scuffed-code/icu4c/source/common/uprops.c
2005-04-28 21:54:57 +00:00

638 lines
24 KiB
C

/*
*******************************************************************************
*
* Copyright (C) 2002-2005, International Business Machines
* Corporation and others. All Rights Reserved.
*
*******************************************************************************
* file name: uprops.h
* encoding: US-ASCII
* tab size: 8 (not used)
* indentation:4
*
* created on: 2002feb24
* created by: Markus W. Scherer
*
* Implementations for mostly non-core Unicode character properties
* stored in uprops.icu.
*
* With the APIs implemented here, almost all properties files and
* their associated implementation files are used from this file,
* including those for normalization and case mappings.
*/
#include "unicode/utypes.h"
#include "unicode/uchar.h"
#include "unicode/uscript.h"
#include "cstring.h"
#include "ucln_cmn.h"
#include "umutex.h"
#include "unormimp.h"
#include "ubidi_props.h"
#include "uprops.h"
#define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0]))
/* cleanup ------------------------------------------------------------------ */
static const UCaseProps *gCsp=NULL;
static UBiDiProps *gBdp=NULL;
static UBool U_CALLCONV uprops_cleanup(void) {
gCsp=NULL;
gBdp=NULL;
return TRUE;
}
/* case mapping properties API ---------------------------------------------- */
/* get the UCaseProps singleton, or else its dummy, once and for all */
static const UCaseProps *
getCaseProps() {
/*
* This lazy intialization with double-checked locking (without mutex protection for
* the initial check) is transiently unsafe under certain circumstances.
* Check the readme and use u_init() if necessary.
*/
/* the initial check is performed by the GET_CASE_PROPS() macro */
const UCaseProps *csp;
UErrorCode errorCode=U_ZERO_ERROR;
csp=ucase_getSingleton(&errorCode);
if(U_FAILURE(errorCode)) {
errorCode=U_ZERO_ERROR;
csp=ucase_getDummy(&errorCode);
if(U_FAILURE(errorCode)) {
return NULL;
}
}
umtx_lock(NULL);
if(gCsp==NULL) {
gCsp=csp;
csp=NULL;
ucln_common_registerCleanup(UCLN_COMMON_UPROPS, uprops_cleanup);
}
umtx_unlock(NULL);
return gCsp;
}
/*
* In ICU 3.0, most Unicode properties were loaded from uprops.icu.
* ICU 3.2 adds ucase.icu for case mapping properties.
* ICU 3.4 adds ubidi.icu for bidi/shaping properties and
* removes case/bidi/shaping properties from uprops.icu.
*
* Loading of uprops.icu was never mutex-protected and required u_init()
* for thread safety.
* In order to maintain performance for all such properties,
* ucase.icu and ubidi.icu are loaded lazily, without mutexing.
* u_init() will try to load them for thread safety,
* but u_init() will not fail if they are missing.
*
* uchar.c maintains a tri-state flag for (not loaded/loaded/failed to load)
* and an error code for load failure.
* Instead, here we try to load at most once.
* If it works, we use the resulting singleton object.
* If it fails, then we get a dummy object, which always works unless
* we are seriously out of memory.
* After the first try, we have a never-changing pointer to either the
* real singleton or the dummy.
*
* This method is used in Unicode properties APIs (uchar.h) that
* do not have a service object and also do not have an error code parameter.
* Other API implementations get the singleton themselves
* (with mutexing), store it in the service object, and report errors.
*/
#define GET_CASE_PROPS() (gCsp!=NULL ? gCsp : getCaseProps())
/* public API (see uchar.h) */
U_CAPI UBool U_EXPORT2
u_isULowercase(UChar32 c) {
return (UBool)(UCASE_LOWER==ucase_getType(GET_CASE_PROPS(), c));
}
U_CAPI UBool U_EXPORT2
u_isUUppercase(UChar32 c) {
return (UBool)(UCASE_UPPER==ucase_getType(GET_CASE_PROPS(), c));
}
/* Transforms the Unicode character to its lower case equivalent.*/
U_CAPI UChar32 U_EXPORT2
u_tolower(UChar32 c) {
return ucase_tolower(GET_CASE_PROPS(), c);
}
/* Transforms the Unicode character to its upper case equivalent.*/
U_CAPI UChar32 U_EXPORT2
u_toupper(UChar32 c) {
return ucase_toupper(GET_CASE_PROPS(), c);
}
/* Transforms the Unicode character to its title case equivalent.*/
U_CAPI UChar32 U_EXPORT2
u_totitle(UChar32 c) {
return ucase_totitle(GET_CASE_PROPS(), c);
}
/* return the simple case folding mapping for c */
U_CAPI UChar32 U_EXPORT2
u_foldCase(UChar32 c, uint32_t options) {
return ucase_fold(GET_CASE_PROPS(), c, options);
}
/* bidi/shaping properties API ---------------------------------------------- */
/* get the UBiDiProps singleton, or else its dummy, once and for all */
static UBiDiProps *
getBiDiProps() {
/*
* This lazy intialization with double-checked locking (without mutex protection for
* the initial check) is transiently unsafe under certain circumstances.
* Check the readme and use u_init() if necessary.
*/
/* the initial check is performed by the GET_BIDI_PROPS() macro */
UBiDiProps *bdp;
UErrorCode errorCode=U_ZERO_ERROR;
bdp=ubidi_getSingleton(&errorCode);
if(U_FAILURE(errorCode)) {
errorCode=U_ZERO_ERROR;
bdp=ubidi_getDummy(&errorCode);
if(U_FAILURE(errorCode)) {
return NULL;
}
}
umtx_lock(NULL);
if(gBdp==NULL) {
gBdp=bdp;
bdp=NULL;
ucln_common_registerCleanup(UCLN_COMMON_UPROPS, uprops_cleanup);
}
umtx_unlock(NULL);
return gBdp;
}
/* see comment for GET_CASE_PROPS() */
#define GET_BIDI_PROPS() (gBdp!=NULL ? gBdp : getBiDiProps())
/* general properties API functions ----------------------------------------- */
static const struct {
int32_t column;
uint32_t mask;
} binProps[UCHAR_BINARY_LIMIT]={
/*
* column and mask values for binary properties from u_getUnicodeProperties().
* Must be in order of corresponding UProperty,
* and there must be exacly one entry per binary UProperty.
*
* Properties with mask 0 are handled in code.
* For them, column is the UPropertySource value.
*/
{ 1, U_MASK(UPROPS_ALPHABETIC) },
{ 1, U_MASK(UPROPS_ASCII_HEX_DIGIT) },
{ UPROPS_SRC_BIDI, 0 }, /* UCHAR_BIDI_CONTROL */
{ UPROPS_SRC_BIDI, 0 }, /* UCHAR_BIDI_MIRRORED */
{ 1, U_MASK(UPROPS_DASH) },
{ 1, U_MASK(UPROPS_DEFAULT_IGNORABLE_CODE_POINT) },
{ 1, U_MASK(UPROPS_DEPRECATED) },
{ 1, U_MASK(UPROPS_DIACRITIC) },
{ 1, U_MASK(UPROPS_EXTENDER) },
{ UPROPS_SRC_NORM, 0 }, /* UCHAR_FULL_COMPOSITION_EXCLUSION */
{ 1, U_MASK(UPROPS_GRAPHEME_BASE) },
{ 1, U_MASK(UPROPS_GRAPHEME_EXTEND) },
{ 1, U_MASK(UPROPS_GRAPHEME_LINK) },
{ 1, U_MASK(UPROPS_HEX_DIGIT) },
{ 1, U_MASK(UPROPS_HYPHEN) },
{ 1, U_MASK(UPROPS_ID_CONTINUE) },
{ 1, U_MASK(UPROPS_ID_START) },
{ 1, U_MASK(UPROPS_IDEOGRAPHIC) },
{ 1, U_MASK(UPROPS_IDS_BINARY_OPERATOR) },
{ 1, U_MASK(UPROPS_IDS_TRINARY_OPERATOR) },
{ UPROPS_SRC_BIDI, 0 }, /* UCHAR_JOIN_CONTROL */
{ 1, U_MASK(UPROPS_LOGICAL_ORDER_EXCEPTION) },
{ UPROPS_SRC_CASE, 0 }, /* UCHAR_LOWERCASE */
{ 1, U_MASK(UPROPS_MATH) },
{ 1, U_MASK(UPROPS_NONCHARACTER_CODE_POINT) },
{ 1, U_MASK(UPROPS_QUOTATION_MARK) },
{ 1, U_MASK(UPROPS_RADICAL) },
{ UPROPS_SRC_CASE, 0 }, /* UCHAR_SOFT_DOTTED */
{ 1, U_MASK(UPROPS_TERMINAL_PUNCTUATION) },
{ 1, U_MASK(UPROPS_UNIFIED_IDEOGRAPH) },
{ UPROPS_SRC_CASE, 0 }, /* UCHAR_UPPERCASE */
{ 1, U_MASK(UPROPS_WHITE_SPACE) },
{ 1, U_MASK(UPROPS_XID_CONTINUE) },
{ 1, U_MASK(UPROPS_XID_START) },
{ UPROPS_SRC_CASE, 0 }, /* UCHAR_CASE_SENSITIVE */
{ 2, U_MASK(UPROPS_V2_S_TERM) },
{ 2, U_MASK(UPROPS_V2_VARIATION_SELECTOR) },
{ UPROPS_SRC_NORM, 0 }, /* UCHAR_NFD_INERT */
{ UPROPS_SRC_NORM, 0 }, /* UCHAR_NFKD_INERT */
{ UPROPS_SRC_NORM, 0 }, /* UCHAR_NFC_INERT */
{ UPROPS_SRC_NORM, 0 }, /* UCHAR_NFKC_INERT */
{ UPROPS_SRC_NORM, 0 }, /* UCHAR_SEGMENT_STARTER */
{ 2, U_MASK(UPROPS_V2_PATTERN_SYNTAX) },
{ 2, U_MASK(UPROPS_V2_PATTERN_WHITE_SPACE) }
};
U_CAPI UBool U_EXPORT2
u_hasBinaryProperty(UChar32 c, UProperty which) {
/* c is range-checked in the functions that are called from here */
if(which<UCHAR_BINARY_START || UCHAR_BINARY_LIMIT<=which) {
/* not a known binary property */
} else {
uint32_t mask=binProps[which].mask;
int32_t column=binProps[which].column;
if(mask!=0) {
/* systematic, directly stored properties */
return (u_getUnicodeProperties(c, column)&mask)!=0;
} else {
if(column==UPROPS_SRC_CASE) {
/* case mapping properties */
const UCaseProps *csp=GET_CASE_PROPS();
if(csp==NULL) {
return FALSE;
}
switch(which) {
case UCHAR_LOWERCASE:
return (UBool)(UCASE_LOWER==ucase_getType(csp, c));
case UCHAR_UPPERCASE:
return (UBool)(UCASE_UPPER==ucase_getType(csp, c));
case UCHAR_SOFT_DOTTED:
return ucase_isSoftDotted(csp, c);
case UCHAR_CASE_SENSITIVE:
return ucase_isCaseSensitive(csp, c);
default:
break;
}
} else if(column==UPROPS_SRC_NORM) {
#if !UCONFIG_NO_NORMALIZATION
/* normalization properties from unorm.icu */
switch(which) {
case UCHAR_FULL_COMPOSITION_EXCLUSION:
return unorm_internalIsFullCompositionExclusion(c);
case UCHAR_NFD_INERT:
case UCHAR_NFKD_INERT:
case UCHAR_NFC_INERT:
case UCHAR_NFKC_INERT:
return unorm_isNFSkippable(c, (UNormalizationMode)(which-UCHAR_NFD_INERT)+UNORM_NFD);
case UCHAR_SEGMENT_STARTER:
return unorm_isCanonSafeStart(c);
default:
break;
}
#endif
} else if(column==UPROPS_SRC_BIDI) {
/* bidi/shaping properties */
UBiDiProps *bdp=GET_BIDI_PROPS();
if(bdp==NULL) {
return FALSE;
}
switch(which) {
case UCHAR_BIDI_MIRRORED:
return ubidi_isMirrored(bdp, c);
case UCHAR_BIDI_CONTROL:
return ubidi_isBidiControl(bdp, c);
case UCHAR_JOIN_CONTROL:
return ubidi_isJoinControl(bdp, c);
default:
break;
}
}
}
}
return FALSE;
}
U_CAPI int32_t U_EXPORT2
u_getIntPropertyValue(UChar32 c, UProperty which) {
UErrorCode errorCode;
int32_t type;
if(which<UCHAR_BINARY_START) {
return 0; /* undefined */
} else if(which<UCHAR_BINARY_LIMIT) {
return (int32_t)u_hasBinaryProperty(c, which);
} else if(which<UCHAR_INT_START) {
return 0; /* undefined */
} else if(which<UCHAR_INT_LIMIT) {
switch(which) {
case UCHAR_BIDI_CLASS:
return (int32_t)u_charDirection(c);
case UCHAR_BLOCK:
return (int32_t)ublock_getCode(c);
case UCHAR_CANONICAL_COMBINING_CLASS:
#if !UCONFIG_NO_NORMALIZATION
return u_getCombiningClass(c);
#else
return 0;
#endif
case UCHAR_DECOMPOSITION_TYPE:
return (int32_t)(u_getUnicodeProperties(c, 2)&UPROPS_DT_MASK);
case UCHAR_EAST_ASIAN_WIDTH:
return (int32_t)(u_getUnicodeProperties(c, 0)&UPROPS_EA_MASK)>>UPROPS_EA_SHIFT;
case UCHAR_GENERAL_CATEGORY:
return (int32_t)u_charType(c);
case UCHAR_JOINING_GROUP:
return ubidi_getJoiningGroup(GET_BIDI_PROPS(), c);
case UCHAR_JOINING_TYPE:
return ubidi_getJoiningType(GET_BIDI_PROPS(), c);
case UCHAR_LINE_BREAK:
return (int32_t)(u_getUnicodeProperties(c, 0)&UPROPS_LB_MASK)>>UPROPS_LB_SHIFT;
case UCHAR_NUMERIC_TYPE:
type=(int32_t)GET_NUMERIC_TYPE(u_getUnicodeProperties(c, -1));
if(type>U_NT_NUMERIC) {
/* keep internal variants of U_NT_NUMERIC from becoming visible */
type=U_NT_NUMERIC;
}
return type;
case UCHAR_SCRIPT:
errorCode=U_ZERO_ERROR;
return (int32_t)uscript_getScript(c, &errorCode);
case UCHAR_HANGUL_SYLLABLE_TYPE:
return uchar_getHST(c);
#if !UCONFIG_NO_NORMALIZATION
case UCHAR_NFD_QUICK_CHECK:
case UCHAR_NFKD_QUICK_CHECK:
case UCHAR_NFC_QUICK_CHECK:
case UCHAR_NFKC_QUICK_CHECK:
return (int32_t)unorm_getQuickCheck(c, (UNormalizationMode)(which-UCHAR_NFD_QUICK_CHECK)+UNORM_NFD);
case UCHAR_LEAD_CANONICAL_COMBINING_CLASS:
return unorm_getFCD16FromCodePoint(c)>>8;
case UCHAR_TRAIL_CANONICAL_COMBINING_CLASS:
return unorm_getFCD16FromCodePoint(c)&0xff;
#endif
case UCHAR_GRAPHEME_CLUSTER_BREAK:
return (int32_t)(u_getUnicodeProperties(c, 2)&UPROPS_GCB_MASK)>>UPROPS_GCB_SHIFT;
case UCHAR_SENTENCE_BREAK:
return (int32_t)(u_getUnicodeProperties(c, 2)&UPROPS_SB_MASK)>>UPROPS_SB_SHIFT;
case UCHAR_WORD_BREAK:
return (int32_t)(u_getUnicodeProperties(c, 2)&UPROPS_WB_MASK)>>UPROPS_WB_SHIFT;
default:
return 0; /* undefined */
}
} else if(which==UCHAR_GENERAL_CATEGORY_MASK) {
return U_MASK(u_charType(c));
} else {
return 0; /* undefined */
}
}
U_CAPI int32_t U_EXPORT2
u_getIntPropertyMinValue(UProperty which) {
return 0; /* all binary/enum/int properties have a minimum value of 0 */
}
U_CAPI int32_t U_EXPORT2
u_getIntPropertyMaxValue(UProperty which) {
if(which<UCHAR_BINARY_START) {
return -1; /* undefined */
} else if(which<UCHAR_BINARY_LIMIT) {
return 1; /* maximum TRUE for all binary properties */
} else if(which<UCHAR_INT_START) {
return -1; /* undefined */
} else if(which<UCHAR_INT_LIMIT) {
switch(which) {
case UCHAR_BIDI_CLASS:
case UCHAR_JOINING_GROUP:
case UCHAR_JOINING_TYPE:
return ubidi_getMaxValue(GET_BIDI_PROPS(), which);
case UCHAR_BLOCK:
return (uprv_getMaxValues(0)&UPROPS_BLOCK_MASK)>>UPROPS_BLOCK_SHIFT;
case UCHAR_CANONICAL_COMBINING_CLASS:
case UCHAR_LEAD_CANONICAL_COMBINING_CLASS:
case UCHAR_TRAIL_CANONICAL_COMBINING_CLASS:
return 0xff; /* TODO do we need to be more precise, getting the actual maximum? */
case UCHAR_DECOMPOSITION_TYPE:
return uprv_getMaxValues(2)&UPROPS_DT_MASK;
case UCHAR_EAST_ASIAN_WIDTH:
return (uprv_getMaxValues(0)&UPROPS_EA_MASK)>>UPROPS_EA_SHIFT;
case UCHAR_GENERAL_CATEGORY:
return (int32_t)U_CHAR_CATEGORY_COUNT-1;
case UCHAR_LINE_BREAK:
return (uprv_getMaxValues(0)&UPROPS_LB_MASK)>>UPROPS_LB_SHIFT;
case UCHAR_NUMERIC_TYPE:
return (int32_t)U_NT_COUNT-1;
case UCHAR_SCRIPT:
return uprv_getMaxValues(0)&UPROPS_SCRIPT_MASK;
case UCHAR_HANGUL_SYLLABLE_TYPE:
return (int32_t)U_HST_COUNT-1;
#if !UCONFIG_NO_NORMALIZATION
case UCHAR_NFD_QUICK_CHECK:
case UCHAR_NFKD_QUICK_CHECK:
return (int32_t)UNORM_YES; /* these are never "maybe", only "no" or "yes" */
case UCHAR_NFC_QUICK_CHECK:
case UCHAR_NFKC_QUICK_CHECK:
return (int32_t)UNORM_MAYBE;
#endif
case UCHAR_GRAPHEME_CLUSTER_BREAK:
return (uprv_getMaxValues(2)&UPROPS_GCB_MASK)>>UPROPS_GCB_SHIFT;
case UCHAR_SENTENCE_BREAK:
return (uprv_getMaxValues(2)&UPROPS_SB_MASK)>>UPROPS_SB_SHIFT;
case UCHAR_WORD_BREAK:
return (uprv_getMaxValues(2)&UPROPS_WB_MASK)>>UPROPS_WB_SHIFT;
default:
return -1; /* undefined */
}
} else {
return -1; /* undefined */
}
}
U_CAPI UPropertySource U_EXPORT2
uprops_getSource(UProperty which) {
if(which<UCHAR_BINARY_START) {
return UPROPS_SRC_NONE; /* undefined */
} else if(which<UCHAR_BINARY_LIMIT) {
if(binProps[which].mask!=0) {
return UPROPS_SRC_PROPSVEC;
} else {
return (UPropertySource)binProps[which].column;
}
} else if(which<UCHAR_INT_START) {
return UPROPS_SRC_NONE; /* undefined */
} else if(which<UCHAR_INT_LIMIT) {
switch(which) {
case UCHAR_GENERAL_CATEGORY:
case UCHAR_NUMERIC_TYPE:
return UPROPS_SRC_CHAR;
case UCHAR_HANGUL_SYLLABLE_TYPE:
return UPROPS_SRC_HST;
case UCHAR_CANONICAL_COMBINING_CLASS:
case UCHAR_NFD_QUICK_CHECK:
case UCHAR_NFKD_QUICK_CHECK:
case UCHAR_NFC_QUICK_CHECK:
case UCHAR_NFKC_QUICK_CHECK:
case UCHAR_LEAD_CANONICAL_COMBINING_CLASS:
case UCHAR_TRAIL_CANONICAL_COMBINING_CLASS:
return UPROPS_SRC_NORM;
case UCHAR_BIDI_CLASS:
case UCHAR_JOINING_GROUP:
case UCHAR_JOINING_TYPE:
return UPROPS_SRC_BIDI;
default:
return UPROPS_SRC_PROPSVEC;
}
} else if(which<UCHAR_STRING_START) {
switch(which) {
case UCHAR_GENERAL_CATEGORY_MASK:
case UCHAR_NUMERIC_VALUE:
return UPROPS_SRC_CHAR;
default:
return UPROPS_SRC_NONE;
}
} else if(which<UCHAR_STRING_LIMIT) {
switch(which) {
case UCHAR_AGE:
return UPROPS_SRC_PROPSVEC;
case UCHAR_BIDI_MIRRORING_GLYPH:
return UPROPS_SRC_BIDI;
case UCHAR_CASE_FOLDING:
case UCHAR_LOWERCASE_MAPPING:
case UCHAR_SIMPLE_CASE_FOLDING:
case UCHAR_SIMPLE_LOWERCASE_MAPPING:
case UCHAR_SIMPLE_TITLECASE_MAPPING:
case UCHAR_SIMPLE_UPPERCASE_MAPPING:
case UCHAR_TITLECASE_MAPPING:
case UCHAR_UPPERCASE_MAPPING:
return UPROPS_SRC_CASE;
case UCHAR_ISO_COMMENT:
case UCHAR_NAME:
case UCHAR_UNICODE_1_NAME:
return UPROPS_SRC_NAMES;
default:
return UPROPS_SRC_NONE;
}
} else {
return UPROPS_SRC_NONE; /* undefined */
}
}
/*----------------------------------------------------------------
* Inclusions list
*----------------------------------------------------------------*/
/*
* Return a set of characters for property enumeration.
* The set implicitly contains 0x110000 as well, which is one more than the highest
* Unicode code point.
*
* This set is used as an ordered list - its code points are ordered, and
* consecutive code points (in Unicode code point order) in the set define a range.
* For each two consecutive characters (start, limit) in the set,
* all of the UCD/normalization and related properties for
* all code points start..limit-1 are all the same,
* except for character names and ISO comments.
*
* All Unicode code points U+0000..U+10ffff are covered by these ranges.
* The ranges define a partition of the Unicode code space.
* ICU uses the inclusions set to enumerate properties for generating
* UnicodeSets containing all code points that have a certain property value.
*
* The Inclusion List is generated from the UCD. It is generated
* by enumerating the data tries, and code points for hardcoded properties
* are added as well.
*
* --------------------------------------------------------------------------
*
* The following are ideas for getting properties-unique code point ranges,
* with possible optimizations beyond the current implementation.
* These optimizations would require more code and be more fragile.
* The current implementation generates one single list (set) for all properties.
*
* To enumerate properties efficiently, one needs to know ranges of
* repetitive values, so that the value of only each start code point
* can be applied to the whole range.
* This information is in principle available in the uprops.icu/unorm.icu data.
*
* There are two obstacles:
*
* 1. Some properties are computed from multiple data structures,
* making it necessary to get repetitive ranges by intersecting
* ranges from multiple tries.
*
* 2. It is not economical to write code for getting repetitive ranges
* that are precise for each of some 50 properties.
*
* Compromise ideas:
*
* - Get ranges per trie, not per individual property.
* Each range contains the same values for a whole group of properties.
* This would generate currently five range sets, two for uprops.icu tries
* and three for unorm.icu tries.
*
* - Combine sets of ranges for multiple tries to get sufficient sets
* for properties, e.g., the uprops.icu main and auxiliary tries
* for all non-normalization properties.
*
* Ideas for representing ranges and combining them:
*
* - A UnicodeSet could hold just the start code points of ranges.
* Multiple sets are easily combined by or-ing them together.
*
* - Alternatively, a UnicodeSet could hold each even-numbered range.
* All ranges could be enumerated by using each start code point
* (for the even-numbered ranges) as well as each limit (end+1) code point
* (for the odd-numbered ranges).
* It should be possible to combine two such sets by xor-ing them,
* but no more than two.
*
* The second way to represent ranges may(?!) yield smaller UnicodeSet arrays,
* but the first one is certainly simpler and applicable for combining more than
* two range sets.
*
* It is possible to combine all range sets for all uprops/unorm tries into one
* set that can be used for all properties.
* As an optimization, there could be less-combined range sets for certain
* groups of properties.
* The relationship of which less-combined range set to use for which property
* depends on the implementation of the properties and must be hardcoded
* - somewhat error-prone and higher maintenance but can be tested easily
* by building property sets "the simple way" in test code.
*
* ---
*
* Do not use a UnicodeSet pattern because that causes infinite recursion;
* UnicodeSet depends on the inclusions set.
*
* ---
*
* uprv_getInclusions() is commented out starting 2004-sep-13 because
* uniset_props.cpp now calls the uxyz_addPropertyStarts() directly,
* and only for the relevant property source.
*/
#if 0
U_CAPI void U_EXPORT2
uprv_getInclusions(const USetAdder *sa, UErrorCode *pErrorCode) {
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
return;
}
#if !UCONFIG_NO_NORMALIZATION
unorm_addPropertyStarts(sa, pErrorCode);
#endif
uchar_addPropertyStarts(sa, pErrorCode);
uhst_addPropertyStarts(sa, pErrorCode);
ucase_addPropertyStarts(ucase_getSingleton(pErrorCode), sa, pErrorCode);
ubidi_addPropertyStarts(ubidi_getSingleton(pErrorCode), sa, pErrorCode);
}
#endif