scuffed-code/icu4c/source/i18n/repattrn.cpp
2002-10-28 17:18:44 +00:00

512 lines
14 KiB
C++

//
// file: repattrn.cpp
//
/*
**********************************************************************
* Copyright (C) 2002 International Business Machines Corporation *
* and others. All rights reserved. *
**********************************************************************
*/
#include "unicode/utypes.h"
#include "unicode/regex.h"
#include "uassert.h"
#include "uvector.h"
#include "regexcmp.h"
#include "regeximp.h"
#include "stdio.h" // TODO: get rid of this...
U_NAMESPACE_BEGIN
//--------------------------------------------------------------------------
//
// RegexPattern Default Constructor
//
//--------------------------------------------------------------------------
RegexPattern::RegexPattern() {
init();
};
//--------------------------------------------------------------------------
//
// Copy Constructor Note: This is a rather inefficient implementation,
// but it probably doesn't matter.
//
//--------------------------------------------------------------------------
RegexPattern::RegexPattern(const RegexPattern &other) : UObject(other) {
init();
*this = other;
}
//--------------------------------------------------------------------------
//
// Assignmenet Operator
//
//--------------------------------------------------------------------------
RegexPattern &RegexPattern::operator = (const RegexPattern &other) {
if (this == &other) {
// Source and destination are the same. Don't do anything.
return *this;
}
// Clean out any previous contents of object being assigned to.
zap();
// Give target object a default initialization
init();
// Copy simple fields
fPattern = other.fPattern;
fFlags = other.fFlags;
fLiteralText = other.fLiteralText;
fBadState = other.fBadState;
fNumCaptureGroups = other.fNumCaptureGroups;
fMaxCaptureDigits = other.fMaxCaptureDigits;
if (fBadState) {
return *this;
}
// Copy the pattern. It's just values, nothing deep to copy.
int i;
UErrorCode status = U_ZERO_ERROR;
for (i=0; i<other.fCompiledPat->size(); i++) {
fCompiledPat->addElement(other.fCompiledPat->elementAti(i), status);
}
// Note: do not copy fMatcher. It'll be created on first use if the
// destination needs one.
// Copy the Unicode Sets.
// Could be made more efficient if the sets were reference counted and shared,
// but I doubt that pattern copying will be particularly common.
for (i=1; i<other.fSets->size(); i++) {
UnicodeSet *sourceSet = (UnicodeSet *)other.fSets->elementAt(i);
UnicodeSet *newSet = new UnicodeSet(*sourceSet);
if (newSet == NULL) {
fBadState = TRUE;
break;
}
fCompiledPat->addElement(other.fCompiledPat->elementAti(i), status);
}
if (U_FAILURE(status)) {
fBadState = TRUE;
}
return *this;
}
//--------------------------------------------------------------------------
//
// init Shared initialization for use by constructors.
// Bring an uninitialized RegexPattern up to a default state.
//
//--------------------------------------------------------------------------
void RegexPattern::init() {
fFlags = 0;
fBadState = FALSE;
fNumCaptureGroups = 0;
fMaxCaptureDigits = 1; // TODO: calculate for real.
fMatcher = NULL;
UErrorCode status=U_ZERO_ERROR;
// Init of a completely new RegexPattern.
fCompiledPat = new UVector(status);
fSets = new UVector(status);
if (U_FAILURE(status) || fCompiledPat == NULL || fSets == NULL) {
fBadState = TRUE;
return;
}
// Slot zero of the vector of sets is reserved. Fill it here.
fSets->addElement((int32_t)0, status);
}
//--------------------------------------------------------------------------
//
// zap Delete everything owned by this RegexPattern.
//
//--------------------------------------------------------------------------
void RegexPattern::zap() {
delete fMatcher;
fMatcher = NULL;
delete fCompiledPat;
fCompiledPat = NULL;
int i;
for (i=0; i<fSets->size(); i++) {
UnicodeSet *s;
s = (UnicodeSet *)fSets->elementAt(i);
if (s != NULL) {
delete s;
}
}
delete fSets;
fSets = NULL;
}
//--------------------------------------------------------------------------
//
// Destructor
//
//--------------------------------------------------------------------------
RegexPattern::~RegexPattern() {
zap();
};
//--------------------------------------------------------------------------
//
// Clone
//
//--------------------------------------------------------------------------
RegexPattern *RegexPattern::clone() const {
RegexPattern *copy = new RegexPattern(*this);
return copy;
};
//--------------------------------------------------------------------------
//
// operator == (comparison) Consider to patterns to be == if the
// pattern strings and the flags are the same.
//
//--------------------------------------------------------------------------
UBool RegexPattern::operator ==(const RegexPattern &other) const {
UBool r = this->fFlags == other.fFlags &&
this->fPattern == other.fPattern &&
this->fBadState == FALSE &&
other.fBadState == FALSE;
return r;
}
//---------------------------------------------------------------------
//
// compile
//
//---------------------------------------------------------------------
RegexPattern *RegexPattern::compile(
const UnicodeString &regex,
int32_t flags,
UParseError &pe,
UErrorCode &err) {
if (U_FAILURE(err)) {
return NULL;
}
RegexPattern *This = new RegexPattern;
if (This == NULL) {
err = U_MEMORY_ALLOCATION_ERROR;
return NULL;
}
This->fFlags = flags;
RegexCompile compiler(err);
compiler.compile(*This, regex, pe, err);
return This;
};
//
// compile with default flags.
//
RegexPattern *RegexPattern::compile( const UnicodeString &regex,
UParseError &pe,
UErrorCode &err)
{
return compile(regex, 0, pe, err);
}
//---------------------------------------------------------------------
//
// flags
//
//---------------------------------------------------------------------
int32_t RegexPattern::flags() const {
return fFlags;
}
//---------------------------------------------------------------------
//
// matcher(UnicodeString, err)
//
//---------------------------------------------------------------------
RegexMatcher *RegexPattern::matcher(const UnicodeString &input,
UErrorCode &err) const {
RegexMatcher *retMatcher = NULL;
if (U_FAILURE(err)) {return NULL;};
retMatcher = new RegexMatcher(this);
if (retMatcher == NULL) {
err = U_MEMORY_ALLOCATION_ERROR;
return NULL;
}
retMatcher->reset(input);
return retMatcher;
};
//---------------------------------------------------------------------
//
// matches Convenience function to test for a match, starting
// with a pattern string and a data string.
//
//---------------------------------------------------------------------
UBool RegexPattern::matches(const UnicodeString &regex,
const UnicodeString &input,
UParseError &pe,
UErrorCode &status) {
UBool retVal = FALSE;
RegexPattern *pat = NULL;
RegexMatcher *matcher = NULL;
if (U_FAILURE(status)) {goto ret;}
pat = RegexPattern::compile(regex, 0, pe, status);
if (U_FAILURE(status)) {goto ret;}
matcher = pat->matcher(input, status);
if (U_FAILURE(status)) {goto ret;}
retVal = matcher->matches(status);
ret:
delete matcher;
delete pat;
return retVal;
}
//---------------------------------------------------------------------
//
// pattern
//
//---------------------------------------------------------------------
UnicodeString RegexPattern::pattern() const {
return fPattern;
}
//---------------------------------------------------------------------
//
// split
// TODO: perl returns captured strings intermixed with the
// fields. Should we do this too?
//
//---------------------------------------------------------------------
int32_t RegexPattern::split(const UnicodeString &input,
UnicodeString dest[],
int32_t destCapacity,
UErrorCode &status) const
{
//
// Check arguements for validity
//
if (U_FAILURE(status)) {
return 0;
};
if (destCapacity < 1) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
//
// If we don't already have a cached matcher object from a previous call
// to split(), create one now.
//
if (fMatcher == NULL) {
RegexMatcher *m = matcher(input, status);
if (U_FAILURE(status)) {
return 0;
}
// Need to cast off const to cache the matcher
RegexPattern *nonConstThis = (RegexPattern *)this;
nonConstThis->fMatcher = m;
}
//
// Set our input text into the matcher
//
fMatcher->reset(input);
int32_t inputLen = input.length();
int32_t nextOutputStringStart = 0;
if (inputLen == 0) {
return 0;
}
//
// Loop through the input text, searching for the delimiter pattern
//
int i;
for (i=0; ; i++) {
if (i==destCapacity-1) {
// There is only one output string left.
// Fill it with whatever is left from the input, then exit the loop.
dest[i].setTo(input, nextOutputStringStart, inputLen-nextOutputStringStart);
break;
}
if (fMatcher->find()) {
// We found another delimiter. Move everything from where we started looking
// up until the start of the delimiter into the next output string.
int32_t fieldLen = fMatcher->fMatchStart - nextOutputStringStart;
dest[i].setTo(input, nextOutputStringStart, fieldLen);
nextOutputStringStart = fMatcher->fMatchEnd;
if (nextOutputStringStart == inputLen) {
// The delimiter was at the end of the string. We're done.
break;
}
}
else
{
// We ran off the end of the input while looking for the next delimiter.
// All the remaining text goes into the current output string.
dest[i].setTo(input, nextOutputStringStart, inputLen-nextOutputStringStart);
break;
}
}
return i+1;
}
//---------------------------------------------------------------------
//
// hashcode
//
//---------------------------------------------------------------------
int32_t RegexPattern::hashCode(void) const {
return 0; // TODO: Do something better here
};
//---------------------------------------------------------------------
//
// dump Output the compiled form of the pattern.
// Debugging function only.
//
//---------------------------------------------------------------------
static char *opNames[] = {
"ZERO",
"?1",
"END",
"ONECHAR",
"STRING",
"STRING_LEN",
"STATE_SAVE",
"NOP",
"START_CAPTURE",
"END_CAPTURE",
"UNUSED10",
"SETREF",
"DOTANY",
"JMP",
"FAIL",
"URX_BACKSLASH_A",
"URX_BACKSLASH_B",
"URX_BACKSLASH_G",
"URX_BACKSLASH_W",
"URX_BACKSLASH_X",
"URX_BACKSLASH_Z"
};
void RegexPattern::dump() {
int index;
int i;
UChar c;
int32_t op;
int32_t pinnedType;
int32_t type;
int32_t val;
int32_t stringStart;
printf("Original Pattern: ");
for (i=0; i<fPattern.length(); i++) {
printf("%c", fPattern.charAt(i));
}
printf("\n");
printf("Pattern Valid?: %s\n", fBadState? "no" : "yes");
printf("\nIndex Binary Type Operand\n"
"-------------------------------------------\n");
for (index = 0; ; index++) {
op = fCompiledPat->elementAti(index);
val = URX_VAL(op);
type = URX_TYPE(op);
pinnedType = type;
if (pinnedType >= sizeof(opNames)/sizeof(char *)) {
pinnedType = 0;
}
printf("%4d %08x %-15s ", index, op, opNames[pinnedType]);
switch (type) {
case URX_NOP:
case URX_DOTANY:
case URX_FAIL:
case URX_BACKSLASH_A:
case URX_BACKSLASH_G:
case URX_BACKSLASH_X:
// Types with no operand field of interest.
break;
case URX_START_CAPTURE:
case URX_END_CAPTURE:
case URX_SETREF:
case URX_STATE_SAVE:
case URX_JMP:
case URX_BACKSLASH_B:
case URX_BACKSLASH_W:
case URX_BACKSLASH_Z:
// types with an integer operand field.
printf("%d", val);
break;
case URX_ONECHAR:
printf("%c", val<256?val:'?');
break;
case URX_STRING:
stringStart = val;
break;
case URX_STRING_LEN:
for (i=stringStart; i<stringStart+val; i++) {
c = fLiteralText[i];
if (c >= 256) {c = '?';};
printf("%c", c);
}
break;
case URX_END:
goto breakFromLoop;
default:
printf("??????");
break;
}
printf("\n");
}
breakFromLoop:
printf("\n\n");
};
const char RegexPattern::fgClassID = 0;
U_NAMESPACE_END