scuffed-code/icu4c/source/tools/toolutil/ucmstate.cpp

1054 lines
39 KiB
C++

// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
*******************************************************************************
*
* Copyright (C) 2003-2012, International Business Machines
* Corporation and others. All Rights Reserved.
*
*******************************************************************************
* file name: ucmstate.c
* encoding: UTF-8
* tab size: 8 (not used)
* indentation:4
*
* created on: 2003oct09
* created by: Markus W. Scherer
*
* This file handles ICU .ucm file state information as part of the ucm module.
* Most of this code used to be in makeconv.c.
*/
#include "unicode/utypes.h"
#include "cstring.h"
#include "cmemory.h"
#include "uarrsort.h"
#include "ucnvmbcs.h"
#include "ucnv_ext.h"
#include "uparse.h"
#include "ucm.h"
#include <stdio.h>
#if !UCONFIG_NO_CONVERSION
/* MBCS state handling ------------------------------------------------------ */
/*
* state table row grammar (ebnf-style):
* (whitespace is allowed between all tokens)
*
* row=[[firstentry ','] entry (',' entry)*]
* firstentry="initial" | "surrogates"
* (initial state (default for state 0), output is all surrogate pairs)
* entry=range [':' nextstate] ['.' action]
* range=number ['-' number]
* nextstate=number
* (0..7f)
* action='u' | 's' | 'p' | 'i'
* (unassigned, state change only, surrogate pair, illegal)
* number=(1- or 2-digit hexadecimal number)
*/
static const char *
parseState(const char *s, int32_t state[256], uint32_t *pFlags) {
const char *t;
uint32_t start, end, i;
int32_t entry;
/* initialize the state: all illegal with U+ffff */
for(i=0; i<256; ++i) {
state[i]=MBCS_ENTRY_FINAL(0, MBCS_STATE_ILLEGAL, 0xffff);
}
/* skip leading white space */
s=u_skipWhitespace(s);
/* is there an "initial" or "surrogates" directive? */
if(uprv_strncmp("initial", s, 7)==0) {
*pFlags=MBCS_STATE_FLAG_DIRECT;
s=u_skipWhitespace(s+7);
if(*s++!=',') {
return s-1;
}
} else if(*pFlags==0 && uprv_strncmp("surrogates", s, 10)==0) {
*pFlags=MBCS_STATE_FLAG_SURROGATES;
s=u_skipWhitespace(s+10);
if(*s++!=',') {
return s-1;
}
} else if(*s==0) {
/* empty state row: all-illegal */
return NULL;
}
for(;;) {
/* read an entry, the start of the range first */
s=u_skipWhitespace(s);
start=uprv_strtoul(s, (char **)&t, 16);
if(s==t || 0xff<start) {
return s;
}
s=u_skipWhitespace(t);
/* read the end of the range if there is one */
if(*s=='-') {
s=u_skipWhitespace(s+1);
end=uprv_strtoul(s, (char **)&t, 16);
if(s==t || end<start || 0xff<end) {
return s;
}
s=u_skipWhitespace(t);
} else {
end=start;
}
/* determine the state entrys for this range */
if(*s!=':' && *s!='.') {
/* the default is: final state with valid entries */
entry=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_16, 0);
} else {
entry=MBCS_ENTRY_TRANSITION(0, 0);
if(*s==':') {
/* get the next state, default to 0 */
s=u_skipWhitespace(s+1);
i=uprv_strtoul(s, (char **)&t, 16);
if(s!=t) {
if(0x7f<i) {
return s;
}
s=u_skipWhitespace(t);
entry=MBCS_ENTRY_SET_STATE(entry, i);
}
}
/* get the state action, default to valid */
if(*s=='.') {
/* this is a final state */
entry=MBCS_ENTRY_SET_FINAL(entry);
s=u_skipWhitespace(s+1);
if(*s=='u') {
/* unassigned set U+fffe */
entry=MBCS_ENTRY_FINAL_SET_ACTION_VALUE(entry, MBCS_STATE_UNASSIGNED, 0xfffe);
s=u_skipWhitespace(s+1);
} else if(*s=='p') {
if(*pFlags!=MBCS_STATE_FLAG_DIRECT) {
entry=MBCS_ENTRY_FINAL_SET_ACTION(entry, MBCS_STATE_VALID_16_PAIR);
} else {
entry=MBCS_ENTRY_FINAL_SET_ACTION(entry, MBCS_STATE_VALID_16);
}
s=u_skipWhitespace(s+1);
} else if(*s=='s') {
entry=MBCS_ENTRY_FINAL_SET_ACTION(entry, MBCS_STATE_CHANGE_ONLY);
s=u_skipWhitespace(s+1);
} else if(*s=='i') {
/* illegal set U+ffff */
entry=MBCS_ENTRY_FINAL_SET_ACTION_VALUE(entry, MBCS_STATE_ILLEGAL, 0xffff);
s=u_skipWhitespace(s+1);
} else {
/* default to valid */
entry=MBCS_ENTRY_FINAL_SET_ACTION(entry, MBCS_STATE_VALID_16);
}
} else {
/* this is an intermediate state, nothing to do */
}
}
/* adjust "final valid" states according to the state flags */
if(MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16) {
switch(*pFlags) {
case 0:
/* no adjustment */
break;
case MBCS_STATE_FLAG_DIRECT:
/* set the valid-direct code point to "unassigned"==0xfffe */
entry=MBCS_ENTRY_FINAL_SET_ACTION_VALUE(entry, MBCS_STATE_VALID_DIRECT_16, 0xfffe);
break;
case MBCS_STATE_FLAG_SURROGATES:
entry=MBCS_ENTRY_FINAL_SET_ACTION_VALUE(entry, MBCS_STATE_VALID_16_PAIR, 0);
break;
default:
break;
}
}
/* set this entry for the range */
for(i=start; i<=end; ++i) {
state[i]=entry;
}
if(*s==',') {
++s;
} else {
return *s==0 ? NULL : s;
}
}
}
U_CAPI void U_EXPORT2
ucm_addState(UCMStates *states, const char *s) {
const char *error;
if(states->countStates==MBCS_MAX_STATE_COUNT) {
fprintf(stderr, "ucm error: too many states (maximum %u)\n", MBCS_MAX_STATE_COUNT);
exit(U_INVALID_TABLE_FORMAT);
}
error=parseState(s, states->stateTable[states->countStates],
&states->stateFlags[states->countStates]);
if(error!=NULL) {
fprintf(stderr, "ucm error: parse error in state definition at '%s'\n", error);
exit(U_INVALID_TABLE_FORMAT);
}
++states->countStates;
}
U_CAPI UBool U_EXPORT2
ucm_parseHeaderLine(UCMFile *ucm,
char *line, char **pKey, char **pValue) {
UCMStates *states;
char *s, *end;
char c;
states=&ucm->states;
/* remove comments and trailing CR and LF and remove whitespace from the end */
for(end=line; (c=*end)!=0; ++end) {
if(c=='#' || c=='\r' || c=='\n') {
break;
}
}
while(end>line && (*(end-1)==' ' || *(end-1)=='\t')) {
--end;
}
*end=0;
/* skip leading white space and ignore empty lines */
s=(char *)u_skipWhitespace(line);
if(*s==0) {
return TRUE;
}
/* stop at the beginning of the mapping section */
if(uprv_memcmp(s, "CHARMAP", 7)==0) {
return FALSE;
}
/* get the key name, bracketed in <> */
if(*s!='<') {
fprintf(stderr, "ucm error: no header field <key> in line \"%s\"\n", line);
exit(U_INVALID_TABLE_FORMAT);
}
*pKey=++s;
while(*s!='>') {
if(*s==0) {
fprintf(stderr, "ucm error: incomplete header field <key> in line \"%s\"\n", line);
exit(U_INVALID_TABLE_FORMAT);
}
++s;
}
*s=0;
/* get the value string, possibly quoted */
s=(char *)u_skipWhitespace(s+1);
if(*s!='"') {
*pValue=s;
} else {
/* remove the quotes */
*pValue=s+1;
if(end>*pValue && *(end-1)=='"') {
*--end=0;
}
}
/* collect the information from the header field, ignore unknown keys */
if(uprv_strcmp(*pKey, "uconv_class")==0) {
if(uprv_strcmp(*pValue, "DBCS")==0) {
states->conversionType=UCNV_DBCS;
} else if(uprv_strcmp(*pValue, "SBCS")==0) {
states->conversionType = UCNV_SBCS;
} else if(uprv_strcmp(*pValue, "MBCS")==0) {
states->conversionType = UCNV_MBCS;
} else if(uprv_strcmp(*pValue, "EBCDIC_STATEFUL")==0) {
states->conversionType = UCNV_EBCDIC_STATEFUL;
} else {
fprintf(stderr, "ucm error: unknown <uconv_class> %s\n", *pValue);
exit(U_INVALID_TABLE_FORMAT);
}
return TRUE;
} else if(uprv_strcmp(*pKey, "mb_cur_max")==0) {
c=**pValue;
if('1'<=c && c<='4' && (*pValue)[1]==0) {
states->maxCharLength=(int8_t)(c-'0');
states->outputType=(int8_t)(states->maxCharLength-1);
} else {
fprintf(stderr, "ucm error: illegal <mb_cur_max> %s\n", *pValue);
exit(U_INVALID_TABLE_FORMAT);
}
return TRUE;
} else if(uprv_strcmp(*pKey, "mb_cur_min")==0) {
c=**pValue;
if('1'<=c && c<='4' && (*pValue)[1]==0) {
states->minCharLength=(int8_t)(c-'0');
} else {
fprintf(stderr, "ucm error: illegal <mb_cur_min> %s\n", *pValue);
exit(U_INVALID_TABLE_FORMAT);
}
return TRUE;
} else if(uprv_strcmp(*pKey, "icu:state")==0) {
/* if an SBCS/DBCS/EBCDIC_STATEFUL converter has icu:state, then turn it into MBCS */
switch(states->conversionType) {
case UCNV_SBCS:
case UCNV_DBCS:
case UCNV_EBCDIC_STATEFUL:
states->conversionType=UCNV_MBCS;
break;
case UCNV_MBCS:
break;
default:
fprintf(stderr, "ucm error: <icu:state> entry for non-MBCS table or before the <uconv_class> line\n");
exit(U_INVALID_TABLE_FORMAT);
}
if(states->maxCharLength==0) {
fprintf(stderr, "ucm error: <icu:state> before the <mb_cur_max> line\n");
exit(U_INVALID_TABLE_FORMAT);
}
ucm_addState(states, *pValue);
return TRUE;
} else if(uprv_strcmp(*pKey, "icu:base")==0) {
if(**pValue==0) {
fprintf(stderr, "ucm error: <icu:base> without a base table name\n");
exit(U_INVALID_TABLE_FORMAT);
}
uprv_strcpy(ucm->baseName, *pValue);
return TRUE;
}
return FALSE;
}
/* post-processing ---------------------------------------------------------- */
static int32_t
sumUpStates(UCMStates *states) {
int32_t entry, sum, state, cell, count;
UBool allStatesReady;
/*
* Sum up the offsets for all states.
* In each final state (where there are only final entries),
* the offsets add up directly.
* In all other state table rows, for each transition entry to another state,
* the offsets sum of that state needs to be added.
* This is achieved in at most countStates iterations.
*/
allStatesReady=FALSE;
for(count=states->countStates; !allStatesReady && count>=0; --count) {
allStatesReady=TRUE;
for(state=states->countStates-1; state>=0; --state) {
if(!(states->stateFlags[state]&MBCS_STATE_FLAG_READY)) {
allStatesReady=FALSE;
sum=0;
/* at first, add up only the final delta offsets to keep them <512 */
for(cell=0; cell<256; ++cell) {
entry=states->stateTable[state][cell];
if(MBCS_ENTRY_IS_FINAL(entry)) {
switch(MBCS_ENTRY_FINAL_ACTION(entry)) {
case MBCS_STATE_VALID_16:
states->stateTable[state][cell]=MBCS_ENTRY_FINAL_SET_VALUE(entry, sum);
sum+=1;
break;
case MBCS_STATE_VALID_16_PAIR:
states->stateTable[state][cell]=MBCS_ENTRY_FINAL_SET_VALUE(entry, sum);
sum+=2;
break;
default:
/* no addition */
break;
}
}
}
/* now, add up the delta offsets for the transitional entries */
for(cell=0; cell<256; ++cell) {
entry=states->stateTable[state][cell];
if(MBCS_ENTRY_IS_TRANSITION(entry)) {
if(states->stateFlags[MBCS_ENTRY_TRANSITION_STATE(entry)]&MBCS_STATE_FLAG_READY) {
states->stateTable[state][cell]=MBCS_ENTRY_TRANSITION_SET_OFFSET(entry, sum);
sum+=states->stateOffsetSum[MBCS_ENTRY_TRANSITION_STATE(entry)];
} else {
/* that next state does not have a sum yet, we cannot finish the one for this state */
sum=-1;
break;
}
}
}
if(sum!=-1) {
states->stateOffsetSum[state]=sum;
states->stateFlags[state]|=MBCS_STATE_FLAG_READY;
}
}
}
}
if(!allStatesReady) {
fprintf(stderr, "ucm error: the state table contains loops\n");
exit(U_INVALID_TABLE_FORMAT);
}
/*
* For all "direct" (i.e., initial) states>0,
* the offsets need to be increased by the sum of
* the previous initial states.
*/
sum=states->stateOffsetSum[0];
for(state=1; state<states->countStates; ++state) {
if((states->stateFlags[state]&0xf)==MBCS_STATE_FLAG_DIRECT) {
int32_t sum2=sum;
sum+=states->stateOffsetSum[state];
for(cell=0; cell<256; ++cell) {
entry=states->stateTable[state][cell];
if(MBCS_ENTRY_IS_TRANSITION(entry)) {
states->stateTable[state][cell]=MBCS_ENTRY_TRANSITION_ADD_OFFSET(entry, sum2);
}
}
}
}
/* round up to the next even number to have the following data 32-bit-aligned */
return states->countToUCodeUnits=(sum+1)&~1;
}
U_CAPI void U_EXPORT2
ucm_processStates(UCMStates *states, UBool ignoreSISOCheck) {
int32_t entry, state, cell, count;
if(states->conversionType==UCNV_UNSUPPORTED_CONVERTER) {
fprintf(stderr, "ucm error: missing conversion type (<uconv_class>)\n");
exit(U_INVALID_TABLE_FORMAT);
}
if(states->countStates==0) {
switch(states->conversionType) {
case UCNV_SBCS:
/* SBCS: use MBCS data structure with a default state table */
if(states->maxCharLength!=1) {
fprintf(stderr, "error: SBCS codepage with max B/char!=1\n");
exit(U_INVALID_TABLE_FORMAT);
}
states->conversionType=UCNV_MBCS;
ucm_addState(states, "0-ff");
break;
case UCNV_MBCS:
fprintf(stderr, "ucm error: missing state table information (<icu:state>) for MBCS\n");
exit(U_INVALID_TABLE_FORMAT);
break;
case UCNV_EBCDIC_STATEFUL:
/* EBCDIC_STATEFUL: use MBCS data structure with a default state table */
if(states->minCharLength!=1 || states->maxCharLength!=2) {
fprintf(stderr, "error: DBCS codepage with min B/char!=1 or max B/char!=2\n");
exit(U_INVALID_TABLE_FORMAT);
}
states->conversionType=UCNV_MBCS;
ucm_addState(states, "0-ff, e:1.s, f:0.s");
ucm_addState(states, "initial, 0-3f:4, e:1.s, f:0.s, 40:3, 41-fe:2, ff:4");
ucm_addState(states, "0-40:1.i, 41-fe:1., ff:1.i");
ucm_addState(states, "0-ff:1.i, 40:1.");
ucm_addState(states, "0-ff:1.i");
break;
case UCNV_DBCS:
/* DBCS: use MBCS data structure with a default state table */
if(states->minCharLength!=2 || states->maxCharLength!=2) {
fprintf(stderr, "error: DBCS codepage with min or max B/char!=2\n");
exit(U_INVALID_TABLE_FORMAT);
}
states->conversionType = UCNV_MBCS;
ucm_addState(states, "0-3f:3, 40:2, 41-fe:1, ff:3");
ucm_addState(states, "41-fe");
ucm_addState(states, "40");
ucm_addState(states, "");
break;
default:
fprintf(stderr, "ucm error: unknown charset structure\n");
exit(U_INVALID_TABLE_FORMAT);
break;
}
}
/*
* check that the min/max character lengths are reasonable;
* to do this right, all paths through the state table would have to be
* recursively walked while keeping track of the sequence lengths,
* but these simple checks cover most state tables in practice
*/
if(states->maxCharLength<states->minCharLength) {
fprintf(stderr, "ucm error: max B/char < min B/char\n");
exit(U_INVALID_TABLE_FORMAT);
}
/* count non-direct states and compare with max B/char */
count=0;
for(state=0; state<states->countStates; ++state) {
if((states->stateFlags[state]&0xf)!=MBCS_STATE_FLAG_DIRECT) {
++count;
}
}
if(states->maxCharLength>count+1) {
fprintf(stderr, "ucm error: max B/char too large\n");
exit(U_INVALID_TABLE_FORMAT);
}
if(states->minCharLength==1) {
int32_t action;
/*
* if there are single-byte characters,
* then the initial state must have direct result states
*/
for(cell=0; cell<256; ++cell) {
entry=states->stateTable[0][cell];
if( MBCS_ENTRY_IS_FINAL(entry) &&
((action=MBCS_ENTRY_FINAL_ACTION(entry))==MBCS_STATE_VALID_DIRECT_16 ||
action==MBCS_STATE_UNASSIGNED)
) {
break;
}
}
if(cell==256) {
fprintf(stderr, "ucm warning: min B/char too small\n");
}
}
/*
* make sure that all "next state" values are within limits
* and that all next states after final ones have the "direct"
* flag of initial states
*/
for(state=states->countStates-1; state>=0; --state) {
for(cell=0; cell<256; ++cell) {
entry=states->stateTable[state][cell];
if((uint8_t)MBCS_ENTRY_STATE(entry)>=states->countStates) {
fprintf(stderr, "ucm error: state table entry [%x][%x] has a next state of %x that is too high\n",
(int)state, (int)cell, (int)MBCS_ENTRY_STATE(entry));
exit(U_INVALID_TABLE_FORMAT);
}
if(MBCS_ENTRY_IS_FINAL(entry) && (states->stateFlags[MBCS_ENTRY_STATE(entry)]&0xf)!=MBCS_STATE_FLAG_DIRECT) {
fprintf(stderr, "ucm error: state table entry [%x][%x] is final but has a non-initial next state of %x\n",
(int)state, (int)cell, (int)MBCS_ENTRY_STATE(entry));
exit(U_INVALID_TABLE_FORMAT);
} else if(MBCS_ENTRY_IS_TRANSITION(entry) && (states->stateFlags[MBCS_ENTRY_STATE(entry)]&0xf)==MBCS_STATE_FLAG_DIRECT) {
fprintf(stderr, "ucm error: state table entry [%x][%x] is not final but has an initial next state of %x\n",
(int)state, (int)cell, (int)MBCS_ENTRY_STATE(entry));
exit(U_INVALID_TABLE_FORMAT);
}
}
}
/* is this an SI/SO (like EBCDIC-stateful) state table? */
if(states->countStates>=2 && (states->stateFlags[1]&0xf)==MBCS_STATE_FLAG_DIRECT) {
if(states->maxCharLength!=2) {
fprintf(stderr, "ucm error: SI/SO codepages must have max 2 bytes/char (not %x)\n", (int)states->maxCharLength);
exit(U_INVALID_TABLE_FORMAT);
}
if(states->countStates<3) {
fprintf(stderr, "ucm error: SI/SO codepages must have at least 3 states (not %x)\n", (int)states->countStates);
exit(U_INVALID_TABLE_FORMAT);
}
/* are the SI/SO all in the right places? */
if( ignoreSISOCheck ||
(states->stateTable[0][0xe]==MBCS_ENTRY_FINAL(1, MBCS_STATE_CHANGE_ONLY, 0) &&
states->stateTable[0][0xf]==MBCS_ENTRY_FINAL(0, MBCS_STATE_CHANGE_ONLY, 0) &&
states->stateTable[1][0xe]==MBCS_ENTRY_FINAL(1, MBCS_STATE_CHANGE_ONLY, 0) &&
states->stateTable[1][0xf]==MBCS_ENTRY_FINAL(0, MBCS_STATE_CHANGE_ONLY, 0))
) {
states->outputType=MBCS_OUTPUT_2_SISO;
} else {
fprintf(stderr, "ucm error: SI/SO codepages must have in states 0 and 1 transitions e:1.s, f:0.s\n");
exit(U_INVALID_TABLE_FORMAT);
}
state=2;
} else {
state=1;
}
/* check that no unexpected state is a "direct" one */
while(state<states->countStates) {
if((states->stateFlags[state]&0xf)==MBCS_STATE_FLAG_DIRECT) {
fprintf(stderr, "ucm error: state %d is 'initial' - not supported except for SI/SO codepages\n", (int)state);
exit(U_INVALID_TABLE_FORMAT);
}
++state;
}
sumUpStates(states);
}
/* find a fallback for this offset; return the index or -1 if not found */
U_CAPI int32_t U_EXPORT2
ucm_findFallback(_MBCSToUFallback *toUFallbacks, int32_t countToUFallbacks,
uint32_t offset) {
int32_t i;
if(countToUFallbacks==0) {
/* shortcut: most codepages do not have fallbacks from codepage to Unicode */
return -1;
}
/* do a linear search for the fallback mapping (the table is not yet sorted) */
for(i=0; i<countToUFallbacks; ++i) {
if(offset==toUFallbacks[i].offset) {
return i;
}
}
return -1;
}
/*
* This function tries to compact toUnicode tables for 2-byte codepages
* by finding lead bytes with all-unassigned trail bytes and adding another state
* for them.
*/
static void
compactToUnicode2(UCMStates *states,
uint16_t **pUnicodeCodeUnits,
_MBCSToUFallback *toUFallbacks, int32_t countToUFallbacks,
UBool verbose) {
int32_t (*oldStateTable)[256];
uint16_t count[256];
uint16_t *oldUnicodeCodeUnits;
int32_t entry, offset, oldOffset, trailOffset, oldTrailOffset, savings, sum;
int32_t i, j, leadState, trailState, newState, fallback;
uint16_t unit;
/* find the lead state */
if(states->outputType==MBCS_OUTPUT_2_SISO) {
/* use the DBCS lead state for SI/SO codepages */
leadState=1;
} else {
leadState=0;
}
/* find the main trail state: the most used target state */
uprv_memset(count, 0, sizeof(count));
for(i=0; i<256; ++i) {
entry=states->stateTable[leadState][i];
if(MBCS_ENTRY_IS_TRANSITION(entry)) {
++count[MBCS_ENTRY_TRANSITION_STATE(entry)];
}
}
trailState=0;
for(i=1; i<states->countStates; ++i) {
if(count[i]>count[trailState]) {
trailState=i;
}
}
/* count possible savings from lead bytes with all-unassigned results in all trail bytes */
uprv_memset(count, 0, sizeof(count));
savings=0;
/* for each lead byte */
for(i=0; i<256; ++i) {
entry=states->stateTable[leadState][i];
if(MBCS_ENTRY_IS_TRANSITION(entry) &&
(MBCS_ENTRY_TRANSITION_STATE(entry))==static_cast<uint32_t>(trailState)) {
/* the offset is different for each lead byte */
offset=MBCS_ENTRY_TRANSITION_OFFSET(entry);
/* for each trail byte for this lead byte */
for(j=0; j<256; ++j) {
entry=states->stateTable[trailState][j];
switch(MBCS_ENTRY_FINAL_ACTION(entry)) {
case MBCS_STATE_VALID_16:
entry=offset+MBCS_ENTRY_FINAL_VALUE_16(entry);
if((*pUnicodeCodeUnits)[entry]==0xfffe && ucm_findFallback(toUFallbacks, countToUFallbacks, entry)<0) {
++count[i];
} else {
j=999; /* do not count for this lead byte because there are assignments */
}
break;
case MBCS_STATE_VALID_16_PAIR:
entry=offset+MBCS_ENTRY_FINAL_VALUE_16(entry);
if((*pUnicodeCodeUnits)[entry]==0xfffe) {
count[i]+=2;
} else {
j=999; /* do not count for this lead byte because there are assignments */
}
break;
default:
break;
}
}
if(j==256) {
/* all trail bytes for this lead byte are unassigned */
savings+=count[i];
} else {
count[i]=0;
}
}
}
/* subtract from the possible savings the cost of an additional state */
savings=savings*2-1024; /* count bytes, not 16-bit words */
if(savings<=0) {
return;
}
if(verbose) {
printf("compacting toUnicode data saves %ld bytes\n", (long)savings);
}
if(states->countStates>=MBCS_MAX_STATE_COUNT) {
fprintf(stderr, "cannot compact toUnicode because the maximum number of states is reached\n");
return;
}
/* make a copy of the state table */
oldStateTable=(int32_t (*)[256])uprv_malloc(states->countStates*1024);
if(oldStateTable==NULL) {
fprintf(stderr, "cannot compact toUnicode: out of memory\n");
return;
}
uprv_memcpy(oldStateTable, states->stateTable, states->countStates*1024);
/* add the new state */
/*
* this function does not catch the degenerate case where all lead bytes
* have all-unassigned trail bytes and the lead state could be removed
*/
newState=states->countStates++;
states->stateFlags[newState]=0;
/* copy the old trail state, turning all assigned states into unassigned ones */
for(i=0; i<256; ++i) {
entry=states->stateTable[trailState][i];
switch(MBCS_ENTRY_FINAL_ACTION(entry)) {
case MBCS_STATE_VALID_16:
case MBCS_STATE_VALID_16_PAIR:
states->stateTable[newState][i]=MBCS_ENTRY_FINAL_SET_ACTION_VALUE(entry, MBCS_STATE_UNASSIGNED, 0xfffe);
break;
default:
states->stateTable[newState][i]=entry;
break;
}
}
/* in the lead state, redirect all lead bytes with all-unassigned trail bytes to the new state */
for(i=0; i<256; ++i) {
if(count[i]>0) {
states->stateTable[leadState][i]=MBCS_ENTRY_SET_STATE(states->stateTable[leadState][i], newState);
}
}
/* sum up the new state table */
for(i=0; i<states->countStates; ++i) {
states->stateFlags[i]&=~MBCS_STATE_FLAG_READY;
}
sum=sumUpStates(states);
/* allocate a new, smaller code units array */
oldUnicodeCodeUnits=*pUnicodeCodeUnits;
if(sum==0) {
*pUnicodeCodeUnits=NULL;
if(oldUnicodeCodeUnits!=NULL) {
uprv_free(oldUnicodeCodeUnits);
}
uprv_free(oldStateTable);
return;
}
*pUnicodeCodeUnits=(uint16_t *)uprv_malloc(sum*sizeof(uint16_t));
if(*pUnicodeCodeUnits==NULL) {
fprintf(stderr, "cannot compact toUnicode: out of memory allocating %ld 16-bit code units\n",
(long)sum);
/* revert to the old state table */
*pUnicodeCodeUnits=oldUnicodeCodeUnits;
--states->countStates;
uprv_memcpy(states->stateTable, oldStateTable, states->countStates*1024);
uprv_free(oldStateTable);
return;
}
for(i=0; i<sum; ++i) {
(*pUnicodeCodeUnits)[i]=0xfffe;
}
/* copy the code units for all assigned characters */
/*
* The old state table has the same lead _and_ trail states for assigned characters!
* The differences are in the offsets, and in the trail states for some unassigned characters.
* For each character with an assigned state in the new table, it was assigned in the old one.
* Only still-assigned characters are copied.
* Note that fallback mappings need to get their offset values adjusted.
*/
/* for each initial state */
for(leadState=0; leadState<states->countStates; ++leadState) {
if((states->stateFlags[leadState]&0xf)==MBCS_STATE_FLAG_DIRECT) {
/* for each lead byte from there */
for(i=0; i<256; ++i) {
entry=states->stateTable[leadState][i];
if(MBCS_ENTRY_IS_TRANSITION(entry)) {
trailState=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
/* the new state does not have assigned states */
if(trailState!=newState) {
trailOffset=MBCS_ENTRY_TRANSITION_OFFSET(entry);
oldTrailOffset=MBCS_ENTRY_TRANSITION_OFFSET(oldStateTable[leadState][i]);
/* for each trail byte */
for(j=0; j<256; ++j) {
entry=states->stateTable[trailState][j];
/* copy assigned-character code units and adjust fallback offsets */
switch(MBCS_ENTRY_FINAL_ACTION(entry)) {
case MBCS_STATE_VALID_16:
offset=trailOffset+MBCS_ENTRY_FINAL_VALUE_16(entry);
/* find the old offset according to the old state table */
oldOffset=oldTrailOffset+MBCS_ENTRY_FINAL_VALUE_16(oldStateTable[trailState][j]);
unit=(*pUnicodeCodeUnits)[offset]=oldUnicodeCodeUnits[oldOffset];
if(unit==0xfffe && (fallback=ucm_findFallback(toUFallbacks, countToUFallbacks, oldOffset))>=0) {
toUFallbacks[fallback].offset=0x80000000|offset;
}
break;
case MBCS_STATE_VALID_16_PAIR:
offset=trailOffset+MBCS_ENTRY_FINAL_VALUE_16(entry);
/* find the old offset according to the old state table */
oldOffset=oldTrailOffset+MBCS_ENTRY_FINAL_VALUE_16(oldStateTable[trailState][j]);
(*pUnicodeCodeUnits)[offset++]=oldUnicodeCodeUnits[oldOffset++];
(*pUnicodeCodeUnits)[offset]=oldUnicodeCodeUnits[oldOffset];
break;
default:
break;
}
}
}
}
}
}
}
/* remove temporary flags from fallback offsets that protected them from being modified twice */
for(i=0; i<countToUFallbacks; ++i) {
toUFallbacks[i].offset&=0x7fffffff;
}
/* free temporary memory */
uprv_free(oldUnicodeCodeUnits);
uprv_free(oldStateTable);
}
/*
* recursive sub-function of compactToUnicodeHelper()
* returns:
* >0 number of bytes that are used in unicodeCodeUnits[] that could be saved,
* if all sequences from this state are unassigned, returns the
* <0 there are assignments in unicodeCodeUnits[]
* 0 no use of unicodeCodeUnits[]
*/
static int32_t
findUnassigned(UCMStates *states,
uint16_t *unicodeCodeUnits,
_MBCSToUFallback *toUFallbacks, int32_t countToUFallbacks,
int32_t state, int32_t offset, uint32_t b) {
int32_t i, entry, savings, localSavings, belowSavings;
UBool haveAssigned;
localSavings=belowSavings=0;
haveAssigned=FALSE;
for(i=0; i<256; ++i) {
entry=states->stateTable[state][i];
if(MBCS_ENTRY_IS_TRANSITION(entry)) {
savings=findUnassigned(states,
unicodeCodeUnits,
toUFallbacks, countToUFallbacks,
MBCS_ENTRY_TRANSITION_STATE(entry),
offset+MBCS_ENTRY_TRANSITION_OFFSET(entry),
(b<<8)|(uint32_t)i);
if(savings<0) {
haveAssigned=TRUE;
} else if(savings>0) {
printf(" all-unassigned sequences from prefix 0x%02lx state %ld use %ld bytes\n",
(unsigned long)((b<<8)|i), (long)state, (long)savings);
belowSavings+=savings;
}
} else if(!haveAssigned) {
switch(MBCS_ENTRY_FINAL_ACTION(entry)) {
case MBCS_STATE_VALID_16:
entry=offset+MBCS_ENTRY_FINAL_VALUE_16(entry);
if(unicodeCodeUnits[entry]==0xfffe && ucm_findFallback(toUFallbacks, countToUFallbacks, entry)<0) {
localSavings+=2;
} else {
haveAssigned=TRUE;
}
break;
case MBCS_STATE_VALID_16_PAIR:
entry=offset+MBCS_ENTRY_FINAL_VALUE_16(entry);
if(unicodeCodeUnits[entry]==0xfffe) {
localSavings+=4;
} else {
haveAssigned=TRUE;
}
break;
default:
break;
}
}
}
if(haveAssigned) {
return -1;
} else {
return localSavings+belowSavings;
}
}
/* helper function for finding compaction opportunities */
static void
compactToUnicodeHelper(UCMStates *states,
uint16_t *unicodeCodeUnits,
_MBCSToUFallback *toUFallbacks, int32_t countToUFallbacks) {
int32_t state, savings;
/* for each initial state */
for(state=0; state<states->countStates; ++state) {
if((states->stateFlags[state]&0xf)==MBCS_STATE_FLAG_DIRECT) {
savings=findUnassigned(states,
unicodeCodeUnits,
toUFallbacks, countToUFallbacks,
state, 0, 0);
if(savings>0) {
printf(" all-unassigned sequences from initial state %ld use %ld bytes\n",
(long)state, (long)savings);
}
}
}
}
U_CDECL_BEGIN
static int32_t U_CALLCONV
compareFallbacks(const void *context, const void *fb1, const void *fb2) {
(void)context;
return ((const _MBCSToUFallback *)fb1)->offset-((const _MBCSToUFallback *)fb2)->offset;
}
U_CDECL_END
U_CAPI void U_EXPORT2
ucm_optimizeStates(UCMStates *states,
uint16_t **pUnicodeCodeUnits,
_MBCSToUFallback *toUFallbacks, int32_t countToUFallbacks,
UBool verbose) {
UErrorCode errorCode;
int32_t state, cell, entry;
/* test each state table entry */
for(state=0; state<states->countStates; ++state) {
for(cell=0; cell<256; ++cell) {
entry=states->stateTable[state][cell];
/*
* if the entry is a final one with an MBCS_STATE_VALID_DIRECT_16 action code
* and the code point is "unassigned" (0xfffe), then change it to
* the "unassigned" action code with bits 26..23 set to zero and U+fffe.
*/
if(MBCS_ENTRY_SET_STATE(entry, 0)==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, 0xfffe)) {
states->stateTable[state][cell]=MBCS_ENTRY_FINAL_SET_ACTION(entry, MBCS_STATE_UNASSIGNED);
}
}
}
/* try to compact the toUnicode tables */
if(states->maxCharLength==2) {
compactToUnicode2(states, pUnicodeCodeUnits, toUFallbacks, countToUFallbacks, verbose);
} else if(states->maxCharLength>2) {
if(verbose) {
compactToUnicodeHelper(states, *pUnicodeCodeUnits, toUFallbacks, countToUFallbacks);
}
}
/* sort toUFallbacks */
/*
* It should be safe to sort them before compactToUnicode2() is called,
* because it should not change the relative order of the offset values
* that it adjusts, but they need to be sorted at some point, and
* it is safest here.
*/
if(countToUFallbacks>0) {
errorCode=U_ZERO_ERROR; /* nothing bad will happen... */
uprv_sortArray(toUFallbacks, countToUFallbacks,
sizeof(_MBCSToUFallback),
compareFallbacks, NULL, FALSE, &errorCode);
}
}
/* use a complete state table ----------------------------------------------- */
U_CAPI int32_t U_EXPORT2
ucm_countChars(UCMStates *states,
const uint8_t *bytes, int32_t length) {
uint32_t offset;
int32_t i, entry, count;
uint8_t state;
offset=0;
count=0;
state=0;
if(states->countStates==0) {
fprintf(stderr, "ucm error: there is no state information!\n");
return -1;
}
/* for SI/SO (like EBCDIC-stateful), double-byte sequences start in state 1 */
if(length==2 && states->outputType==MBCS_OUTPUT_2_SISO) {
state=1;
}
/*
* Walk down the state table like in conversion,
* much like getNextUChar().
* We assume that c<=0x10ffff.
*/
for(i=0; i<length; ++i) {
entry=states->stateTable[state][bytes[i]];
if(MBCS_ENTRY_IS_TRANSITION(entry)) {
state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
} else {
switch(MBCS_ENTRY_FINAL_ACTION(entry)) {
case MBCS_STATE_ILLEGAL:
fprintf(stderr, "ucm error: byte sequence ends in illegal state\n");
return -1;
case MBCS_STATE_CHANGE_ONLY:
fprintf(stderr, "ucm error: byte sequence ends in state-change-only\n");
return -1;
case MBCS_STATE_UNASSIGNED:
case MBCS_STATE_FALLBACK_DIRECT_16:
case MBCS_STATE_VALID_DIRECT_16:
case MBCS_STATE_FALLBACK_DIRECT_20:
case MBCS_STATE_VALID_DIRECT_20:
case MBCS_STATE_VALID_16:
case MBCS_STATE_VALID_16_PAIR:
/* count a complete character and prepare for a new one */
++count;
state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry);
offset=0;
break;
default:
/* reserved, must never occur */
fprintf(stderr, "ucm error: byte sequence reached reserved action code, entry: 0x%02lx\n", (unsigned long)entry);
return -1;
}
}
}
if(offset!=0) {
fprintf(stderr, "ucm error: byte sequence too short, ends in non-final state %u\n", state);
return -1;
}
/*
* for SI/SO (like EBCDIC-stateful), multiple-character results
* must consist of only double-byte sequences
*/
if(count>1 && states->outputType==MBCS_OUTPUT_2_SISO && length!=2*count) {
fprintf(stderr, "ucm error: SI/SO (like EBCDIC-stateful) result with %d characters does not contain all DBCS\n", (int)count);
return -1;
}
return count;
}
#endif