scuffed-code/icu4c/source/test/intltest/transtst.cpp
2001-12-28 21:26:53 +00:00

3476 lines
120 KiB
C++

/*
**********************************************************************
* Copyright (C) 2001, International Business Machines
* Corporation and others. All Rights Reserved.
**********************************************************************
* Date Name Description
* 11/10/99 aliu Creation.
**********************************************************************
*/
#include "transtst.h"
#include "unicode/cpdtrans.h"
#include "unicode/dtfmtsym.h"
#include "unicode/hextouni.h"
#include "unicode/normlzr.h"
#include "unicode/nultrans.h"
#include "unicode/rbt.h"
#include "unicode/translit.h"
#include "unicode/ucnv.h"
#include "unicode/ucnv_err.h"
#include "unicode/unicode.h"
#include "unicode/unifilt.h"
#include "unicode/uniset.h"
#include "unicode/unitohex.h"
#include "unicode/utypes.h"
#include "unicode/ustring.h"
/***********************************************************************
HOW TO USE THIS TEST FILE
-or-
How I developed on two platforms
without losing (too much of) my mind
1. Add new tests by copying/pasting/changing existing tests. On Java,
any public void method named Test...() taking no parameters becomes
a test. On C++, you need to modify the header and add a line to
the runIndexedTest() dispatch method.
2. Make liberal use of the expect() method; it is your friend.
3. The tests in this file exactly match those in a sister file on the
other side. The two files are:
icu4j: src/com/ibm/test/translit/TransliteratorTest.java
icu4c: source/test/intltest/transtst.cpp
==> THIS IS THE IMPORTANT PART <==
When you add a test in this file, add it in TransliteratorTest.java
too. Give it the same name and put it in the same relative place.
This makes maintenance a lot simpler for any poor soul who ends up
trying to synchronize the tests between icu4j and icu4c.
4. If you MUST enter a test that is NOT paralleled in the sister file,
then add it in the special non-mirrored section. These are
labeled
"icu4j ONLY"
or
"icu4c ONLY"
Make sure you document the reason the test is here and not there.
Thank you.
The Management
***********************************************************************/
// Define character constants thusly to be EBCDIC-friendly
enum {
LEFT_BRACE=((UChar)0x007B), /*{*/
PIPE =((UChar)0x007C), /*|*/
ZERO =((UChar)0x0030), /*0*/
UPPER_A =((UChar)0x0041) /*A*/
};
TransliteratorTest::TransliteratorTest()
: DESERET_DEE((UChar32)0x10414),
DESERET_dee((UChar32)0x1043C)
{
}
void
TransliteratorTest::runIndexedTest(int32_t index, UBool exec,
const char* &name, char* /*par*/) {
switch (index) {
TESTCASE(0,TestInstantiation);
TESTCASE(1,TestSimpleRules);
TESTCASE(2,TestRuleBasedInverse);
TESTCASE(3,TestKeyboard);
TESTCASE(4,TestKeyboard2);
TESTCASE(5,TestKeyboard3);
TESTCASE(6,TestArabic);
TESTCASE(7,TestCompoundKana);
TESTCASE(8,TestCompoundHex);
TESTCASE(9,TestFiltering);
TESTCASE(10,TestInlineSet);
TESTCASE(11,TestPatternQuoting);
TESTCASE(12,TestJ277);
TESTCASE(13,TestJ243);
TESTCASE(14,TestJ329);
TESTCASE(15,TestSegments);
TESTCASE(16,TestCursorOffset);
TESTCASE(17,TestArbitraryVariableValues);
TESTCASE(18,TestPositionHandling);
TESTCASE(19,TestHiraganaKatakana);
TESTCASE(20,TestCopyJ476);
TESTCASE(21,TestAnchors);
TESTCASE(22,TestInterIndic);
TESTCASE(23,TestFilterIDs);
TESTCASE(24,TestCaseMap);
TESTCASE(25,TestNameMap);
TESTCASE(26,TestLiberalizedID);
TESTCASE(27,TestCreateInstance);
TESTCASE(28,TestNormalizationTransliterator);
TESTCASE(29,TestCompoundRBT);
TESTCASE(30,TestCompoundFilter);
TESTCASE(31,TestRemove);
TESTCASE(32,TestToRules);
TESTCASE(33,TestContext);
TESTCASE(34,TestSupplemental);
TESTCASE(35,TestQuantifier);
TESTCASE(36,TestSTV);
TESTCASE(37,TestCompoundInverse);
TESTCASE(38,TestNFDChainRBT);
TESTCASE(39,TestNullInverse);
TESTCASE(40,TestAliasInverseID);
TESTCASE(41,TestCompoundInverseID);
TESTCASE(42,TestUndefinedVariable);
TESTCASE(43,TestEmptyContext);
TESTCASE(44,TestCompoundFilterID);
TESTCASE(45,TestPropertySet);
TESTCASE(46,TestNewEngine);
TESTCASE(47,TestQuantifiedSegment);
TESTCASE(48,TestDevanagariLatinRT);
TESTCASE(49,TestTeluguLatinRT);
TESTCASE(50,TestCompoundLatinRT);
TESTCASE(51,TestSanskritLatinRT);
TESTCASE(52,TestLocaleInstantiation);
TESTCASE(53,TestTitleAccents);
TESTCASE(54,TestLocaleResource);
TESTCASE(55,TestParseError);
TESTCASE(56,TestOutputSet);
TESTCASE(57,TestVariableRange);
TESTCASE(58,TestInvalidPostContext);
TESTCASE(59,TestIDForms);
TESTCASE(60,TestToRulesMark);
TESTCASE(61,TestEscape);
TESTCASE(62,TestAnchorMasking);
TESTCASE(63,TestDisplayName);
TESTCASE(64,TestSpecialCases);
TESTCASE(65,TestIncrementalProgress);
TESTCASE(66,TestSurrogateCasing);
default: name = ""; break;
}
}
/**
* Make sure every system transliterator can be instantiated.
*
* ALSO test that the result of toRules() for each rule is a valid
* rule. Do this here so we don't have to have another test that
* instantiates everything as well.
*/
void TransliteratorTest::TestInstantiation() {
int32_t n = Transliterator::countAvailableIDs();
UnicodeString name;
for (int32_t i=0; i<n; ++i) {
UnicodeString id = Transliterator::getAvailableID(i);
if (id.length() < 1) {
errln(UnicodeString("FAIL: getAvailableID(") +
i + ") returned empty string");
continue;
}
UParseError parseError;
UErrorCode status = U_ZERO_ERROR;
Transliterator* t = Transliterator::createInstance(id,
UTRANS_FORWARD, parseError,status);
name.truncate(0);
Transliterator::getDisplayName(id, name);
if (t == 0) {
errln(UnicodeString("FAIL: Couldn't create ") + id +
/*", parse error " + parseError.code +*/
", line " + parseError.line +
", offset " + parseError.offset +
", pre-context " + prettify(parseError.preContext, TRUE) +
", post-context " +prettify(parseError.postContext,TRUE) +
", Error: " + u_errorName(status));
// When createInstance fails, it deletes the failing
// entry from the available ID list. We detect this
// here by looking for a change in countAvailableIDs.
int32_t nn = Transliterator::countAvailableIDs();
if (nn == (n - 1)) {
n = nn;
--i; // Compensate for deleted entry
}
} else {
logln(UnicodeString("OK: ") + name + " (" + id + ")");
// Now test toRules
UnicodeString rules;
t->toRules(rules, TRUE);
Transliterator *u = Transliterator::createFromRules("x",
rules, UTRANS_FORWARD, parseError,status);
if (u == 0) {
errln(UnicodeString("FAIL: ") + id +
".toRules() => bad rules" +
/*", parse error " + parseError.code +*/
", line " + parseError.line +
", offset " + parseError.offset +
", context " + prettify(parseError.preContext, TRUE) +
", rules: " + prettify(rules, TRUE));
} else {
delete u;
}
delete t;
}
}
// Now test the failure path
UParseError parseError;
UErrorCode status = U_ZERO_ERROR;
UnicodeString id("<Not a valid Transliterator ID>");
Transliterator* t = Transliterator::createInstance(id, UTRANS_FORWARD, parseError, status);
if (t != 0) {
errln("FAIL: " + id + " returned a transliterator");
delete t;
} else {
logln("OK: Bogus ID handled properly");
}
}
void TransliteratorTest::TestSimpleRules(void) {
/* Example: rules 1. ab>x|y
* 2. yc>z
*
* []|eabcd start - no match, copy e to tranlated buffer
* [e]|abcd match rule 1 - copy output & adjust cursor
* [ex|y]cd match rule 2 - copy output & adjust cursor
* [exz]|d no match, copy d to transliterated buffer
* [exzd]| done
*/
expect(UnicodeString("ab>x|y;", "") +
"yc>z",
"eabcd", "exzd");
/* Another set of rules:
* 1. ab>x|yzacw
* 2. za>q
* 3. qc>r
* 4. cw>n
*
* []|ab Rule 1
* [x|yzacw] No match
* [xy|zacw] Rule 2
* [xyq|cw] Rule 4
* [xyqn]| Done
*/
expect(UnicodeString("ab>x|yzacw;") +
"za>q;" +
"qc>r;" +
"cw>n",
"ab", "xyqn");
/* Test categories
*/
UErrorCode status = U_ZERO_ERROR;
RuleBasedTransliterator t(
"<ID>",
UnicodeString("$dummy=").append((UChar)0xE100) +
UnicodeString(";"
"$vowel=[aeiouAEIOU];"
"$lu=[:Lu:];"
"$vowel } $lu > '!';"
"$vowel > '&';"
"'!' { $lu > '^';"
"$lu > '*';"
"a > ERROR", ""),
status);
if (U_FAILURE(status)) {
errln("FAIL: RBT constructor failed");
return;
}
expect(t, "abcdefgABCDEFGU", "&bcd&fg!^**!^*&");
}
/**
* Test inline set syntax and set variable syntax.
*/
void TransliteratorTest::TestInlineSet(void) {
expect("{ [:Ll:] } x > y; [:Ll:] > z;", "aAbxq", "zAyzz");
expect("a[0-9]b > qrs", "1a7b9", "1qrs9");
expect(UnicodeString(
"$digit = [0-9];"
"$alpha = [a-zA-Z];"
"$alphanumeric = [$digit $alpha];" // ***
"$special = [^$alphanumeric];" // ***
"$alphanumeric > '-';"
"$special > '*';", ""),
"thx-1138", "---*----");
}
/**
* Create some inverses and confirm that they work. We have to be
* careful how we do this, since the inverses will not be true
* inverses -- we can't throw any random string at the composition
* of the transliterators and expect the identity function. F x
* F' != I. However, if we are careful about the input, we will
* get the expected results.
*/
void TransliteratorTest::TestRuleBasedInverse(void) {
UnicodeString RULES =
UnicodeString("abc>zyx;") +
"ab>yz;" +
"bc>zx;" +
"ca>xy;" +
"a>x;" +
"b>y;" +
"c>z;" +
"abc<zyx;" +
"ab<yz;" +
"bc<zx;" +
"ca<xy;" +
"a<x;" +
"b<y;" +
"c<z;" +
"";
const char* DATA[] = {
// Careful here -- random strings will not work. If we keep
// the left side to the domain and the right side to the range
// we will be okay though (left, abc; right xyz).
"a", "x",
"abcacab", "zyxxxyy",
"caccb", "xyzzy",
};
int32_t DATA_length = (int32_t)(sizeof(DATA) / sizeof(DATA[0]));
UErrorCode status = U_ZERO_ERROR;
RuleBasedTransliterator fwd("<ID>", RULES, status);
RuleBasedTransliterator rev("<ID>", RULES,
UTRANS_REVERSE, status);
if (U_FAILURE(status)) {
errln("FAIL: RBT constructor failed");
return;
}
for (int32_t i=0; i<DATA_length; i+=2) {
expect(fwd, DATA[i], DATA[i+1]);
expect(rev, DATA[i+1], DATA[i]);
}
}
/**
* Basic test of keyboard.
*/
void TransliteratorTest::TestKeyboard(void) {
UErrorCode status = U_ZERO_ERROR;
RuleBasedTransliterator t("<ID>",
UnicodeString("psch>Y;")
+"ps>y;"
+"ch>x;"
+"a>A;",
status);
if (U_FAILURE(status)) {
errln("FAIL: RBT constructor failed");
return;
}
const char* DATA[] = {
// insertion, buffer
"a", "A",
"p", "Ap",
"s", "Aps",
"c", "Apsc",
"a", "AycA",
"psch", "AycAY",
0, "AycAY", // null means finishKeyboardTransliteration
};
keyboardAux(t, DATA, (int32_t)(sizeof(DATA)/sizeof(DATA[0])));
}
/**
* Basic test of keyboard with cursor.
*/
void TransliteratorTest::TestKeyboard2(void) {
UErrorCode status = U_ZERO_ERROR;
RuleBasedTransliterator t("<ID>",
UnicodeString("ych>Y;")
+"ps>|y;"
+"ch>x;"
+"a>A;",
status);
if (U_FAILURE(status)) {
errln("FAIL: RBT constructor failed");
return;
}
const char* DATA[] = {
// insertion, buffer
"a", "A",
"p", "Ap",
"s", "Aps", // modified for rollback - "Ay",
"c", "Apsc", // modified for rollback - "Ayc",
"a", "AycA",
"p", "AycAp",
"s", "AycAps", // modified for rollback - "AycAy",
"c", "AycApsc", // modified for rollback - "AycAyc",
"h", "AycAY",
0, "AycAY", // null means finishKeyboardTransliteration
};
keyboardAux(t, DATA, (int32_t)(sizeof(DATA)/sizeof(DATA[0])));
}
/**
* Test keyboard transliteration with back-replacement.
*/
void TransliteratorTest::TestKeyboard3(void) {
// We want th>z but t>y. Furthermore, during keyboard
// transliteration we want t>y then yh>z if t, then h are
// typed.
UnicodeString RULES("t>|y;"
"yh>z;");
const char* DATA[] = {
// Column 1: characters to add to buffer (as if typed)
// Column 2: expected appearance of buffer after
// keyboard xliteration.
"a", "a",
"b", "ab",
"t", "abt", // modified for rollback - "aby",
"c", "abyc",
"t", "abyct", // modified for rollback - "abycy",
"h", "abycz",
0, "abycz", // null means finishKeyboardTransliteration
};
UErrorCode status = U_ZERO_ERROR;
RuleBasedTransliterator t("<ID>", RULES, status);
if (U_FAILURE(status)) {
errln("FAIL: RBT constructor failed");
return;
}
keyboardAux(t, DATA, (int32_t)(sizeof(DATA)/sizeof(DATA[0])));
}
void TransliteratorTest::keyboardAux(const Transliterator& t,
const char* DATA[], int32_t DATA_length) {
UErrorCode status = U_ZERO_ERROR;
UTransPosition index={0, 0, 0, 0};
UnicodeString s;
for (int32_t i=0; i<DATA_length; i+=2) {
UnicodeString log;
if (DATA[i] != 0) {
log = s + " + "
+ DATA[i]
+ " -> ";
t.transliterate(s, index, DATA[i], status);
} else {
log = s + " => ";
t.finishTransliteration(s, index);
}
// Show the start index '{' and the cursor '|'
UnicodeString a, b, c;
s.extractBetween(0, index.contextStart, a);
s.extractBetween(index.contextStart, index.start, b);
s.extractBetween(index.start, s.length(), c);
log.append(a).
append((UChar)LEFT_BRACE).
append(b).
append((UChar)PIPE).
append(c);
if (s == DATA[i+1] && U_SUCCESS(status)) {
logln(log);
} else {
errln(UnicodeString("FAIL: ") + log + ", expected " + DATA[i+1]);
}
}
}
void TransliteratorTest::TestArabic(void) {
// Test disabled for 2.0 until new Arabic transliterator can be written.
// /*
// const char* DATA[] = {
// "Arabic", "\u062a\u062a\u0645\u062a\u0639\u0020"+
// "\u0627\u0644\u0644\u063a\u0629\u0020"+
// "\u0627\u0644\u0639\u0631\u0628\u0628\u064a\u0629\u0020"+
// "\u0628\u0628\u0646\u0638\u0645\u0020"+
// "\u0643\u062a\u0627\u0628\u0628\u064a\u0629\u0020"+
// "\u062c\u0645\u064a\u0644\u0629",
// };
// */
//
// UChar ar_raw[] = {
// 0x062a, 0x062a, 0x0645, 0x062a, 0x0639, 0x0020, 0x0627,
// 0x0644, 0x0644, 0x063a, 0x0629, 0x0020, 0x0627, 0x0644,
// 0x0639, 0x0631, 0x0628, 0x0628, 0x064a, 0x0629, 0x0020,
// 0x0628, 0x0628, 0x0646, 0x0638, 0x0645, 0x0020, 0x0643,
// 0x062a, 0x0627, 0x0628, 0x0628, 0x064a, 0x0629, 0x0020,
// 0x062c, 0x0645, 0x064a, 0x0644, 0x0629, 0
// };
// UnicodeString ar(ar_raw);
// UErrorCode status=U_ZERO_ERROR;
// UParseError parseError;
// Transliterator *t = Transliterator::createInstance("Latin-Arabic", UTRANS_FORWARD, parseError, status);
// if (t == 0) {
// errln("FAIL: createInstance failed");
// return;
// }
// expect(*t, "Arabic", ar);
// delete t;
}
/**
* Compose the Kana transliterator forward and reverse and try
* some strings that should come out unchanged.
*/
void TransliteratorTest::TestCompoundKana(void) {
UParseError parseError;
UErrorCode status = U_ZERO_ERROR;
Transliterator* t = Transliterator::createInstance("Latin-Hiragana;Hiragana-Latin", UTRANS_FORWARD, parseError, status);
if (t == 0) {
errln("FAIL: construction of Latin-Hiragana;Hiragana-Latin failed");
} else {
expect(*t, "aaaaa", "aaaaa");
delete t;
}
}
/**
* Compose the hex transliterators forward and reverse.
*/
void TransliteratorTest::TestCompoundHex(void) {
UParseError parseError;
UErrorCode status = U_ZERO_ERROR;
Transliterator* a = Transliterator::createInstance("Any-Hex", UTRANS_FORWARD, parseError, status);
Transliterator* b = Transliterator::createInstance("Hex-Any", UTRANS_FORWARD, parseError, status);
Transliterator* transab[] = { a, b };
Transliterator* transba[] = { b, a };
if (a == 0 || b == 0) {
errln("FAIL: construction failed");
delete a;
delete b;
return;
}
// Do some basic tests of a
expect(*a, "01", UnicodeString("\\u0030\\u0031", ""));
// Do some basic tests of b
expect(*b, UnicodeString("\\u0030\\u0031", ""), "01");
Transliterator* ab = new CompoundTransliterator(transab, 2);
UnicodeString s("abcde", "");
expect(*ab, s, s);
UnicodeString str(s);
a->transliterate(str);
Transliterator* ba = new CompoundTransliterator(transba, 2);
expect(*ba, str, str);
delete ab;
delete ba;
delete a;
delete b;
}
/**
* Used by TestFiltering().
*/
class TestFilter : public UnicodeFilter {
virtual UnicodeMatcher* clone() const {
return new TestFilter(*this);
}
virtual UBool contains(UChar32 c) const {
return c != (UChar)0x0063 /*c*/;
}
};
/**
* Do some basic tests of filtering.
*/
void TransliteratorTest::TestFiltering(void) {
UParseError parseError;
UErrorCode status = U_ZERO_ERROR;
Transliterator* hex = Transliterator::createInstance("Any-Hex", UTRANS_FORWARD, parseError, status);
if (hex == 0) {
errln("FAIL: createInstance(Any-Hex) failed");
return;
}
hex->adoptFilter(new TestFilter());
UnicodeString s("abcde");
hex->transliterate(s);
UnicodeString exp("\\u0061\\u0062c\\u0064\\u0065", "");
if (s == exp) {
logln(UnicodeString("Ok: \"") + exp + "\"");
} else {
logln(UnicodeString("FAIL: \"") + s + "\", wanted \"" + exp + "\"");
}
delete hex;
}
/**
* Test anchors
*/
void TransliteratorTest::TestAnchors(void) {
expect(UnicodeString("^a > 0; a$ > 2 ; a > 1;", ""),
"aaa",
"012");
expect(UnicodeString("$s=[z$]; $s{a>0; a}$s>2; a>1;", ""),
"aaa",
"012");
expect(UnicodeString("^ab > 01 ;"
" ab > |8 ;"
" b > k ;"
" 8x$ > 45 ;"
" 8x > 77 ;", ""),
"ababbabxabx",
"018k7745");
expect(UnicodeString("$s = [z$] ;"
"$s{ab > 01 ;"
" ab > |8 ;"
" b > k ;"
" 8x}$s > 45 ;"
" 8x > 77 ;", ""),
"abzababbabxzabxabx",
"01z018k45z01x45");
}
/**
* Test pattern quoting and escape mechanisms.
*/
void TransliteratorTest::TestPatternQuoting(void) {
// Array of 3n items
// Each item is <rules>, <input>, <expected output>
const UnicodeString DATA[] = {
UnicodeString(UChar(0x4E01)) + ">'[male adult]'",
UnicodeString(UChar(0x4E01)),
"[male adult]"
};
for (int32_t i=0; i<3; i+=3) {
logln(UnicodeString("Pattern: ") + prettify(DATA[i]));
UErrorCode status = U_ZERO_ERROR;
RuleBasedTransliterator t("<ID>", DATA[i], status);
if (U_FAILURE(status)) {
errln("RBT constructor failed");
} else {
expect(t, DATA[i+1], DATA[i+2]);
}
}
}
/**
* Regression test for bugs found in Greek transliteration.
*/
void TransliteratorTest::TestJ277(void) {
UErrorCode status = U_ZERO_ERROR;
UParseError parseError;
Transliterator *gl = Transliterator::createInstance("Greek-Latin; NFD; [:M:]Remove; NFC", UTRANS_FORWARD, parseError, status);
if (gl == NULL) {
errln("FAIL: createInstance(Greek-Latin) returned NULL");
return;
}
UChar sigma = 0x3C3;
UChar upsilon = 0x3C5;
UChar nu = 0x3BD;
// UChar PHI = 0x3A6;
UChar alpha = 0x3B1;
// UChar omega = 0x3C9;
// UChar omicron = 0x3BF;
// UChar epsilon = 0x3B5;
// sigma upsilon nu -> syn
UnicodeString syn;
syn.append(sigma).append(upsilon).append(nu);
expect(*gl, syn, "syn");
// sigma alpha upsilon nu -> saun
UnicodeString sayn;
sayn.append(sigma).append(alpha).append(upsilon).append(nu);
expect(*gl, sayn, "saun");
// Again, using a smaller rule set
UnicodeString rules(
"$alpha = \\u03B1;"
"$nu = \\u03BD;"
"$sigma = \\u03C3;"
"$ypsilon = \\u03C5;"
"$vowel = [aeiouAEIOU$alpha$ypsilon];"
"s <> $sigma;"
"a <> $alpha;"
"u <> $vowel { $ypsilon;"
"y <> $ypsilon;"
"n <> $nu;",
"");
RuleBasedTransliterator mini("mini", rules, UTRANS_REVERSE, status);
if (U_FAILURE(status)) { errln("FAIL: Transliterator constructor failed"); return; }
expect(mini, syn, "syn");
expect(mini, sayn, "saun");
// Transliterate the Greek locale data
Locale el("el");
DateFormatSymbols syms(el, status);
if (U_FAILURE(status)) { errln("FAIL: Transliterator constructor failed"); return; }
int32_t i, count;
const UnicodeString* data = syms.getMonths(count);
for (i=0; i<count; ++i) {
if (data[i].length() == 0) {
continue;
}
UnicodeString out(data[i]);
gl->transliterate(out);
UBool ok = TRUE;
if (data[i].length() >= 2 && out.length() >= 2 &&
u_isupper(data[i].charAt(0)) && u_islower(data[i].charAt(1))) {
if (!(u_isupper(out.charAt(0)) && u_islower(out.charAt(1)))) {
ok = FALSE;
}
}
if (ok) {
logln(prettify(data[i] + " -> " + out));
} else {
errln(UnicodeString("FAIL: ") + prettify(data[i] + " -> " + out));
}
}
delete gl;
}
/**
* Prefix, suffix support in hex transliterators
*/
void TransliteratorTest::TestJ243(void) {
UErrorCode status = U_ZERO_ERROR;
#if !defined(HPUX)
// Test default Hex-Any, which should handle
// \u, \U, u+, and U+
HexToUnicodeTransliterator hex;
expect(hex, UnicodeString("\\u0041+\\U0042,u+0043uu+0044z", ""), "A+B,CuDz");
// Try a custom Hex-Unicode
// \uXXXX and &#xXXXX;
status = U_ZERO_ERROR;
HexToUnicodeTransliterator hex2(UnicodeString("\\\\u###0;&\\#x###0\\;", ""), status);
expect(hex2, UnicodeString("\\u61\\u062\\u0063\\u00645\\u66x&#x30;&#x031;&#x0032;&#x00033;", ""),
"abcd5fx012&#x00033;");
// Try custom Any-Hex (default is tested elsewhere)
status = U_ZERO_ERROR;
UnicodeToHexTransliterator hex3(UnicodeString("&\\#x###0;", ""), status);
expect(hex3, "012", "&#x30;&#x31;&#x32;");
#endif
}
/**
* Parsers need better syntax error messages.
*/
void TransliteratorTest::TestJ329(void) {
struct { UBool containsErrors; const char* rule; } DATA[] = {
{ FALSE, "a > b; c > d" },
{ TRUE, "a > b; no operator; c > d" },
};
int32_t DATA_length = (int32_t)(sizeof(DATA) / sizeof(DATA[0]));
for (int32_t i=0; i<DATA_length; ++i) {
UErrorCode status = U_ZERO_ERROR;
UParseError parseError;
RuleBasedTransliterator rbt("<ID>",
DATA[i].rule,
UTRANS_FORWARD,
0,
parseError,
status);
UBool gotError = U_FAILURE(status);
UnicodeString desc(DATA[i].rule);
desc.append(gotError ? " -> error" : " -> no error");
if (gotError) {
desc = desc + ", ParseError code=" + u_errorName(status) +
" line=" + parseError.line +
" offset=" + parseError.offset +
" context=" + parseError.preContext;
}
if (gotError == DATA[i].containsErrors) {
logln(UnicodeString("Ok: ") + desc);
} else {
errln(UnicodeString("FAIL: ") + desc);
}
}
}
/**
* Test segments and segment references.
*/
void TransliteratorTest::TestSegments(void) {
// Array of 3n items
// Each item is <rules>, <input>, <expected output>
UnicodeString DATA[] = {
"([a-z]) '.' ([0-9]) > $2 '-' $1",
"abc.123.xyz.456",
"ab1-c23.xy4-z56",
// nested
"(([a-z])([0-9])) > $1 '.' $2 '.' $3;",
"a1 b2",
"a1.a.1 b2.b.2",
};
int32_t DATA_length = (int32_t)(sizeof(DATA)/sizeof(*DATA));
for (int32_t i=0; i<DATA_length; i+=3) {
logln("Pattern: " + prettify(DATA[i]));
UErrorCode status = U_ZERO_ERROR;
RuleBasedTransliterator t("ID", DATA[i], status);
if (U_FAILURE(status)) {
errln("FAIL: RBT constructor");
} else {
expect(t, DATA[i+1], DATA[i+2]);
}
}
}
/**
* Test cursor positioning outside of the key
*/
void TransliteratorTest::TestCursorOffset(void) {
// Array of 3n items
// Each item is <rules>, <input>, <expected output>
UnicodeString DATA[] = {
"pre {alpha} post > | @ ALPHA ;"
"eALPHA > beta ;"
"pre {beta} post > BETA @@ | ;"
"post > xyz",
"prealphapost prebetapost",
"prbetaxyz preBETApost",
};
int32_t DATA_length = (int32_t)(sizeof(DATA)/sizeof(*DATA));
for (int32_t i=0; i<DATA_length; i+=3) {
logln("Pattern: " + prettify(DATA[i]));
UErrorCode status = U_ZERO_ERROR;
RuleBasedTransliterator t("<ID>", DATA[i], status);
if (U_FAILURE(status)) {
errln("FAIL: RBT constructor");
} else {
expect(t, DATA[i+1], DATA[i+2]);
}
}
}
/**
* Test zero length and > 1 char length variable values. Test
* use of variable refs in UnicodeSets.
*/
void TransliteratorTest::TestArbitraryVariableValues(void) {
// Array of 3n items
// Each item is <rules>, <input>, <expected output>
UnicodeString DATA[] = {
"$abe = ab;"
"$pat = x[yY]z;"
"$ll = 'a-z';"
"$llZ = [$ll];"
"$llY = [$ll$pat];"
"$emp = ;"
"$abe > ABE;"
"$pat > END;"
"$llZ > 1;"
"$llY > 2;"
"7$emp 8 > 9;"
"",
"ab xYzxyz stY78",
"ABE ENDEND 1129",
};
int32_t DATA_length = (int32_t)(sizeof(DATA)/sizeof(*DATA));
for (int32_t i=0; i<DATA_length; i+=3) {
logln("Pattern: " + prettify(DATA[i]));
UErrorCode status = U_ZERO_ERROR;
RuleBasedTransliterator t("<ID>", DATA[i], status);
if (U_FAILURE(status)) {
errln("FAIL: RBT constructor");
} else {
expect(t, DATA[i+1], DATA[i+2]);
}
}
}
/**
* Confirm that the contextStart, contextLimit, start, and limit
* behave correctly. J474.
*/
void TransliteratorTest::TestPositionHandling(void) {
// Array of 3n items
// Each item is <rules>, <input>, <expected output>
const char* DATA[] = {
"a{t} > SS ; {t}b > UU ; {t} > TT ;",
"xtat txtb", // pos 0,9,0,9
"xTTaSS TTxUUb",
"a{t} > SS ; {t}b > UU ; {t} > TT ; a > A ; b > B ;",
"xtat txtb", // pos 2,9,3,8
"xtaSS TTxUUb",
"a{t} > SS ; {t}b > UU ; {t} > TT ; a > A ; b > B ;",
"xtat txtb", // pos 3,8,3,8
"xtaTT TTxTTb",
};
// Array of 4n positions -- these go with the DATA array
// They are: contextStart, contextLimit, start, limit
int32_t POS[] = {
0, 9, 0, 9,
2, 9, 3, 8,
3, 8, 3, 8,
};
int32_t n = (int32_t)(sizeof(DATA) / sizeof(DATA[0])) / 3;
for (int32_t i=0; i<n; i++) {
UErrorCode status = U_ZERO_ERROR;
Transliterator *t = new RuleBasedTransliterator("<ID>",
DATA[3*i], status);
if (U_FAILURE(status)) {
delete t;
errln("FAIL: RBT constructor");
return;
}
UTransPosition pos;
pos.contextStart= POS[4*i];
pos.contextLimit = POS[4*i+1];
pos.start = POS[4*i+2];
pos.limit = POS[4*i+3];
UnicodeString rsource(DATA[3*i+1]);
t->transliterate(rsource, pos, status);
if (U_FAILURE(status)) {
delete t;
errln("FAIL: transliterate");
return;
}
t->finishTransliteration(rsource, pos);
expectAux(DATA[3*i],
DATA[3*i+1],
rsource,
DATA[3*i+2]);
delete t;
}
}
/**
* Test the Hiragana-Katakana transliterator.
*/
void TransliteratorTest::TestHiraganaKatakana(void) {
UParseError parseError;
UErrorCode status = U_ZERO_ERROR;
Transliterator* hk = Transliterator::createInstance("Hiragana-Katakana", UTRANS_FORWARD, parseError, status);
Transliterator* kh = Transliterator::createInstance("Katakana-Hiragana", UTRANS_FORWARD, parseError, status);
if (hk == 0 || kh == 0) {
errln("FAIL: createInstance failed");
delete hk;
delete kh;
return;
}
// Array of 3n items
// Each item is "hk"|"kh"|"both", <Hiragana>, <Katakana>
const char* DATA[] = {
"both",
"\\u3042\\u3090\\u3099\\u3092\\u3050",
"\\u30A2\\u30F8\\u30F2\\u30B0",
"kh",
"\\u307C\\u3051\\u3060\\u3042\\u3093\\u30FC",
"\\u30DC\\u30F6\\u30C0\\u30FC\\u30F3\\u30FC",
};
int32_t DATA_length = (int32_t)(sizeof(DATA) / sizeof(DATA[0]));
for (int32_t i=0; i<DATA_length; i+=3) {
UnicodeString h = CharsToUnicodeString(DATA[i+1]);
UnicodeString k = CharsToUnicodeString(DATA[i+2]);
switch (*DATA[i]) {
case 0x68: //'h': // Hiragana-Katakana
expect(*hk, h, k);
break;
case 0x6B: //'k': // Katakana-Hiragana
expect(*kh, k, h);
break;
case 0x62: //'b': // both
expect(*hk, h, k);
expect(*kh, k, h);
break;
}
}
delete hk;
delete kh;
}
/**
* Test cloning / copy constructor of RBT.
*/
void TransliteratorTest::TestCopyJ476(void) {
// The real test here is what happens when the destructors are
// called. So we let one object get destructed, and check to
// see that its copy still works.
RuleBasedTransliterator *t2 = 0;
{
UErrorCode status = U_ZERO_ERROR;
RuleBasedTransliterator t1("t1", "a>A;b>B;", status);
if (U_FAILURE(status)) {
errln("FAIL: RBT constructor");
return;
}
t2 = new RuleBasedTransliterator(t1);
expect(t1, "abc", "ABc");
}
expect(*t2, "abc", "ABc");
delete t2;
}
/**
* Test inter-Indic transliterators. These are composed.
* ICU4C Jitterbug 483.
*/
void TransliteratorTest::TestInterIndic(void) {
UnicodeString ID("Devanagari-Gujarati", "");
UErrorCode status = U_ZERO_ERROR;
UParseError parseError;
Transliterator* dg = Transliterator::createInstance(ID, UTRANS_FORWARD, parseError, status);
if (dg == 0) {
errln("FAIL: createInstance(" + ID + ") returned NULL");
return;
}
UnicodeString id = dg->getID();
if (id != ID) {
errln("FAIL: createInstance(" + ID + ")->getID() => " + id);
}
UnicodeString dev = CharsToUnicodeString("\\u0901\\u090B\\u0925");
UnicodeString guj = CharsToUnicodeString("\\u0A81\\u0A8B\\u0AA5");
expect(*dg, dev, guj);
delete dg;
}
/**
* Test filter syntax in IDs. (J918)
*/
void TransliteratorTest::TestFilterIDs(void) {
// Array of 3n strings:
// <id>, <inverse id>, <input>, <expected output>
const char* DATA[] = {
"Any[aeiou]-Hex", // ID
"[aeiou]Hex-Any", // expected inverse ID
"quizzical", // src
"q\\u0075\\u0069zz\\u0069c\\u0061l", // expected ID.translit(src)
"Any[aeiou]-Hex;Hex[^5]-Any",
"[^5]Any-Hex;[aeiou]Hex-Any",
"quizzical",
"q\\u0075izzical",
"Null[abc]",
"[abc]Null",
"xyz",
"xyz",
};
enum { DATA_length = sizeof(DATA) / sizeof(DATA[0]) };
for (int i=0; i<DATA_length; i+=4) {
UnicodeString ID(DATA[i], "");
UnicodeString uID(DATA[i+1], "");
UnicodeString data2(DATA[i+2], "");
UnicodeString data3(DATA[i+3], "");
UParseError parseError;
UErrorCode status = U_ZERO_ERROR;
Transliterator *t = Transliterator::createInstance(ID, UTRANS_FORWARD, parseError, status);
if (t == 0) {
errln("FAIL: createInstance(" + ID + ") returned NULL");
return;
}
expect(*t, data2, data3);
// Check the ID
if (ID != t->getID()) {
errln("FAIL: createInstance(" + ID + ").getID() => " +
t->getID());
}
// Check the inverse
Transliterator *u = t->createInverse(status);
if (u == 0) {
errln("FAIL: " + ID + ".createInverse() returned NULL");
} else if (u->getID() != uID) {
errln("FAIL: " + ID + ".createInverse().getID() => " +
u->getID() + ", expected " + uID);
}
delete t;
delete u;
}
}
/**
* Test the case mapping transliterators.
*/
void TransliteratorTest::TestCaseMap(void) {
UParseError parseError;
UErrorCode status = U_ZERO_ERROR;
Transliterator* toUpper =
Transliterator::createInstance("Any-Upper[^xyzXYZ]", UTRANS_FORWARD, parseError, status);
Transliterator* toLower =
Transliterator::createInstance("Any-Lower[^xyzXYZ]", UTRANS_FORWARD, parseError, status);
Transliterator* toTitle =
Transliterator::createInstance("Any-Title[^xyzXYZ]", UTRANS_FORWARD, parseError, status);
if (toUpper==0 || toLower==0 || toTitle==0) {
errln("FAIL: createInstance returned NULL");
delete toUpper;
delete toLower;
delete toTitle;
return;
}
expect(*toUpper, "The quick brown fox jumped over the lazy dogs.",
"THE QUICK BROWN FOx JUMPED OVER THE LAzy DOGS.");
expect(*toLower, "The quIck brown fOX jUMPED OVER THE LAzY dogs.",
"the quick brown foX jumped over the lazY dogs.");
expect(*toTitle, "the quick brown foX can't jump over the laZy dogs.",
"The Quick Brown FoX Can't Jump Over The LaZy Dogs.");
delete toUpper;
delete toLower;
delete toTitle;
}
/**
* Test the name mapping transliterators.
*/
void TransliteratorTest::TestNameMap(void) {
UParseError parseError;
UErrorCode status = U_ZERO_ERROR;
Transliterator* uni2name =
Transliterator::createInstance("Any-Name[^abc]", UTRANS_FORWARD, parseError, status);
Transliterator* name2uni =
Transliterator::createInstance("Name-Any", UTRANS_FORWARD, parseError, status);
if (uni2name==0 || name2uni==0) {
errln("FAIL: createInstance returned NULL");
delete uni2name;
delete name2uni;
return;
}
expect(*uni2name, CharsToUnicodeString("\\u00A0abc\\u4E01\\u00B5\\u0A81\\uFFFD\\uFFFF"),
CharsToUnicodeString("{NO-BREAK SPACE}abc{CJK UNIFIED IDEOGRAPH-4E01}{MICRO SIGN}{GUJARATI SIGN CANDRABINDU}{REPLACEMENT CHARACTER}\\uFFFF"));
expect(*name2uni, "{NO-BREAK SPACE}abc{CJK UNIFIED IDEOGRAPH-4E01}{x{MICRO SIGN}{GUJARATI SIGN CANDRABINDU}{REPLACEMENT CHARACTER}{",
CharsToUnicodeString("\\u00A0abc\\u4E01{x\\u00B5\\u0A81\\uFFFD{"));
delete uni2name;
delete name2uni;
}
/**
* Test liberalized ID syntax. 1006c
*/
void TransliteratorTest::TestLiberalizedID(void) {
// Some test cases have an expected getID() value of NULL. This
// means I have disabled the test case for now. This stuff is
// still under development, and I haven't decided whether to make
// getID() return canonical case yet. It will all get rewritten
// with the move to Source-Target/Variant IDs anyway. [aliu]
const char* DATA[] = {
"latin-greek", NULL /*"Latin-Greek"*/, "case insensitivity",
" Null ", "Null", "whitespace",
" Latin[a-z]-Greek ", "Latin[a-z]-Greek", "inline filter",
" null ; latin-greek ", NULL /*"Null;Latin-Greek"*/, "compound whitespace",
};
const int32_t DATA_length = sizeof(DATA)/sizeof(DATA[0]);
UParseError parseError;
UErrorCode status= U_ZERO_ERROR;
for (int32_t i=0; i<DATA_length; i+=3) {
Transliterator *t = Transliterator::createInstance(DATA[i], UTRANS_FORWARD, parseError, status);
if (t == 0) {
errln(UnicodeString("FAIL: ") + DATA[i+2] +
" cannot create ID \"" + DATA[i] + "\"");
} else {
UnicodeString exp;
if (DATA[i+1]) {
exp = UnicodeString(DATA[i+1], "");
}
// Don't worry about getID() if the expected char*
// is NULL -- see above.
if (exp.length() == 0 || exp == t->getID()) {
logln(UnicodeString("Ok: ") + DATA[i+2] +
" create ID \"" + DATA[i] + "\" => \"" +
exp + "\"");
} else {
errln(UnicodeString("FAIL: ") + DATA[i+2] +
" create ID \"" + DATA[i] + "\" => \"" +
t->getID() + "\", exp \"" + exp + "\"");
}
delete t;
}
}
}
/* test for Jitterbug 912 */
void TransliteratorTest::TestCreateInstance(){
UParseError err;
UErrorCode status = U_ZERO_ERROR;
Transliterator* myTrans = Transliterator::createInstance(UnicodeString("Latin-Hangul"),UTRANS_REVERSE,err,status);
if (myTrans == 0) {
errln("FAIL: createInstance failed");
return;
}
UnicodeString newID =myTrans->getID();
if(newID!=UnicodeString("Hangul-Latin")){
errln(UnicodeString("Test for Jitterbug 912 Transliterator::createInstance(id,UTRANS_REVERSE) failed"));
}
delete myTrans;
}
/**
* Test the normalization transliterator.
*/
void TransliteratorTest::TestNormalizationTransliterator() {
// THE FOLLOWING TWO TABLES ARE COPIED FROM com.ibm.test.normalizer.BasicTest
// PLEASE KEEP THEM IN SYNC WITH BasicTest.
const char* CANON[] = {
// Input Decomposed Composed
"cat", "cat", "cat" ,
"\\u00e0ardvark", "a\\u0300ardvark", "\\u00e0ardvark" ,
"\\u1e0a", "D\\u0307", "\\u1e0a" , // D-dot_above
"D\\u0307", "D\\u0307", "\\u1e0a" , // D dot_above
"\\u1e0c\\u0307", "D\\u0323\\u0307", "\\u1e0c\\u0307" , // D-dot_below dot_above
"\\u1e0a\\u0323", "D\\u0323\\u0307", "\\u1e0c\\u0307" , // D-dot_above dot_below
"D\\u0307\\u0323", "D\\u0323\\u0307", "\\u1e0c\\u0307" , // D dot_below dot_above
"\\u1e10\\u0307\\u0323", "D\\u0327\\u0323\\u0307","\\u1e10\\u0323\\u0307", // D dot_below cedilla dot_above
"D\\u0307\\u0328\\u0323","D\\u0328\\u0323\\u0307","\\u1e0c\\u0328\\u0307", // D dot_above ogonek dot_below
"\\u1E14", "E\\u0304\\u0300", "\\u1E14" , // E-macron-grave
"\\u0112\\u0300", "E\\u0304\\u0300", "\\u1E14" , // E-macron + grave
"\\u00c8\\u0304", "E\\u0300\\u0304", "\\u00c8\\u0304" , // E-grave + macron
"\\u212b", "A\\u030a", "\\u00c5" , // angstrom_sign
"\\u00c5", "A\\u030a", "\\u00c5" , // A-ring
"\\u00fdffin", "y\\u0301ffin", "\\u00fdffin" , //updated with 3.0
"\\u00fd\\uFB03n", "y\\u0301\\uFB03n", "\\u00fd\\uFB03n" , //updated with 3.0
"Henry IV", "Henry IV", "Henry IV" ,
"Henry \\u2163", "Henry \\u2163", "Henry \\u2163" ,
"\\u30AC", "\\u30AB\\u3099", "\\u30AC" , // ga (Katakana)
"\\u30AB\\u3099", "\\u30AB\\u3099", "\\u30AC" , // ka + ten
"\\uFF76\\uFF9E", "\\uFF76\\uFF9E", "\\uFF76\\uFF9E" , // hw_ka + hw_ten
"\\u30AB\\uFF9E", "\\u30AB\\uFF9E", "\\u30AB\\uFF9E" , // ka + hw_ten
"\\uFF76\\u3099", "\\uFF76\\u3099", "\\uFF76\\u3099" , // hw_ka + ten
"A\\u0300\\u0316", "A\\u0316\\u0300", "\\u00C0\\u0316" ,
0 // end
};
const char* COMPAT[] = {
// Input Decomposed Composed
"\\uFB4f", "\\u05D0\\u05DC", "\\u05D0\\u05DC" , // Alef-Lamed vs. Alef, Lamed
"\\u00fdffin", "y\\u0301ffin", "\\u00fdffin" , //updated for 3.0
"\\u00fd\\uFB03n", "y\\u0301ffin", "\\u00fdffin" , // ffi ligature -> f + f + i
"Henry IV", "Henry IV", "Henry IV" ,
"Henry \\u2163", "Henry IV", "Henry IV" ,
"\\u30AC", "\\u30AB\\u3099", "\\u30AC" , // ga (Katakana)
"\\u30AB\\u3099", "\\u30AB\\u3099", "\\u30AC" , // ka + ten
"\\uFF76\\u3099", "\\u30AB\\u3099", "\\u30AC" , // hw_ka + ten
0 // end
};
int32_t i;
UParseError parseError;
UErrorCode status = U_ZERO_ERROR;
Transliterator* NFD = Transliterator::createInstance("NFD", UTRANS_FORWARD, parseError, status);
Transliterator* NFC = Transliterator::createInstance("NFC", UTRANS_FORWARD, parseError, status);
if (!NFD || !NFC) {
errln("FAIL: createInstance failed");
delete NFD;
delete NFC;
return;
}
for (i=0; CANON[i]; i+=3) {
UnicodeString in = CharsToUnicodeString(CANON[i]);
UnicodeString expd = CharsToUnicodeString(CANON[i+1]);
UnicodeString expc = CharsToUnicodeString(CANON[i+2]);
expect(*NFD, in, expd);
expect(*NFC, in, expc);
}
delete NFD;
delete NFC;
Transliterator* NFKD = Transliterator::createInstance("NFKD", UTRANS_FORWARD, parseError, status);
Transliterator* NFKC = Transliterator::createInstance("NFKC", UTRANS_FORWARD, parseError, status);
if (!NFKD || !NFKC) {
errln("FAIL: createInstance failed");
delete NFKD;
delete NFKC;
return;
}
for (i=0; COMPAT[i]; i+=3) {
UnicodeString in = CharsToUnicodeString(COMPAT[i]);
UnicodeString expkd = CharsToUnicodeString(COMPAT[i+1]);
UnicodeString expkc = CharsToUnicodeString(COMPAT[i+2]);
expect(*NFKD, in, expkd);
expect(*NFKC, in, expkc);
}
delete NFKD;
delete NFKC;
UParseError pe;
status = U_ZERO_ERROR;
Transliterator *t = Transliterator::createInstance("NFD; [x]Remove",
UTRANS_FORWARD,
pe, status);
if (t == 0) {
errln("FAIL: createInstance failed");
}
expect(*t, CharsToUnicodeString("\\u010dx"),
CharsToUnicodeString("c\\u030C"));
delete t;
}
/**
* Test compound RBT rules.
*/
void TransliteratorTest::TestCompoundRBT(void) {
// Careful with spacing and ';' here: Phrase this exactly
// as toRules() is going to return it. If toRules() changes
// with regard to spacing or ';', then adjust this string.
UnicodeString rule("::Hex-Any;\n"
"::Any-Lower;\n"
"a > '.A.';\n"
"b > '.B.';\n"
"::Any[^t]-Upper;", "");
UParseError parseError;
UErrorCode status = U_ZERO_ERROR;
Transliterator *t = Transliterator::createFromRules("Test", rule, UTRANS_FORWARD, parseError, status);
if (t == 0) {
errln("FAIL: createFromRules failed");
return;
}
expect(*t, "\\u0043at in the hat, bat on the mat",
"C.A.t IN tHE H.A.t, .B..A.t ON tHE M.A.t");
UnicodeString r;
t->toRules(r, TRUE);
if (r == rule) {
logln((UnicodeString)"OK: toRules() => " + r);
} else {
errln((UnicodeString)"FAIL: toRules() => " + r +
", expected " + rule);
}
delete t;
// Now test toRules
t = Transliterator::createInstance("Greek-Latin; Latin-Cyrillic", UTRANS_FORWARD, parseError, status);
if (t == 0) {
errln("FAIL: createInstance failed");
return;
}
UnicodeString exp("::Greek-Latin;\n::Latin-Cyrillic;");
t->toRules(r, TRUE);
if (r != exp) {
errln((UnicodeString)"FAIL: toRules() => " + r +
", expected " + exp);
} else {
logln((UnicodeString)"OK: toRules() => " + r);
}
delete t;
// Round trip the result of toRules
t = Transliterator::createFromRules("Test", r, UTRANS_FORWARD, parseError, status);
if (t == 0) {
errln("FAIL: createFromRules #2 failed");
return;
} else {
logln((UnicodeString)"OK: createFromRules(" + r + ") succeeded");
}
// Test toRules again
t->toRules(r, TRUE);
if (r != exp) {
errln((UnicodeString)"FAIL: toRules() => " + r +
", expected " + exp);
} else {
logln((UnicodeString)"OK: toRules() => " + r);
}
delete t;
// Test Foo(Bar) IDs. Careful with spacing in id; make it conform
// to what the regenerated ID will look like.
UnicodeString id("Upper(Lower);(NFKC)", "");
t = Transliterator::createInstance(id, UTRANS_FORWARD, parseError, status);
if (t == 0) {
errln("FAIL: createInstance #2 failed");
return;
}
if (t->getID() == id) {
logln((UnicodeString)"OK: created " + id);
} else {
errln((UnicodeString)"FAIL: createInstance(" + id +
").getID() => " + t->getID());
}
Transliterator *u = t->createInverse(status);
if (u == 0) {
errln("FAIL: createInverse failed");
delete t;
return;
}
exp = "NFKC();Lower(Upper)";
if (u->getID() == exp) {
logln((UnicodeString)"OK: createInverse(" + id + ") => " +
u->getID());
} else {
errln((UnicodeString)"FAIL: createInverse(" + id + ") => " +
u->getID());
}
delete t;
delete u;
}
/**
* Compound filter semantics were orginially not implemented
* correctly. Originally, each component filter f(i) is replaced by
* f'(i) = f(i) && g, where g is the filter for the compound
* transliterator.
*
* From Mark:
*
* Suppose and I have a transliterator X. Internally X is
* "Greek-Latin; Latin-Cyrillic; Any-Lower". I use a filter [^A].
*
* The compound should convert all greek characters (through latin) to
* cyrillic, then lowercase the result. The filter should say "don't
* touch 'A' in the original". But because an intermediate result
* happens to go through "A", the Greek Alpha gets hung up.
*/
void TransliteratorTest::TestCompoundFilter(void) {
UParseError parseError;
UErrorCode status = U_ZERO_ERROR;
Transliterator *t = Transliterator::createInstance
("Greek-Latin; Latin-Greek; Lower", UTRANS_FORWARD, parseError, status);
if (t == 0) {
errln("FAIL: createInstance failed");
return;
}
t->adoptFilter(new UnicodeSet("[^A]", status));
if (U_FAILURE(status)) {
errln("FAIL: UnicodeSet ct failed");
delete t;
return;
}
// Only the 'A' at index 1 should remain unchanged
expect(*t,
CharsToUnicodeString("BA\\u039A\\u0391"),
CharsToUnicodeString("\\u03b2A\\u03ba\\u03b1"));
delete t;
}
void TransliteratorTest::TestRemove(void) {
UParseError parseError;
UErrorCode status = U_ZERO_ERROR;
Transliterator *t = Transliterator::createInstance("Remove[abc]", UTRANS_FORWARD, parseError, status);
if (t == 0) {
errln("FAIL: createInstance failed");
return;
}
expect(*t, "Able bodied baker's cats", "Ale odied ker's ts");
delete t;
}
void TransliteratorTest::TestToRules(void) {
const char* RBT = "rbt";
const char* SET = "set";
static const char* DATA[] = {
RBT,
"$a=\\u4E61; [$a] > A;",
"[\\u4E61] > A;",
RBT,
"$white=[[:Zs:][:Zl:]]; $white{a} > A;",
"[[:Zs:][:Zl:]]{a} > A;",
SET,
"[[:Zs:][:Zl:]]",
"[[:Zs:][:Zl:]]",
SET,
"[:Ps:]",
"[:Ps:]",
SET,
"[:L:]",
"[:L:]",
SET,
"[[:L:]-[A]]",
"[[:L:]-[A]]",
SET,
"[~[:Lu:][:Ll:]]",
"[~[:Lu:][:Ll:]]",
SET,
"[~[a-z]]",
"[~[a-z]]",
RBT,
"$white=[:Zs:]; $black=[^$white]; $black{a} > A;",
"[^[:Zs:]]{a} > A;",
RBT,
"$a=[:Zs:]; $b=[[a-z]-$a]; $b{a} > A;",
"[[a-z]-[:Zs:]]{a} > A;",
RBT,
"$a=[:Zs:]; $b=[$a&[a-z]]; $b{a} > A;",
"[[:Zs:]&[a-z]]{a} > A;",
RBT,
"$a=[:Zs:]; $b=[x$a]; $b{a} > A;",
"[x[:Zs:]]{a} > A;",
RBT,
"$accentMinus = [ [\\u0300-\\u0345] & [:M:] - [\\u0338]] ;"
"$macron = \\u0304 ;"
"$evowel = [aeiouyAEIOUY] ;"
"$iotasub = \\u0345 ;"
"($evowel $macron $accentMinus *) i > | $1 $iotasub ;",
"([AEIOUYaeiouy]\\u0304[[\\u0300-\\u0345]&[:M:]-[\\u0338]]*)i > | $1 \\u0345;",
RBT,
"([AEIOUYaeiouy]\\u0304[[:M:]-[\\u0304\\u0345]]*)i > | $1 \\u0345;",
"([AEIOUYaeiouy]\\u0304[[:M:]-[\\u0304\\u0345]]*)i > | $1 \\u0345;",
};
static const int32_t DATA_length = (int32_t)(sizeof(DATA) / sizeof(DATA[0]));
for (int32_t d=0; d < DATA_length; d+=3) {
if (DATA[d] == RBT) {
// Transliterator test
UParseError parseError;
UErrorCode status = U_ZERO_ERROR;
Transliterator *t = Transliterator::createFromRules("ID",
DATA[d+1], UTRANS_FORWARD, parseError, status);
if (t == 0) {
errln("FAIL: createFromRules failed");
return;
}
UnicodeString rules, escapedRules;
t->toRules(rules, FALSE);
t->toRules(escapedRules, TRUE);
UnicodeString expRules = CharsToUnicodeString(DATA[d+2]);
UnicodeString expEscapedRules(DATA[d+2]);
if (rules == expRules) {
logln((UnicodeString)"Ok: " + DATA[d+1] +
" => " + rules);
} else {
errln((UnicodeString)"FAIL: " + DATA[d+1] +
" => " + rules + ", exp " + expRules);
}
if (escapedRules == expEscapedRules) {
logln((UnicodeString)"Ok: " + DATA[d+1] +
" => " + escapedRules);
} else {
errln((UnicodeString)"FAIL: " + DATA[d+1] +
" => " + escapedRules + ", exp " + expEscapedRules);
}
delete t;
} else {
// UnicodeSet test
UErrorCode status = U_ZERO_ERROR;
UnicodeString pat(DATA[d+1]);
UnicodeString expToPat(DATA[d+2]);
UnicodeSet set(pat, status);
if (U_FAILURE(status)) {
errln("FAIL: UnicodeSet ct failed");
return;
}
// Adjust spacing etc. as necessary.
UnicodeString toPat;
set.toPattern(toPat);
if (expToPat == toPat) {
logln((UnicodeString)"Ok: " + pat +
" => " + toPat);
} else {
errln((UnicodeString)"FAIL: " + pat +
" => " + prettify(toPat, TRUE) +
", exp " + prettify(pat, TRUE));
}
}
}
}
void TransliteratorTest::TestContext() {
UTransPosition pos = {0, 2, 0, 1}; // cs cl s l
expect("de > x; {d}e > y;",
"de",
"ye",
&pos);
expect("ab{c} > z;",
"xadabdabcy",
"xadabdabzy");
}
void TransliteratorTest::TestSupplemental() {
expect(CharsToUnicodeString("$a=\\U00010300; $s=[\\U00010300-\\U00010323];"
"a > $a; $s > i;"),
CharsToUnicodeString("ab\\U0001030Fx"),
CharsToUnicodeString("\\U00010300bix"));
expect(CharsToUnicodeString("$a=[a-z\\U00010300-\\U00010323];"
"$b=[A-Z\\U00010400-\\U0001044D];"
"($a)($b) > $2 $1;"),
CharsToUnicodeString("aB\\U00010300\\U00010400c\\U00010401\\U00010301D"),
CharsToUnicodeString("Ba\\U00010400\\U00010300\\U00010401cD\\U00010301"));
// k|ax\\U00010300xm
// k|a\\U00010400\\U00010300xm
// ky|\\U00010400\\U00010300xm
// ky\\U00010400|\\U00010300xm
// ky\\U00010400|\\U00010300\\U00010400m
// ky\\U00010400y|\\U00010400m
expect(CharsToUnicodeString("$a=[a\\U00010300-\\U00010323];"
"$a {x} > | @ \\U00010400;"
"{$a} [^\\u0000-\\uFFFF] > y;"),
CharsToUnicodeString("kax\\U00010300xm"),
CharsToUnicodeString("ky\\U00010400y\\U00010400m"));
expectT("Any-Name",
CharsToUnicodeString("\\U00010330\\U000E0061\\u00A0"),
"{GOTHIC LETTER AHSA}{TAG LATIN SMALL LETTER A}{NO-BREAK SPACE}");
expectT("Any-Hex/Unicode",
CharsToUnicodeString("\\U00010330\\U0010FF00\\U000E0061\\u00A0"),
"U+10330U+10FF00U+E0061U+00A0");
expectT("Any-Hex/C",
CharsToUnicodeString("\\U00010330\\U0010FF00\\U000E0061\\u00A0"),
"\\U00010330\\U0010FF00\\U000E0061\\u00A0");
expectT("Any-Hex/Perl",
CharsToUnicodeString("\\U00010330\\U0010FF00\\U000E0061\\u00A0"),
"\\x{10330}\\x{10FF00}\\x{E0061}\\x{A0}");
expectT("Any-Hex/Java",
CharsToUnicodeString("\\U00010330\\U0010FF00\\U000E0061\\u00A0"),
"\\uD800\\uDF30\\uDBFF\\uDF00\\uDB40\\uDC61\\u00A0");
expectT("Any-Hex/XML",
CharsToUnicodeString("\\U00010330\\U0010FF00\\U000E0061\\u00A0"),
"&#x10330;&#x10FF00;&#xE0061;&#xA0;");
expectT("Any-Hex/XML10",
CharsToUnicodeString("\\U00010330\\U0010FF00\\U000E0061\\u00A0"),
"&#66352;&#1113856;&#917601;&#160;");
expectT("[\\U000E0000-\\U000E0FFF] Remove",
CharsToUnicodeString("\\U00010330\\U0010FF00\\U000E0061\\u00A0"),
CharsToUnicodeString("\\U00010330\\U0010FF00\\u00A0"));
}
void TransliteratorTest::TestQuantifier() {
// Make sure @ in a quantified anteContext works
expect("a+ {b} > | @@ c; A > a; (a+ c) > '(' $1 ')';",
"AAAAAb",
"aaa(aac)");
// Make sure @ in a quantified postContext works
expect("{b} a+ > c @@ |; (a+) > '(' $1 ')';",
"baaaaa",
"caa(aaa)");
// Make sure @ in a quantified postContext with seg ref works
expect("{(b)} a+ > $1 @@ |; (a+) > '(' $1 ')';",
"baaaaa",
"baa(aaa)");
// Make sure @ past ante context doesn't enter ante context
UTransPosition pos = {0, 5, 3, 5};
expect("a+ {b} > | @@ c; x > y; (a+ c) > '(' $1 ')';",
"xxxab",
"xxx(ac)",
&pos);
// Make sure @ past post context doesn't pass limit
UTransPosition pos2 = {0, 4, 0, 2};
expect("{b} a+ > c @@ |; x > y; a > A;",
"baxx",
"caxx",
&pos2);
// Make sure @ past post context doesn't enter post context
expect("{b} a+ > c @@ |; x > y; a > A;",
"baxx",
"cayy");
expect("(ab)? c > d;",
"c abc ababc",
"d d abd");
// NOTE: The (ab)+ when referenced just yields a single "ab",
// not the full sequence of them. This accords with perl behavior.
expect("(ab)+ {x} > '(' $1 ')';",
"x abx ababxy",
"x ab(ab) abab(ab)y");
expect("b+ > x;",
"ac abc abbc abbbc",
"ac axc axc axc");
expect("[abc]+ > x;",
"qac abrc abbcs abtbbc",
"qx xrx xs xtx");
expect("q{(ab)+} > x;",
"qa qab qaba qababc qaba",
"qa qx qxa qxc qxa");
expect("q(ab)* > x;",
"qa qab qaba qababc",
"xa x xa xc");
// NOTE: The (ab)+ when referenced just yields a single "ab",
// not the full sequence of them. This accords with perl behavior.
expect("q(ab)* > '(' $1 ')';",
"qa qab qaba qababc",
"()a (ab) (ab)a (ab)c");
// 'foo'+ and 'foo'* -- the quantifier should apply to the entire
// quoted string
expect("'ab'+ > x;",
"bb ab ababb",
"bb x xb");
// $foo+ and $foo* -- the quantifier should apply to the entire
// variable reference
expect("$var = ab; $var+ > x;",
"bb ab ababb",
"bb x xb");
}
class TestTrans : public NullTransliterator {
public:
TestTrans(const UnicodeString& id) {
setID(id);
}
};
/**
* Test Source-Target/Variant.
*/
void TransliteratorTest::TestSTV(void) {
int32_t ns = Transliterator::countAvailableSources();
if (ns < 0 || ns > 255) {
errln((UnicodeString)"FAIL: Bad source count: " + ns);
return;
}
int32_t i;
for (i=0; i<ns; ++i) {
UnicodeString source;
Transliterator::getAvailableSource(i, source);
logln((UnicodeString)"" + i + ": " + source);
if (source.length() == 0) {
errln("FAIL: empty source");
continue;
}
int32_t nt = Transliterator::countAvailableTargets(source);
if (nt < 0 || nt > 255) {
errln((UnicodeString)"FAIL: Bad target count: " + nt);
continue;
}
for (int32_t j=0; j<nt; ++j) {
UnicodeString target;
Transliterator::getAvailableTarget(j, source, target);
logln((UnicodeString)" " + j + ": " + target);
if (target.length() == 0) {
errln("FAIL: empty target");
continue;
}
int32_t nv = Transliterator::countAvailableVariants(source, target);
if (nv < 0 || nv > 255) {
errln((UnicodeString)"FAIL: Bad variant count: " + nv);
continue;
}
for (int32_t k=0; k<nv; ++k) {
UnicodeString variant;
Transliterator::getAvailableVariant(k, source, target, variant);
if (variant.length() == 0) {
logln((UnicodeString)" " + k + ": <empty>");
} else {
logln((UnicodeString)" " + k + ": " + variant);
}
}
}
}
// Test registration
const char* IDS[] = { "Fieruwer", "Seoridf-Sweorie", "Oewoir-Oweri/Vsie" };
for (i=0; i<3; ++i) {
Transliterator *t = new TestTrans(IDS[i]);
if (t == 0) {
errln("FAIL: out of memory");
return;
}
if (t->getID() != IDS[i]) {
errln((UnicodeString)"FAIL: ID mismatch for " + IDS[i]);
delete t;
return;
}
Transliterator::registerInstance(t);
UErrorCode status = U_ZERO_ERROR;
t = Transliterator::createInstance(IDS[i], UTRANS_FORWARD, status);
if (t == NULL) {
errln((UnicodeString)"FAIL: Registration/creation failed for ID " +
IDS[i]);
} else {
logln((UnicodeString)"Ok: Registration/creation succeeded for ID " +
IDS[i]);
delete t;
}
Transliterator::unregister(IDS[i]);
t = Transliterator::createInstance(IDS[i], UTRANS_FORWARD, status);
if (t != NULL) {
errln((UnicodeString)"FAIL: Unregistration failed for ID " +
IDS[i]);
delete t;
}
}
}
/**
* Test inverse of Greek-Latin; Title()
*/
void TransliteratorTest::TestCompoundInverse(void) {
UParseError parseError;
UErrorCode status = U_ZERO_ERROR;
Transliterator *t = Transliterator::createInstance
("Greek-Latin; Title()", UTRANS_REVERSE,parseError, status);
if (t == 0) {
errln("FAIL: createInstance");
return;
}
UnicodeString exp("(Title);Latin-Greek");
if (t->getID() == exp) {
logln("Ok: inverse of \"Greek-Latin; Title()\" is \"" +
t->getID());
} else {
errln("FAIL: inverse of \"Greek-Latin; Title()\" is \"" +
t->getID() + "\", expected \"" + exp + "\"");
}
delete t;
}
/**
* Test NFD chaining with RBT
*/
void TransliteratorTest::TestNFDChainRBT() {
UParseError pe;
UErrorCode ec = U_ZERO_ERROR;
Transliterator* t = Transliterator::createFromRules(
"TEST", "::NFD; aa > Q; a > q;",
UTRANS_FORWARD, pe, ec);
expect(*t, "aa", "Q");
delete t;
// TEMPORARY TESTS -- BEING DEBUGGED
//=- UnicodeString s, s2;
//=- t = Transliterator::createInstance("Latin-Devanagari", UTRANS_FORWARD, pe, ec);
//=- s = CharsToUnicodeString("rmk\\u1E63\\u0113t");
//=- s2 = CharsToUnicodeString("\\u0930\\u094D\\u092E\\u094D\\u0915\\u094D\\u0937\\u0947\\u0924\\u094D");
//=- expect(*t, s, s2);
//=- delete t;
//=-
//=- t = Transliterator::createInstance("Devanagari-Latin", UTRANS_FORWARD, pe, ec);
//=- expect(*t, s2, s);
//=- delete t;
//=-
//=- t = Transliterator::createInstance("Latin-Devanagari;Devanagari-Latin", UTRANS_FORWARD, pe, ec);
//=- s = CharsToUnicodeString("rmk\\u1E63\\u0113t");
//=- expect(*t, s, s);
//=- delete t;
// const char* source[] = {
// /*
// "\\u015Br\\u012Bmad",
// "bhagavadg\\u012Bt\\u0101",
// "adhy\\u0101ya",
// "arjuna",
// "vi\\u1E63\\u0101da",
// "y\\u014Dga",
// "dhr\\u0325tar\\u0101\\u1E63\\u1E6Dra",
// "uv\\u0101cr\\u0325",
// */
// "rmk\\u1E63\\u0113t",
// //"dharmak\\u1E63\\u0113tr\\u0113",
// /*
// "kuruk\\u1E63\\u0113tr\\u0113",
// "samav\\u0113t\\u0101",
// "yuyutsava-\\u1E25",
// "m\\u0101mak\\u0101-\\u1E25",
// // "p\\u0101\\u1E47\\u1E0Dav\\u0101\\u015Bcaiva",
// "kimakurvata",
// "san\\u0304java",
// */
//
// 0
// };
// const char* expected[] = {
// /*
// "\\u0936\\u094d\\u0930\\u0940\\u092e\\u0926\\u094d",
// "\\u092d\\u0917\\u0935\\u0926\\u094d\\u0917\\u0940\\u0924\\u093e",
// "\\u0905\\u0927\\u094d\\u092f\\u093e\\u092f",
// "\\u0905\\u0930\\u094d\\u091c\\u0941\\u0928",
// "\\u0935\\u093f\\u0937\\u093e\\u0926",
// "\\u092f\\u094b\\u0917",
// "\\u0927\\u0943\\u0924\\u0930\\u093e\\u0937\\u094d\\u091f\\u094d\\u0930",
// "\\u0909\\u0935\\u093E\\u091A\\u0943",
// */
// "\\u0927",
// //"\\u0927\\u0930\\u094d\\u092e\\u0915\\u094d\\u0937\\u0947\\u0924\\u094d\\u0930\\u0947",
// /*
// "\\u0915\\u0941\\u0930\\u0941\\u0915\\u094d\\u0937\\u0947\\u0924\\u094d\\u0930\\u0947",
// "\\u0938\\u092e\\u0935\\u0947\\u0924\\u093e",
// "\\u092f\\u0941\\u092f\\u0941\\u0924\\u094d\\u0938\\u0935\\u0903",
// "\\u092e\\u093e\\u092e\\u0915\\u093e\\u0903",
// // "\\u092a\\u093e\\u0923\\u094d\\u0921\\u0935\\u093e\\u0936\\u094d\\u091a\\u0948\\u0935",
// "\\u0915\\u093f\\u092e\\u0915\\u0941\\u0930\\u094d\\u0935\\u0924",
// "\\u0938\\u0902\\u091c\\u0935",
// */
// 0
// };
// UErrorCode status = U_ZERO_ERROR;
// UParseError parseError;
// UnicodeString message;
// Transliterator* latinToDevToLatin=Transliterator::createInstance("Latin-Devanagari;Devanagari-Latin", UTRANS_FORWARD, parseError, status);
// Transliterator* devToLatinToDev=Transliterator::createInstance("Devanagari-Latin;Latin-Devanagari", UTRANS_FORWARD, parseError, status);
// if(U_FAILURE(status)){
// errln("FAIL: construction " + UnicodeString(" Error: ") + u_errorName(status));
// errln("PreContext: " + prettify(parseError.preContext) + "PostContext: " + prettify( parseError.postContext) );
// delete latinToDevToLatin;
// delete devToLatinToDev;
// return;
// }
// UnicodeString gotResult;
// for(int i= 0; source[i] != 0; i++){
// gotResult = source[i];
// expect(*latinToDevToLatin,CharsToUnicodeString(source[i]),CharsToUnicodeString(source[i]));
// expect(*devToLatinToDev,CharsToUnicodeString(expected[i]),CharsToUnicodeString(expected[i]));
// }
// delete latinToDevToLatin;
// delete devToLatinToDev;
}
/**
* Inverse of "Null" should be "Null". (J21)
*/
void TransliteratorTest::TestNullInverse() {
UParseError pe;
UErrorCode ec = U_ZERO_ERROR;
Transliterator *t = Transliterator::createInstance("Null", UTRANS_FORWARD, pe, ec);
if (t == 0 || U_FAILURE(ec)) {
errln("FAIL: createInstance");
return;
}
Transliterator *u = t->createInverse(ec);
if (u == 0 || U_FAILURE(ec)) {
errln("FAIL: createInverse");
delete t;
return;
}
if (u->getID() != "Null") {
errln("FAIL: Inverse of Null should be Null");
}
delete t;
delete u;
}
/**
* Check ID of inverse of alias. (J22)
*/
void TransliteratorTest::TestAliasInverseID() {
UnicodeString ID("Latin-Hangul", ""); // This should be any alias ID with an inverse
UParseError pe;
UErrorCode ec = U_ZERO_ERROR;
Transliterator *t = Transliterator::createInstance(ID, UTRANS_FORWARD, pe, ec);
if (t == 0 || U_FAILURE(ec)) {
errln("FAIL: createInstance");
return;
}
Transliterator *u = t->createInverse(ec);
if (u == 0 || U_FAILURE(ec)) {
errln("FAIL: createInverse");
delete t;
return;
}
UnicodeString exp = "Hangul-Latin";
UnicodeString got = u->getID();
if (got != exp) {
errln((UnicodeString)"FAIL: Inverse of " + ID + " is " + got +
", expected " + exp);
}
delete t;
delete u;
}
/**
* Test IDs of inverses of compound transliterators. (J20)
*/
void TransliteratorTest::TestCompoundInverseID() {
UnicodeString ID = "Latin-Jamo;NFC(NFD)";
UParseError pe;
UErrorCode ec = U_ZERO_ERROR;
Transliterator *t = Transliterator::createInstance(ID, UTRANS_FORWARD, pe, ec);
if (t == 0 || U_FAILURE(ec)) {
errln("FAIL: createInstance");
return;
}
Transliterator *u = t->createInverse(ec);
if (u == 0 || U_FAILURE(ec)) {
errln("FAIL: createInverse");
delete t;
return;
}
UnicodeString exp = "NFD(NFC);Jamo-Latin";
UnicodeString got = u->getID();
if (got != exp) {
errln((UnicodeString)"FAIL: Inverse of " + ID + " is " + got +
", expected " + exp);
}
delete t;
delete u;
}
/**
* Test undefined variable.
*/
void TransliteratorTest::TestUndefinedVariable() {
UnicodeString rule = "$initial } a <> \\u1161;";
UParseError pe;
UErrorCode ec = U_ZERO_ERROR;
Transliterator *t = new RuleBasedTransliterator("<ID>", rule, UTRANS_FORWARD, 0, pe, ec);
delete t;
if (U_FAILURE(ec)) {
logln((UnicodeString)"OK: Got exception for " + rule + ", as expected: " +
u_errorName(ec));
return;
}
errln((UnicodeString)"Fail: bogus rule " + rule + " compiled with error " +
u_errorName(ec));
}
/**
* Test empty context.
*/
void TransliteratorTest::TestEmptyContext() {
expect(" { a } > b;", "xay a ", "xby b ");
}
/**
* Test compound filter ID syntax
*/
void TransliteratorTest::TestCompoundFilterID(void) {
static const char* DATA[] = {
// Col. 1 = ID or rule set (latter must start with #)
// = columns > 1 are null if expect col. 1 to be illegal =
// Col. 2 = direction, "F..." or "R..."
// Col. 3 = source string
// Col. 4 = exp result
"[abc]; [abc]", NULL, NULL, NULL, // multiple filters
"Latin-Greek; [abc];", NULL, NULL, NULL, // misplaced filter
"[b]; Latin-Greek; Upper; ([xyz])", "F", "abc", "a\\u0392c",
"[b]; (Lower); Latin-Greek; Upper(); ([\\u0392])", "R", "\\u0391\\u0392\\u0393", "\\u0391b\\u0393",
"#\n::[b]; ::Latin-Greek; ::Upper; ::([xyz]);", "F", "abc", "a\\u0392c",
"#\n::[b]; ::(Lower); ::Latin-Greek; ::Upper(); ::([\\u0392]);", "R", "\\u0391\\u0392\\u0393", "\\u0391b\\u0393",
NULL,
};
for (int32_t i=0; DATA[i]; i+=4) {
UnicodeString id = CharsToUnicodeString(DATA[i]);
UTransDirection direction = (DATA[i+1] != NULL && DATA[i+1][0] == 'R') ?
UTRANS_REVERSE : UTRANS_FORWARD;
UnicodeString source;
UnicodeString exp;
if (DATA[i+2] != NULL) {
source = CharsToUnicodeString(DATA[i+2]);
exp = CharsToUnicodeString(DATA[i+3]);
}
UBool expOk = (DATA[i+1] != NULL);
Transliterator* t = NULL;
UParseError pe;
UErrorCode ec = U_ZERO_ERROR;
if (id.charAt(0) == 0x23/*#*/) {
t = Transliterator::createFromRules("ID", id, direction, pe, ec);
} else {
t = Transliterator::createInstance(id, direction, pe, ec);
}
UBool ok = (t != NULL && U_SUCCESS(ec));
if (ok == expOk) {
logln((UnicodeString)"Ok: " + id + " => " + (t!=0?t->getID():(UnicodeString)"NULL") + ", " +
u_errorName(ec));
if (source.length() != 0) {
expect(*t, source, exp);
}
delete t;
} else {
errln((UnicodeString)"FAIL: " + id + " => " + (t!=0?t->getID():(UnicodeString)"NULL") + ", " +
u_errorName(ec));
}
}
}
/**
* Test new property set syntax
*/
void TransliteratorTest::TestPropertySet() {
expect("a>A; \\p{Lu}>x; \\p{ANY}>y;", "abcDEF", "Ayyxxx");
expect("(.+)>'[' $1 ']';", " a stitch \n in time \r saves 9",
"[ a stitch ]\n[ in time ]\r[ saves 9]");
}
/**
* Test various failure points of the new 2.0 engine.
*/
void TransliteratorTest::TestNewEngine() {
UParseError pe;
UErrorCode ec = U_ZERO_ERROR;
Transliterator *t = Transliterator::createInstance("Latin-Hiragana", UTRANS_FORWARD, pe, ec);
if (t == 0 || U_FAILURE(ec)) {
errln("FAIL: createInstance Latin-Hiragana");
return;
}
// Katakana should be untouched
expect(*t, CharsToUnicodeString("a\\u3042\\u30A2"),
CharsToUnicodeString("\\u3042\\u3042\\u30A2"));
delete t;
#if 1
// This test will only work if Transliterator.ROLLBACK is
// true. Otherwise, this test will fail, revealing a
// limitation of global filters in incremental mode.
Transliterator *a =
Transliterator::createFromRules("a", "a > A;", UTRANS_FORWARD, pe, ec);
Transliterator *A =
Transliterator::createFromRules("A", "A > b;", UTRANS_FORWARD, pe, ec);
if (U_FAILURE(ec)) {
delete a;
delete A;
return;
}
Transliterator* array[3];
array[0] = a;
array[1] = Transliterator::createInstance("NFD", UTRANS_FORWARD, pe, ec);
array[2] = A;
if (U_FAILURE(ec)) {
errln("FAIL: createInstance NFD");
delete a;
delete A;
delete array[1];
return;
}
t = new CompoundTransliterator(array, 3, new UnicodeSet("[:Ll:]", ec));
if (U_FAILURE(ec)) {
errln("FAIL: UnicodeSet constructor");
delete a;
delete A;
delete array[1];
delete t;
return;
}
expect(*t, "aAaA", "bAbA");
delete a;
delete A;
delete array[1];
delete t;
#endif
expect("$smooth = x; $macron = q; [:^L:] { ([aeiouyAEIOUY] $macron?) } [^aeiouyAEIOUY$smooth$macron] > | $1 $smooth ;",
"a",
"ax");
UnicodeString gr = CharsToUnicodeString(
"$ddot = \\u0308 ;"
"$lcgvowel = [\\u03b1\\u03b5\\u03b7\\u03b9\\u03bf\\u03c5\\u03c9] ;"
"$rough = \\u0314 ;"
"($lcgvowel+ $ddot?) $rough > h | $1 ;"
"\\u03b1 <> a ;"
"$rough <> h ;");
expect(gr, CharsToUnicodeString("\\u03B1\\u0314"), "ha");
}
/**
* Test quantified segment behavior. We want:
* ([abc])+ > x $1 x; applied to "cba" produces "xax"
*/
void TransliteratorTest::TestQuantifiedSegment(void) {
// The normal case
expect("([abc]+) > x $1 x;", "cba", "xcbax");
// The tricky case; the quantifier is around the segment
expect("([abc])+ > x $1 x;", "cba", "xax");
// Tricky case in reverse direction
expect("([abc])+ { q > x $1 x;", "cbaq", "cbaxax");
// Check post-context segment
expect("{q} ([a-d])+ > '(' $1 ')';", "ddqcba", "dd(a)cba");
// Test toRule/toPattern for non-quantified segment.
// Careful with spacing here.
UnicodeString r("([a-c]){q} > x $1 x;");
UParseError pe;
UErrorCode ec = U_ZERO_ERROR;
Transliterator* t = Transliterator::createFromRules("ID", r, UTRANS_FORWARD, pe, ec);
if (U_FAILURE(ec)) {
errln("FAIL: createFromRules");
delete t;
return;
}
UnicodeString rr;
t->toRules(rr, TRUE);
if (r != rr) {
errln((UnicodeString)"FAIL: \"" + r + "\" x toRules() => \"" + rr + "\"");
} else {
logln((UnicodeString)"Ok: \"" + r + "\" x toRules() => \"" + rr + "\"");
}
delete t;
// Test toRule/toPattern for quantified segment.
// Careful with spacing here.
r = "([a-c])+{q} > x $1 x;";
t = Transliterator::createFromRules("ID", r, UTRANS_FORWARD, pe, ec);
if (U_FAILURE(ec)) {
errln("FAIL: createFromRules");
delete t;
return;
}
t->toRules(rr, TRUE);
if (r != rr) {
errln((UnicodeString)"FAIL: \"" + r + "\" x toRules() => \"" + rr + "\"");
} else {
logln((UnicodeString)"Ok: \"" + r + "\" x toRules() => \"" + rr + "\"");
}
delete t;
}
//======================================================================
// Ram's tests
//======================================================================
void TransliteratorTest::TestDevanagariLatinRT(){
const int MAX_LEN= 52;
const char* const source[MAX_LEN] = {
"bh\\u0101rata",
"kra",
"k\\u1E63a",
"khra",
"gra",
"\\u1E45ra",
"cra",
"chra",
"j\\u00F1a",
"jhra",
"\\u00F1ra",
"\\u1E6Dya",
"\\u1E6Dhra",
"\\u1E0Dya",
//"r\\u0323ya", // \u095c is not valid in Devanagari
"\\u1E0Dhya",
"\\u1E5Bhra",
"\\u1E47ra",
"tta",
"thra",
"dda",
"dhra",
"nna",
"pra",
"phra",
"bra",
"bhra",
"mra",
"\\u1E49ra",
//"l\\u0331ra",
"yra",
"\\u1E8Fra",
//"l-",
"vra",
"\\u015Bra",
"\\u1E63ra",
"sra",
"hma",
"\\u1E6D\\u1E6Da",
"\\u1E6D\\u1E6Dha",
"\\u1E6Dh\\u1E6Dha",
"\\u1E0D\\u1E0Da",
"\\u1E0D\\u1E0Dha",
"\\u1E6Dya",
"\\u1E6Dhya",
"\\u1E0Dya",
"\\u1E0Dhya",
// Not roundtrippable --
// \\u0939\\u094d\\u094d\\u092E - hma
// \\u0939\\u094d\\u092E - hma
// CharsToUnicodeString("hma"),
"hya",
"\\u015Br\\u0325",
"\\u015Bca",
"\\u0115",
"san\\u0304j\\u012Bb s\\u0113nagupta",
"\\u0101nand vaddir\\u0101ju",
"\\u0101",
"a"
};
const char* const expected[MAX_LEN] = {
"\\u092D\\u093E\\u0930\\u0924", /* bha\\u0304rata */
"\\u0915\\u094D\\u0930", /* kra */
"\\u0915\\u094D\\u0937", /* ks\\u0323a */
"\\u0916\\u094D\\u0930", /* khra */
"\\u0917\\u094D\\u0930", /* gra */
"\\u0919\\u094D\\u0930", /* n\\u0307ra */
"\\u091A\\u094D\\u0930", /* cra */
"\\u091B\\u094D\\u0930", /* chra */
"\\u091C\\u094D\\u091E", /* jn\\u0303a */
"\\u091D\\u094D\\u0930", /* jhra */
"\\u091E\\u094D\\u0930", /* n\\u0303ra */
"\\u091F\\u094D\\u092F", /* t\\u0323ya */
"\\u0920\\u094D\\u0930", /* t\\u0323hra */
"\\u0921\\u094D\\u092F", /* d\\u0323ya */
//"\\u095C\\u094D\\u092F", /* r\\u0323ya */ // \u095c is not valid in Devanagari
"\\u0922\\u094D\\u092F", /* d\\u0323hya */
"\\u0922\\u093C\\u094D\\u0930", /* r\\u0323hra */
"\\u0923\\u094D\\u0930", /* n\\u0323ra */
"\\u0924\\u094D\\u0924", /* tta */
"\\u0925\\u094D\\u0930", /* thra */
"\\u0926\\u094D\\u0926", /* dda */
"\\u0927\\u094D\\u0930", /* dhra */
"\\u0928\\u094D\\u0928", /* nna */
"\\u092A\\u094D\\u0930", /* pra */
"\\u092B\\u094D\\u0930", /* phra */
"\\u092C\\u094D\\u0930", /* bra */
"\\u092D\\u094D\\u0930", /* bhra */
"\\u092E\\u094D\\u0930", /* mra */
"\\u0929\\u094D\\u0930", /* n\\u0331ra */
//"\\u0934\\u094D\\u0930", /* l\\u0331ra */
"\\u092F\\u094D\\u0930", /* yra */
"\\u092F\\u093C\\u094D\\u0930", /* y\\u0307ra */
//"l-",
"\\u0935\\u094D\\u0930", /* vra */
"\\u0936\\u094D\\u0930", /* s\\u0301ra */
"\\u0937\\u094D\\u0930", /* s\\u0323ra */
"\\u0938\\u094D\\u0930", /* sra */
"\\u0939\\u094d\\u092E", /* hma */
"\\u091F\\u094D\\u091F", /* t\\u0323t\\u0323a */
"\\u091F\\u094D\\u0920", /* t\\u0323t\\u0323ha */
"\\u0920\\u094D\\u0920", /* t\\u0323ht\\u0323ha*/
"\\u0921\\u094D\\u0921", /* d\\u0323d\\u0323a */
"\\u0921\\u094D\\u0922", /* d\\u0323d\\u0323ha */
"\\u091F\\u094D\\u092F", /* t\\u0323ya */
"\\u0920\\u094D\\u092F", /* t\\u0323hya */
"\\u0921\\u094D\\u092F", /* d\\u0323ya */
"\\u0922\\u094D\\u092F", /* d\\u0323hya */
// "hma", /* hma */
"\\u0939\\u094D\\u092F", /* hya */
"\\u0936\\u0943", /* s\\u0301r\\u0325a */
"\\u0936\\u094D\\u091A", /* s\\u0301ca */
"\\u090d", /* e\\u0306 */
"\\u0938\\u0902\\u091C\\u0940\\u092C\\u094D \\u0938\\u0947\\u0928\\u0917\\u0941\\u092A\\u094D\\u0924",
"\\u0906\\u0928\\u0902\\u0926\\u094D \\u0935\\u0926\\u094D\\u0926\\u093F\\u0930\\u093E\\u091C\\u0941",
"\\u0906",
"\\u0905",
};
UErrorCode status = U_ZERO_ERROR;
UParseError parseError;
UnicodeString message;
Transliterator* latinToDev=Transliterator::createInstance("Latin-Devanagari", UTRANS_FORWARD, parseError, status);
Transliterator* devToLatin=Transliterator::createInstance("Devanagari-Latin", UTRANS_FORWARD, parseError, status);
if(U_FAILURE(status)){
errln("FAIL: construction " + UnicodeString(" Error: ") + u_errorName(status));
errln("PreContext: " + prettify(parseError.preContext) + " PostContext: " + prettify( parseError.postContext) );
return;
}
UnicodeString gotResult;
for(int i= 0; i<MAX_LEN; i++){
gotResult = source[i];
expect(*latinToDev,CharsToUnicodeString(source[i]),CharsToUnicodeString(expected[i]));
expect(*devToLatin,CharsToUnicodeString(expected[i]),CharsToUnicodeString(source[i]));
}
delete latinToDev;
delete devToLatin;
}
void TransliteratorTest::TestTeluguLatinRT(){
const int MAX_LEN=10;
const char* const source[MAX_LEN] = {
"raghur\\u0101m vi\\u015Bvan\\u0101dha", /* Raghuram Viswanadha */
"\\u0101nand vaddir\\u0101ju", /* Anand Vaddiraju */
"r\\u0101j\\u012Bv ka\\u015Barab\\u0101da", /* Rajeev Kasarabada */
"san\\u0304j\\u012Bv ka\\u015Barab\\u0101da", /* sanjeev kasarabada */
"san\\u0304j\\u012Bb sen'gupta", /* sanjib sengupata */
"amar\\u0113ndra hanum\\u0101nula", /* Amarendra hanumanula */
"ravi kum\\u0101r vi\\u015Bvan\\u0101dha", /* Ravi Kumar Viswanadha */
"\\u0101ditya kandr\\u0113gula", /* Aditya Kandregula */
"\\u015Br\\u012Bdhar ka\\u1E47\\u1E6Dama\\u015Be\\u1E6D\\u1E6Di",/* Shridhar Kantamsetty */
"m\\u0101dhav de\\u015Be\\u1E6D\\u1E6Di" /* Madhav Desetty */
};
const char* const expected[MAX_LEN] = {
"\\u0c30\\u0c18\\u0c41\\u0c30\\u0c3e\\u0c2e\\u0c4d \\u0c35\\u0c3f\\u0c36\\u0c4d\\u0c35\\u0c28\\u0c3e\\u0c27",
"\\u0c06\\u0c28\\u0c02\\u0c26\\u0c4d \\u0C35\\u0C26\\u0C4D\\u0C26\\u0C3F\\u0C30\\u0C3E\\u0C1C\\u0C41",
"\\u0c30\\u0c3e\\u0c1c\\u0c40\\u0c35\\u0c4d \\u0c15\\u0c36\\u0c30\\u0c2c\\u0c3e\\u0c26",
"\\u0c38\\u0c02\\u0c1c\\u0c40\\u0c35\\u0c4d \\u0c15\\u0c36\\u0c30\\u0c2c\\u0c3e\\u0c26",
"\\u0c38\\u0c02\\u0c1c\\u0c40\\u0c2c\\u0c4d \\u0c38\\u0c46\\u0c28\\u0c4d\\u0c17\\u0c41\\u0c2a\\u0c4d\\u0c24",
"\\u0c05\\u0c2e\\u0c30\\u0c47\\u0c02\\u0c26\\u0c4d\\u0c30 \\u0c39\\u0c28\\u0c41\\u0c2e\\u0c3e\\u0c28\\u0c41\\u0c32",
"\\u0c30\\u0c35\\u0c3f \\u0c15\\u0c41\\u0c2e\\u0c3e\\u0c30\\u0c4d \\u0c35\\u0c3f\\u0c36\\u0c4d\\u0c35\\u0c28\\u0c3e\\u0c27",
"\\u0c06\\u0c26\\u0c3f\\u0c24\\u0c4d\\u0c2f \\u0C15\\u0C02\\u0C26\\u0C4D\\u0C30\\u0C47\\u0C17\\u0C41\\u0c32",
"\\u0c36\\u0c4d\\u0c30\\u0c40\\u0C27\\u0C30\\u0C4D \\u0c15\\u0c02\\u0c1f\\u0c2e\\u0c36\\u0c46\\u0c1f\\u0c4d\\u0c1f\\u0c3f",
"\\u0c2e\\u0c3e\\u0c27\\u0c35\\u0c4d \\u0c26\\u0c46\\u0c36\\u0c46\\u0c1f\\u0c4d\\u0c1f\\u0c3f",
};
UErrorCode status = U_ZERO_ERROR;
UParseError parseError;
UnicodeString message;
Transliterator* latinToDev=Transliterator::createInstance("Latin-Telugu", UTRANS_FORWARD, parseError, status);
Transliterator* devToLatin=Transliterator::createInstance("Telugu-Latin", UTRANS_FORWARD, parseError, status);
if(U_FAILURE(status)){
errln("FAIL: construction " + UnicodeString(" Error: ") + u_errorName(status));
errln("PreContext: " + prettify(parseError.preContext) + " PostContext: " + prettify( parseError.postContext) );
return;
}
UnicodeString gotResult;
for(int i= 0; i<MAX_LEN; i++){
gotResult = source[i];
expect(*latinToDev,CharsToUnicodeString(source[i]),CharsToUnicodeString(expected[i]));
expect(*devToLatin,CharsToUnicodeString(expected[i]),CharsToUnicodeString(source[i]));
}
delete latinToDev;
delete devToLatin;
}
void TransliteratorTest::TestSanskritLatinRT(){
const int MAX_LEN =16;
const char* const source[MAX_LEN] = {
"rmk\\u1E63\\u0113t",
"\\u015Br\\u012Bmad",
"bhagavadg\\u012Bt\\u0101",
"adhy\\u0101ya",
"arjuna",
"vi\\u1E63\\u0101da",
"y\\u014Dga",
"dhr\\u0325tar\\u0101\\u1E63\\u1E6Dra",
"uv\\u0101cr\\u0325",
"dharmak\\u1E63\\u0113tr\\u0113",
"kuruk\\u1E63\\u0113tr\\u0113",
"samav\\u0113t\\u0101",
"yuyutsava\\u1E25",
"m\\u0101mak\\u0101\\u1E25",
// "p\\u0101\\u1E47\\u1E0Dav\\u0101\\u015Bcaiva",
"kimakurvata",
"san\\u0304java",
};
const char* const expected[MAX_LEN] = {
"\\u0930\\u094D\\u092E\\u094D\\u0915\\u094D\\u0937\\u0947\\u0924\\u094D",
"\\u0936\\u094d\\u0930\\u0940\\u092e\\u0926\\u094d",
"\\u092d\\u0917\\u0935\\u0926\\u094d\\u0917\\u0940\\u0924\\u093e",
"\\u0905\\u0927\\u094d\\u092f\\u093e\\u092f",
"\\u0905\\u0930\\u094d\\u091c\\u0941\\u0928",
"\\u0935\\u093f\\u0937\\u093e\\u0926",
"\\u092f\\u094b\\u0917",
"\\u0927\\u0943\\u0924\\u0930\\u093e\\u0937\\u094d\\u091f\\u094d\\u0930",
"\\u0909\\u0935\\u093E\\u091A\\u0943",
"\\u0927\\u0930\\u094d\\u092e\\u0915\\u094d\\u0937\\u0947\\u0924\\u094d\\u0930\\u0947",
"\\u0915\\u0941\\u0930\\u0941\\u0915\\u094d\\u0937\\u0947\\u0924\\u094d\\u0930\\u0947",
"\\u0938\\u092e\\u0935\\u0947\\u0924\\u093e",
"\\u092f\\u0941\\u092f\\u0941\\u0924\\u094d\\u0938\\u0935\\u0903",
"\\u092e\\u093e\\u092e\\u0915\\u093e\\u0903",
//"\\u092a\\u093e\\u0923\\u094d\\u0921\\u0935\\u093e\\u0936\\u094d\\u091a\\u0948\\u0935",
"\\u0915\\u093f\\u092e\\u0915\\u0941\\u0930\\u094d\\u0935\\u0924",
"\\u0938\\u0902\\u091c\\u0935",
};
UErrorCode status = U_ZERO_ERROR;
UParseError parseError;
UnicodeString message;
Transliterator* latinToDev=Transliterator::createInstance("Latin-Devanagari", UTRANS_FORWARD, parseError, status);
Transliterator* devToLatin=Transliterator::createInstance("Devanagari-Latin", UTRANS_FORWARD, parseError, status);
if(U_FAILURE(status)){
errln("FAIL: construction " + UnicodeString(" Error: ") + u_errorName(status));
errln("PreContext: " + prettify(parseError.preContext) + " PostContext: " + prettify( parseError.postContext) );
return;
}
UnicodeString gotResult;
for(int i= 0; i<MAX_LEN; i++){
gotResult = source[i];
expect(*latinToDev,CharsToUnicodeString(source[i]),CharsToUnicodeString(expected[i]));
expect(*devToLatin,CharsToUnicodeString(expected[i]),CharsToUnicodeString(source[i]));
}
delete latinToDev;
delete devToLatin;
}
void TransliteratorTest::TestCompoundLatinRT(){
const char* const source[] = {
"rmk\\u1E63\\u0113t",
"\\u015Br\\u012Bmad",
"bhagavadg\\u012Bt\\u0101",
"adhy\\u0101ya",
"arjuna",
"vi\\u1E63\\u0101da",
"y\\u014Dga",
"dhr\\u0325tar\\u0101\\u1E63\\u1E6Dra",
"uv\\u0101cr\\u0325",
"dharmak\\u1E63\\u0113tr\\u0113",
"kuruk\\u1E63\\u0113tr\\u0113",
"samav\\u0113t\\u0101",
"yuyutsava\\u1E25",
"m\\u0101mak\\u0101\\u1E25",
// "p\\u0101\\u1E47\\u1E0Dav\\u0101\\u015Bcaiva",
"kimakurvata",
"san\\u0304java"
};
const int MAX_LEN = sizeof(source)/sizeof(source[0]);
const char* const expected[MAX_LEN] = {
"\\u0930\\u094D\\u092E\\u094D\\u0915\\u094D\\u0937\\u0947\\u0924\\u094D",
"\\u0936\\u094d\\u0930\\u0940\\u092e\\u0926\\u094d",
"\\u092d\\u0917\\u0935\\u0926\\u094d\\u0917\\u0940\\u0924\\u093e",
"\\u0905\\u0927\\u094d\\u092f\\u093e\\u092f",
"\\u0905\\u0930\\u094d\\u091c\\u0941\\u0928",
"\\u0935\\u093f\\u0937\\u093e\\u0926",
"\\u092f\\u094b\\u0917",
"\\u0927\\u0943\\u0924\\u0930\\u093e\\u0937\\u094d\\u091f\\u094d\\u0930",
"\\u0909\\u0935\\u093E\\u091A\\u0943",
"\\u0927\\u0930\\u094d\\u092e\\u0915\\u094d\\u0937\\u0947\\u0924\\u094d\\u0930\\u0947",
"\\u0915\\u0941\\u0930\\u0941\\u0915\\u094d\\u0937\\u0947\\u0924\\u094d\\u0930\\u0947",
"\\u0938\\u092e\\u0935\\u0947\\u0924\\u093e",
"\\u092f\\u0941\\u092f\\u0941\\u0924\\u094d\\u0938\\u0935\\u0903",
"\\u092e\\u093e\\u092e\\u0915\\u093e\\u0903",
// "\\u092a\\u093e\\u0923\\u094d\\u0921\\u0935\\u093e\\u0936\\u094d\\u091a\\u0948\\u0935",
"\\u0915\\u093f\\u092e\\u0915\\u0941\\u0930\\u094d\\u0935\\u0924",
"\\u0938\\u0902\\u091c\\u0935"
};
if(MAX_LEN != sizeof(expected)/sizeof(expected[0])) {
errln("error in TestCompoundLatinRT: source[] and expected[] have different lengths!");
return;
}
UErrorCode status = U_ZERO_ERROR;
UParseError parseError;
UnicodeString message;
Transliterator* devToLatinToDev =Transliterator::createInstance("Devanagari-Latin;Latin-Devanagari", UTRANS_FORWARD, parseError, status);
Transliterator* latinToDevToLatin=Transliterator::createInstance("Latin-Devanagari;Devanagari-Latin", UTRANS_FORWARD, parseError, status);
Transliterator* devToTelToDev =Transliterator::createInstance("Devanagari-Telugu;Telugu-Devanagari", UTRANS_FORWARD, parseError, status);
Transliterator* latinToTelToLatin=Transliterator::createInstance("Latin-Telugu;Telugu-Latin", UTRANS_FORWARD, parseError, status);
if(U_FAILURE(status)){
errln("FAIL: construction " + UnicodeString(" Error: ") + u_errorName(status));
errln("PreContext: " + prettify(parseError.preContext) + " PostContext: " + prettify( parseError.postContext) );
return;
}
UnicodeString gotResult;
for(int i= 0; i<MAX_LEN; i++){
gotResult = source[i];
expect(*devToLatinToDev,CharsToUnicodeString(expected[i]),CharsToUnicodeString(expected[i]));
expect(*latinToDevToLatin,CharsToUnicodeString(source[i]),CharsToUnicodeString(source[i]));
expect(*latinToTelToLatin,CharsToUnicodeString(source[i]),CharsToUnicodeString(source[i]));
}
delete(latinToDevToLatin);
delete(devToLatinToDev);
delete(devToTelToDev);
delete(latinToTelToLatin);
}
/**
* Test instantiation from a locale.
*/
void TransliteratorTest::TestLocaleInstantiation(void) {
UParseError pe;
UErrorCode ec = U_ZERO_ERROR;
Transliterator *t = Transliterator::createInstance("ru_RU-Latin", UTRANS_FORWARD, pe, ec);
if (U_FAILURE(ec)) {
errln("FAIL: createInstance(ru_RU-Latin)");
delete t;
return;
}
expect(*t, CharsToUnicodeString("\\u0430"), "a");
delete t;
t = Transliterator::createInstance("en-el", UTRANS_FORWARD, pe, ec);
if (U_FAILURE(ec)) {
errln("FAIL: createInstance(en-el)");
delete t;
return;
}
expect(*t, "a", CharsToUnicodeString("\\u03B1"));
delete t;
}
/**
* Test title case handling of accent (should ignore accents)
*/
void TransliteratorTest::TestTitleAccents(void) {
UParseError pe;
UErrorCode ec = U_ZERO_ERROR;
Transliterator *t = Transliterator::createInstance("Title", UTRANS_FORWARD, pe, ec);
if (U_FAILURE(ec)) {
errln("FAIL: createInstance(Title)");
delete t;
return;
}
expect(*t, CharsToUnicodeString("a\\u0300b can't abe"), CharsToUnicodeString("A\\u0300b Can't Abe"));
delete t;
}
/**
* Basic test of a locale resource based rule.
*/
void TransliteratorTest::TestLocaleResource() {
const char* DATA[] = {
// id from to
//"Latin-Greek/UNGEGN", "b", "\\u03bc\\u03c0",
"Latin-el", "b", "\\u03bc\\u03c0",
"Latin-Greek", "b", "\\u03B2",
"Greek-Latin/UNGEGN", "\\u03B2", "v",
"el-Latin", "\\u03B2", "v",
"Greek-Latin", "\\u03B2", "b",
};
const int32_t DATA_length = sizeof(DATA) / sizeof(DATA[0]);
for (int32_t i=0; i<DATA_length; i+=3) {
UParseError pe;
UErrorCode ec = U_ZERO_ERROR;
Transliterator *t = Transliterator::createInstance(DATA[i], UTRANS_FORWARD, pe, ec);
if (U_FAILURE(ec)) {
errln((UnicodeString)"FAIL: createInstance(" + DATA[i] + ")");
delete t;
continue;
}
expect(*t, CharsToUnicodeString(DATA[i+1]),
CharsToUnicodeString(DATA[i+2]));
delete t;
}
}
/**
* Make sure parse errors reference the right line.
*/
void TransliteratorTest::TestParseError() {
const char* rule =
"a > b;\n"
"# more stuff\n"
"d << b;";
UErrorCode ec = U_ZERO_ERROR;
UParseError pe;
Transliterator *t = Transliterator::createFromRules("ID", rule, UTRANS_FORWARD, pe, ec);
delete t;
if (U_FAILURE(ec)) {
UnicodeString err(pe.preContext);
err.append((UChar)124/*|*/).append(pe.postContext);
if (err.indexOf("d << b") >= 0) {
logln("Ok: " + err);
} else {
errln("FAIL: " + err);
}
return;
}
errln("FAIL: no syntax error");
}
/**
* Make sure sets on output are disallowed.
*/
void TransliteratorTest::TestOutputSet() {
UnicodeString rule = "$set = [a-cm-n]; b > $set;";
UErrorCode ec = U_ZERO_ERROR;
UParseError pe;
Transliterator *t = Transliterator::createFromRules("ID", rule, UTRANS_FORWARD, pe, ec);
delete t;
if (U_FAILURE(ec)) {
UnicodeString err(pe.preContext);
err.append((UChar)124/*|*/).append(pe.postContext);
logln("Ok: " + err);
return;
}
errln("FAIL: No syntax error");
}
/**
* Test the use variable range pragma, making sure that use of
* variable range characters is detected and flagged as an error.
*/
void TransliteratorTest::TestVariableRange() {
UnicodeString rule = "use variable range 0x70 0x72; a > A; b > B; q > Q;";
UErrorCode ec = U_ZERO_ERROR;
UParseError pe;
Transliterator *t = Transliterator::createFromRules("ID", rule, UTRANS_FORWARD, pe, ec);
delete t;
if (U_FAILURE(ec)) {
UnicodeString err(pe.preContext);
err.append((UChar)124/*|*/).append(pe.postContext);
logln("Ok: " + err);
return;
}
errln("FAIL: No syntax error");
}
/**
* Test invalid post context error handling
*/
void TransliteratorTest::TestInvalidPostContext() {
UnicodeString rule = "a}b{c>d;";
UErrorCode ec = U_ZERO_ERROR;
UParseError pe;
Transliterator *t = Transliterator::createFromRules("ID", rule, UTRANS_FORWARD, pe, ec);
delete t;
if (U_FAILURE(ec)) {
UnicodeString err(pe.preContext);
err.append((UChar)124/*|*/).append(pe.postContext);
if (err.indexOf("a}b{c") >= 0) {
logln("Ok: " + err);
} else {
errln("FAIL: " + err);
}
return;
}
errln("FAIL: No syntax error");
}
/**
* Test ID form variants
*/
void TransliteratorTest::TestIDForms() {
const char* DATA[] = {
"NFC", "NFD",
"nfd", "NFC", // make sure case is ignored
"Any-NFKD", "Any-NFKC",
"Null", "Null",
"-nfkc", "NFKD",
"-nfkc/", "NFKD",
"Latin-Greek/UNGEGN", "Greek-Latin/UNGEGN",
"Greek/UNGEGN-Latin", "Latin-Greek/UNGEGN",
"Bengali-Devanagari/", "Devanagari-Bengali",
"Source-", NULL,
"Source/Variant-", NULL,
"Source-/Variant", NULL,
"/Variant", NULL,
"/Variant-", NULL,
"-/Variant", NULL,
"-/", NULL,
"-", NULL,
"/", NULL,
};
const int32_t DATA_length = sizeof(DATA)/sizeof(DATA[0]);
for (int32_t i=0; i<DATA_length; i+=2) {
UParseError pe;
UErrorCode ec = U_ZERO_ERROR;
Transliterator *t =
Transliterator::createInstance(DATA[i], UTRANS_FORWARD, pe, ec);
if (U_FAILURE(ec)) {
if (DATA[i+1] == NULL) {
logln((UnicodeString)"Ok: getInstance(" + DATA[i] +") => " + u_errorName(ec));
} else {
errln((UnicodeString)"FAIL: Couldn't create " + DATA[i]);
}
delete t;
continue;
}
Transliterator *u = t->createInverse(ec);
if (U_FAILURE(ec)) {
errln((UnicodeString)"FAIL: Couldn't create inverse of " + DATA[i]);
delete t;
delete u;
continue;
}
if (t->getID() == DATA[i] &&
u->getID() == DATA[i+1]) {
logln((UnicodeString)"Ok: " + DATA[i] + ".getInverse() => " + DATA[i+1]);
} else {
errln((UnicodeString)"FAIL: getInstance(" + DATA[i] + ") => " +
t->getID() + " x getInverse() => " + u->getID() +
", expected " + DATA[i+1]);
}
delete t;
delete u;
}
}
static const UChar SPACE[] = {32,0};
static const UChar NEWLINE[] = {10,0};
static const UChar RETURN[] = {13,0};
static const UChar EMPTY[] = {0};
void TransliteratorTest::checkRules(const UnicodeString& label, Transliterator& t2,
const UnicodeString& testRulesForward) {
UnicodeString rules2; t2.toRules(rules2, TRUE);
//rules2 = TestUtility.replaceAll(rules2, new UnicodeSet("[' '\n\r]"), "");
rules2.findAndReplace(SPACE, EMPTY);
rules2.findAndReplace(NEWLINE, EMPTY);
rules2.findAndReplace(RETURN, EMPTY);
UnicodeString testRules(testRulesForward); testRules.findAndReplace(SPACE, EMPTY);
if (rules2 != testRules) {
errln(label);
logln((UnicodeString)"GENERATED RULES: " + rules2);
logln((UnicodeString)"SHOULD BE: " + testRulesForward);
}
}
/**
* Mark's toRules test.
*/
void TransliteratorTest::TestToRulesMark() {
const char* testRules =
"::[[:Latin:][:Mark:]];"
"::NFKD (NFC);"
"::Lower (Lower);"
"a <> \\u03B1;" // alpha
"::NFKC (NFD);"
"::Upper (Lower);"
"::Lower ();"
"::([[:Greek:][:Mark:]]);"
;
const char* testRulesForward =
"::[[:Latin:][:Mark:]];"
"::NFKD(NFC);"
"::Lower(Lower);"
"a > \\u03B1;"
"::NFKC(NFD);"
"::Upper (Lower);"
"::Lower ();"
;
const char* testRulesBackward =
"::[[:Greek:][:Mark:]];"
"::Lower (Upper);"
"::NFD(NFKC);"
"\\u03B1 > a;"
"::Lower(Lower);"
"::NFC(NFKD);"
;
UnicodeString source = CharsToUnicodeString("\\u00E1"); // a-acute
UnicodeString target = CharsToUnicodeString("\\u03AC"); // alpha-acute
UParseError pe;
UErrorCode ec = U_ZERO_ERROR;
Transliterator *t2 = Transliterator::createFromRules("source-target", testRules, UTRANS_FORWARD, pe, ec);
Transliterator *t3 = Transliterator::createFromRules("target-source", testRules, UTRANS_REVERSE, pe, ec);
if (U_FAILURE(ec)) {
delete t2;
delete t3;
errln((UnicodeString)"FAIL: createFromRules => " + u_errorName(ec));
return;
}
expect(*t2, source, target);
expect(*t3, target, source);
checkRules("Failed toRules FORWARD", *t2, testRulesForward);
checkRules("Failed toRules BACKWARD", *t3, testRulesBackward);
delete t2;
delete t3;
}
/**
* Test Escape and Unescape transliterators.
*/
void TransliteratorTest::TestEscape() {
UParseError pe;
UErrorCode ec;
Transliterator *t;
ec = U_ZERO_ERROR;
t = Transliterator::createInstance("Hex-Any", UTRANS_FORWARD, pe, ec);
if (U_FAILURE(ec)) {
errln((UnicodeString)"FAIL: createInstance");
} else {
expect(*t,
"\\x{40}\\U00000031&#x32;&#81;",
"@12Q");
}
delete t;
ec = U_ZERO_ERROR;
t = Transliterator::createInstance("Any-Hex/C", UTRANS_FORWARD, pe, ec);
if (U_FAILURE(ec)) {
errln((UnicodeString)"FAIL: createInstance");
} else {
expect(*t,
CharsToUnicodeString("A\\U0010BEEF\\uFEED"),
"\\u0041\\U0010BEEF\\uFEED");
}
delete t;
ec = U_ZERO_ERROR;
t = Transliterator::createInstance("Any-Hex/Java", UTRANS_FORWARD, pe, ec);
if (U_FAILURE(ec)) {
errln((UnicodeString)"FAIL: createInstance");
} else {
expect(*t,
CharsToUnicodeString("A\\U0010BEEF\\uFEED"),
"\\u0041\\uDBEF\\uDEEF\\uFEED");
}
delete t;
ec = U_ZERO_ERROR;
t = Transliterator::createInstance("Any-Hex/Perl", UTRANS_FORWARD, pe, ec);
if (U_FAILURE(ec)) {
errln((UnicodeString)"FAIL: createInstance");
} else {
expect(*t,
CharsToUnicodeString("A\\U0010BEEF\\uFEED"),
"\\x{41}\\x{10BEEF}\\x{FEED}");
}
delete t;
}
void TransliteratorTest::TestAnchorMasking(){
UnicodeString rule ("^a > Q; a > q;");
UErrorCode status= U_ZERO_ERROR;
UParseError parseError;
Transliterator* t = Transliterator::createFromRules("ID", rule, UTRANS_FORWARD,parseError,status);
if(U_FAILURE(status)){
errln(UnicodeString("FAIL: ") + "ID" +
".toRules() => bad rules" +
/*", parse error " + parseError.code +*/
", line " + parseError.line +
", offset " + parseError.offset +
", context " + prettify(parseError.preContext, TRUE) +
", rules: " + prettify(rule, TRUE));
}
delete t;
}
/**
* Make sure display names of variants look reasonable.
*/
void TransliteratorTest::TestDisplayName() {
static const char* DATA[] = {
// ID, forward name, reverse name
// Update the text as necessary -- the important thing is
// not the text itself, but how various cases are handled.
// Basic test
"Any-Hex", "Any to Hex Escape", "Hex Escape to Any",
// Variants
"Any-Hex/Perl", "Any to Hex Escape/Perl", "Hex Escape to Any/Perl",
// Target-only IDs
"NFC", "Any to NFC", "Any to NFD",
};
int32_t DATA_length = sizeof(DATA) / sizeof(DATA[0]);
Locale US("en", "US");
for (int32_t i=0; i<DATA_length; i+=3) {
UnicodeString name;
Transliterator::getDisplayName(DATA[i], US, name);
if (name != DATA[i+1]) {
errln((UnicodeString)"FAIL: " + DATA[i] + ".getDisplayName() => " +
name + ", expected " + DATA[i+1]);
} else {
logln((UnicodeString)"Ok: " + DATA[i] + ".getDisplayName() => " + name);
}
UErrorCode ec = U_ZERO_ERROR;
UParseError pe;
Transliterator *t = Transliterator::createInstance(DATA[i], UTRANS_REVERSE, pe, ec);
if (U_FAILURE(ec)) {
delete t;
errln("FAIL: createInstance failed");
continue;
}
name = Transliterator::getDisplayName(t->getID(), US, name);
if (name != DATA[i+2]) {
errln((UnicodeString)"FAIL: " + t->getID() + ".getDisplayName() => " +
name + ", expected " + DATA[i+2]);
} else {
logln((UnicodeString)"Ok: " + t->getID() + ".getDisplayName() => " + name);
}
delete t;
}
}
void TransliteratorTest::TestSpecialCases(void) {
const UnicodeString registerRules[] = {
"Any-Dev1", "x > X; y > Y;",
"Any-Dev2", "XY > Z",
"Greek-Latin/FAKE",
CharsToUnicodeString
("[^[:L:][:M:]] { \\u03bc\\u03c0 > b ; \\u03bc\\u03c0 } [^[:L:][:M:]] > b ; [^[:L:][:M:]] { [\\u039c\\u03bc][\\u03a0\\u03c0] > B ; [\\u039c\\u03bc][\\u03a0\\u03c0] } [^[:L:][:M:]] > B ;"),
"" // END MARKER
};
static const UnicodeString testCases[] = {
// NORMALIZATION
// should add more test cases
"NFD" , CharsToUnicodeString("a\\u0300 \\u00E0 \\u1100\\u1161 \\uFF76\\uFF9E\\u03D3"), "",
"NFC" , CharsToUnicodeString("a\\u0300 \\u00E0 \\u1100\\u1161 \\uFF76\\uFF9E\\u03D3"), "",
"NFKD", CharsToUnicodeString("a\\u0300 \\u00E0 \\u1100\\u1161 \\uFF76\\uFF9E\\u03D3"), "",
"NFKC", CharsToUnicodeString("a\\u0300 \\u00E0 \\u1100\\u1161 \\uFF76\\uFF9E\\u03D3"), "",
// mp -> b BUG
"Greek-Latin/UNGEGN", CharsToUnicodeString("(\\u03BC\\u03C0)"), "(b)",
"Greek-Latin/FAKE", CharsToUnicodeString("(\\u03BC\\u03C0)"), "(b)",
// check for devanagari bug
"nfd;Dev1;Dev2;nfc", "xy", "Z",
// ff, i, dotless-i, I, dotted-I, LJLjlj deseret deeDEE
"Title", CharsToUnicodeString("ab'cD ffi\\u0131I\\u0130 \\u01C7\\u01C8\\u01C9 ") + DESERET_dee + DESERET_DEE,
CharsToUnicodeString("Ab'cd Ffi\\u0131ii \\u01C8\\u01C9\\u01C9 ") + DESERET_DEE + DESERET_dee,
//TODO: enable this test once Titlecase works right
/*
"Title", CharsToUnicodeString("\\uFB00i\\u0131I\\u0130 \\u01C7\\u01C8\\u01C9 ") + DESERET_dee + DESERET_DEE,
CharsToUnicodeString("Ffi\\u0131ii \\u01C8\\u01C9\\u01C9 ") + DESERET_DEE + DESERET_dee,
*/
"Upper", CharsToUnicodeString("ab'cD \\uFB00i\\u0131I\\u0130 \\u01C7\\u01C8\\u01C9 ") + DESERET_dee + DESERET_DEE,
CharsToUnicodeString("AB'CD FFIII\\u0130 \\u01C7\\u01C7\\u01C7 ") + DESERET_DEE + DESERET_DEE,
"Lower", CharsToUnicodeString("ab'cD \\uFB00i\\u0131I\\u0130 \\u01C7\\u01C8\\u01C9 ") + DESERET_dee + DESERET_DEE,
CharsToUnicodeString("ab'cd \\uFB00i\\u0131ii \\u01C9\\u01C9\\u01C9 ") + DESERET_dee + DESERET_dee,
"Upper", CharsToUnicodeString("ab'cD \\uFB00i\\u0131I\\u0130 \\u01C7\\u01C8\\u01C9 ") + DESERET_dee + DESERET_DEE, "",
"Lower", CharsToUnicodeString("ab'cD \\uFB00i\\u0131I\\u0130 \\u01C7\\u01C8\\u01C9 ") + DESERET_dee + DESERET_DEE, "",
// FORMS OF S
"Greek-Latin/UNGEGN", CharsToUnicodeString("\\u03C3 \\u03C3\\u03C2 \\u03C2\\u03C3"),
CharsToUnicodeString("s ss s\\u0331s\\u0331") ,
"Latin-Greek/UNGEGN", CharsToUnicodeString("s ss s\\u0331s\\u0331"),
CharsToUnicodeString("\\u03C3 \\u03C3\\u03C2 \\u03C2\\u03C3") ,
"Greek-Latin", CharsToUnicodeString("\\u03C3 \\u03C3\\u03C2 \\u03C2\\u03C3"),
CharsToUnicodeString("s ss s\\u0331s\\u0331") ,
"Latin-Greek", CharsToUnicodeString("s ss s\\u0331s\\u0331"),
CharsToUnicodeString("\\u03C3 \\u03C3\\u03C2 \\u03C2\\u03C3"),
// Tatiana bug
// Upper: TAT\\u02B9\\u00C2NA
// Lower: tat\\u02B9\\u00E2na
// Title: Tat\\u02B9\\u00E2na
"Upper", CharsToUnicodeString("tat\\u02B9\\u00E2na"),
CharsToUnicodeString("TAT\\u02B9\\u00C2NA"),
"Lower", CharsToUnicodeString("TAT\\u02B9\\u00C2NA"),
CharsToUnicodeString("tat\\u02B9\\u00E2na"),
"Title", CharsToUnicodeString("tat\\u02B9\\u00E2na"),
CharsToUnicodeString("Tat\\u02B9\\u00E2na"),
"" // END MARKER
};
UParseError pos;
int32_t i;
for (i = 0; registerRules[i].length()!=0; i+=2) {
UErrorCode status = U_ZERO_ERROR;
Transliterator *t = Transliterator::createFromRules(registerRules[0+i],
registerRules[i+1], UTRANS_FORWARD, pos, status);
if (U_FAILURE(status)) {
errln("Fails: Unable to create the transliterator from rules.");
} else {
Transliterator::registerInstance(t);
}
}
for (i = 0; testCases[i].length()!=0; i+=3) {
UErrorCode ec = U_ZERO_ERROR;
UParseError pe;
const UnicodeString& name = testCases[i];
Transliterator *t = Transliterator::createInstance(name, UTRANS_FORWARD, pe, ec);
if (U_FAILURE(ec)) {
errln((UnicodeString)"FAIL: Couldn't create " + name);
delete t;
continue;
}
const UnicodeString& id = t->getID();
const UnicodeString& source = testCases[i+1];
UnicodeString target;
// Automatic generation of targets, to make it simpler to add test cases (and more fail-safe)
if (testCases[i+2].length() > 0) {
target = testCases[i+2];
} else if (0==id.caseCompare("NFD", U_FOLD_CASE_DEFAULT)) {
Normalizer::normalize(source, UNORM_NFD, 0, target, ec);
} else if (0==id.caseCompare("NFC", U_FOLD_CASE_DEFAULT)) {
Normalizer::normalize(source, UNORM_NFC, 0, target, ec);
} else if (0==id.caseCompare("NFKD", U_FOLD_CASE_DEFAULT)) {
Normalizer::normalize(source, UNORM_NFKD, 0, target, ec);
} else if (0==id.caseCompare("NFKC", U_FOLD_CASE_DEFAULT)) {
Normalizer::normalize(source, UNORM_NFKC, 0, target, ec);
} else if (0==id.caseCompare("Lower", U_FOLD_CASE_DEFAULT)) {
target = source;
target.toLower(Locale::US);
} else if (0==id.caseCompare("Upper", U_FOLD_CASE_DEFAULT)) {
target = source;
target.toUpper(Locale::US);
}
if (U_FAILURE(ec)) {
errln((UnicodeString)"FAIL: Internal error normalizing " + source);
continue;
}
expect(*t, source, target);
delete t;
}
for (i = 0; registerRules[i].length()!=0; i+=2) {
Transliterator::unregister(registerRules[i]);
}
}
char* Char32ToEscapedChars(UChar32 ch, char* buffer) {
if (ch <= 0xFFFF) {
sprintf(buffer, "\\u%04x", ch);
} else {
sprintf(buffer, "\\u%08x", ch);
}
return buffer;
}
void TransliteratorTest::TestSurrogateCasing (void) {
// check that casing handles surrogates
// titlecase is currently defective
char buffer[20];
UChar buffer2[20];
UChar32 dee;
UTF_GET_CHAR(DESERET_dee,0, 0, DESERET_dee.length(), dee);
UnicodeString DEE(u_totitle(dee));
if (DEE != DESERET_DEE) {
err("Fails titlecase of surrogates");
err(Char32ToEscapedChars(dee, buffer));
err(", ");
errln(Char32ToEscapedChars(DEE.char32At(0), buffer));
}
UnicodeString deeDEETest=DESERET_dee + DESERET_DEE;
UnicodeString deedeeTest = DESERET_dee + DESERET_dee;
UnicodeString DEEDEETest = DESERET_DEE + DESERET_DEE;
UErrorCode status= U_ZERO_ERROR;
u_strToUpper(buffer2, 20, deeDEETest.getBuffer(), deeDEETest.length(), NULL, &status);
if (U_FAILURE(status) || (UnicodeString(buffer2)!= DEEDEETest)) {
errln("Fails: Can't uppercase surrogates.");
}
status= U_ZERO_ERROR;
u_strToLower(buffer2, 20, deeDEETest.getBuffer(), deeDEETest.length(), NULL, &status);
if (U_FAILURE(status) || (UnicodeString(buffer2)!= deedeeTest)) {
errln("Fails: Can't lowercase surrogates.");
}
}
static void _trans(Transliterator& t, const UnicodeString& src,
UnicodeString& result) {
result = src;
t.transliterate(result);
}
static void _trans(const UnicodeString& id, const UnicodeString& src,
UnicodeString& result, UErrorCode ec) {
UParseError pe;
Transliterator *t = Transliterator::createInstance(id, UTRANS_FORWARD, pe, ec);
if (U_SUCCESS(ec)) {
_trans(*t, src, result);
}
delete t;
}
static const UnicodeString& _findMatch(const UnicodeString& source,
const UnicodeString* pairs) {
static const UnicodeString empty;
for (int32_t i=0; pairs[i].length() > 0; i+=2) {
if (0==source.caseCompare(pairs[i], U_FOLD_CASE_DEFAULT)) {
return pairs[i+1];
}
}
return empty;
}
// Check to see that incremental gets at least part way through a reasonable string.
void TransliteratorTest::TestIncrementalProgress(void) {
UErrorCode ec = U_ZERO_ERROR;
UnicodeString latinTest = "The Quick Brown Fox.";
UnicodeString devaTest;
_trans("Latin-Devanagari", latinTest, devaTest, ec);
UnicodeString kataTest;
_trans("Latin-Katakana", latinTest, kataTest, ec);
if (U_FAILURE(ec)) {
errln("FAIL: Internal error");
return;
}
static const UnicodeString tests[] = {
"Any", latinTest,
"Latin", latinTest,
"Halfwidth", latinTest,
"Devanagari", devaTest,
"Katakana", kataTest,
"" // END MARKER
};
UnicodeString test("The Quick Brown Fox Jumped Over The Lazy Dog.");
int32_t i = 0, j=0, k=0;
int32_t sources = Transliterator::countAvailableSources();
for (i = 0; i < sources; i++) {
UnicodeString source;
Transliterator::getAvailableSource(i, source);
UnicodeString test = _findMatch(source, tests);
if (test.length() == 0) {
logln((UnicodeString)"Skipping " + source + "-X");
continue;
}
int32_t targets = Transliterator::countAvailableTargets(source);
for (j = 0; j < targets; j++) {
UnicodeString target;
Transliterator::getAvailableTarget(j, source, target);
int32_t variants = Transliterator::countAvailableVariants(source, target);
for (k =0; k< variants; k++) {
UnicodeString variant;
UParseError err;
UErrorCode status = U_ZERO_ERROR;
Transliterator::getAvailableVariant(k, source, target, variant);
UnicodeString id = source + "-" + target + "/" + variant;
Transliterator *t = Transliterator::createInstance(id, UTRANS_FORWARD, err, status);
if (U_FAILURE(status)) {
errln((UnicodeString)"FAIL: Could not create " + id);
delete t;
continue;
}
status = U_ZERO_ERROR;
CheckIncrementalAux(t, test);
UnicodeString rev;
_trans(*t, test, rev);
Transliterator *inv = t->createInverse(status);
if (U_FAILURE(status)) {
errln((UnicodeString)"FAIL: Could not create inverse of " + id);
delete t;
delete inv;
continue;
}
CheckIncrementalAux(inv, rev);
delete t;
delete inv;
}
}
}
}
void TransliteratorTest::CheckIncrementalAux(const Transliterator* t,
const UnicodeString& input) {
UErrorCode ec = U_ZERO_ERROR;
UTransPosition pos;
UnicodeString test = input;
pos.contextStart = 0;
pos.contextLimit = input.length();
pos.start = 0;
pos.limit = input.length();
t->transliterate(test, pos, ec);
if (U_FAILURE(ec)) {
errln((UnicodeString)"FAIL: transliterate() error " + u_errorName(ec));
return;
}
UBool gotError = FALSE;
// we have a few special cases. Any-Remove (pos.start = 0, but also = limit) and U+XXXXX?X?
if (pos.start == 0 && pos.limit != 0 && t->getID() != "Hex-Any/Unicode") {
errln((UnicodeString)"No Progress, " +
t->getID() + ": " + formatInput(test, input, pos));
gotError = TRUE;
} else {
logln((UnicodeString)"PASS Progress, " +
t->getID() + ": " + formatInput(test, input, pos));
}
t->finishTransliteration(test, pos);
if (pos.start != pos.limit) {
errln((UnicodeString)"Incomplete, " +
t->getID() + ": " + formatInput(test, input, pos));
gotError = TRUE;
}
}
//======================================================================
// Support methods
//======================================================================
void TransliteratorTest::expectT(const UnicodeString& id,
const UnicodeString& source,
const UnicodeString& expectedResult) {
UErrorCode ec = U_ZERO_ERROR;
UParseError pe;
Transliterator *t = Transliterator::createInstance(id, UTRANS_FORWARD, pe, ec);
if (U_FAILURE(ec)) {
errln((UnicodeString)"FAIL: Could not create " + id);
delete t;
return;
}
expect(*t, source, expectedResult);
delete t;
}
void TransliteratorTest::expect(const UnicodeString& rules,
const UnicodeString& source,
const UnicodeString& expectedResult,
UTransPosition *pos) {
UErrorCode status = U_ZERO_ERROR;
Transliterator *t = new RuleBasedTransliterator("<ID>", rules, status);
if (U_FAILURE(status)) {
errln("FAIL: Transliterator constructor failed");
} else {
expect(*t, source, expectedResult, pos);
}
delete t;
}
void TransliteratorTest::expect(const Transliterator& t,
const UnicodeString& source,
const UnicodeString& expectedResult,
const Transliterator& reverseTransliterator) {
expect(t, source, expectedResult);
expect(reverseTransliterator, expectedResult, source);
}
void TransliteratorTest::expect(const Transliterator& t,
const UnicodeString& source,
const UnicodeString& expectedResult,
UTransPosition *pos) {
if (pos == 0) {
UnicodeString result(source);
t.transliterate(result);
expectAux(t.getID() + ":String", source, result, expectedResult);
}
UTransPosition index={0, 0, 0, 0};
if (pos != 0) {
index = *pos;
}
UnicodeString rsource(source);
if (pos == 0) {
t.transliterate(rsource);
} else {
// Do it all at once -- below we do it incrementally
t.finishTransliteration(rsource, *pos);
}
expectAux(t.getID() + ":Replaceable", source, rsource, expectedResult);
// Test keyboard (incremental) transliteration -- this result
// must be the same after we finalize (see below).
UnicodeString log;
rsource.remove();
if (pos != 0) {
rsource = source;
formatInput(log, rsource, index);
log.append(" -> ");
UErrorCode status = U_ZERO_ERROR;
t.transliterate(rsource, index, status);
formatInput(log, rsource, index);
} else {
for (int32_t i=0; i<source.length(); ++i) {
if (i != 0) {
log.append(" + ");
}
log.append(source.charAt(i)).append(" -> ");
UErrorCode status = U_ZERO_ERROR;
t.transliterate(rsource, index, source.charAt(i), status);
formatInput(log, rsource, index);
}
}
// As a final step in keyboard transliteration, we must call
// transliterate to finish off any pending partial matches that
// were waiting for more input.
t.finishTransliteration(rsource, index);
log.append(" => ").append(rsource);
expectAux(t.getID() + ":Keyboard", log,
rsource == expectedResult,
expectedResult);
}
/**
* @param appendTo result is appended to this param.
* @param input the string being transliterated
* @param pos the index struct
*/
UnicodeString& TransliteratorTest::formatInput(UnicodeString &appendTo,
const UnicodeString& input,
const UTransPosition& pos) {
// Output a string of the form aaa{bbb|ccc|ddd}eee, where
// the {} indicate the context start and limit, and the ||
// indicate the start and limit.
if (0 <= pos.contextStart &&
pos.contextStart <= pos.start &&
pos.start <= pos.limit &&
pos.limit <= pos.contextLimit &&
pos.contextLimit <= input.length()) {
UnicodeString a, b, c, d, e;
input.extractBetween(0, pos.contextStart, a);
input.extractBetween(pos.contextStart, pos.start, b);
input.extractBetween(pos.start, pos.limit, c);
input.extractBetween(pos.limit, pos.contextLimit, d);
input.extractBetween(pos.contextLimit, input.length(), e);
appendTo.append(a).append((UChar)123/*{*/).append(b).
append((UChar)PIPE).append(c).append((UChar)PIPE).append(d).
append((UChar)125/*}*/).append(e);
} else {
appendTo.append((UnicodeString)"INVALID UTransPosition {cs=" +
pos.contextStart + ", s=" + pos.start + ", l=" +
pos.limit + ", cl=" + pos.contextLimit + "} on " +
input);
}
return appendTo;
}
void TransliteratorTest::expectAux(const UnicodeString& tag,
const UnicodeString& source,
const UnicodeString& result,
const UnicodeString& expectedResult) {
expectAux(tag, source + " -> " + result,
result == expectedResult,
expectedResult);
}
void TransliteratorTest::expectAux(const UnicodeString& tag,
const UnicodeString& summary, UBool pass,
const UnicodeString& expectedResult) {
if (pass) {
logln(UnicodeString("(")+tag+") " + prettify(summary));
} else {
errln(UnicodeString("FAIL: (")+tag+") "
+ prettify(summary)
+ ", expected " + prettify(expectedResult));
}
}