scuffed-code/icu4c/source/i18n/olsontz.cpp

1083 lines
38 KiB
C++

// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
**********************************************************************
* Copyright (c) 2003-2013, International Business Machines
* Corporation and others. All Rights Reserved.
**********************************************************************
* Author: Alan Liu
* Created: July 21 2003
* Since: ICU 2.8
**********************************************************************
*/
#include "utypeinfo.h" // for 'typeid' to work
#include "olsontz.h"
#if !UCONFIG_NO_FORMATTING
#include "unicode/ures.h"
#include "unicode/simpletz.h"
#include "unicode/gregocal.h"
#include "gregoimp.h"
#include "cmemory.h"
#include "uassert.h"
#include "uvector.h"
#include <float.h> // DBL_MAX
#include "uresimp.h"
#include "zonemeta.h"
#include "umutex.h"
#ifdef U_DEBUG_TZ
# include <stdio.h>
# include "uresimp.h" // for debugging
static void debug_tz_loc(const char *f, int32_t l)
{
fprintf(stderr, "%s:%d: ", f, l);
}
static void debug_tz_msg(const char *pat, ...)
{
va_list ap;
va_start(ap, pat);
vfprintf(stderr, pat, ap);
fflush(stderr);
}
// must use double parens, i.e.: U_DEBUG_TZ_MSG(("four is: %d",4));
#define U_DEBUG_TZ_MSG(x) {debug_tz_loc(__FILE__,__LINE__);debug_tz_msg x;}
#else
#define U_DEBUG_TZ_MSG(x)
#endif
static UBool arrayEqual(const void *a1, const void *a2, int32_t size) {
if (a1 == NULL && a2 == NULL) {
return TRUE;
}
if ((a1 != NULL && a2 == NULL) || (a1 == NULL && a2 != NULL)) {
return FALSE;
}
if (a1 == a2) {
return TRUE;
}
return (uprv_memcmp(a1, a2, size) == 0);
}
U_NAMESPACE_BEGIN
#define kTRANS "trans"
#define kTRANSPRE32 "transPre32"
#define kTRANSPOST32 "transPost32"
#define kTYPEOFFSETS "typeOffsets"
#define kTYPEMAP "typeMap"
#define kLINKS "links"
#define kFINALRULE "finalRule"
#define kFINALRAW "finalRaw"
#define kFINALYEAR "finalYear"
#define SECONDS_PER_DAY (24*60*60)
static const int32_t ZEROS[] = {0,0};
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(OlsonTimeZone)
/**
* Default constructor. Creates a time zone with an empty ID and
* a fixed GMT offset of zero.
*/
/*OlsonTimeZone::OlsonTimeZone() : finalYear(INT32_MAX), finalMillis(DBL_MAX), finalZone(0), transitionRulesInitialized(FALSE) {
clearTransitionRules();
constructEmpty();
}*/
/**
* Construct a GMT+0 zone with no transitions. This is done when a
* constructor fails so the resultant object is well-behaved.
*/
void OlsonTimeZone::constructEmpty() {
canonicalID = NULL;
transitionCountPre32 = transitionCount32 = transitionCountPost32 = 0;
transitionTimesPre32 = transitionTimes32 = transitionTimesPost32 = NULL;
typeMapData = NULL;
typeCount = 1;
typeOffsets = ZEROS;
finalZone = NULL;
}
/**
* Construct from a resource bundle
* @param top the top-level zoneinfo resource bundle. This is used
* to lookup the rule that `res' may refer to, if there is one.
* @param res the resource bundle of the zone to be constructed
* @param ec input-output error code
*/
OlsonTimeZone::OlsonTimeZone(const UResourceBundle* top,
const UResourceBundle* res,
const UnicodeString& tzid,
UErrorCode& ec) :
BasicTimeZone(tzid), finalZone(NULL)
{
clearTransitionRules();
U_DEBUG_TZ_MSG(("OlsonTimeZone(%s)\n", ures_getKey((UResourceBundle*)res)));
if ((top == NULL || res == NULL) && U_SUCCESS(ec)) {
ec = U_ILLEGAL_ARGUMENT_ERROR;
}
if (U_SUCCESS(ec)) {
// TODO -- clean up -- Doesn't work if res points to an alias
// // TODO remove nonconst casts below when ures_* API is fixed
// setID(ures_getKey((UResourceBundle*) res)); // cast away const
int32_t len;
StackUResourceBundle r;
// Pre-32bit second transitions
ures_getByKey(res, kTRANSPRE32, r.getAlias(), &ec);
transitionTimesPre32 = ures_getIntVector(r.getAlias(), &len, &ec);
transitionCountPre32 = static_cast<int16_t>(len >> 1);
if (ec == U_MISSING_RESOURCE_ERROR) {
// No pre-32bit transitions
transitionTimesPre32 = NULL;
transitionCountPre32 = 0;
ec = U_ZERO_ERROR;
} else if (U_SUCCESS(ec) && (len < 0 || len > 0x7FFF || (len & 1) != 0) /* len must be even */) {
ec = U_INVALID_FORMAT_ERROR;
}
// 32bit second transitions
ures_getByKey(res, kTRANS, r.getAlias(), &ec);
transitionTimes32 = ures_getIntVector(r.getAlias(), &len, &ec);
transitionCount32 = static_cast<int16_t>(len);
if (ec == U_MISSING_RESOURCE_ERROR) {
// No 32bit transitions
transitionTimes32 = NULL;
transitionCount32 = 0;
ec = U_ZERO_ERROR;
} else if (U_SUCCESS(ec) && (len < 0 || len > 0x7FFF)) {
ec = U_INVALID_FORMAT_ERROR;
}
// Post-32bit second transitions
ures_getByKey(res, kTRANSPOST32, r.getAlias(), &ec);
transitionTimesPost32 = ures_getIntVector(r.getAlias(), &len, &ec);
transitionCountPost32 = static_cast<int16_t>(len >> 1);
if (ec == U_MISSING_RESOURCE_ERROR) {
// No pre-32bit transitions
transitionTimesPost32 = NULL;
transitionCountPost32 = 0;
ec = U_ZERO_ERROR;
} else if (U_SUCCESS(ec) && (len < 0 || len > 0x7FFF || (len & 1) != 0) /* len must be even */) {
ec = U_INVALID_FORMAT_ERROR;
}
// Type offsets list must be of even size, with size >= 2
ures_getByKey(res, kTYPEOFFSETS, r.getAlias(), &ec);
typeOffsets = ures_getIntVector(r.getAlias(), &len, &ec);
if (U_SUCCESS(ec) && (len < 2 || len > 0x7FFE || (len & 1) != 0)) {
ec = U_INVALID_FORMAT_ERROR;
}
typeCount = (int16_t) len >> 1;
// Type map data must be of the same size as the transition count
typeMapData = NULL;
if (transitionCount() > 0) {
ures_getByKey(res, kTYPEMAP, r.getAlias(), &ec);
typeMapData = ures_getBinary(r.getAlias(), &len, &ec);
if (ec == U_MISSING_RESOURCE_ERROR) {
// no type mapping data
ec = U_INVALID_FORMAT_ERROR;
} else if (U_SUCCESS(ec) && len != transitionCount()) {
ec = U_INVALID_FORMAT_ERROR;
}
}
// Process final rule and data, if any
if (U_SUCCESS(ec)) {
const UChar *ruleIdUStr = ures_getStringByKey(res, kFINALRULE, &len, &ec);
ures_getByKey(res, kFINALRAW, r.getAlias(), &ec);
int32_t ruleRaw = ures_getInt(r.getAlias(), &ec);
ures_getByKey(res, kFINALYEAR, r.getAlias(), &ec);
int32_t ruleYear = ures_getInt(r.getAlias(), &ec);
if (U_SUCCESS(ec)) {
UnicodeString ruleID(TRUE, ruleIdUStr, len);
UResourceBundle *rule = TimeZone::loadRule(top, ruleID, NULL, ec);
const int32_t *ruleData = ures_getIntVector(rule, &len, &ec);
if (U_SUCCESS(ec) && len == 11) {
UnicodeString emptyStr;
finalZone = new SimpleTimeZone(
ruleRaw * U_MILLIS_PER_SECOND,
emptyStr,
(int8_t)ruleData[0], (int8_t)ruleData[1], (int8_t)ruleData[2],
ruleData[3] * U_MILLIS_PER_SECOND,
(SimpleTimeZone::TimeMode) ruleData[4],
(int8_t)ruleData[5], (int8_t)ruleData[6], (int8_t)ruleData[7],
ruleData[8] * U_MILLIS_PER_SECOND,
(SimpleTimeZone::TimeMode) ruleData[9],
ruleData[10] * U_MILLIS_PER_SECOND, ec);
if (finalZone == NULL) {
ec = U_MEMORY_ALLOCATION_ERROR;
} else {
finalStartYear = ruleYear;
// Note: Setting finalStartYear to the finalZone is problematic. When a date is around
// year boundary, SimpleTimeZone may return false result when DST is observed at the
// beginning of year. We could apply safe margin (day or two), but when one of recurrent
// rules falls around year boundary, it could return false result. Without setting the
// start year, finalZone works fine around the year boundary of the start year.
// finalZone->setStartYear(finalStartYear);
// Compute the millis for Jan 1, 0:00 GMT of the finalYear
// Note: finalStartMillis is used for detecting either if
// historic transition data or finalZone to be used. In an
// extreme edge case - for example, two transitions fall into
// small windows of time around the year boundary, this may
// result incorrect offset computation. But I think it will
// never happen practically. Yoshito - Feb 20, 2010
finalStartMillis = Grego::fieldsToDay(finalStartYear, 0, 1) * U_MILLIS_PER_DAY;
}
} else {
ec = U_INVALID_FORMAT_ERROR;
}
ures_close(rule);
} else if (ec == U_MISSING_RESOURCE_ERROR) {
// No final zone
ec = U_ZERO_ERROR;
}
}
// initialize canonical ID
canonicalID = ZoneMeta::getCanonicalCLDRID(tzid, ec);
}
if (U_FAILURE(ec)) {
constructEmpty();
}
}
/**
* Copy constructor
*/
OlsonTimeZone::OlsonTimeZone(const OlsonTimeZone& other) :
BasicTimeZone(other), finalZone(0) {
*this = other;
}
/**
* Assignment operator
*/
OlsonTimeZone& OlsonTimeZone::operator=(const OlsonTimeZone& other) {
canonicalID = other.canonicalID;
transitionTimesPre32 = other.transitionTimesPre32;
transitionTimes32 = other.transitionTimes32;
transitionTimesPost32 = other.transitionTimesPost32;
transitionCountPre32 = other.transitionCountPre32;
transitionCount32 = other.transitionCount32;
transitionCountPost32 = other.transitionCountPost32;
typeCount = other.typeCount;
typeOffsets = other.typeOffsets;
typeMapData = other.typeMapData;
delete finalZone;
finalZone = (other.finalZone != 0) ? other.finalZone->clone() : 0;
finalStartYear = other.finalStartYear;
finalStartMillis = other.finalStartMillis;
clearTransitionRules();
return *this;
}
/**
* Destructor
*/
OlsonTimeZone::~OlsonTimeZone() {
deleteTransitionRules();
delete finalZone;
}
/**
* Returns true if the two TimeZone objects are equal.
*/
UBool OlsonTimeZone::operator==(const TimeZone& other) const {
return ((this == &other) ||
(typeid(*this) == typeid(other) &&
TimeZone::operator==(other) &&
hasSameRules(other)));
}
/**
* TimeZone API.
*/
OlsonTimeZone* OlsonTimeZone::clone() const {
return new OlsonTimeZone(*this);
}
/**
* TimeZone API.
*/
int32_t OlsonTimeZone::getOffset(uint8_t era, int32_t year, int32_t month,
int32_t dom, uint8_t dow,
int32_t millis, UErrorCode& ec) const {
if (month < UCAL_JANUARY || month > UCAL_DECEMBER) {
if (U_SUCCESS(ec)) {
ec = U_ILLEGAL_ARGUMENT_ERROR;
}
return 0;
} else {
return getOffset(era, year, month, dom, dow, millis,
Grego::monthLength(year, month),
ec);
}
}
/**
* TimeZone API.
*/
int32_t OlsonTimeZone::getOffset(uint8_t era, int32_t year, int32_t month,
int32_t dom, uint8_t dow,
int32_t millis, int32_t monthLength,
UErrorCode& ec) const {
if (U_FAILURE(ec)) {
return 0;
}
if ((era != GregorianCalendar::AD && era != GregorianCalendar::BC)
|| month < UCAL_JANUARY
|| month > UCAL_DECEMBER
|| dom < 1
|| dom > monthLength
|| dow < UCAL_SUNDAY
|| dow > UCAL_SATURDAY
|| millis < 0
|| millis >= U_MILLIS_PER_DAY
|| monthLength < 28
|| monthLength > 31) {
ec = U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
if (era == GregorianCalendar::BC) {
year = -year;
}
if (finalZone != NULL && year >= finalStartYear) {
return finalZone->getOffset(era, year, month, dom, dow,
millis, monthLength, ec);
}
// Compute local epoch millis from input fields
UDate date = (UDate)(Grego::fieldsToDay(year, month, dom) * U_MILLIS_PER_DAY + millis);
int32_t rawoff, dstoff;
getHistoricalOffset(date, TRUE, kDaylight, kStandard, rawoff, dstoff);
return rawoff + dstoff;
}
/**
* TimeZone API.
*/
void OlsonTimeZone::getOffset(UDate date, UBool local, int32_t& rawoff,
int32_t& dstoff, UErrorCode& ec) const {
if (U_FAILURE(ec)) {
return;
}
if (finalZone != NULL && date >= finalStartMillis) {
finalZone->getOffset(date, local, rawoff, dstoff, ec);
} else {
getHistoricalOffset(date, local, kFormer, kLatter, rawoff, dstoff);
}
}
void
OlsonTimeZone::getOffsetFromLocal(UDate date, int32_t nonExistingTimeOpt, int32_t duplicatedTimeOpt,
int32_t& rawoff, int32_t& dstoff, UErrorCode& ec) const {
if (U_FAILURE(ec)) {
return;
}
if (finalZone != NULL && date >= finalStartMillis) {
finalZone->getOffsetFromLocal(date, nonExistingTimeOpt, duplicatedTimeOpt, rawoff, dstoff, ec);
} else {
getHistoricalOffset(date, TRUE, nonExistingTimeOpt, duplicatedTimeOpt, rawoff, dstoff);
}
}
/**
* TimeZone API.
*/
void OlsonTimeZone::setRawOffset(int32_t /*offsetMillis*/) {
// We don't support this operation, since OlsonTimeZones are
// immutable (except for the ID, which is in the base class).
// Nothing to do!
}
/**
* TimeZone API.
*/
int32_t OlsonTimeZone::getRawOffset() const {
UErrorCode ec = U_ZERO_ERROR;
int32_t raw, dst;
getOffset((double) uprv_getUTCtime() * U_MILLIS_PER_SECOND,
FALSE, raw, dst, ec);
return raw;
}
#if defined U_DEBUG_TZ
void printTime(double ms) {
int32_t year, month, dom, dow;
double millis=0;
double days = ClockMath::floorDivide(((double)ms), (double)U_MILLIS_PER_DAY, millis);
Grego::dayToFields(days, year, month, dom, dow);
U_DEBUG_TZ_MSG((" getHistoricalOffset: time %.1f (%04d.%02d.%02d+%.1fh)\n", ms,
year, month+1, dom, (millis/kOneHour)));
}
#endif
int64_t
OlsonTimeZone::transitionTimeInSeconds(int16_t transIdx) const {
U_ASSERT(transIdx >= 0 && transIdx < transitionCount());
if (transIdx < transitionCountPre32) {
return (((int64_t)((uint32_t)transitionTimesPre32[transIdx << 1])) << 32)
| ((int64_t)((uint32_t)transitionTimesPre32[(transIdx << 1) + 1]));
}
transIdx -= transitionCountPre32;
if (transIdx < transitionCount32) {
return (int64_t)transitionTimes32[transIdx];
}
transIdx -= transitionCount32;
return (((int64_t)((uint32_t)transitionTimesPost32[transIdx << 1])) << 32)
| ((int64_t)((uint32_t)transitionTimesPost32[(transIdx << 1) + 1]));
}
// Maximum absolute offset in seconds (86400 seconds = 1 day)
// getHistoricalOffset uses this constant as safety margin of
// quick zone transition checking.
#define MAX_OFFSET_SECONDS 86400
void
OlsonTimeZone::getHistoricalOffset(UDate date, UBool local,
int32_t NonExistingTimeOpt, int32_t DuplicatedTimeOpt,
int32_t& rawoff, int32_t& dstoff) const {
U_DEBUG_TZ_MSG(("getHistoricalOffset(%.1f, %s, %d, %d, raw, dst)\n",
date, local?"T":"F", NonExistingTimeOpt, DuplicatedTimeOpt));
#if defined U_DEBUG_TZ
printTime(date*1000.0);
#endif
int16_t transCount = transitionCount();
if (transCount > 0) {
double sec = uprv_floor(date / U_MILLIS_PER_SECOND);
if (!local && sec < transitionTimeInSeconds(0)) {
// Before the first transition time
rawoff = initialRawOffset() * U_MILLIS_PER_SECOND;
dstoff = initialDstOffset() * U_MILLIS_PER_SECOND;
} else {
// Linear search from the end is the fastest approach, since
// most lookups will happen at/near the end.
int16_t transIdx;
for (transIdx = transCount - 1; transIdx >= 0; transIdx--) {
int64_t transition = transitionTimeInSeconds(transIdx);
if (local && (sec >= (transition - MAX_OFFSET_SECONDS))) {
int32_t offsetBefore = zoneOffsetAt(transIdx - 1);
UBool dstBefore = dstOffsetAt(transIdx - 1) != 0;
int32_t offsetAfter = zoneOffsetAt(transIdx);
UBool dstAfter = dstOffsetAt(transIdx) != 0;
UBool dstToStd = dstBefore && !dstAfter;
UBool stdToDst = !dstBefore && dstAfter;
if (offsetAfter - offsetBefore >= 0) {
// Positive transition, which makes a non-existing local time range
if (((NonExistingTimeOpt & kStdDstMask) == kStandard && dstToStd)
|| ((NonExistingTimeOpt & kStdDstMask) == kDaylight && stdToDst)) {
transition += offsetBefore;
} else if (((NonExistingTimeOpt & kStdDstMask) == kStandard && stdToDst)
|| ((NonExistingTimeOpt & kStdDstMask) == kDaylight && dstToStd)) {
transition += offsetAfter;
} else if ((NonExistingTimeOpt & kFormerLatterMask) == kLatter) {
transition += offsetBefore;
} else {
// Interprets the time with rule before the transition,
// default for non-existing time range
transition += offsetAfter;
}
} else {
// Negative transition, which makes a duplicated local time range
if (((DuplicatedTimeOpt & kStdDstMask) == kStandard && dstToStd)
|| ((DuplicatedTimeOpt & kStdDstMask) == kDaylight && stdToDst)) {
transition += offsetAfter;
} else if (((DuplicatedTimeOpt & kStdDstMask) == kStandard && stdToDst)
|| ((DuplicatedTimeOpt & kStdDstMask) == kDaylight && dstToStd)) {
transition += offsetBefore;
} else if ((DuplicatedTimeOpt & kFormerLatterMask) == kFormer) {
transition += offsetBefore;
} else {
// Interprets the time with rule after the transition,
// default for duplicated local time range
transition += offsetAfter;
}
}
}
if (sec >= transition) {
break;
}
}
// transIdx could be -1 when local=true
rawoff = rawOffsetAt(transIdx) * U_MILLIS_PER_SECOND;
dstoff = dstOffsetAt(transIdx) * U_MILLIS_PER_SECOND;
}
} else {
// No transitions, single pair of offsets only
rawoff = initialRawOffset() * U_MILLIS_PER_SECOND;
dstoff = initialDstOffset() * U_MILLIS_PER_SECOND;
}
U_DEBUG_TZ_MSG(("getHistoricalOffset(%.1f, %s, %d, %d, raw, dst) - raw=%d, dst=%d\n",
date, local?"T":"F", NonExistingTimeOpt, DuplicatedTimeOpt, rawoff, dstoff));
}
/**
* TimeZone API.
*/
UBool OlsonTimeZone::useDaylightTime() const {
// If DST was observed in 1942 (for example) but has never been
// observed from 1943 to the present, most clients will expect
// this method to return FALSE. This method determines whether
// DST is in use in the current year (at any point in the year)
// and returns TRUE if so.
UDate current = uprv_getUTCtime();
if (finalZone != NULL && current >= finalStartMillis) {
return finalZone->useDaylightTime();
}
int32_t year, month, dom, dow, doy, mid;
Grego::timeToFields(current, year, month, dom, dow, doy, mid);
// Find start of this year, and start of next year
double start = Grego::fieldsToDay(year, 0, 1) * SECONDS_PER_DAY;
double limit = Grego::fieldsToDay(year+1, 0, 1) * SECONDS_PER_DAY;
// Return TRUE if DST is observed at any time during the current
// year.
for (int16_t i = 0; i < transitionCount(); ++i) {
double transition = (double)transitionTimeInSeconds(i);
if (transition >= limit) {
break;
}
if ((transition >= start && dstOffsetAt(i) != 0)
|| (transition > start && dstOffsetAt(i - 1) != 0)) {
return TRUE;
}
}
return FALSE;
}
int32_t
OlsonTimeZone::getDSTSavings() const{
if (finalZone != NULL){
return finalZone->getDSTSavings();
}
return TimeZone::getDSTSavings();
}
/**
* TimeZone API.
*/
UBool OlsonTimeZone::inDaylightTime(UDate date, UErrorCode& ec) const {
int32_t raw, dst;
getOffset(date, FALSE, raw, dst, ec);
return dst != 0;
}
UBool
OlsonTimeZone::hasSameRules(const TimeZone &other) const {
if (this == &other) {
return TRUE;
}
const OlsonTimeZone* z = dynamic_cast<const OlsonTimeZone*>(&other);
if (z == NULL) {
return FALSE;
}
// [sic] pointer comparison: typeMapData points into
// memory-mapped or DLL space, so if two zones have the same
// pointer, they are equal.
if (typeMapData == z->typeMapData) {
return TRUE;
}
// If the pointers are not equal, the zones may still
// be equal if their rules and transitions are equal
if ((finalZone == NULL && z->finalZone != NULL)
|| (finalZone != NULL && z->finalZone == NULL)
|| (finalZone != NULL && z->finalZone != NULL && *finalZone != *z->finalZone)) {
return FALSE;
}
if (finalZone != NULL) {
if (finalStartYear != z->finalStartYear || finalStartMillis != z->finalStartMillis) {
return FALSE;
}
}
if (typeCount != z->typeCount
|| transitionCountPre32 != z->transitionCountPre32
|| transitionCount32 != z->transitionCount32
|| transitionCountPost32 != z->transitionCountPost32) {
return FALSE;
}
return
arrayEqual(transitionTimesPre32, z->transitionTimesPre32, sizeof(transitionTimesPre32[0]) * transitionCountPre32 << 1)
&& arrayEqual(transitionTimes32, z->transitionTimes32, sizeof(transitionTimes32[0]) * transitionCount32)
&& arrayEqual(transitionTimesPost32, z->transitionTimesPost32, sizeof(transitionTimesPost32[0]) * transitionCountPost32 << 1)
&& arrayEqual(typeOffsets, z->typeOffsets, sizeof(typeOffsets[0]) * typeCount << 1)
&& arrayEqual(typeMapData, z->typeMapData, sizeof(typeMapData[0]) * transitionCount());
}
void
OlsonTimeZone::clearTransitionRules(void) {
initialRule = NULL;
firstTZTransition = NULL;
firstFinalTZTransition = NULL;
historicRules = NULL;
historicRuleCount = 0;
finalZoneWithStartYear = NULL;
firstTZTransitionIdx = 0;
transitionRulesInitOnce.reset();
}
void
OlsonTimeZone::deleteTransitionRules(void) {
if (initialRule != NULL) {
delete initialRule;
}
if (firstTZTransition != NULL) {
delete firstTZTransition;
}
if (firstFinalTZTransition != NULL) {
delete firstFinalTZTransition;
}
if (finalZoneWithStartYear != NULL) {
delete finalZoneWithStartYear;
}
if (historicRules != NULL) {
for (int i = 0; i < historicRuleCount; i++) {
if (historicRules[i] != NULL) {
delete historicRules[i];
}
}
uprv_free(historicRules);
}
clearTransitionRules();
}
/*
* Lazy transition rules initializer
*/
static void U_CALLCONV initRules(OlsonTimeZone *This, UErrorCode &status) {
This->initTransitionRules(status);
}
void
OlsonTimeZone::checkTransitionRules(UErrorCode& status) const {
OlsonTimeZone *ncThis = const_cast<OlsonTimeZone *>(this);
umtx_initOnce(ncThis->transitionRulesInitOnce, &initRules, ncThis, status);
}
void
OlsonTimeZone::initTransitionRules(UErrorCode& status) {
if(U_FAILURE(status)) {
return;
}
deleteTransitionRules();
UnicodeString tzid;
getID(tzid);
UnicodeString stdName = tzid + UNICODE_STRING_SIMPLE("(STD)");
UnicodeString dstName = tzid + UNICODE_STRING_SIMPLE("(DST)");
int32_t raw, dst;
// Create initial rule
raw = initialRawOffset() * U_MILLIS_PER_SECOND;
dst = initialDstOffset() * U_MILLIS_PER_SECOND;
initialRule = new InitialTimeZoneRule((dst == 0 ? stdName : dstName), raw, dst);
// Check to make sure initialRule was created
if (initialRule == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
deleteTransitionRules();
return;
}
int32_t transCount = transitionCount();
if (transCount > 0) {
int16_t transitionIdx, typeIdx;
// We probably no longer need to check the first "real" transition
// here, because the new tzcode remove such transitions already.
// For now, keeping this code for just in case. Feb 19, 2010 Yoshito
firstTZTransitionIdx = 0;
for (transitionIdx = 0; transitionIdx < transCount; transitionIdx++) {
if (typeMapData[transitionIdx] != 0) { // type 0 is the initial type
break;
}
firstTZTransitionIdx++;
}
if (transitionIdx == transCount) {
// Actually no transitions...
} else {
// Build historic rule array
UDate* times = (UDate*)uprv_malloc(sizeof(UDate)*transCount); /* large enough to store all transition times */
if (times == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
deleteTransitionRules();
return;
}
for (typeIdx = 0; typeIdx < typeCount; typeIdx++) {
// Gather all start times for each pair of offsets
int32_t nTimes = 0;
for (transitionIdx = firstTZTransitionIdx; transitionIdx < transCount; transitionIdx++) {
if (typeIdx == (int16_t)typeMapData[transitionIdx]) {
UDate tt = (UDate)transitionTime(transitionIdx);
if (finalZone == NULL || tt <= finalStartMillis) {
// Exclude transitions after finalMillis
times[nTimes++] = tt;
}
}
}
if (nTimes > 0) {
// Create a TimeArrayTimeZoneRule
raw = typeOffsets[typeIdx << 1] * U_MILLIS_PER_SECOND;
dst = typeOffsets[(typeIdx << 1) + 1] * U_MILLIS_PER_SECOND;
if (historicRules == NULL) {
historicRuleCount = typeCount;
historicRules = (TimeArrayTimeZoneRule**)uprv_malloc(sizeof(TimeArrayTimeZoneRule*)*historicRuleCount);
if (historicRules == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
deleteTransitionRules();
uprv_free(times);
return;
}
for (int i = 0; i < historicRuleCount; i++) {
// Initialize TimeArrayTimeZoneRule pointers as NULL
historicRules[i] = NULL;
}
}
historicRules[typeIdx] = new TimeArrayTimeZoneRule((dst == 0 ? stdName : dstName),
raw, dst, times, nTimes, DateTimeRule::UTC_TIME);
// Check for memory allocation error
if (historicRules[typeIdx] == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
deleteTransitionRules();
return;
}
}
}
uprv_free(times);
// Create initial transition
typeIdx = (int16_t)typeMapData[firstTZTransitionIdx];
firstTZTransition = new TimeZoneTransition((UDate)transitionTime(firstTZTransitionIdx),
*initialRule, *historicRules[typeIdx]);
// Check to make sure firstTZTransition was created.
if (firstTZTransition == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
deleteTransitionRules();
return;
}
}
}
if (finalZone != NULL) {
// Get the first occurence of final rule starts
UDate startTime = (UDate)finalStartMillis;
TimeZoneRule *firstFinalRule = NULL;
if (finalZone->useDaylightTime()) {
/*
* Note: When an OlsonTimeZone is constructed, we should set the final year
* as the start year of finalZone. However, the bounday condition used for
* getting offset from finalZone has some problems.
* For now, we do not set the valid start year when the construction time
* and create a clone and set the start year when extracting rules.
*/
finalZoneWithStartYear = finalZone->clone();
// Check to make sure finalZone was actually cloned.
if (finalZoneWithStartYear == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
deleteTransitionRules();
return;
}
finalZoneWithStartYear->setStartYear(finalStartYear);
TimeZoneTransition tzt;
finalZoneWithStartYear->getNextTransition(startTime, false, tzt);
firstFinalRule = tzt.getTo()->clone();
// Check to make sure firstFinalRule received proper clone.
if (firstFinalRule == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
deleteTransitionRules();
return;
}
startTime = tzt.getTime();
} else {
// final rule with no transitions
finalZoneWithStartYear = finalZone->clone();
// Check to make sure finalZone was actually cloned.
if (finalZoneWithStartYear == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
deleteTransitionRules();
return;
}
finalZone->getID(tzid);
firstFinalRule = new TimeArrayTimeZoneRule(tzid,
finalZone->getRawOffset(), 0, &startTime, 1, DateTimeRule::UTC_TIME);
// Check firstFinalRule was properly created.
if (firstFinalRule == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
deleteTransitionRules();
return;
}
}
TimeZoneRule *prevRule = NULL;
if (transCount > 0) {
prevRule = historicRules[typeMapData[transCount - 1]];
}
if (prevRule == NULL) {
// No historic transitions, but only finalZone available
prevRule = initialRule;
}
firstFinalTZTransition = new TimeZoneTransition();
// Check to make sure firstFinalTZTransition was created before dereferencing
if (firstFinalTZTransition == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
deleteTransitionRules();
return;
}
firstFinalTZTransition->setTime(startTime);
firstFinalTZTransition->adoptFrom(prevRule->clone());
firstFinalTZTransition->adoptTo(firstFinalRule);
}
}
UBool
OlsonTimeZone::getNextTransition(UDate base, UBool inclusive, TimeZoneTransition& result) const {
UErrorCode status = U_ZERO_ERROR;
checkTransitionRules(status);
if (U_FAILURE(status)) {
return FALSE;
}
if (finalZone != NULL) {
if (inclusive && base == firstFinalTZTransition->getTime()) {
result = *firstFinalTZTransition;
return TRUE;
} else if (base >= firstFinalTZTransition->getTime()) {
if (finalZone->useDaylightTime()) {
//return finalZone->getNextTransition(base, inclusive, result);
return finalZoneWithStartYear->getNextTransition(base, inclusive, result);
} else {
// No more transitions
return FALSE;
}
}
}
if (historicRules != NULL) {
// Find a historical transition
int16_t transCount = transitionCount();
int16_t ttidx = transCount - 1;
for (; ttidx >= firstTZTransitionIdx; ttidx--) {
UDate t = (UDate)transitionTime(ttidx);
if (base > t || (!inclusive && base == t)) {
break;
}
}
if (ttidx == transCount - 1) {
if (firstFinalTZTransition != NULL) {
result = *firstFinalTZTransition;
return TRUE;
} else {
return FALSE;
}
} else if (ttidx < firstTZTransitionIdx) {
result = *firstTZTransition;
return TRUE;
} else {
// Create a TimeZoneTransition
TimeZoneRule *to = historicRules[typeMapData[ttidx + 1]];
TimeZoneRule *from = historicRules[typeMapData[ttidx]];
UDate startTime = (UDate)transitionTime(ttidx+1);
// The transitions loaded from zoneinfo.res may contain non-transition data
UnicodeString fromName, toName;
from->getName(fromName);
to->getName(toName);
if (fromName == toName && from->getRawOffset() == to->getRawOffset()
&& from->getDSTSavings() == to->getDSTSavings()) {
return getNextTransition(startTime, false, result);
}
result.setTime(startTime);
result.adoptFrom(from->clone());
result.adoptTo(to->clone());
return TRUE;
}
}
return FALSE;
}
UBool
OlsonTimeZone::getPreviousTransition(UDate base, UBool inclusive, TimeZoneTransition& result) const {
UErrorCode status = U_ZERO_ERROR;
checkTransitionRules(status);
if (U_FAILURE(status)) {
return FALSE;
}
if (finalZone != NULL) {
if (inclusive && base == firstFinalTZTransition->getTime()) {
result = *firstFinalTZTransition;
return TRUE;
} else if (base > firstFinalTZTransition->getTime()) {
if (finalZone->useDaylightTime()) {
//return finalZone->getPreviousTransition(base, inclusive, result);
return finalZoneWithStartYear->getPreviousTransition(base, inclusive, result);
} else {
result = *firstFinalTZTransition;
return TRUE;
}
}
}
if (historicRules != NULL) {
// Find a historical transition
int16_t ttidx = transitionCount() - 1;
for (; ttidx >= firstTZTransitionIdx; ttidx--) {
UDate t = (UDate)transitionTime(ttidx);
if (base > t || (inclusive && base == t)) {
break;
}
}
if (ttidx < firstTZTransitionIdx) {
// No more transitions
return FALSE;
} else if (ttidx == firstTZTransitionIdx) {
result = *firstTZTransition;
return TRUE;
} else {
// Create a TimeZoneTransition
TimeZoneRule *to = historicRules[typeMapData[ttidx]];
TimeZoneRule *from = historicRules[typeMapData[ttidx-1]];
UDate startTime = (UDate)transitionTime(ttidx);
// The transitions loaded from zoneinfo.res may contain non-transition data
UnicodeString fromName, toName;
from->getName(fromName);
to->getName(toName);
if (fromName == toName && from->getRawOffset() == to->getRawOffset()
&& from->getDSTSavings() == to->getDSTSavings()) {
return getPreviousTransition(startTime, false, result);
}
result.setTime(startTime);
result.adoptFrom(from->clone());
result.adoptTo(to->clone());
return TRUE;
}
}
return FALSE;
}
int32_t
OlsonTimeZone::countTransitionRules(UErrorCode& status) const {
if (U_FAILURE(status)) {
return 0;
}
checkTransitionRules(status);
if (U_FAILURE(status)) {
return 0;
}
int32_t count = 0;
if (historicRules != NULL) {
// historicRules may contain null entries when original zoneinfo data
// includes non transition data.
for (int32_t i = 0; i < historicRuleCount; i++) {
if (historicRules[i] != NULL) {
count++;
}
}
}
if (finalZone != NULL) {
if (finalZone->useDaylightTime()) {
count += 2;
} else {
count++;
}
}
return count;
}
void
OlsonTimeZone::getTimeZoneRules(const InitialTimeZoneRule*& initial,
const TimeZoneRule* trsrules[],
int32_t& trscount,
UErrorCode& status) const {
if (U_FAILURE(status)) {
return;
}
checkTransitionRules(status);
if (U_FAILURE(status)) {
return;
}
// Initial rule
initial = initialRule;
// Transition rules
int32_t cnt = 0;
if (historicRules != NULL && trscount > cnt) {
// historicRules may contain null entries when original zoneinfo data
// includes non transition data.
for (int32_t i = 0; i < historicRuleCount; i++) {
if (historicRules[i] != NULL) {
trsrules[cnt++] = historicRules[i];
if (cnt >= trscount) {
break;
}
}
}
}
if (finalZoneWithStartYear != NULL && trscount > cnt) {
const InitialTimeZoneRule *tmpini;
int32_t tmpcnt = trscount - cnt;
finalZoneWithStartYear->getTimeZoneRules(tmpini, &trsrules[cnt], tmpcnt, status);
if (U_FAILURE(status)) {
return;
}
cnt += tmpcnt;
}
// Set the result length
trscount = cnt;
}
U_NAMESPACE_END
#endif // !UCONFIG_NO_FORMATTING
//eof