloc(tempIndexCount * sizeof(uint32_t));
if (tempArray == NULL) {
this_obj->fBogus = TRUE;
icu_free(tempIndex);
return;
}
for (iIndex = 0; iIndex < tempIndexCount; ++iIndex) {
tempArray[iIndex] = this_obj->fArray[tempIndex[iIndex]];
}
icu_free(this_obj->fArray);
this_obj->fArray = tempArray;
this_obj->fCount = tempIndexCount;
/* free up temp storage*/
icu_free(tempIndex);
this_obj->fCompact = TRUE;
#ifdef _DEBUG
/*the following line is useful for specific debugging purposes*/
/*fprintf(stderr, "Compacted to %ld with cycle %d\n", fCount, cycle);*/
#endif
} /* endif (!this_obj->fCompact)*/
}