fc1f59a88d
X-SVN-Rev: 10949
1950 lines
73 KiB
C++
1950 lines
73 KiB
C++
|
|
//
|
|
// file: regexcmp.cpp
|
|
//
|
|
// Copyright (C) 2002, International Business Machines Corporation and others.
|
|
// All Rights Reserved.
|
|
//
|
|
// This file contains the ICU regular expression compiler, which is responsible
|
|
// for processing a regular expression pattern into the compiled form that
|
|
// is used by the match finding engine.
|
|
//
|
|
|
|
#include "unicode/utypes.h"
|
|
|
|
#if !UCONFIG_NO_REGULAR_EXPRESSIONS
|
|
|
|
#include "unicode/unistr.h"
|
|
#include "unicode/uniset.h"
|
|
#include "unicode/uchar.h"
|
|
#include "unicode/uchriter.h"
|
|
#include "unicode/parsepos.h"
|
|
#include "unicode/parseerr.h"
|
|
#include "unicode/regex.h"
|
|
#include "uprops.h"
|
|
#include "cmemory.h"
|
|
#include "cstring.h"
|
|
#include "uvectr32.h"
|
|
#include "uassert.h"
|
|
#include "ucln_in.h"
|
|
#include "mutex.h"
|
|
|
|
#include "regeximp.h"
|
|
#include "regexcst.h" // Contains state table for the regex pattern parser.
|
|
// generated by a Perl script.
|
|
#include "regexcmp.h"
|
|
|
|
|
|
|
|
U_NAMESPACE_BEGIN
|
|
|
|
//----------------------------------------------------------------------------------------
|
|
//
|
|
// Unicode Sets for each of the character classes needed for parsing a regex pattern.
|
|
// (Initialized with hex values for portability to EBCDIC based machines.
|
|
// Really ugly, but there's no good way to avoid it.)
|
|
//
|
|
// The sets are referred to by name in the regexcst.txt, which is the
|
|
// source form of the state transition table. These names are converted
|
|
// to indicies in regexcst.h by the perl state table building script regexcst.pl.
|
|
// The indices are used to access the array gRuleSets.
|
|
//
|
|
//----------------------------------------------------------------------------------------
|
|
|
|
// "Rule Char" Characters are those with no special meaning, and therefore do not
|
|
// need to be escaped to appear as literals in a regexp. Expressed
|
|
// as the inverse of those needing escaping -- [^\*\?\+\[\(\)\{\}\^\$\|\\\.]
|
|
static const UChar gRuleSet_rule_char_pattern[] = {
|
|
// [ ^ \ * \ ? \ + \ [ \ ( / )
|
|
0x5b, 0x5e, 0x5c, 0x2a, 0x5c, 0x3f, 0x5c, 0x2b, 0x5c, 0x5b, 0x5c, 0x28, 0x5c, 0x29,
|
|
// \ { \ } \ ^ \ $ \ | \ \ \ . ]
|
|
0x5c, 0x7b,0x5c, 0x7d, 0x5c, 0x5e, 0x5c, 0x24, 0x5c, 0x7c, 0x5c, 0x5c, 0x5c, 0x2e, 0x5d, 0};
|
|
|
|
|
|
static const UChar gRuleSet_digit_char_pattern[] = {
|
|
// [ 0 - 9 ]
|
|
0x5b, 0x30, 0x2d, 0x39, 0x5d, 0};
|
|
static const UnicodeSet *gRuleDigits = NULL;
|
|
|
|
|
|
static UnicodeSet *gRuleSets[10]; // Array of ptrs to the actual UnicodeSet objects.
|
|
static UnicodeSet *gUnescapeCharSet;
|
|
|
|
//
|
|
// Here are the backslash escape characters that ICU's unescape() function
|
|
// will handle.
|
|
//
|
|
static const UChar gUnescapeCharPattern[] = {
|
|
// [ a c e f n r t u U ]
|
|
0x5b, 0x61, 0x63, 0x65, 0x66, 0x6e, 0x72, 0x74, 0x75, 0x55, 0x5d, 0};
|
|
|
|
|
|
//
|
|
// White space characters that may appear within a pattern in free-form mode
|
|
//
|
|
static const UChar gRuleWhiteSpacePattern[] = {
|
|
/* "[[:Cf:][:WSpace:]]" */
|
|
91, 91, 58, 67, 102, 58, 93, 91, 58, 87,
|
|
83, 112, 97, 99, 101, 58, 93, 93, 0 };
|
|
|
|
|
|
|
|
//
|
|
// Unicode Set Definitions for Regular Expression \w
|
|
//
|
|
static const UChar gIsWordPattern[] = {
|
|
// [ \ p { L l } \ p { L u }
|
|
0x5b, 0x5c, 0x70, 0x7b, 0x4c, 0x6c, 0x7d, 0x5c, 0x70, 0x7b, 0x4c, 0x75, 0x7d,
|
|
// \ p { L t } \ p { L o }
|
|
0x5c, 0x70, 0x7b, 0x4c, 0x74, 0x7d, 0x5c, 0x70, 0x7b, 0x4c, 0x6f, 0x7d,
|
|
// \ p { N d } ]
|
|
0x5c, 0x70, 0x7b, 0x4e, 0x64, 0x7d, 0x5d, 0};
|
|
|
|
|
|
//
|
|
// Unicode Set Definitions for Regular Expression \s
|
|
//
|
|
static const UChar gIsSpacePattern[] = {
|
|
// [ \ t \ n \ f \ r \ p { Z } ]
|
|
0x5b, 0x5c, 0x74, 0x5c, 0x6e, 0x5c, 0x66, 0x5c, 0x72, 0x5c, 0x70, 0x7b, 0x5a, 0x7d, 0x5d, 0};
|
|
|
|
static UnicodeSet *gPropSets[URX_LAST_SET];
|
|
|
|
|
|
//----------------------------------------------------------------------------------------
|
|
//
|
|
// ThreadSafeUnicodeSetInit Thread safe creation of a shared UnicodeSet.
|
|
//
|
|
//----------------------------------------------------------------------------------------
|
|
static void ThreadSafeUnicodeSetInit(UnicodeSet **pSet, const UChar *pattern, UErrorCode &status) {
|
|
if (*pSet == NULL) {
|
|
UnicodeSet *t = new UnicodeSet(pattern, status);
|
|
if (U_FAILURE(status)) {
|
|
delete t;
|
|
return;
|
|
}
|
|
if (t == NULL) {
|
|
status = U_MEMORY_ALLOCATION_ERROR;
|
|
return;
|
|
}
|
|
Mutex lock;
|
|
if (*pSet == NULL) {
|
|
*pSet = t;
|
|
} else {
|
|
delete t;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//----------------------------------------------------------------------------------------
|
|
//
|
|
// Constructor.
|
|
//
|
|
//----------------------------------------------------------------------------------------
|
|
RegexCompile::RegexCompile(UErrorCode &status) : fParenStack(status)
|
|
{
|
|
fStatus = &status;
|
|
|
|
fScanIndex = 0;
|
|
fNextIndex = 0;
|
|
fPeekChar = -1;
|
|
fLineNum = 1;
|
|
fCharNum = 0;
|
|
fQuoteMode = FALSE;
|
|
fFreeForm = FALSE;
|
|
|
|
fMatchOpenParen = -1;
|
|
fMatchCloseParen = -1;
|
|
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
|
|
//
|
|
// Register the I18n library for cleanup,
|
|
// but only if we haven't initialized our globals yet.
|
|
if (gRuleSets[kRuleSet_rule_char-128] == NULL) {
|
|
ucln_i18n_registerCleanup();
|
|
}
|
|
|
|
//
|
|
// Set up the constant (static) Unicode Sets.
|
|
// TODO: something cleaner for that -128 constant.
|
|
//
|
|
ThreadSafeUnicodeSetInit(&gRuleSets[kRuleSet_rule_char-128], gRuleSet_rule_char_pattern, status);
|
|
ThreadSafeUnicodeSetInit(&gRuleSets[kRuleSet_white_space-128], gRuleWhiteSpacePattern, status);
|
|
ThreadSafeUnicodeSetInit(&gRuleSets[kRuleSet_digit_char-128], gRuleSet_digit_char_pattern, status);
|
|
gRuleDigits = gRuleSets[kRuleSet_digit_char-128];
|
|
ThreadSafeUnicodeSetInit(&gUnescapeCharSet, gUnescapeCharPattern, status);
|
|
ThreadSafeUnicodeSetInit(&gPropSets[URX_ISWORD_SET], gIsWordPattern, status);
|
|
ThreadSafeUnicodeSetInit(&gPropSets[URX_ISSPACE_SET], gIsSpacePattern, status);
|
|
}
|
|
|
|
|
|
|
|
//----------------------------------------------------------------------------------------
|
|
//
|
|
// Destructor
|
|
//
|
|
//----------------------------------------------------------------------------------------
|
|
RegexCompile::~RegexCompile() {
|
|
}
|
|
|
|
|
|
|
|
//----------------------------------------------------------------------------------------
|
|
//
|
|
// cleanup. Called (indirectly) by u_cleanup to free all cached memory
|
|
//
|
|
//----------------------------------------------------------------------------------------
|
|
void RegexCompile::cleanup() {
|
|
delete gRuleSets[kRuleSet_rule_char-128];
|
|
delete gRuleSets[kRuleSet_white_space-128];
|
|
delete gRuleSets[kRuleSet_digit_char-128];
|
|
delete gUnescapeCharSet;
|
|
gRuleSets[kRuleSet_rule_char-128] = NULL;
|
|
gRuleSets[kRuleSet_white_space-128] = NULL;
|
|
gRuleSets[kRuleSet_digit_char-128] = NULL;
|
|
gUnescapeCharSet = NULL;
|
|
int i;
|
|
for (i=0; i<URX_LAST_SET; i++) {
|
|
delete (UnicodeSet *)gPropSets[i];
|
|
gPropSets[i] = NULL;
|
|
}
|
|
return;
|
|
}
|
|
|
|
|
|
//---------------------------------------------------------------------------------
|
|
//
|
|
// Compile regex pattern. The state machine for rexexp pattern parsing is here.
|
|
// The state tables are hand-written in the file regexcst.txt,
|
|
// and converted to the form used here by a perl
|
|
// script regexcst.pl
|
|
//
|
|
//---------------------------------------------------------------------------------
|
|
void RegexCompile::compile(
|
|
RegexPattern &rxp, // User level pattern object to receive
|
|
// the compiled pattern.
|
|
const UnicodeString &pat, // Source pat to be compiled.
|
|
UParseError &pp, // Error position info
|
|
UErrorCode &e) // Error Code
|
|
{
|
|
fStatus = &e;
|
|
fRXPat = &rxp;
|
|
fParseErr = &pp;
|
|
fStackPtr = 0;
|
|
fStack[fStackPtr] = 0;
|
|
|
|
if (U_FAILURE(*fStatus)) {
|
|
return;
|
|
}
|
|
|
|
// There should be no pattern stuff in the RegexPattern object. They can not be reused.
|
|
U_ASSERT(fRXPat->fPattern.length() == 0);
|
|
|
|
// Prepare the RegexPattern object to receive the compiled pattern.
|
|
fRXPat->fPattern = pat;
|
|
fRXPat->fStaticSets = gPropSets;
|
|
|
|
|
|
// Initialize the pattern scanning state machine
|
|
fPatternLength = pat.length();
|
|
uint16_t state = 1;
|
|
const RegexTableEl *tableEl;
|
|
nextChar(fC); // Fetch the first char from the pattern string.
|
|
|
|
//
|
|
// Main loop for the regex pattern parsing state machine.
|
|
// Runs once per state transition.
|
|
// Each time through optionally performs, depending on the state table,
|
|
// - an advance to the the next pattern char
|
|
// - an action to be performed.
|
|
// - pushing or popping a state to/from the local state return stack.
|
|
// file regexcst.txt is the source for the state table. The logic behind
|
|
// recongizing the pattern syntax is there, not here.
|
|
//
|
|
for (;;) {
|
|
// Bail out if anything has gone wrong.
|
|
// Regex pattern parsing stops on the first error encountered.
|
|
if (U_FAILURE(*fStatus)) {
|
|
break;
|
|
}
|
|
|
|
U_ASSERT(state != 0);
|
|
|
|
// Find the state table element that matches the input char from the rule, or the
|
|
// class of the input character. Start with the first table row for this
|
|
// state, then linearly scan forward until we find a row that matches the
|
|
// character. The last row for each state always matches all characters, so
|
|
// the search will stop there, if not before.
|
|
//
|
|
tableEl = &gRuleParseStateTable[state];
|
|
REGEX_SCAN_DEBUG_PRINTF( "char, line, col = (\'%c\', %d, %d) state=%s ",
|
|
fC.fChar, fLineNum, fCharNum, RegexStateNames[state]);
|
|
|
|
for (;;) { // loop through table rows belonging to this state, looking for one
|
|
// that matches the current input char.
|
|
REGEX_SCAN_DEBUG_PRINTF( ".");
|
|
if (tableEl->fCharClass < 127 && fC.fQuoted == FALSE && tableEl->fCharClass == fC.fChar) {
|
|
// Table row specified an individual character, not a set, and
|
|
// the input character is not quoted, and
|
|
// the input character matched it.
|
|
break;
|
|
}
|
|
if (tableEl->fCharClass == 255) {
|
|
// Table row specified default, match anything character class.
|
|
break;
|
|
}
|
|
if (tableEl->fCharClass == 254 && fC.fQuoted) {
|
|
// Table row specified "quoted" and the char was quoted.
|
|
break;
|
|
}
|
|
if (tableEl->fCharClass == 253 && fC.fChar == (UChar32)-1) {
|
|
// Table row specified eof and we hit eof on the input.
|
|
break;
|
|
}
|
|
|
|
if (tableEl->fCharClass >= 128 && tableEl->fCharClass < 240 && // Table specs a char class &&
|
|
fC.fQuoted == FALSE && // char is not escaped &&
|
|
fC.fChar != (UChar32)-1) { // char is not EOF
|
|
UnicodeSet *uniset = gRuleSets[tableEl->fCharClass-128];
|
|
if (uniset->contains(fC.fChar)) {
|
|
// Table row specified a character class, or set of characters,
|
|
// and the current char matches it.
|
|
break;
|
|
}
|
|
}
|
|
|
|
// No match on this row, advance to the next row for this state,
|
|
tableEl++;
|
|
}
|
|
REGEX_SCAN_DEBUG_PRINTF("\n");
|
|
|
|
//
|
|
// We've found the row of the state table that matches the current input
|
|
// character from the rules string.
|
|
// Perform any action specified by this row in the state table.
|
|
if (doParseActions((EParseAction)tableEl->fAction) == FALSE) {
|
|
// Break out of the state machine loop if the
|
|
// the action signalled some kind of error, or
|
|
// the action was to exit, occurs on normal end-of-rules-input.
|
|
break;
|
|
}
|
|
|
|
if (tableEl->fPushState != 0) {
|
|
fStackPtr++;
|
|
if (fStackPtr >= kStackSize) {
|
|
error(U_REGEX_INTERNAL_ERROR);
|
|
REGEX_SCAN_DEBUG_PRINTF( "RegexCompile::parse() - state stack overflow.\n");
|
|
fStackPtr--;
|
|
}
|
|
fStack[fStackPtr] = tableEl->fPushState;
|
|
}
|
|
|
|
if (tableEl->fNextChar) {
|
|
nextChar(fC);
|
|
}
|
|
|
|
// Get the next state from the table entry, or from the
|
|
// state stack if the next state was specified as "pop".
|
|
if (tableEl->fNextState != 255) {
|
|
state = tableEl->fNextState;
|
|
} else {
|
|
state = fStack[fStackPtr];
|
|
fStackPtr--;
|
|
if (fStackPtr < 0) {
|
|
// state stack underflow
|
|
// This will occur if the user pattern has mis-matched parentheses,
|
|
// with extra close parens.
|
|
//
|
|
fStackPtr++;
|
|
error(U_REGEX_MISMATCHED_PAREN);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
//
|
|
// The pattern has now been read and processed, and the compiled code generated.
|
|
//
|
|
|
|
// Back-reference fixup
|
|
//
|
|
int32_t loc;
|
|
for (loc=0; loc<fRXPat->fCompiledPat->size(); loc++) {
|
|
int32_t op = fRXPat->fCompiledPat->elementAti(loc);
|
|
if (URX_TYPE(op) == URX_BACKREF) {
|
|
int32_t where = URX_VAL(op);
|
|
if (where > fRXPat->fGroupMap->size()) {
|
|
error(U_REGEX_INVALID_BACK_REF);
|
|
break;
|
|
}
|
|
where = fRXPat->fGroupMap->elementAti(where-1);
|
|
op = URX_BUILD(URX_BACKREF, where);
|
|
fRXPat->fCompiledPat->setElementAt(op, loc);
|
|
}
|
|
}
|
|
|
|
|
|
//
|
|
// Compute the number of digits requried for the largest capture group number.
|
|
//
|
|
fRXPat->fMaxCaptureDigits = 1;
|
|
int32_t n = 10;
|
|
for (;;) {
|
|
if (n > fRXPat->fGroupMap->size()) {
|
|
break;
|
|
}
|
|
fRXPat->fMaxCaptureDigits++;
|
|
n *= 10;
|
|
}
|
|
|
|
//
|
|
// The pattern's fFrameSize so far has accumulated the requirements for
|
|
// storage for capture parentheses, counters, etc. that are encountered
|
|
// in the pattern. Add space for the two variables that are always
|
|
// present in the saved state: the input string position and the
|
|
// position in the compiled pattern.
|
|
//
|
|
fRXPat->fFrameSize+=2;
|
|
|
|
//
|
|
// A stupid bit of non-sense to prevent code coverage testing from complaining
|
|
// about the pattern.dump() debug function. Go through the motions of dumping,
|
|
// even though, without the #define set, it will do nothing.
|
|
//
|
|
#ifndef REGEX_DUMP_DEBUG
|
|
static UBool phonyDumpDone = FALSE;
|
|
if (phonyDumpDone==FALSE) {
|
|
fRXPat->dump();
|
|
phonyDumpDone = TRUE;
|
|
}
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//----------------------------------------------------------------------------------------
|
|
//
|
|
// doParseAction Do some action during regex pattern parsing.
|
|
// Called by the parse state machine.
|
|
//
|
|
//
|
|
//----------------------------------------------------------------------------------------
|
|
UBool RegexCompile::doParseActions(EParseAction action)
|
|
{
|
|
UBool returnVal = TRUE;
|
|
|
|
switch ((Regex_PatternParseAction)action) {
|
|
|
|
case doPatStart:
|
|
// Start of pattern compiles to:
|
|
//0 SAVE 2 Fall back to position of FAIL
|
|
//1 jmp 3
|
|
//2 FAIL Stop if we ever reach here.
|
|
//3 NOP Dummy, so start of pattern looks the same as
|
|
// the start of an ( grouping.
|
|
//4 NOP Resreved, will be replaced by a save if there are
|
|
// OR | operators at the top level
|
|
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_STATE_SAVE, 2), *fStatus);
|
|
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_JMP, 3), *fStatus);
|
|
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_FAIL, 0), *fStatus);
|
|
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
|
|
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
|
|
|
|
fParenStack.push(-1, *fStatus); // Begin a Paren Stack Frame
|
|
fParenStack.push( 3, *fStatus); // Push location of first NOP
|
|
break;
|
|
|
|
case doPatFinish:
|
|
// We've scanned to the end of the pattern
|
|
// The end of pattern compiles to:
|
|
// URX_END
|
|
// which will stop the runtime match engine.
|
|
// Encountering end of pattern also behaves like a close paren,
|
|
// and forces fixups of the State Save at the beginning of the compiled pattern
|
|
// and of any OR operations at the top level.
|
|
//
|
|
handleCloseParen();
|
|
if (fParenStack.size() > 0) {
|
|
// Missing close paren in pattern.
|
|
error(U_REGEX_MISMATCHED_PAREN);
|
|
}
|
|
|
|
// add the END operation to the compiled pattern.
|
|
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_END, 0), *fStatus);
|
|
|
|
// Terminate the pattern compilation state machine.
|
|
returnVal = FALSE;
|
|
break;
|
|
|
|
|
|
|
|
case doOrOperator:
|
|
// Scanning a '|', as in (A|B)
|
|
{
|
|
// Insert a SAVE operation at the start of the pattern section preceding
|
|
// this OR at this level. This SAVE will branch the match forward
|
|
// to the right hand side of the OR in the event that the left hand
|
|
// side fails to match and backtracks. Locate the position for the
|
|
// save from the location on the top of the parentheses stack.
|
|
int32_t savePosition = fParenStack.popi();
|
|
int32_t op = fRXPat->fCompiledPat->elementAti(savePosition);
|
|
U_ASSERT(URX_TYPE(op) == URX_NOP); // original contents of reserved location
|
|
op = URX_BUILD(URX_STATE_SAVE, fRXPat->fCompiledPat->size()+1);
|
|
fRXPat->fCompiledPat->setElementAt(op, savePosition);
|
|
|
|
// Append an JMP operation into the compiled pattern. The operand for
|
|
// the JMP will eventually be the location following the ')' for the
|
|
// group. This will be patched in later, when the ')' is encountered.
|
|
op = URX_BUILD(URX_JMP, 0);
|
|
fRXPat->fCompiledPat->addElement(op, *fStatus);
|
|
|
|
// Push the position of the newly added JMP op onto the parentheses stack.
|
|
// This registers if for fixup when this block's close paren is encountered.
|
|
fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus);
|
|
|
|
// Append a NOP to the compiled pattern. This is the slot reserved
|
|
// for a SAVE in the event that there is yet another '|' following
|
|
// this one.
|
|
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
|
|
fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus);
|
|
}
|
|
break;
|
|
|
|
|
|
case doOpenCaptureParen:
|
|
// Open Paren.
|
|
// Compile to a
|
|
// - NOP, which later may be replaced by a save-state if the
|
|
// parenthesized group gets a * quantifier, followed by
|
|
// - START_CAPTURE n where n is stack frame offset to the capture group variables.
|
|
// - NOP, which may later be replaced by a save-state if there
|
|
// is an '|' alternation within the parens.
|
|
//
|
|
// Each capture group gets three slots in the save stack frame:
|
|
// 0: Capture Group start position (in input string being matched.)
|
|
// 1: Capture Group end positino.
|
|
// 2: Start of Match-in-progress.
|
|
// The first two locations are for a completed capture group, and are
|
|
// referred to by back references and the like.
|
|
// The third location stores the capture start position when an START_CAPTURE is
|
|
// encountered. This will be promoted to a completed capture when (and if) the corresponding
|
|
// END_CAPure is encountered.
|
|
{
|
|
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
|
|
int32_t varsLoc = fRXPat->fFrameSize; // Reserve three slots in match stack frame.
|
|
fRXPat->fFrameSize += 3;
|
|
int32_t cop = URX_BUILD(URX_START_CAPTURE, varsLoc);
|
|
fRXPat->fCompiledPat->addElement(cop, *fStatus);
|
|
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
|
|
|
|
// On the Parentheses stack, start a new frame and add the postions
|
|
// of the two NOPs. Depending on what follows in the pattern, the
|
|
// NOPs may be changed to SAVE_STATE or JMP ops, with a target
|
|
// address of the end of the parenthesized group.
|
|
fParenStack.push(-2, *fStatus); // Begin a new frame.
|
|
fParenStack.push(fRXPat->fCompiledPat->size()-3, *fStatus); // The first NOP
|
|
fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP
|
|
|
|
// Save the mapping from group number to stack frame variable position.
|
|
fRXPat->fGroupMap->addElement(varsLoc, *fStatus);
|
|
}
|
|
break;
|
|
|
|
case doOpenNonCaptureParen:
|
|
// Open non-caputuring (grouping only) Paren.
|
|
// Compile to a
|
|
// - NOP, which later may be replaced by a save-state if the
|
|
// parenthesized group gets a * quantifier, followed by
|
|
// - NOP, which may later be replaced by a save-state if there
|
|
// is an '|' alternation within the parens.
|
|
{
|
|
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
|
|
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
|
|
|
|
// On the Parentheses stack, start a new frame and add the postions
|
|
// of the two NOPs.
|
|
fParenStack.push(-1, *fStatus); // Begin a new frame.
|
|
fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP
|
|
fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP
|
|
}
|
|
break;
|
|
|
|
|
|
case doOpenAtomicParen:
|
|
// Open Atomic Paren. (?>
|
|
// Compile to a
|
|
// - NOP, which later may be replaced if the parenthesized group
|
|
// has a quantifier, followed by
|
|
// - STO_SP save state stack position, so it can be restored at the ")"
|
|
// - NOP, which may later be replaced by a save-state if there
|
|
// is an '|' alternation within the parens.
|
|
{
|
|
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
|
|
int32_t varLoc = fRXPat->fDataSize; // Reserve a data location for saving the
|
|
fRXPat->fDataSize += 1; // state stack ptr.
|
|
int32_t stoOp = URX_BUILD(URX_STO_SP, varLoc);
|
|
fRXPat->fCompiledPat->addElement(stoOp, *fStatus);
|
|
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
|
|
|
|
// On the Parentheses stack, start a new frame and add the postions
|
|
// of the two NOPs. Depending on what follows in the pattern, the
|
|
// NOPs may be changed to SAVE_STATE or JMP ops, with a target
|
|
// address of the end of the parenthesized group.
|
|
fParenStack.push(-3, *fStatus); // Begin a new frame.
|
|
fParenStack.push(fRXPat->fCompiledPat->size()-3, *fStatus); // The first NOP
|
|
fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP
|
|
}
|
|
break;
|
|
|
|
|
|
case doOpenLookAhead:
|
|
// Positive Look-ahead (?= stuff )
|
|
// Compiles to
|
|
// 1 START_LA dataLoc
|
|
// 2. NOP reserved for use by quantifiers on the block.
|
|
// Look-ahead can't have quantifiers, but paren stack
|
|
// compile time conventions require the slot anyhow.
|
|
// 3. NOP may be replaced if there is are '|' ops in the block.
|
|
// 4. code for parenthesized stuff.
|
|
// 5. ENDLA
|
|
//
|
|
// Two data slots are reserved, for saving the stack ptr and the input position.
|
|
{
|
|
int32_t dataLoc = fRXPat->fDataSize;
|
|
fRXPat->fDataSize += 2;
|
|
int32_t op = URX_BUILD(URX_LA_START, dataLoc);
|
|
fRXPat->fCompiledPat->addElement(op, *fStatus);
|
|
|
|
op = URX_BUILD(URX_NOP, 0);
|
|
fRXPat->fCompiledPat->addElement(op, *fStatus);
|
|
fRXPat->fCompiledPat->addElement(op, *fStatus);
|
|
|
|
// On the Parentheses stack, start a new frame and add the postions
|
|
// of the NOPs.
|
|
fParenStack.push(lookAhead, *fStatus); // Begin a new frame.
|
|
fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP
|
|
fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP
|
|
}
|
|
break;
|
|
|
|
case doOpenLookAheadNeg:
|
|
// Negated Lookahead. (?! stuff )
|
|
// Compiles to
|
|
// 1. START_LA dataloc
|
|
// 2. SAVE_STATE 7 // Fail within look-ahead block restores to this state,
|
|
// // which continues with the match.
|
|
// 3. NOP // Std. Open Paren sequence, for possible '|'
|
|
// 4. code for parenthesized stuff.
|
|
// 5. END_LA // Cut back stack, remove saved state from step 2.
|
|
// 6. FAIL // code in block succeeded, so neg. lookahead fails.
|
|
// 7. ...
|
|
{
|
|
int32_t dataLoc = fRXPat->fDataSize;
|
|
fRXPat->fDataSize += 2;
|
|
int32_t op = URX_BUILD(URX_LA_START, dataLoc);
|
|
fRXPat->fCompiledPat->addElement(op, *fStatus);
|
|
|
|
op = URX_BUILD(URX_STATE_SAVE, 0); // dest address will be patched later.
|
|
fRXPat->fCompiledPat->addElement(op, *fStatus);
|
|
|
|
op = URX_BUILD(URX_NOP, 0);
|
|
fRXPat->fCompiledPat->addElement(op, *fStatus);
|
|
|
|
// On the Parentheses stack, start a new frame and add the postions
|
|
// of the StateSave and NOP.
|
|
fParenStack.push( negLookAhead, *fStatus); // Begin a new frame.
|
|
fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The STATE_SAVE
|
|
fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP
|
|
|
|
// Instructions #5 and #6 will be added when the ')' is encountered.
|
|
}
|
|
break;
|
|
|
|
case doOpenLookBehind:
|
|
// Open Paren.
|
|
error(U_REGEX_UNIMPLEMENTED);
|
|
break;
|
|
|
|
case doOpenLookBehindNeg:
|
|
// Open Paren.
|
|
error(U_REGEX_UNIMPLEMENTED);
|
|
break;
|
|
|
|
case doConditionalExpr:
|
|
// Conditionals such as (?(1)a:b)
|
|
case doPerlInline:
|
|
// Perl inline-condtionals. (?{perl code}a|b) We're not perl, no way to do them.
|
|
error(U_REGEX_UNIMPLEMENTED);
|
|
break;
|
|
|
|
|
|
case doCloseParen:
|
|
handleCloseParen();
|
|
if (fParenStack.size() <= 0) {
|
|
// Extra close paren, or missing open paren.
|
|
error(U_REGEX_MISMATCHED_PAREN);
|
|
}
|
|
break;
|
|
|
|
case doNOP:
|
|
break;
|
|
|
|
|
|
case doBadOpenParenType:
|
|
case doRuleError:
|
|
error(U_REGEX_RULE_SYNTAX);
|
|
returnVal = FALSE;
|
|
break;
|
|
|
|
|
|
case doMismatchedParenErr:
|
|
error(U_REGEX_MISMATCHED_PAREN);
|
|
returnVal = FALSE;
|
|
break;
|
|
|
|
case doPlus:
|
|
// Normal '+' compiles to
|
|
// 1. stuff to be repeated (already built)
|
|
// 2. state-save 4
|
|
// 3. jmp 1
|
|
// 4. ...
|
|
{
|
|
int32_t topLoc = blockTopLoc(FALSE); // location of item #1
|
|
|
|
// Locate the position in the compiled pattern where the match will continue
|
|
// after completing the + (4 in the comment above)
|
|
int32_t continueLoc = fRXPat->fCompiledPat->size()+2;
|
|
|
|
// Emit the STATE_SAVE
|
|
int32_t saveStateOp = URX_BUILD(URX_STATE_SAVE, continueLoc);
|
|
fRXPat->fCompiledPat->addElement(saveStateOp, *fStatus);
|
|
|
|
// Emit the JMP
|
|
int32_t jmpOp = URX_BUILD(URX_JMP, topLoc);
|
|
fRXPat->fCompiledPat->addElement(jmpOp, *fStatus);
|
|
}
|
|
break;
|
|
|
|
case doNGPlus:
|
|
// Non-greedy '+?' compiles to
|
|
// 1. stuff to be repeated (already built)
|
|
// 2. state-save 1
|
|
// 3. ...
|
|
{
|
|
int32_t topLoc = blockTopLoc(FALSE);
|
|
int32_t saveStateOp = URX_BUILD(URX_STATE_SAVE, topLoc);
|
|
fRXPat->fCompiledPat->addElement(saveStateOp, *fStatus);
|
|
}
|
|
break;
|
|
|
|
|
|
case doOpt:
|
|
// Normal (greedy) ? quantifier.
|
|
// Compiles to
|
|
// 1. state save 3
|
|
// 2. body of optional block
|
|
// 3. ...
|
|
// Insert the state save into the compiled pattern, and we're done.
|
|
{
|
|
int32_t saveStateLoc = blockTopLoc(TRUE);
|
|
int32_t saveStateOp = URX_BUILD(URX_STATE_SAVE, fRXPat->fCompiledPat->size());
|
|
fRXPat->fCompiledPat->setElementAt(saveStateOp, saveStateLoc);
|
|
}
|
|
break;
|
|
|
|
case doNGOpt:
|
|
// Non-greedy ?? quantifier
|
|
// compiles to
|
|
// 1. jmp 4
|
|
// 2. body of optional block
|
|
// 3 jmp 5
|
|
// 4. state save 2
|
|
// 5 ...
|
|
// This code is less than ideal, with two jmps instead of one, because we can only
|
|
// insert one instruction at the top of the block being iterated.
|
|
{
|
|
int32_t jmp1_loc = blockTopLoc(TRUE);
|
|
int32_t jmp2_loc = fRXPat->fCompiledPat->size();
|
|
|
|
int32_t jmp1_op = URX_BUILD(URX_JMP, jmp2_loc+1);
|
|
fRXPat->fCompiledPat->setElementAt(jmp1_op, jmp1_loc);
|
|
|
|
int32_t jmp2_op = URX_BUILD(URX_JMP, jmp2_loc+2);
|
|
fRXPat->fCompiledPat->addElement(jmp2_op, *fStatus);
|
|
|
|
int32_t save_op = URX_BUILD(URX_STATE_SAVE, jmp1_loc+1);
|
|
fRXPat->fCompiledPat->addElement(save_op, *fStatus);
|
|
}
|
|
break;
|
|
|
|
|
|
case doStar:
|
|
// Normal (greedy) * quantifier.
|
|
// Compiles to
|
|
// 1. STATE_SAVE 4
|
|
// 2. body of stuff being iterated over
|
|
// 3. JMP 1
|
|
// 4. ...
|
|
//
|
|
// Or, if the body can match a zero-length string, to inhibit infinite loops,
|
|
// 1. STATE_SAVE 6
|
|
// 2. POS_SAVE data-loc
|
|
// 3. body of stuff
|
|
// 4. JMPX 1
|
|
// 5 data-loc (extra operand of JMPX)
|
|
// 6. ...
|
|
{
|
|
// location of item #1, the STATE_SAVE
|
|
int32_t saveStateLoc = blockTopLoc(TRUE);
|
|
int32_t dataLoc = -1;
|
|
|
|
if (possibleNullMatch(saveStateLoc, fRXPat->fCompiledPat->size()-1)) {
|
|
insertOp(saveStateLoc);
|
|
dataLoc = fRXPat->fFrameSize;
|
|
fRXPat->fFrameSize++;
|
|
|
|
int32_t op = URX_BUILD(URX_STO_INP_LOC, dataLoc);
|
|
fRXPat->fCompiledPat->setElementAt(op, saveStateLoc+1);
|
|
}
|
|
|
|
// Locate the position in the compiled pattern where the match will continue
|
|
// after completing the *. (4 in the comment above)
|
|
int32_t continueLoc = fRXPat->fCompiledPat->size()+1;
|
|
if (dataLoc != -1) {
|
|
continueLoc++;
|
|
}
|
|
|
|
// Put together the save state op store it into the compiled code.
|
|
int32_t saveStateOp = URX_BUILD(URX_STATE_SAVE, continueLoc);
|
|
fRXPat->fCompiledPat->setElementAt(saveStateOp, saveStateLoc);
|
|
|
|
// Append the URX_JMP or URX_JMPX operation to the compiled pattern. Its target
|
|
// is the locaton of the state-save, above.
|
|
if (dataLoc == -1) {
|
|
int32_t jmpOp = URX_BUILD(URX_JMP, saveStateLoc);
|
|
fRXPat->fCompiledPat->addElement(jmpOp, *fStatus);
|
|
} else {
|
|
int32_t op = URX_BUILD(URX_JMPX, saveStateLoc);
|
|
fRXPat->fCompiledPat->addElement(op, *fStatus);
|
|
op = URX_BUILD(URX_RESERVED_OP, dataLoc);
|
|
fRXPat->fCompiledPat->addElement(op, *fStatus);
|
|
}
|
|
|
|
}
|
|
break;
|
|
|
|
case doNGStar:
|
|
// Non-greedy *? quantifier
|
|
// compiles to
|
|
// 1. JMP 3
|
|
// 2. body of stuff being iterated over
|
|
// 3. STATE_SAVE 2
|
|
// 4 ...
|
|
{
|
|
int32_t jmpLoc = blockTopLoc(TRUE); // loc 1.
|
|
int32_t saveLoc = fRXPat->fCompiledPat->size(); // loc 3.
|
|
int32_t jmpOp = URX_BUILD(URX_JMP, saveLoc);
|
|
int32_t stateSaveOp = URX_BUILD(URX_STATE_SAVE, jmpLoc+1);
|
|
fRXPat->fCompiledPat->setElementAt(jmpOp, jmpLoc);
|
|
fRXPat->fCompiledPat->addElement(stateSaveOp, *fStatus);
|
|
}
|
|
break;
|
|
|
|
|
|
case doIntervalInit:
|
|
// The '{' opening an interval quantifier was just scanned.
|
|
// Init the counter varaiables that will accumulate the values as the digits
|
|
// are scanned.
|
|
fIntervalLow = 0;
|
|
fIntervalUpper = -1;
|
|
break;
|
|
|
|
case doIntevalLowerDigit:
|
|
// Scanned a digit from the lower value of an {lower,upper} interval
|
|
{
|
|
int32_t digitValue = u_charDigitValue(fC.fChar);
|
|
U_ASSERT(digitValue >= 0);
|
|
fIntervalLow = fIntervalLow*10 + digitValue;
|
|
if (fIntervalLow < 0) {
|
|
error(U_REGEX_NUMBER_TOO_BIG);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case doIntervalUpperDigit:
|
|
// Scanned a digit from the upper value of an {lower,upper} interval
|
|
{
|
|
if (fIntervalUpper < 0) {
|
|
fIntervalUpper = 0;
|
|
}
|
|
int32_t digitValue = u_charDigitValue(fC.fChar);
|
|
U_ASSERT(digitValue >= 0);
|
|
fIntervalUpper = fIntervalUpper*10 + digitValue;
|
|
if (fIntervalLow < 0) {
|
|
error(U_REGEX_NUMBER_TOO_BIG);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case doIntervalSame:
|
|
// Scanned a single value interval like {27}. Upper = Lower.
|
|
fIntervalUpper = fIntervalLow;
|
|
break;
|
|
|
|
case doInterval:
|
|
// Finished scanning a normal {lower,upper} interval. Generate the code for it.
|
|
compileInterval(URX_CTR_INIT, URX_CTR_LOOP);
|
|
break;
|
|
|
|
case doPossesiveInterval:
|
|
// Finished scanning a Possessive {lower,upper}+ interval. Generate the code for it.
|
|
compileInterval(URX_CTR_INIT_P, URX_CTR_LOOP_P);
|
|
break;
|
|
|
|
case doNGInterval:
|
|
// Finished scanning a non-greedy {lower,upper}? interval. Generate the code for it.
|
|
compileInterval(URX_CTR_INIT_NG, URX_CTR_LOOP_NG);
|
|
break;
|
|
|
|
case doIntervalError:
|
|
error(U_REGEX_BAD_INTERVAL);
|
|
break;
|
|
|
|
case doLiteralChar:
|
|
// We've just scanned a "normal" character from the pattern,
|
|
literalChar();
|
|
break;
|
|
|
|
|
|
|
|
case doDotAny:
|
|
// scanned a ".", match any single character.
|
|
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_DOTANY, 0), *fStatus);
|
|
break;
|
|
|
|
case doCaret: // TODO: multi-line mode flag.
|
|
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_CARET, 0), *fStatus);
|
|
break;
|
|
|
|
|
|
case doDollar: // TODO: multi-line mode flag.
|
|
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_DOLLAR, 0), *fStatus);
|
|
break;
|
|
|
|
case doBackslashA:
|
|
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_A, 0), *fStatus);
|
|
break;
|
|
|
|
case doBackslashB:
|
|
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_B, 1), *fStatus);
|
|
break;
|
|
|
|
case doBackslashb:
|
|
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_B, 0), *fStatus);
|
|
break;
|
|
|
|
case doBackslashD:
|
|
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_D, 1), *fStatus);
|
|
break;
|
|
|
|
case doBackslashd:
|
|
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_D, 0), *fStatus);
|
|
break;
|
|
|
|
case doBackslashG:
|
|
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_G, 0), *fStatus);
|
|
break;
|
|
|
|
case doBackslashS:
|
|
fRXPat->fCompiledPat->addElement(
|
|
URX_BUILD(URX_STATIC_SETREF, URX_ISSPACE_SET | URX_NEG_SET), *fStatus);
|
|
break;
|
|
|
|
case doBackslashs:
|
|
fRXPat->fCompiledPat->addElement(
|
|
URX_BUILD(URX_STATIC_SETREF, URX_ISSPACE_SET), *fStatus);
|
|
break;
|
|
|
|
case doBackslashW:
|
|
fRXPat->fCompiledPat->addElement(
|
|
URX_BUILD(URX_STATIC_SETREF, URX_ISWORD_SET | URX_NEG_SET), *fStatus);
|
|
break;
|
|
|
|
case doBackslashw:
|
|
fRXPat->fCompiledPat->addElement(
|
|
URX_BUILD(URX_STATIC_SETREF, URX_ISWORD_SET), *fStatus);
|
|
break;
|
|
|
|
case doBackslashX:
|
|
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_X, 0), *fStatus);
|
|
break;
|
|
|
|
case doBackslashx: // \x{abcd} alternate hex format
|
|
// TODO: implement
|
|
error(U_REGEX_UNIMPLEMENTED);
|
|
break;
|
|
|
|
|
|
|
|
case doBackslashZ:
|
|
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_DOLLAR, 0), *fStatus);
|
|
break;
|
|
|
|
case doBackslashz:
|
|
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_Z, 0), *fStatus);
|
|
break;
|
|
|
|
case doEscapeError:
|
|
error(U_REGEX_BAD_ESCAPE_SEQUENCE);
|
|
break;
|
|
|
|
case doExit:
|
|
returnVal = FALSE;
|
|
break;
|
|
|
|
case doProperty:
|
|
{
|
|
UnicodeSet *theSet = scanProp();
|
|
compileSet(theSet);
|
|
}
|
|
break;
|
|
|
|
|
|
case doScanUnicodeSet:
|
|
{
|
|
UnicodeSet *theSet = scanSet();
|
|
compileSet(theSet);
|
|
}
|
|
break;
|
|
|
|
case doEnterQuoteMode:
|
|
// Just scanned a \Q. Put character scanner into quote mode.
|
|
fQuoteMode = TRUE;
|
|
break;
|
|
|
|
case doBackRef:
|
|
// BackReference. Somewhat unusual in that the front-end can not completely parse
|
|
// the regular expression, because the number of digits to be consumed
|
|
// depends on the number of capture groups that have been defined. So
|
|
// we have to do it here instead.
|
|
{
|
|
int32_t numCaptureGroups = fRXPat->fGroupMap->size();
|
|
int32_t groupNum = 0;
|
|
UChar32 c = fC.fChar;
|
|
|
|
for (;;) {
|
|
// Loop once per digit, for max allowed number of digits in a back reference.
|
|
int32_t digit = u_charDigitValue(c);
|
|
groupNum = groupNum * 10 + digit;
|
|
if (groupNum >= numCaptureGroups) {
|
|
break;
|
|
}
|
|
c = peekCharLL();
|
|
if (gRuleDigits->contains(c) == FALSE) {
|
|
break;
|
|
}
|
|
nextCharLL();
|
|
}
|
|
|
|
// Scan of the back reference in the source regexp is complete. Now generate
|
|
// the compiled code for it.
|
|
// Because capture groups can be forward-referenced by back-references,
|
|
// we fill the operand with the capture group number. At the end
|
|
// of compilation, it will be changed to the variables location.
|
|
U_ASSERT(groupNum > 0);
|
|
// int32_t varsLoc = fRXPat->fGroupMap->elementAti(groupNum-1);
|
|
int32_t op = URX_BUILD(URX_BACKREF, groupNum);
|
|
fRXPat->fCompiledPat->addElement(op, *fStatus);
|
|
}
|
|
break;
|
|
|
|
|
|
case doOctal:
|
|
error(U_REGEX_UNIMPLEMENTED);
|
|
break;
|
|
|
|
|
|
case doNamedChar: // \N{NAMED_CHAR}
|
|
// TODO: implement
|
|
error(U_REGEX_UNIMPLEMENTED);
|
|
break;
|
|
|
|
case doPossesivePlus:
|
|
// Possessive ++ quantifier.
|
|
// Compiles to
|
|
// 1. STO_SP
|
|
// 2. body of stuff being iterated over
|
|
// 3. STATE_SAVE 5
|
|
// 4. JMP 2
|
|
// 5. LD_SP
|
|
// 6. ...
|
|
//
|
|
// Note: TODO: This is pretty inefficient. A mass of saved state is built up
|
|
// then unconditionally discarded. Perhaps introduce a new opcode
|
|
//
|
|
{
|
|
// Emit the STO_SP
|
|
int32_t topLoc = blockTopLoc(TRUE);
|
|
int32_t stoLoc = fRXPat->fDataSize;
|
|
fRXPat->fDataSize++; // Reserve the data location for storing save stack ptr.
|
|
int32_t op = URX_BUILD(URX_STO_SP, stoLoc);
|
|
fRXPat->fCompiledPat->setElementAt(op, topLoc);
|
|
|
|
// Emit the STATE_SAVE
|
|
op = URX_BUILD(URX_STATE_SAVE, fRXPat->fCompiledPat->size()+2);
|
|
fRXPat->fCompiledPat->addElement(op, *fStatus);
|
|
|
|
// Emit the JMP
|
|
op = URX_BUILD(URX_JMP, topLoc+1);
|
|
fRXPat->fCompiledPat->addElement(op, *fStatus);
|
|
|
|
// Emit the LD_SP
|
|
op = URX_BUILD(URX_LD_SP, stoLoc);
|
|
fRXPat->fCompiledPat->addElement(op, *fStatus);
|
|
}
|
|
break;
|
|
|
|
case doPossesiveStar:
|
|
// Possessive *+ quantifier.
|
|
// Compiles to
|
|
// 1. STO_SP loc
|
|
// 2. STATE_SAVE 5
|
|
// 3. body of stuff being iterated over
|
|
// 4. JMP 2
|
|
// 5. LD_SP loc
|
|
// 6 ...
|
|
// TODO: do something to cut back the state stack each time through the loop.
|
|
{
|
|
// Reserve two slots at the top of the block.
|
|
int32_t topLoc = blockTopLoc(TRUE);
|
|
insertOp(topLoc);
|
|
|
|
// emit STO_SP loc
|
|
int32_t stoLoc = fRXPat->fDataSize;
|
|
fRXPat->fDataSize++; // Reserve the data location for storing save stack ptr.
|
|
int32_t op = URX_BUILD(URX_STO_SP, stoLoc);
|
|
fRXPat->fCompiledPat->setElementAt(op, topLoc);
|
|
|
|
// Emit the SAVE_STATE 5
|
|
int32_t L7 = fRXPat->fCompiledPat->size()+1;
|
|
op = URX_BUILD(URX_STATE_SAVE, L7);
|
|
fRXPat->fCompiledPat->setElementAt(op, topLoc+1);
|
|
|
|
// Append the JMP operation.
|
|
op = URX_BUILD(URX_JMP, topLoc+1);
|
|
fRXPat->fCompiledPat->addElement(op, *fStatus);
|
|
|
|
// Emit the LD_SP loc
|
|
op = URX_BUILD(URX_LD_SP, stoLoc);
|
|
fRXPat->fCompiledPat->addElement(op, *fStatus);
|
|
}
|
|
break;
|
|
|
|
case doPossesiveOpt:
|
|
// Possessive ?+ quantifier.
|
|
// Compiles to
|
|
// 1. STO_SP loc
|
|
// 2. SAVE_STATE 5
|
|
// 3. body of optional block
|
|
// 4. LD_SP loc
|
|
// 5. ...
|
|
//
|
|
{
|
|
// Reserve two slots at the top of the block.
|
|
int32_t topLoc = blockTopLoc(TRUE);
|
|
insertOp(topLoc);
|
|
|
|
// Emit the STO_SP
|
|
int32_t stoLoc = fRXPat->fDataSize;
|
|
fRXPat->fDataSize++; // Reserve the data location for storing save stack ptr.
|
|
int32_t op = URX_BUILD(URX_STO_SP, stoLoc);
|
|
fRXPat->fCompiledPat->setElementAt(op, topLoc);
|
|
|
|
// Emit the SAVE_STATE
|
|
int32_t continueLoc = fRXPat->fCompiledPat->size()+1;
|
|
op = URX_BUILD(URX_STATE_SAVE, continueLoc);
|
|
fRXPat->fCompiledPat->setElementAt(op, topLoc+1);
|
|
|
|
// Emit the LD_SP
|
|
op = URX_BUILD(URX_LD_SP, stoLoc);
|
|
fRXPat->fCompiledPat->addElement(op, *fStatus);
|
|
}
|
|
break;
|
|
|
|
|
|
case doMatchMode: // (?i) and similar
|
|
// TODO: implement
|
|
error(U_REGEX_UNIMPLEMENTED);
|
|
break;
|
|
|
|
|
|
default:
|
|
error(U_REGEX_INTERNAL_ERROR);
|
|
returnVal = FALSE;
|
|
break;
|
|
}
|
|
return returnVal;
|
|
};
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
//
|
|
// literalChar We've encountered a literal character from the pattern,
|
|
// or an escape sequence that reduces to a character.
|
|
// Add it to the string containing all literal chars/strings from
|
|
// the pattern.
|
|
// If we are in a pattern string already, add the new char to it.
|
|
// If we aren't in a pattern string, begin one now.
|
|
//
|
|
//------------------------------------------------------------------------------
|
|
void RegexCompile::literalChar() {
|
|
int32_t op; // An operation in the compiled pattern.
|
|
int32_t opType;
|
|
int32_t patternLoc; // A position in the compiled pattern.
|
|
int32_t stringLen;
|
|
|
|
|
|
// If the last thing compiled into the pattern was not a literal char,
|
|
// force this new literal char to begin a new string, and not append to the previous.
|
|
op = fRXPat->fCompiledPat->lastElementi();
|
|
opType = URX_TYPE(op);
|
|
if (!(opType == URX_STRING_LEN || opType == URX_ONECHAR)) {
|
|
fixLiterals();
|
|
}
|
|
|
|
if (fStringOpStart == -1) {
|
|
// First char of a string in the pattern.
|
|
// Emit a OneChar op into the compiled pattern.
|
|
op = URX_BUILD(URX_ONECHAR, fC.fChar);
|
|
fRXPat->fCompiledPat->addElement(op, *fStatus);
|
|
|
|
// Also add it to the string pool, in case we get a second adjacent literal
|
|
// and want to change form ONE_CHAR to STRING
|
|
fStringOpStart = fRXPat->fLiteralText.length();
|
|
fRXPat->fLiteralText.append(fC.fChar);
|
|
return;
|
|
}
|
|
|
|
// We are adding onto an existing string
|
|
fRXPat->fLiteralText.append(fC.fChar);
|
|
|
|
// If the most recently emitted op is a URX_ONECHAR, change it to a string op.
|
|
op = fRXPat->fCompiledPat->lastElementi();
|
|
opType = URX_TYPE(op);
|
|
U_ASSERT(opType == URX_ONECHAR || opType == URX_STRING_LEN);
|
|
if (opType == URX_ONECHAR) {
|
|
op = URX_BUILD(URX_STRING, fStringOpStart);
|
|
patternLoc = fRXPat->fCompiledPat->size() - 1;
|
|
fRXPat->fCompiledPat->setElementAt(op, patternLoc);
|
|
op = URX_BUILD(URX_STRING_LEN, 0);
|
|
fRXPat->fCompiledPat->addElement(op, *fStatus);
|
|
}
|
|
|
|
// The pattern contains a URX_SRING / URX_STRING_LEN. Update the
|
|
// string length to reflect the new char we just added to the string.
|
|
stringLen = fRXPat->fLiteralText.length() - fStringOpStart;
|
|
op = URX_BUILD(URX_STRING_LEN, stringLen);
|
|
patternLoc = fRXPat->fCompiledPat->size() - 1;
|
|
fRXPat->fCompiledPat->setElementAt(op, patternLoc);
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
//
|
|
// fixLiterals When compiling something that can follow a literal
|
|
// string in a pattern, we need to "fix" any preceding
|
|
// string, which will cause any subsequent literals to
|
|
// begin a new string, rather than appending to the
|
|
// old one.
|
|
//
|
|
// Optionally, split the last char of the string off into
|
|
// a single "ONE_CHAR" operation, so that quantifiers can
|
|
// apply to that char alone. Example: abc*
|
|
// The * needs to apply to the 'c' only.
|
|
//
|
|
//------------------------------------------------------------------------------
|
|
void RegexCompile::fixLiterals(UBool split) {
|
|
int32_t stringStart = fStringOpStart; // start index of the current literal string
|
|
int32_t op; // An op from/for the compiled pattern.
|
|
int32_t opType; // An opcode type from the compiled pattern.
|
|
int32_t stringLastCharIdx;
|
|
UChar32 lastChar;
|
|
int32_t stringNextToLastCharIdx;
|
|
UChar32 nextToLastChar;
|
|
int32_t stringLen;
|
|
|
|
fStringOpStart = -1;
|
|
if (!split) {
|
|
return;
|
|
}
|
|
|
|
// Split: We need to ensure that the last item in the compiled pattern does
|
|
// not refer to a literal string of more than one char. If it does,
|
|
// separate the last char from the rest of the string.
|
|
|
|
// If the last operation from the compiled pattern is not a string,
|
|
// nothing needs to be done
|
|
op = fRXPat->fCompiledPat->lastElementi();
|
|
opType = URX_TYPE(op);
|
|
if (opType != URX_STRING_LEN) {
|
|
return;
|
|
}
|
|
stringLen = URX_VAL(op);
|
|
|
|
//
|
|
// Find the position of the last code point in the string (might be a surrogate pair)
|
|
//
|
|
stringLastCharIdx = fRXPat->fLiteralText.length();
|
|
stringLastCharIdx = fRXPat->fLiteralText.moveIndex32(stringLastCharIdx, -1);
|
|
lastChar = fRXPat->fLiteralText.char32At(stringLastCharIdx);
|
|
|
|
// The string should always be at least two code points long, meaning that there
|
|
// should be something before the last char position that we just found.
|
|
U_ASSERT(stringLastCharIdx > stringStart);
|
|
stringNextToLastCharIdx = fRXPat->fLiteralText.moveIndex32(stringLastCharIdx, -1);
|
|
U_ASSERT(stringNextToLastCharIdx >= stringStart);
|
|
nextToLastChar = fRXPat->fLiteralText.char32At(stringNextToLastCharIdx);
|
|
|
|
if (stringNextToLastCharIdx > stringStart) {
|
|
// The length of string remaining after removing one char is two or more.
|
|
// Leave the string in the compiled pattern, shorten it by one char,
|
|
// and append a URX_ONECHAR op for the last char.
|
|
stringLen -= (fRXPat->fLiteralText.length() - stringLastCharIdx);
|
|
op = URX_BUILD(URX_STRING_LEN, stringLen);
|
|
fRXPat->fCompiledPat->setElementAt(op, fRXPat->fCompiledPat->size() -1);
|
|
op = URX_BUILD(URX_ONECHAR, lastChar);
|
|
fRXPat->fCompiledPat->addElement(op, *fStatus);
|
|
} else {
|
|
// The original string consisted of exactly two characters. Replace
|
|
// the existing compiled URX_STRING/URX_STRING_LEN ops with a pair
|
|
// of URX_ONECHARs.
|
|
op = URX_BUILD(URX_ONECHAR, nextToLastChar);
|
|
fRXPat->fCompiledPat->setElementAt(op, fRXPat->fCompiledPat->size() -2);
|
|
op = URX_BUILD(URX_ONECHAR, lastChar);
|
|
fRXPat->fCompiledPat->setElementAt(op, fRXPat->fCompiledPat->size() -1);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
//
|
|
// insertOp() Insert a slot for a new opcode into the already
|
|
// compiled pattern code.
|
|
//
|
|
// Fill the slot with a NOP. Our caller will replace it
|
|
// with what they really wanted.
|
|
//
|
|
//------------------------------------------------------------------------------
|
|
void RegexCompile::insertOp(int32_t where) {
|
|
UVector32 *code = fRXPat->fCompiledPat;
|
|
U_ASSERT(where>0 && where < code->size());
|
|
|
|
int32_t nop = URX_BUILD(URX_NOP, 0);
|
|
code->insertElementAt(nop, where, *fStatus);
|
|
|
|
// Walk through the pattern, looking for any ops with targets that
|
|
// were moved down by the insert. Fix them.
|
|
int32_t loc;
|
|
for (loc=0; loc<code->size(); loc++) {
|
|
int32_t op = code->elementAti(loc);
|
|
int32_t opType = URX_TYPE(op);
|
|
int32_t opValue = URX_VAL(op);
|
|
if ((opType == URX_JMP ||
|
|
opType == URX_JMPX ||
|
|
opType == URX_STATE_SAVE ||
|
|
opType == URX_CTR_LOOP ||
|
|
opType == URX_CTR_LOOP_NG ||
|
|
opType == URX_CTR_LOOP_P ||
|
|
opType == URX_RELOC_OPRND) && opValue > where) {
|
|
// Target location for this opcode is after the insertion point and
|
|
// needs to be incremented to adjust for the insertion.
|
|
opValue++;
|
|
op = URX_BUILD(opType, opValue);
|
|
code->setElementAt(op, loc);
|
|
}
|
|
}
|
|
|
|
// Now fix up the parentheses stack. All positive values in it are locations in
|
|
// the compiled pattern. (Negative values are frame boundaries, and don't need fixing.)
|
|
for (loc=0; loc<fParenStack.size(); loc++) {
|
|
int32_t x = fParenStack.elementAti(loc);
|
|
if (x>where) {
|
|
x++;
|
|
fParenStack.setElementAt(x, loc);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
//
|
|
// blockTopLoc() Find or create a location in the compiled pattern
|
|
// at the start of the operation or block that has
|
|
// just been compiled. Needed when a quantifier (* or
|
|
// whatever) appears, and we need to add an operation
|
|
// at the start of the thing being quantified.
|
|
//
|
|
// (Parenthesized Blocks) have a slot with a NOP that
|
|
// is reserved for this purpose. .* or similar don't
|
|
// and a slot needs to be added.
|
|
//
|
|
// parameter reserveLoc : TRUE - ensure that there is space to add an opcode
|
|
// at the returned location.
|
|
// FALSE - just return the address,
|
|
// do not reserve a location there.
|
|
//
|
|
//------------------------------------------------------------------------------
|
|
int32_t RegexCompile::blockTopLoc(UBool reserveLoc) {
|
|
int32_t theLoc;
|
|
if (fRXPat->fCompiledPat->size() == fMatchCloseParen)
|
|
{
|
|
// The item just processed is a parenthesized block.
|
|
theLoc = fMatchOpenParen; // A slot is already reserved for us.
|
|
U_ASSERT(theLoc > 0);
|
|
uint32_t opAtTheLoc = fRXPat->fCompiledPat->elementAti(theLoc);
|
|
U_ASSERT(URX_TYPE(opAtTheLoc) == URX_NOP);
|
|
}
|
|
else {
|
|
// Item just compiled is a single thing, a ".", or a single char, or a set reference.
|
|
// No slot for STATE_SAVE was pre-reserved in the compiled code.
|
|
// We need to make space now.
|
|
fixLiterals(TRUE); // If last item was a string, separate the last char.
|
|
theLoc = fRXPat->fCompiledPat->size()-1;
|
|
if (reserveLoc) {
|
|
int32_t opAtTheLoc = fRXPat->fCompiledPat->elementAti(theLoc);
|
|
int32_t prevType = URX_TYPE(opAtTheLoc);
|
|
int32_t nop = URX_BUILD(URX_NOP, 0);
|
|
fRXPat->fCompiledPat->insertElementAt(nop, theLoc, *fStatus);
|
|
}
|
|
}
|
|
return theLoc;
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
//
|
|
// handleCloseParen When compiling a close paren, we need to go back
|
|
// and fix up any JMP or SAVE operations within the
|
|
// parenthesized block that need to target the end
|
|
// of the block. The locations of these are kept on
|
|
// the paretheses stack.
|
|
//
|
|
// This function is called both when encountering a
|
|
// real ) and at the end of the pattern.
|
|
//
|
|
//-------------------------------------------------------------------------------
|
|
void RegexCompile::handleCloseParen() {
|
|
int32_t patIdx;
|
|
int32_t patOp;
|
|
if (fParenStack.size() <= 0) {
|
|
error(U_REGEX_MISMATCHED_PAREN);
|
|
return;
|
|
}
|
|
|
|
// Force any literal chars that may follow the close paren to start a new string,
|
|
// and not attach to any preceding it.
|
|
fixLiterals(FALSE);
|
|
|
|
// Fixup any operations within the just-closed parenthesized group
|
|
// that need to reference the end of the (block).
|
|
// (The first one popped from the stack is an unused slot for
|
|
// alternation (OR) state save, but applying the fixup to it does no harm.)
|
|
for (;;) {
|
|
patIdx = fParenStack.popi();
|
|
if (patIdx < 0) {
|
|
// value < 0 flags the start of the frame on the paren stack.
|
|
break;
|
|
}
|
|
U_ASSERT(patIdx>0 && patIdx <= fRXPat->fCompiledPat->size());
|
|
patOp = fRXPat->fCompiledPat->elementAti(patIdx);
|
|
U_ASSERT(URX_VAL(patOp) == 0); // Branch target for JMP should not be set.
|
|
patOp |= fRXPat->fCompiledPat->size(); // Set it now.
|
|
fRXPat->fCompiledPat->setElementAt(patOp, patIdx);
|
|
fMatchOpenParen = patIdx;
|
|
}
|
|
|
|
// DO any additional fixups, depending on the specific kind of
|
|
// parentesized grouping this is
|
|
|
|
switch (patIdx) {
|
|
case plain:
|
|
// No additional fixups required.
|
|
// (Grouping-only parentheses)
|
|
break;
|
|
case capturing:
|
|
// Capturing Parentheses.
|
|
// Insert a End Capture op into the pattern.
|
|
// The frame offset of the variables for this cg is obtained from the
|
|
// start capture op and put it into the end-capture op.
|
|
{
|
|
int32_t captureOp = fRXPat->fCompiledPat->elementAti(fMatchOpenParen+1);
|
|
U_ASSERT(URX_TYPE(captureOp) == URX_START_CAPTURE);
|
|
|
|
int32_t frameVarLocation = URX_VAL(captureOp);
|
|
int32_t endCaptureOp = URX_BUILD(URX_END_CAPTURE, frameVarLocation);
|
|
fRXPat->fCompiledPat->addElement(endCaptureOp, *fStatus);
|
|
}
|
|
break;
|
|
case atomic:
|
|
// Atomic Parenthesis.
|
|
// Insert a LD_SP operation to restore the state stack to the position
|
|
// it was when the atomic parens were entered.
|
|
{
|
|
int32_t stoOp = fRXPat->fCompiledPat->elementAti(fMatchOpenParen+1);
|
|
U_ASSERT(URX_TYPE(stoOp) == URX_STO_SP);
|
|
int32_t stoLoc = URX_VAL(stoOp);
|
|
int32_t ldOp = URX_BUILD(URX_LD_SP, stoLoc);
|
|
fRXPat->fCompiledPat->addElement(ldOp, *fStatus);
|
|
}
|
|
break;
|
|
|
|
case lookAhead:
|
|
{
|
|
int32_t startOp = fRXPat->fCompiledPat->elementAti(fMatchOpenParen-1);
|
|
U_ASSERT(URX_TYPE(startOp) == URX_LA_START);
|
|
int32_t dataLoc = URX_VAL(startOp);
|
|
int32_t op = URX_BUILD(URX_LA_END, dataLoc);
|
|
fRXPat->fCompiledPat->addElement(op, *fStatus);
|
|
}
|
|
break;
|
|
|
|
case negLookAhead:
|
|
{
|
|
// See comment at doOpenLookAheadNeg
|
|
int32_t startOp = fRXPat->fCompiledPat->elementAti(fMatchOpenParen-1);
|
|
U_ASSERT(URX_TYPE(startOp) == URX_LA_START);
|
|
int32_t dataLoc = URX_VAL(startOp);
|
|
int32_t op = URX_BUILD(URX_LA_END, dataLoc);
|
|
fRXPat->fCompiledPat->addElement(op, *fStatus);
|
|
op = URX_BUILD(URX_FAIL, 0);
|
|
fRXPat->fCompiledPat->addElement(op, *fStatus);
|
|
|
|
// Patch the URX_SAVE near the top of the block.
|
|
int32_t saveOp = fRXPat->fCompiledPat->elementAti(fMatchOpenParen);
|
|
U_ASSERT(URX_TYPE(saveOp) == URX_STATE_SAVE);
|
|
int32_t dest = fRXPat->fCompiledPat->size();
|
|
saveOp = URX_BUILD(URX_STATE_SAVE, dest);
|
|
fRXPat->fCompiledPat->setElementAt(saveOp, fMatchOpenParen);
|
|
}
|
|
break;
|
|
|
|
|
|
default:
|
|
U_ASSERT(FALSE);
|
|
}
|
|
|
|
// remember the next location in the compiled pattern.
|
|
// The compilation of Quantifiers will look at this to see whether its looping
|
|
// over a parenthesized block or a single item
|
|
fMatchCloseParen = fRXPat->fCompiledPat->size();
|
|
}
|
|
|
|
|
|
|
|
//----------------------------------------------------------------------------------------
|
|
//
|
|
// compileSet Compile the pattern operations for a reference to a
|
|
// UnicodeSet.
|
|
//
|
|
//----------------------------------------------------------------------------------------
|
|
void RegexCompile::compileSet(UnicodeSet *theSet)
|
|
{
|
|
if (theSet == NULL) {
|
|
return;
|
|
}
|
|
int32_t setSize = theSet->size();
|
|
UChar32 firstSetChar = theSet->charAt(0);
|
|
if (firstSetChar == -1) {
|
|
// Sets that contain only strings, but no individual chars,
|
|
// will end up here. TODO: figure out what to with sets containing strings.
|
|
setSize = 0;
|
|
}
|
|
|
|
switch (setSize) {
|
|
case 0:
|
|
{
|
|
// Set of no elements. Always fails to match.
|
|
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKTRACK, 0), *fStatus);
|
|
delete theSet;
|
|
}
|
|
break;
|
|
|
|
case 1:
|
|
{
|
|
// The set contains only a single code point. Put it into
|
|
// the compiled pattern as a single char operation rather
|
|
// than a set, and discard the set itself.
|
|
int32_t charToken = URX_BUILD(URX_ONECHAR, firstSetChar);
|
|
fRXPat->fCompiledPat->addElement(charToken, *fStatus);
|
|
delete theSet;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
{
|
|
// The set contains two or more chars. (the normal case)
|
|
// Put it into the compiled pattern as a set.
|
|
int32_t setNumber = fRXPat->fSets->size();
|
|
fRXPat->fSets->addElement(theSet, *fStatus);
|
|
int32_t setOp = URX_BUILD(URX_SETREF, setNumber);
|
|
fRXPat->fCompiledPat->addElement(setOp, *fStatus);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//----------------------------------------------------------------------------------------
|
|
//
|
|
// compileInterval Generate the code for a {min, max} style interval quantifier.
|
|
// Except for the specific opcodes used, the code is the same
|
|
// for all three types (greedy, non-greedy, possessive) of
|
|
// intervals. The opcodes are supplied as parameters.
|
|
//
|
|
//----------------------------------------------------------------------------------------
|
|
void RegexCompile::compileInterval(int32_t InitOp, int32_t LoopOp)
|
|
{
|
|
// The CTR_INIT op at the top of the block with the {n,m} quantifier takes
|
|
// four slots in the compiled code. Reserve them.
|
|
int32_t topOfBlock = blockTopLoc(TRUE);
|
|
insertOp(topOfBlock);
|
|
insertOp(topOfBlock);
|
|
insertOp(topOfBlock);
|
|
|
|
// The operands for the CTR_INIT opcode include the index in the matcher data
|
|
// of the counter. Allocate it now.
|
|
int32_t counterLoc = fRXPat->fFrameSize;
|
|
fRXPat->fFrameSize++;
|
|
|
|
int32_t op = URX_BUILD(InitOp, counterLoc);
|
|
fRXPat->fCompiledPat->setElementAt(op, topOfBlock);
|
|
|
|
// The second operand of CTR_INIT is the location following the end of the loop.
|
|
// Must put in as a URX_RELOC_OPRND so that the value will be adjusted if the
|
|
// compilation of something later on causes the code to grow and the target
|
|
// position to move.
|
|
int32_t loopEnd = fRXPat->fCompiledPat->size();
|
|
op = URX_BUILD(URX_RELOC_OPRND, loopEnd);
|
|
fRXPat->fCompiledPat->setElementAt(op, topOfBlock+1);
|
|
|
|
// Followed by the min and max counts.
|
|
fRXPat->fCompiledPat->setElementAt(fIntervalLow, topOfBlock+2);
|
|
fRXPat->fCompiledPat->setElementAt(fIntervalUpper, topOfBlock+3);
|
|
|
|
// Apend the CTR_LOOP op. The operand is the location of the CTR_INIT op.
|
|
// Goes at end of the block being looped over, so just append to the code so far.
|
|
op = URX_BUILD(LoopOp, topOfBlock);
|
|
fRXPat->fCompiledPat->addElement(op, *fStatus);
|
|
|
|
if (fIntervalLow > fIntervalUpper && fIntervalUpper != -1) {
|
|
error(U_REGEX_MAX_LT_MIN);
|
|
}
|
|
|
|
}
|
|
|
|
//----------------------------------------------------------------------------------------
|
|
//
|
|
// possibleNullMatch Test a range of compiled pattern for the possibility that it
|
|
// might match an empty string. Used to control the generation
|
|
// of extra checking code to prevent infinite loops in the match
|
|
// engine on repeated empty matches, such as might happen with
|
|
// (x?)*
|
|
// when the input string is not at an x.
|
|
//
|
|
//----------------------------------------------------------------------------------------
|
|
UBool RegexCompile::possibleNullMatch(int32_t start, int32_t end) {
|
|
// for now, just return true. TODO: make a real implementation
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
//----------------------------------------------------------------------------------------
|
|
//
|
|
// Error Report a rule parse error.
|
|
// Only report it if no previous error has been recorded.
|
|
//
|
|
//----------------------------------------------------------------------------------------
|
|
void RegexCompile::error(UErrorCode e) {
|
|
if (U_SUCCESS(*fStatus)) {
|
|
*fStatus = e;
|
|
fParseErr->line = fLineNum;
|
|
fParseErr->offset = fCharNum;
|
|
fParseErr->preContext[0] = 0; // TODO: copy in some input pattern text
|
|
fParseErr->preContext[0] = 0;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
//
|
|
// Assorted Unicode character constants.
|
|
// Numeric because there is no portable way to enter them as literals.
|
|
// (Think EBCDIC).
|
|
//
|
|
static const UChar chCR = 0x0d; // New lines, for terminating comments.
|
|
static const UChar chLF = 0x0a;
|
|
static const UChar chNEL = 0x85; // NEL newline variant
|
|
static const UChar chLS = 0x2028; // Unicode Line Separator
|
|
static const UChar chApos = 0x27; // single quote, for quoted chars.
|
|
static const UChar chPound = 0x23; // '#', introduces a comment.
|
|
static const UChar chE = 0x45; // 'E'
|
|
static const UChar chBackSlash = 0x5c; // '\' introduces a char escape
|
|
static const UChar chLParen = 0x28;
|
|
static const UChar chRParen = 0x29;
|
|
static const UChar chLBracket = 0x5b;
|
|
static const UChar chRBracket = 0x5d;
|
|
static const UChar chRBrace = 0x7d;
|
|
static const UChar chLowerP = 0x70;
|
|
static const UChar chUpperP = 0x50;
|
|
|
|
|
|
//----------------------------------------------------------------------------------------
|
|
//
|
|
// nextCharLL Low Level Next Char from the regex pattern.
|
|
// Get a char from the string,
|
|
// keep track of input position for error reporting.
|
|
//
|
|
//----------------------------------------------------------------------------------------
|
|
UChar32 RegexCompile::nextCharLL() {
|
|
UChar32 ch;
|
|
UnicodeString &pattern = fRXPat->fPattern;
|
|
|
|
if (fPeekChar != -1) {
|
|
ch = fPeekChar;
|
|
fPeekChar = -1;
|
|
return ch;
|
|
}
|
|
if (fPatternLength==0 || fNextIndex >= fPatternLength) {
|
|
return (UChar32)-1;
|
|
}
|
|
ch = pattern.char32At(fNextIndex);
|
|
fNextIndex = pattern.moveIndex32(fNextIndex, 1);
|
|
|
|
if (ch == chCR ||
|
|
ch == chNEL ||
|
|
ch == chLS ||
|
|
ch == chLF && fLastChar != chCR) {
|
|
// Character is starting a new line. Bump up the line number, and
|
|
// reset the column to 0.
|
|
fLineNum++;
|
|
fCharNum=0;
|
|
if (fQuoteMode) {
|
|
error(U_REGEX_RULE_SYNTAX);
|
|
fQuoteMode = FALSE;
|
|
}
|
|
}
|
|
else {
|
|
// Character is not starting a new line. Except in the case of a
|
|
// LF following a CR, increment the column position.
|
|
if (ch != chLF) {
|
|
fCharNum++;
|
|
}
|
|
}
|
|
fLastChar = ch;
|
|
return ch;
|
|
}
|
|
|
|
//---------------------------------------------------------------------------------
|
|
//
|
|
// peekCharLL Low Level Character Scanning, sneak a peek at the next
|
|
// character without actually getting it.
|
|
//
|
|
//---------------------------------------------------------------------------------
|
|
UChar32 RegexCompile::peekCharLL() {
|
|
if (fPeekChar == -1) {
|
|
fPeekChar = nextCharLL();
|
|
}
|
|
return fPeekChar;
|
|
}
|
|
|
|
|
|
//---------------------------------------------------------------------------------
|
|
//
|
|
// nextChar for pattern scanning. At this level, we handle stripping
|
|
// out comments and processing some backslash character escapes.
|
|
// The rest of the pattern grammar is handled at the next level up.
|
|
//
|
|
//---------------------------------------------------------------------------------
|
|
void RegexCompile::nextChar(RegexPatternChar &c) {
|
|
|
|
// Unicode Character constants needed for the processing done by nextChar(),
|
|
// in hex because literals wont work on EBCDIC machines.
|
|
|
|
fScanIndex = fNextIndex;
|
|
c.fChar = nextCharLL();
|
|
c.fQuoted = FALSE;
|
|
|
|
if (fQuoteMode) {
|
|
c.fQuoted = TRUE;
|
|
if ((c.fChar==chBackSlash && peekCharLL()==chE) || c.fChar == (UChar32)-1) {
|
|
fQuoteMode = FALSE; // Exit quote mode,
|
|
nextCharLL(); // discard the E
|
|
nextChar(c); // recurse to get the real next char
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// We are not in a 'quoted region' of the source.
|
|
//
|
|
if (fFreeForm && c.fChar == chPound) {
|
|
// Start of a comment. Consume the rest of it.
|
|
// The new-line char that terminates the comment is always returned.
|
|
// It will be treated as white-space, and serves to break up anything
|
|
// that might otherwise incorrectly clump together with a comment in
|
|
// the middle (a variable name, for example.)
|
|
for (;;) {
|
|
c.fChar = nextCharLL();
|
|
if (c.fChar == (UChar32)-1 || // EOF
|
|
c.fChar == chCR ||
|
|
c.fChar == chLF ||
|
|
c.fChar == chNEL ||
|
|
c.fChar == chLS) {break;}
|
|
}
|
|
}
|
|
if (c.fChar == (UChar32)-1) {
|
|
return;
|
|
}
|
|
|
|
//
|
|
// check for backslash escaped characters.
|
|
// Use UnicodeString::unescapeAt() to handle those that it can.
|
|
// Otherwise just return the '\', and let the pattern parser deal with it.
|
|
//
|
|
int32_t startX = fNextIndex; // start and end positions of the
|
|
int32_t endX = fNextIndex; // sequence following the '\'
|
|
if (c.fChar == chBackSlash) {
|
|
if (gUnescapeCharSet->contains(peekCharLL())) {
|
|
nextCharLL(); // get & discard the peeked char.
|
|
c.fQuoted = TRUE;
|
|
c.fChar = fRXPat->fPattern.unescapeAt(endX);
|
|
if (startX == endX) {
|
|
error(U_REGEX_BAD_ESCAPE_SEQUENCE);
|
|
}
|
|
fCharNum += endX - startX;
|
|
fNextIndex = endX;
|
|
}
|
|
}
|
|
}
|
|
// putc(c.fChar, stdout);
|
|
}
|
|
|
|
|
|
|
|
//---------------------------------------------------------------------------------
|
|
//
|
|
// scanSet Construct a UnicodeSet from the text at the current scan
|
|
// position. Advance the scan position to the first character
|
|
// after the set.
|
|
//
|
|
// The scan position is normally under the control of the state machine
|
|
// that controls pattern parsing. UnicodeSets, however, are parsed by
|
|
// the UnicodeSet constructor, not by the Regex pattern parser.
|
|
//
|
|
//---------------------------------------------------------------------------------
|
|
UnicodeSet *RegexCompile::scanSet() {
|
|
UnicodeSet *uset = NULL;
|
|
ParsePosition pos;
|
|
int startPos;
|
|
int i;
|
|
|
|
if (U_FAILURE(*fStatus)) {
|
|
return NULL;
|
|
}
|
|
|
|
pos.setIndex(fScanIndex);
|
|
startPos = fScanIndex;
|
|
UErrorCode localStatus = U_ZERO_ERROR;
|
|
uset = new UnicodeSet(fRXPat->fPattern, pos,
|
|
localStatus);
|
|
if (U_FAILURE(localStatus)) {
|
|
// TODO: Get more accurate position of the error from UnicodeSet's return info.
|
|
// UnicodeSet appears to not be reporting correctly at this time.
|
|
REGEX_SCAN_DEBUG_PRINTF( "UnicodeSet parse postion.ErrorIndex = %d\n", pos.getIndex());
|
|
error(localStatus);
|
|
delete uset;
|
|
return NULL;
|
|
}
|
|
|
|
// Advance the current scan postion over the UnicodeSet.
|
|
// Don't just set fScanIndex because the line/char positions maintained
|
|
// for error reporting would be thrown off.
|
|
i = pos.getIndex();
|
|
for (;;) {
|
|
if (fNextIndex >= i) {
|
|
break;
|
|
}
|
|
nextCharLL();
|
|
}
|
|
|
|
return uset;
|
|
};
|
|
|
|
|
|
//---------------------------------------------------------------------------------
|
|
//
|
|
// scanProp Construct a UnicodeSet from the text at the current scan
|
|
// position, which will be of the form \p{whaterver}
|
|
//
|
|
// The scan position will be at the 'p' or 'P'. On return
|
|
// the scan position should be just after the '}'
|
|
//
|
|
// Return a UnicodeSet, constructed from the \P pattern,
|
|
// or NULL if the pattern is invalid.
|
|
//
|
|
//---------------------------------------------------------------------------------
|
|
UnicodeSet *RegexCompile::scanProp() {
|
|
UnicodeSet *uset = NULL;
|
|
|
|
if (U_FAILURE(*fStatus)) {
|
|
return NULL;
|
|
}
|
|
|
|
U_ASSERT(fC.fChar == chLowerP || fC.fChar == chUpperP);
|
|
|
|
// enclose the \p{property} from the regex pattern source in [brackets]
|
|
UnicodeString setPattern;
|
|
setPattern.append(chLBracket);
|
|
setPattern.append(chBackSlash);
|
|
for (;;) {
|
|
setPattern.append(fC.fChar);
|
|
if (fC.fChar == chRBrace) {
|
|
break;
|
|
}
|
|
nextChar(fC);
|
|
if (fC.fChar == -1) {
|
|
// Hit the end of the input string without finding the closing '}'
|
|
*fStatus = U_REGEX_PROPERTY_SYNTAX;
|
|
return NULL;
|
|
}
|
|
}
|
|
setPattern.append(chRBracket);
|
|
|
|
// Build the UnicodeSet from the set pattern we just built up in a string.
|
|
uset = new UnicodeSet(setPattern, *fStatus);
|
|
if (U_FAILURE(*fStatus)) {
|
|
delete uset;
|
|
uset = NULL;
|
|
}
|
|
|
|
nextChar(fC); // Continue overall regex pattern processing with char after the '}'
|
|
return uset;
|
|
};
|
|
|
|
U_NAMESPACE_END
|
|
#endif // !UCONFIG_NO_REGULAR_EXPRESSIONS
|