7072ec1e1a
X-SVN-Rev: 4349
1735 lines
65 KiB
C
1735 lines
65 KiB
C
/*
|
|
*******************************************************************************
|
|
*
|
|
* Copyright (C) 2000-2001, International Business Machines
|
|
* Corporation and others. All Rights Reserved.
|
|
*
|
|
*******************************************************************************
|
|
* file name: genmbcs.c
|
|
* encoding: US-ASCII
|
|
* tab size: 8 (not used)
|
|
* indentation:4
|
|
*
|
|
* created on: 2000jul06
|
|
* created by: Markus W. Scherer
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include "unicode/utypes.h"
|
|
#include "cstring.h"
|
|
#include "cmemory.h"
|
|
#include "unewdata.h"
|
|
#include "ucnv_cnv.h"
|
|
#include "ucnvmbcs.h"
|
|
#include "makeconv.h"
|
|
#include "genmbcs.h"
|
|
|
|
enum {
|
|
MBCS_STATE_FLAG_DIRECT=1,
|
|
MBCS_STATE_FLAG_SURROGATES,
|
|
|
|
MBCS_STATE_FLAG_READY=16
|
|
};
|
|
|
|
enum {
|
|
MBCS_STAGE_2_BLOCK_SIZE=0x40, /* 64; 64=1<<6 for 6 bits in stage 2 */
|
|
MBCS_STAGE_2_BLOCK_SIZE_SHIFT=6, /* log2(MBCS_STAGE_2_BLOCK_SIZE) */
|
|
MBCS_STAGE_1_SIZE=0x440, /* 0x110000>>10, or 17*64 for one entry per 1k code points */
|
|
MBCS_STAGE_2_SIZE=0xfbc0, /* 0x10000-MBCS_STAGE_1_SIZE */
|
|
MBCS_MAX_STAGE_2_TOP=MBCS_STAGE_2_SIZE,
|
|
MBCS_STAGE_2_MAX_BLOCKS=MBCS_STAGE_2_SIZE>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT,
|
|
|
|
MBCS_STAGE_2_ALL_UNASSIGNED_INDEX=0, /* stage 1 entry for the all-unassigned stage 2 block */
|
|
MBCS_STAGE_2_FIRST_ASSIGNED=MBCS_STAGE_2_BLOCK_SIZE, /* start of the first stage 2 block after the all-unassigned one */
|
|
|
|
MBCS_MAX_STATE_COUNT=128,
|
|
MBCS_MAX_FALLBACK_COUNT=1000
|
|
};
|
|
|
|
typedef struct MBCSData {
|
|
NewConverter newConverter;
|
|
|
|
/* toUnicode */
|
|
int32_t stateTable[MBCS_MAX_STATE_COUNT][256];
|
|
uint32_t stateFlags[MBCS_MAX_STATE_COUNT],
|
|
stateOffsetSum[MBCS_MAX_STATE_COUNT];
|
|
_MBCSToUFallback toUFallbacks[MBCS_MAX_FALLBACK_COUNT];
|
|
uint16_t *unicodeCodeUnits;
|
|
_MBCSHeader header;
|
|
int32_t countToUCodeUnits;
|
|
|
|
/* fromUnicode */
|
|
uint16_t stage1[MBCS_STAGE_1_SIZE];
|
|
uint16_t stage2Single[MBCS_STAGE_2_SIZE]; /* stage 2 for single-byte codepages */
|
|
uint32_t stage2[MBCS_STAGE_2_SIZE]; /* stage 2 for MBCS */
|
|
uint8_t *fromUBytes;
|
|
uint32_t stage2Top, stage3Top, maxCharLength;
|
|
} MBCSData;
|
|
|
|
/* prototypes */
|
|
static void
|
|
MBCSClose(NewConverter *cnvData);
|
|
|
|
static UBool
|
|
MBCSProcessStates(NewConverter *cnvData);
|
|
|
|
static UBool
|
|
MBCSAddToUnicode(NewConverter *cnvData,
|
|
const uint8_t *bytes, int32_t length,
|
|
UChar32 c, uint32_t b,
|
|
int8_t isFallback);
|
|
|
|
static UBool
|
|
MBCSIsValid(NewConverter *cnvData,
|
|
const uint8_t *bytes, int32_t length,
|
|
uint32_t b);
|
|
|
|
static UBool
|
|
MBCSSingleAddFromUnicode(NewConverter *cnvData,
|
|
const uint8_t *bytes, int32_t length,
|
|
UChar32 c, uint32_t b,
|
|
int8_t isFallback);
|
|
|
|
static UBool
|
|
MBCSAddFromUnicode(NewConverter *cnvData,
|
|
const uint8_t *bytes, int32_t length,
|
|
UChar32 c, uint32_t b,
|
|
int8_t isFallback);
|
|
|
|
static void
|
|
MBCSPostprocess(NewConverter *cnvData, const UConverterStaticData *staticData);
|
|
|
|
static uint32_t
|
|
MBCSWrite(NewConverter *cnvData, const UConverterStaticData *staticData, UNewDataMemory *pData);
|
|
|
|
/* implementation ----------------------------------------------------------- */
|
|
|
|
static void
|
|
MBCSInit(MBCSData *mbcsData, uint8_t maxCharLength) {
|
|
int i;
|
|
|
|
uprv_memset(mbcsData, 0, sizeof(MBCSData));
|
|
|
|
mbcsData->newConverter.close=MBCSClose;
|
|
mbcsData->newConverter.startMappings=MBCSProcessStates;
|
|
mbcsData->newConverter.isValid=MBCSIsValid;
|
|
mbcsData->newConverter.addToUnicode=MBCSAddToUnicode;
|
|
if(maxCharLength==1) {
|
|
mbcsData->newConverter.addFromUnicode=MBCSSingleAddFromUnicode;
|
|
} else {
|
|
mbcsData->newConverter.addFromUnicode=MBCSAddFromUnicode;
|
|
}
|
|
mbcsData->newConverter.finishMappings=MBCSPostprocess;
|
|
mbcsData->newConverter.write=MBCSWrite;
|
|
|
|
mbcsData->header.version[0]=4;
|
|
mbcsData->stateFlags[0]=MBCS_STATE_FLAG_DIRECT;
|
|
mbcsData->stage2Top=MBCS_STAGE_2_FIRST_ASSIGNED; /* after stage 1 and one all-unassigned stage 2 block */
|
|
mbcsData->stage3Top=16*maxCharLength; /* after one all-unassigned stage 3 block */
|
|
mbcsData->maxCharLength=maxCharLength;
|
|
mbcsData->header.flags=maxCharLength-1; /* outputType */
|
|
|
|
/* point all entries in stage 1 to the "all-unassigned" first block in stage 2 */
|
|
for(i=0; i<MBCS_STAGE_1_SIZE; ++i) {
|
|
mbcsData->stage1[i]=MBCS_STAGE_2_ALL_UNASSIGNED_INDEX;
|
|
}
|
|
}
|
|
|
|
NewConverter *
|
|
MBCSOpen(uint8_t maxCharLength) {
|
|
MBCSData *mbcsData=(MBCSData *)uprv_malloc(sizeof(MBCSData));
|
|
if(mbcsData!=NULL) {
|
|
MBCSInit(mbcsData, maxCharLength);
|
|
}
|
|
return &mbcsData->newConverter;
|
|
}
|
|
|
|
static void
|
|
MBCSClose(NewConverter *cnvData) {
|
|
MBCSData *mbcsData=(MBCSData *)cnvData;
|
|
if(mbcsData!=NULL) {
|
|
if(mbcsData->unicodeCodeUnits!=NULL) {
|
|
uprv_free(mbcsData->unicodeCodeUnits);
|
|
}
|
|
if(mbcsData->fromUBytes!=NULL) {
|
|
uprv_free(mbcsData->fromUBytes);
|
|
}
|
|
uprv_free(mbcsData);
|
|
}
|
|
}
|
|
|
|
static const char *
|
|
skipWhitespace(const char *s) {
|
|
while(*s==' ' || *s=='\t') {
|
|
++s;
|
|
}
|
|
return s;
|
|
}
|
|
|
|
/*
|
|
* state table row grammar (ebnf-style):
|
|
* (whitespace is allowed between all tokens)
|
|
*
|
|
* row=[[firstentry ','] entry (',' entry)*]
|
|
* firstentry="initial" | "surrogates"
|
|
* (initial state (default for state 0), output is all surrogate pairs)
|
|
* entry=range [':' nextstate] ['.' action]
|
|
* range=number ['-' number]
|
|
* nextstate=number
|
|
* (0..7f)
|
|
* action='u' | 's' | 'p' | 'i'
|
|
* (unassigned, state change only, surrogate pair, illegal)
|
|
* number=(1- or 2-digit hexadecimal number)
|
|
*/
|
|
static const char *
|
|
parseState(const char *s, int32_t state[256], uint32_t *pFlags) {
|
|
const char *t;
|
|
uint32_t start, end, i;
|
|
int32_t entry;
|
|
|
|
/* initialize the state: all illegal with U+ffff */
|
|
for(i=0; i<256; ++i) {
|
|
state[i]=MBCS_ENTRY_FINAL(0, MBCS_STATE_ILLEGAL, 0xffff);
|
|
}
|
|
|
|
/* skip leading white space */
|
|
s=skipWhitespace(s);
|
|
|
|
/* is there an "initial" or "surrogates" directive? */
|
|
if(uprv_strncmp("initial", s, 7)==0) {
|
|
*pFlags=MBCS_STATE_FLAG_DIRECT;
|
|
s=skipWhitespace(s+7);
|
|
if(*s++!=',') {
|
|
return s-1;
|
|
}
|
|
} else if(*pFlags==0 && uprv_strncmp("surrogates", s, 10)==0) {
|
|
*pFlags=MBCS_STATE_FLAG_SURROGATES;
|
|
s=skipWhitespace(s+10);
|
|
if(*s++!=',') {
|
|
return s-1;
|
|
}
|
|
} else if(*s==0) {
|
|
/* empty state row: all-illegal */
|
|
return NULL;
|
|
}
|
|
|
|
for(;;) {
|
|
/* read an entry, the start of the range first */
|
|
s=skipWhitespace(s);
|
|
start=uprv_strtoul(s, (char **)&t, 16);
|
|
if(s==t || 0xff<start) {
|
|
return s;
|
|
}
|
|
s=skipWhitespace(t);
|
|
|
|
/* read the end of the range if there is one */
|
|
if(*s=='-') {
|
|
s=skipWhitespace(s+1);
|
|
end=uprv_strtoul(s, (char **)&t, 16);
|
|
if(s==t || end<start || 0xff<end) {
|
|
return s;
|
|
}
|
|
s=skipWhitespace(t);
|
|
} else {
|
|
end=start;
|
|
}
|
|
|
|
/* determine the state entrys for this range */
|
|
if(*s!=':' && *s!='.') {
|
|
/* the default is: final state with valid entries */
|
|
entry=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_16, 0);
|
|
} else {
|
|
entry=MBCS_ENTRY_TRANSITION(0, 0);
|
|
if(*s==':') {
|
|
/* get the next state, default to 0 */
|
|
s=skipWhitespace(s+1);
|
|
i=uprv_strtoul(s, (char **)&t, 16);
|
|
if(s!=t) {
|
|
if(0x7f<i) {
|
|
return s;
|
|
}
|
|
s=skipWhitespace(t);
|
|
entry=MBCS_ENTRY_SET_STATE(entry, i);
|
|
}
|
|
}
|
|
|
|
/* get the state action, default to valid */
|
|
if(*s=='.') {
|
|
/* this is a final state */
|
|
entry=MBCS_ENTRY_SET_FINAL(entry);
|
|
|
|
s=skipWhitespace(s+1);
|
|
if(*s=='u') {
|
|
/* unassigned set U+fffe */
|
|
entry=MBCS_ENTRY_FINAL_SET_ACTION_VALUE(entry, MBCS_STATE_UNASSIGNED, 0xfffe);
|
|
s=skipWhitespace(s+1);
|
|
} else if(*s=='p') {
|
|
if(*pFlags!=MBCS_STATE_FLAG_DIRECT) {
|
|
entry=MBCS_ENTRY_FINAL_SET_ACTION(entry, MBCS_STATE_VALID_16_PAIR);
|
|
} else {
|
|
entry=MBCS_ENTRY_FINAL_SET_ACTION(entry, MBCS_STATE_VALID_16);
|
|
}
|
|
s=skipWhitespace(s+1);
|
|
} else if(*s=='s') {
|
|
entry=MBCS_ENTRY_FINAL_SET_ACTION(entry, MBCS_STATE_CHANGE_ONLY);
|
|
s=skipWhitespace(s+1);
|
|
} else if(*s=='i') {
|
|
/* illegal set U+ffff */
|
|
entry=MBCS_ENTRY_FINAL_SET_ACTION_VALUE(entry, MBCS_STATE_ILLEGAL, 0xffff);
|
|
s=skipWhitespace(s+1);
|
|
} else {
|
|
/* default to valid */
|
|
entry=MBCS_ENTRY_FINAL_SET_ACTION(entry, MBCS_STATE_VALID_16);
|
|
}
|
|
} else {
|
|
/* this is an intermediate state, nothing to do */
|
|
}
|
|
}
|
|
|
|
/* adjust "final valid" states according to the state flags */
|
|
if(MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16) {
|
|
switch(*pFlags) {
|
|
case 0:
|
|
/* no adjustment */
|
|
break;
|
|
case MBCS_STATE_FLAG_DIRECT:
|
|
/* set the valid-direct code point to "unassigned"==0xfffe */
|
|
entry=MBCS_ENTRY_FINAL_SET_ACTION_VALUE(entry, MBCS_STATE_VALID_DIRECT_16, 0xfffe);
|
|
break;
|
|
case MBCS_STATE_FLAG_SURROGATES:
|
|
entry=MBCS_ENTRY_FINAL_SET_ACTION_VALUE(entry, MBCS_STATE_VALID_16_PAIR, 0);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* set this entry for the range */
|
|
for(i=start; i<=end; ++i) {
|
|
state[i]=entry;
|
|
}
|
|
|
|
if(*s==',') {
|
|
++s;
|
|
} else {
|
|
return *s==0 ? NULL : s;
|
|
}
|
|
}
|
|
}
|
|
|
|
UBool
|
|
MBCSAddState(NewConverter *cnvData, const char *s) {
|
|
MBCSData *mbcsData=(MBCSData *)cnvData;
|
|
const char *error;
|
|
|
|
if(mbcsData->header.countStates==MBCS_MAX_STATE_COUNT) {
|
|
fprintf(stderr, "error: too many states (maximum %u)\n", MBCS_MAX_STATE_COUNT);
|
|
return FALSE;
|
|
}
|
|
|
|
error=parseState(s, mbcsData->stateTable[mbcsData->header.countStates],
|
|
&mbcsData->stateFlags[mbcsData->header.countStates]);
|
|
if(error!=NULL) {
|
|
fprintf(stderr, "parse error in state definition at '%s'\n", error);
|
|
return FALSE;
|
|
}
|
|
|
|
++mbcsData->header.countStates;
|
|
return TRUE;
|
|
}
|
|
|
|
static int32_t
|
|
sumUpStates(MBCSData *mbcsData) {
|
|
int32_t entry, sum;
|
|
int state, cell, count;
|
|
UBool allStatesReady;
|
|
|
|
/*
|
|
* Sum up the offsets for all states.
|
|
* In each final state (where there are only final entries),
|
|
* the offsets add up directly.
|
|
* In all other state table rows, for each transition entry to another state,
|
|
* the offsets sum of that state needs to be added.
|
|
* This is achieved in at most countStates iterations.
|
|
*/
|
|
allStatesReady=FALSE;
|
|
for(count=mbcsData->header.countStates; !allStatesReady && count>=0; --count) {
|
|
allStatesReady=TRUE;
|
|
for(state=mbcsData->header.countStates-1; state>=0; --state) {
|
|
if(!(mbcsData->stateFlags[state]&MBCS_STATE_FLAG_READY)) {
|
|
allStatesReady=FALSE;
|
|
sum=0;
|
|
|
|
/* at first, add up only the final delta offsets to keep them <512 */
|
|
for(cell=0; cell<256; ++cell) {
|
|
entry=mbcsData->stateTable[state][cell];
|
|
if(MBCS_ENTRY_IS_FINAL(entry)) {
|
|
switch(MBCS_ENTRY_FINAL_ACTION(entry)) {
|
|
case MBCS_STATE_VALID_16:
|
|
mbcsData->stateTable[state][cell]=MBCS_ENTRY_FINAL_SET_VALUE(entry, sum);
|
|
sum+=1;
|
|
break;
|
|
case MBCS_STATE_VALID_16_PAIR:
|
|
mbcsData->stateTable[state][cell]=MBCS_ENTRY_FINAL_SET_VALUE(entry, sum);
|
|
sum+=2;
|
|
break;
|
|
default:
|
|
/* no addition */
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* now, add up the delta offsets for the transitional entries */
|
|
for(cell=0; cell<256; ++cell) {
|
|
entry=mbcsData->stateTable[state][cell];
|
|
if(MBCS_ENTRY_IS_TRANSITION(entry)) {
|
|
if(mbcsData->stateFlags[MBCS_ENTRY_TRANSITION_STATE(entry)]&MBCS_STATE_FLAG_READY) {
|
|
mbcsData->stateTable[state][cell]=MBCS_ENTRY_TRANSITION_SET_OFFSET(entry, sum);
|
|
sum+=mbcsData->stateOffsetSum[MBCS_ENTRY_TRANSITION_STATE(entry)];
|
|
} else {
|
|
/* that next state does not have a sum yet, we cannot finish the one for this state */
|
|
sum=-1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(sum!=-1) {
|
|
mbcsData->stateOffsetSum[state]=sum;
|
|
mbcsData->stateFlags[state]|=MBCS_STATE_FLAG_READY;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if(!allStatesReady) {
|
|
fprintf(stderr, "error: the state table contains loops\n");
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* For all "direct" (i.e., initial) states>0,
|
|
* the offsets need to be increased by the sum of
|
|
* the previous initial states.
|
|
*/
|
|
sum=mbcsData->stateOffsetSum[0];
|
|
for(state=1; state<(int)mbcsData->header.countStates; ++state) {
|
|
if((mbcsData->stateFlags[state]&0xf)==MBCS_STATE_FLAG_DIRECT) {
|
|
int32_t sum2=sum;
|
|
sum+=mbcsData->stateOffsetSum[state];
|
|
for(cell=0; cell<256; ++cell) {
|
|
entry=mbcsData->stateTable[state][cell];
|
|
if(MBCS_ENTRY_IS_TRANSITION(entry)) {
|
|
mbcsData->stateTable[state][cell]=MBCS_ENTRY_TRANSITION_ADD_OFFSET(entry, sum2);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if(VERBOSE) {
|
|
printf("the total number of offsets is 0x%lx=%ld\n",
|
|
(unsigned long)sum, (long)sum);
|
|
}
|
|
|
|
/* round up to the next even number to have the following data 32-bit-aligned */
|
|
sum=(sum+1)&~1;
|
|
return mbcsData->countToUCodeUnits=sum;
|
|
}
|
|
|
|
static UBool
|
|
MBCSProcessStates(NewConverter *cnvData) {
|
|
MBCSData *mbcsData=(MBCSData *)cnvData;
|
|
int32_t i, entry, sum;
|
|
int state, cell;
|
|
|
|
/*
|
|
* first make sure that all "next state" values are within limits
|
|
* and that all next states after final ones have the "direct"
|
|
* flag of initial states
|
|
*/
|
|
for(state=mbcsData->header.countStates-1; state>=0; --state) {
|
|
for(cell=0; cell<256; ++cell) {
|
|
entry=mbcsData->stateTable[state][cell];
|
|
if((uint8_t)MBCS_ENTRY_STATE(entry)>=mbcsData->header.countStates) {
|
|
fprintf(stderr, "error: state table entry [%x][%x] has a next state of %x that is too high\n",
|
|
state, cell, MBCS_ENTRY_STATE(entry));
|
|
return FALSE;
|
|
}
|
|
if(MBCS_ENTRY_IS_FINAL(entry) && (mbcsData->stateFlags[MBCS_ENTRY_STATE(entry)]&0xf)!=MBCS_STATE_FLAG_DIRECT) {
|
|
fprintf(stderr, "error: state table entry [%x][%x] is final but has a non-initial next state of %x\n",
|
|
state, cell, MBCS_ENTRY_STATE(entry));
|
|
return FALSE;
|
|
} else if(MBCS_ENTRY_IS_TRANSITION(entry) && (mbcsData->stateFlags[MBCS_ENTRY_STATE(entry)]&0xf)==MBCS_STATE_FLAG_DIRECT) {
|
|
fprintf(stderr, "error: state table entry [%x][%x] is not final but has an initial next state of %x\n",
|
|
state, cell, MBCS_ENTRY_STATE(entry));
|
|
return FALSE;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* is this an SI/SO (like EBCDIC-stateful) state table? */
|
|
if(mbcsData->header.countStates>=2 && (mbcsData->stateFlags[1]&0xf)==MBCS_STATE_FLAG_DIRECT) {
|
|
if(mbcsData->maxCharLength!=2) {
|
|
fprintf(stderr, "error: SI/SO codepages must have max 2 bytes/char (not %x)\n", mbcsData->maxCharLength);
|
|
return FALSE;
|
|
}
|
|
if(mbcsData->header.countStates<3) {
|
|
fprintf(stderr, "error: SI/SO codepages must have at least 3 states (not %x)\n", mbcsData->header.countStates);
|
|
return FALSE;
|
|
}
|
|
/* are the SI/SO all in the right places? */
|
|
if( mbcsData->stateTable[0][0xe]==MBCS_ENTRY_FINAL(1, MBCS_STATE_CHANGE_ONLY, 0) &&
|
|
mbcsData->stateTable[0][0xf]==MBCS_ENTRY_FINAL(0, MBCS_STATE_CHANGE_ONLY, 0) &&
|
|
mbcsData->stateTable[1][0xe]==MBCS_ENTRY_FINAL(1, MBCS_STATE_CHANGE_ONLY, 0) &&
|
|
mbcsData->stateTable[1][0xf]==MBCS_ENTRY_FINAL(0, MBCS_STATE_CHANGE_ONLY, 0)
|
|
) {
|
|
mbcsData->header.flags=MBCS_OUTPUT_2_SISO;
|
|
} else {
|
|
fprintf(stderr, "error: SI/SO codepages must have in states 0 and 1 transitions e:1.s, f:0.s\n");
|
|
return FALSE;
|
|
}
|
|
state=2;
|
|
} else {
|
|
state=1;
|
|
}
|
|
|
|
/* check that no unexpected state is a "direct" one */
|
|
while(state<(int)mbcsData->header.countStates) {
|
|
if((mbcsData->stateFlags[state]&0xf)==MBCS_STATE_FLAG_DIRECT) {
|
|
fprintf(stderr, "error: state %d is 'initial' - not supported except for SI/SO codepages\n", state);
|
|
return FALSE;
|
|
}
|
|
++state;
|
|
}
|
|
|
|
sum=sumUpStates(mbcsData);
|
|
if(sum<0) {
|
|
return FALSE;
|
|
}
|
|
|
|
/* allocate the code unit array and prefill it with "unassigned" values */
|
|
if(sum>0) {
|
|
mbcsData->unicodeCodeUnits=(uint16_t *)uprv_malloc(sum*sizeof(uint16_t));
|
|
if(mbcsData->unicodeCodeUnits==NULL) {
|
|
fprintf(stderr, "error: out of memory allocating %ld 16-bit code units\n",
|
|
(long)sum);
|
|
return FALSE;
|
|
}
|
|
for(i=0; i<sum; ++i) {
|
|
mbcsData->unicodeCodeUnits[i]=0xfffe;
|
|
}
|
|
}
|
|
|
|
/* allocate the codepage mappings and preset the first 16 characters to 0 */
|
|
if(mbcsData->maxCharLength==1) {
|
|
/* allocate 64k 16-bit results for single-byte codepages */
|
|
sum=0x20000;
|
|
} else {
|
|
/* allocate 1M * maxCharLength bytes for at most 1M mappings */
|
|
sum=0x100000*mbcsData->maxCharLength;
|
|
}
|
|
mbcsData->fromUBytes=(uint8_t *)uprv_malloc(sum);
|
|
if(mbcsData->fromUBytes==NULL) {
|
|
fprintf(stderr, "error: out of memory allocating %ldMB for target mappings\n",
|
|
(long)sum);
|
|
return FALSE;
|
|
}
|
|
/* initialize the all-unassigned first stage 3 block */
|
|
uprv_memset(mbcsData->fromUBytes, 0, 64);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* find a fallback for this offset; return the index or -1 if not found */
|
|
static int32_t
|
|
findFallback(MBCSData *mbcsData, uint32_t offset) {
|
|
_MBCSToUFallback *toUFallbacks;
|
|
int32_t i, limit;
|
|
|
|
limit=mbcsData->header.countToUFallbacks;
|
|
if(limit==0) {
|
|
/* shortcut: most codepages do not have fallbacks from codepage to Unicode */
|
|
return -1;
|
|
}
|
|
|
|
/* do a linear search for the fallback mapping (the table is not yet sorted) */
|
|
toUFallbacks=mbcsData->toUFallbacks;
|
|
for(i=0; i<limit; ++i) {
|
|
if(offset==toUFallbacks[i].offset) {
|
|
return i;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/* return TRUE for success */
|
|
static UBool
|
|
setFallback(MBCSData *mbcsData, uint32_t offset, UChar32 c) {
|
|
int32_t i=findFallback(mbcsData, offset);
|
|
if(i>=0) {
|
|
/* if there is already a fallback for this offset, then overwrite it */
|
|
mbcsData->toUFallbacks[i].codePoint=c;
|
|
return TRUE;
|
|
} else {
|
|
/* if there is no fallback for this offset, then add one */
|
|
i=mbcsData->header.countToUFallbacks;
|
|
if(i>=MBCS_MAX_FALLBACK_COUNT) {
|
|
fprintf(stderr, "error: too many toUnicode fallbacks, currently at: U+%lx\n", c);
|
|
return FALSE;
|
|
} else {
|
|
mbcsData->toUFallbacks[i].offset=offset;
|
|
mbcsData->toUFallbacks[i].codePoint=c;
|
|
mbcsData->header.countToUFallbacks=i+1;
|
|
return TRUE;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* remove fallback if there is one with this offset; return the code point if there was such a fallback, otherwise -1 */
|
|
static int32_t
|
|
removeFallback(MBCSData *mbcsData, uint32_t offset) {
|
|
int32_t i=findFallback(mbcsData, offset);
|
|
if(i>=0) {
|
|
_MBCSToUFallback *toUFallbacks;
|
|
int32_t limit, old;
|
|
|
|
toUFallbacks=mbcsData->toUFallbacks;
|
|
limit=mbcsData->header.countToUFallbacks;
|
|
old=(int32_t)toUFallbacks[i].codePoint;
|
|
|
|
/* copy the last fallback entry here to keep the list contiguous */
|
|
toUFallbacks[i].offset=toUFallbacks[limit-1].offset;
|
|
toUFallbacks[i].codePoint=toUFallbacks[limit-1].codePoint;
|
|
mbcsData->header.countToUFallbacks=limit-1;
|
|
return old;
|
|
} else {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* isFallback is almost a boolean:
|
|
* 1 (TRUE) this is a fallback mapping
|
|
* 0 (FALSE) this is a precise mapping
|
|
* -1 the precision of this mapping is not specified
|
|
*/
|
|
static UBool
|
|
MBCSAddToUnicode(NewConverter *cnvData,
|
|
const uint8_t *bytes, int32_t length,
|
|
UChar32 c, uint32_t b,
|
|
int8_t isFallback) {
|
|
MBCSData *mbcsData=(MBCSData *)cnvData;
|
|
uint32_t offset=0;
|
|
int32_t i=0, entry, old;
|
|
uint8_t state=0;
|
|
|
|
if(mbcsData->header.countStates==0) {
|
|
fprintf(stderr, "error: there is no state information!\n");
|
|
return FALSE;
|
|
}
|
|
|
|
/* for SI/SO (like EBCDIC-stateful), double-byte sequences start in state 1 */
|
|
if(length==2 && (mbcsData->header.flags&0xff)==MBCS_OUTPUT_2_SISO) {
|
|
state=1;
|
|
}
|
|
|
|
/*
|
|
* Walk down the state table like in conversion,
|
|
* much like getNextUChar().
|
|
* We assume that c<=0x10ffff.
|
|
*/
|
|
for(i=0;;) {
|
|
entry=mbcsData->stateTable[state][bytes[i++]];
|
|
if(MBCS_ENTRY_IS_TRANSITION(entry)) {
|
|
if(i==length) {
|
|
fprintf(stderr, "error: byte sequence too short, ends in non-final state %hu: 0x%02lx (U+%lx)\n",
|
|
state, (unsigned long)b, c);
|
|
return FALSE;
|
|
}
|
|
state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
|
|
offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
|
|
} else {
|
|
if(i<length) {
|
|
fprintf(stderr, "error: byte sequence too long by %d bytes, final state %hu: 0x%02lx (U+%lx)\n",
|
|
(length-i), state, (unsigned long)b, c);
|
|
return FALSE;
|
|
}
|
|
switch(MBCS_ENTRY_FINAL_ACTION(entry)) {
|
|
case MBCS_STATE_ILLEGAL:
|
|
fprintf(stderr, "error: byte sequence ends in illegal state at U+%04lx<->0x%02lx\n",
|
|
c, (unsigned long)b);
|
|
return FALSE;
|
|
case MBCS_STATE_CHANGE_ONLY:
|
|
fprintf(stderr, "error: byte sequence ends in state-change-only at U+%04lx<->0x%02lx\n",
|
|
c, (unsigned long)b);
|
|
return FALSE;
|
|
case MBCS_STATE_UNASSIGNED:
|
|
fprintf(stderr, "error: byte sequence ends in unassigned state at U+%04lx<->0x%02lx\n",
|
|
c, (unsigned long)b);
|
|
return FALSE;
|
|
case MBCS_STATE_FALLBACK_DIRECT_16:
|
|
case MBCS_STATE_VALID_DIRECT_16:
|
|
case MBCS_STATE_FALLBACK_DIRECT_20:
|
|
case MBCS_STATE_VALID_DIRECT_20:
|
|
if(MBCS_ENTRY_SET_STATE(entry, 0)!=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, 0xfffe)) {
|
|
/* the "direct" action's value is not "valid-direct-16-unassigned" any more */
|
|
if(MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_DIRECT_16 || MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_FALLBACK_DIRECT_16) {
|
|
old=MBCS_ENTRY_FINAL_VALUE(entry);
|
|
} else {
|
|
old=0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
|
|
}
|
|
if(isFallback>=0) {
|
|
fprintf(stderr, "error: duplicate codepage byte sequence at U+%04lx<->0x%02lx see U+%04lx\n",
|
|
c, (unsigned long)b, (long)old);
|
|
return FALSE;
|
|
} else if(VERBOSE) {
|
|
fprintf(stderr, "duplicate codepage byte sequence at U+%04lx<->0x%02lx see U+%04lx\n",
|
|
c, (unsigned long)b, (long)old);
|
|
}
|
|
/*
|
|
* Continue after the above warning
|
|
* if the precision of the mapping is unspecified.
|
|
*/
|
|
}
|
|
/* reassign the correct action code */
|
|
entry=MBCS_ENTRY_FINAL_SET_ACTION(entry, (MBCS_STATE_VALID_DIRECT_16+(isFallback>0 ? 2 : 0)+(c>=0x10000 ? 1 : 0)));
|
|
|
|
/* put the code point into bits 22..7 for BMP, c-0x10000 into 26..7 for others */
|
|
if(c<=0xffff) {
|
|
entry=MBCS_ENTRY_FINAL_SET_VALUE(entry, c);
|
|
} else {
|
|
entry=MBCS_ENTRY_FINAL_SET_VALUE(entry, c-0x10000);
|
|
}
|
|
mbcsData->stateTable[state][bytes[i-1]]=entry;
|
|
break;
|
|
case MBCS_STATE_VALID_16:
|
|
/* bits 26..16 are not used, 0 */
|
|
/* bits 15..7 contain the final offset delta to one 16-bit code unit */
|
|
offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
/* check that this byte sequence is still unassigned */
|
|
if((old=mbcsData->unicodeCodeUnits[offset])!=0xfffe || (old=removeFallback(mbcsData, offset))!=-1) {
|
|
if(isFallback>=0) {
|
|
fprintf(stderr, "error: duplicate codepage byte sequence at U+%04lx<->0x%02lx see U+%04lx\n",
|
|
c, (unsigned long)b, (long)old);
|
|
return FALSE;
|
|
} else if(VERBOSE) {
|
|
fprintf(stderr, "duplicate codepage byte sequence at U+%04lx<->0x%02lx see U+%04lx\n",
|
|
c, (unsigned long)b, (long)old);
|
|
}
|
|
}
|
|
if(c>=0x10000) {
|
|
fprintf(stderr, "error: code point does not fit into valid-16-bit state at U+%04lx<->0x%02lx\n",
|
|
c, (unsigned long)b);
|
|
return FALSE;
|
|
}
|
|
if(isFallback>0) {
|
|
/* assign only if there is no precise mapping */
|
|
if(mbcsData->unicodeCodeUnits[offset]==0xfffe) {
|
|
return setFallback(mbcsData, offset, c);
|
|
}
|
|
} else {
|
|
mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
|
|
}
|
|
break;
|
|
case MBCS_STATE_VALID_16_PAIR:
|
|
/* bits 26..16 are not used, 0 */
|
|
/* bits 15..7 contain the final offset delta to two 16-bit code units */
|
|
offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
/* check that this byte sequence is still unassigned */
|
|
old=mbcsData->unicodeCodeUnits[offset];
|
|
if(old<0xfffe) {
|
|
int32_t real;
|
|
if(old<0xd800) {
|
|
real=old;
|
|
} else if(old<=0xdfff) {
|
|
real=0x10000+((old&0x3ff)<<10)+((mbcsData->unicodeCodeUnits[offset+1])&0x3ff);
|
|
} else /* old<=0xe001 */ {
|
|
real=mbcsData->unicodeCodeUnits[offset+1];
|
|
}
|
|
if(isFallback>=0) {
|
|
fprintf(stderr, "error: duplicate codepage byte sequence at U+%04lx<->0x%02lx see U+%04lx\n",
|
|
c, (unsigned long)b, (long)real);
|
|
return FALSE;
|
|
} else if(VERBOSE) {
|
|
fprintf(stderr, "duplicate codepage byte sequence at U+%04lx<->0x%02lx see U+%04lx\n",
|
|
c, (unsigned long)b, (long)real);
|
|
}
|
|
}
|
|
if(isFallback>0) {
|
|
/* assign only if there is no precise mapping */
|
|
if(old<=0xdbff || old==0xe000) {
|
|
/* do nothing */
|
|
} else if(c<=0xffff) {
|
|
/* set a BMP fallback code point as a pair with 0xe001 */
|
|
mbcsData->unicodeCodeUnits[offset++]=0xe001;
|
|
mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
|
|
} else {
|
|
/* set a fallback surrogate pair with two second surrogates */
|
|
mbcsData->unicodeCodeUnits[offset++]=(uint16_t)(0xdbc0+(c>>10));
|
|
mbcsData->unicodeCodeUnits[offset]=(uint16_t)(0xdc00+(c&0x3ff));
|
|
}
|
|
} else {
|
|
if(c<0xd800) {
|
|
/* set a BMP code point */
|
|
mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
|
|
} else if(c<=0xffff) {
|
|
/* set a BMP code point above 0xd800 as a pair with 0xe000 */
|
|
mbcsData->unicodeCodeUnits[offset++]=0xe000;
|
|
mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
|
|
} else {
|
|
/* set a surrogate pair */
|
|
mbcsData->unicodeCodeUnits[offset++]=(uint16_t)(0xd7c0+(c>>10));
|
|
mbcsData->unicodeCodeUnits[offset]=(uint16_t)(0xdc00+(c&0x3ff));
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
/* reserved, must never occur */
|
|
fprintf(stderr, "internal error: byte sequence reached reserved action code, entry0x%02lx: 0x%02lx (U+%lx)\n",
|
|
(unsigned long)entry, (unsigned long)b, c);
|
|
return FALSE;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* is this byte sequence valid? (this is almost the same as MBCSAddToUnicode()) */
|
|
static UBool
|
|
MBCSIsValid(NewConverter *cnvData,
|
|
const uint8_t *bytes, int32_t length,
|
|
uint32_t b) {
|
|
MBCSData *mbcsData=(MBCSData *)cnvData;
|
|
uint32_t offset=0;
|
|
int32_t i=0, entry;
|
|
uint8_t state=0;
|
|
|
|
if(mbcsData->header.countStates==0) {
|
|
fprintf(stderr, "error: there is no state information!\n");
|
|
return FALSE;
|
|
}
|
|
|
|
/* for SI/SO (like EBCDIC-stateful), double-byte sequences start in state 1 */
|
|
if(length==2 && (mbcsData->header.flags&0xff)==MBCS_OUTPUT_2_SISO) {
|
|
state=1;
|
|
}
|
|
|
|
/*
|
|
* Walk down the state table like in conversion,
|
|
* much like getNextUChar().
|
|
* We assume that c<=0x10ffff.
|
|
*/
|
|
for(i=0;;) {
|
|
entry=mbcsData->stateTable[state][bytes[i++]];
|
|
if(MBCS_ENTRY_IS_TRANSITION(entry)) {
|
|
if(i==length) {
|
|
fprintf(stderr, "error: byte sequence too short, ends in non-final state %hu: 0x%02lx\n",
|
|
state, (unsigned long)b);
|
|
return FALSE;
|
|
}
|
|
state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
|
|
offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
|
|
} else {
|
|
if(i<length) {
|
|
fprintf(stderr, "error: byte sequence too long by %d bytes, final state %hu: 0x%02lx\n",
|
|
(length-i), state, (unsigned long)b);
|
|
return FALSE;
|
|
}
|
|
switch(MBCS_ENTRY_FINAL_ACTION(entry)) {
|
|
case MBCS_STATE_ILLEGAL:
|
|
fprintf(stderr, "error: byte sequence ends in illegal state: 0x%02lx\n",
|
|
(unsigned long)b);
|
|
return FALSE;
|
|
case MBCS_STATE_CHANGE_ONLY:
|
|
fprintf(stderr, "error: byte sequence ends in state-change-only: 0x%02lx\n",
|
|
(unsigned long)b);
|
|
return FALSE;
|
|
case MBCS_STATE_UNASSIGNED:
|
|
fprintf(stderr, "error: byte sequence ends in unassigned state: 0x%02lx\n",
|
|
(unsigned long)b);
|
|
return FALSE;
|
|
case MBCS_STATE_FALLBACK_DIRECT_16:
|
|
case MBCS_STATE_VALID_DIRECT_16:
|
|
case MBCS_STATE_FALLBACK_DIRECT_20:
|
|
case MBCS_STATE_VALID_DIRECT_20:
|
|
case MBCS_STATE_VALID_16:
|
|
case MBCS_STATE_VALID_16_PAIR:
|
|
return TRUE;
|
|
default:
|
|
/* reserved, must never occur */
|
|
fprintf(stderr, "internal error: byte sequence reached reserved action code, entry0x%02lx: 0x%02lx\n",
|
|
(long)entry, (unsigned long)b);
|
|
return FALSE;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static UBool
|
|
MBCSSingleAddFromUnicode(NewConverter *cnvData,
|
|
const uint8_t *bytes, int32_t length,
|
|
UChar32 c, uint32_t b,
|
|
int8_t isFallback) {
|
|
MBCSData *mbcsData=(MBCSData *)cnvData;
|
|
uint16_t *p;
|
|
uint32_t index;
|
|
uint16_t old;
|
|
|
|
/*
|
|
* Walk down the triple-stage compact array ("trie") and
|
|
* allocate parts as necessary.
|
|
* Note that the first stage 2 and 3 blocks are reserved for all-unassigned mappings.
|
|
* We assume that length<=maxCharLength and that c<=0x10ffff.
|
|
*/
|
|
|
|
/* inspect stage 1 */
|
|
index=c>>10;
|
|
if(mbcsData->stage1[index]==MBCS_STAGE_2_ALL_UNASSIGNED_INDEX) {
|
|
/* allocate another block in stage 2 */
|
|
if(mbcsData->stage2Top>=MBCS_MAX_STAGE_2_TOP) {
|
|
fprintf(stderr, "error: too many stage 2 entries at U+%04lx<->0x%02lx\n",
|
|
c, (unsigned long)b);
|
|
return FALSE;
|
|
}
|
|
|
|
/*
|
|
* each stage 2 block contains 64 16-bit words:
|
|
* 6 code point bits 9..4 with 1 stage 3 index
|
|
*/
|
|
mbcsData->stage1[index]=(uint16_t)mbcsData->stage2Top;
|
|
mbcsData->stage2Top+=MBCS_STAGE_2_BLOCK_SIZE;
|
|
}
|
|
|
|
/* inspect stage 2 */
|
|
index=(uint32_t)mbcsData->stage1[index]+((c>>4)&0x3f);
|
|
if(mbcsData->stage2Single[index]==0) {
|
|
/* allocate another block in stage 3 */
|
|
if(mbcsData->stage3Top>=0x10000) {
|
|
fprintf(stderr, "error: too many code points at U+%04lx<->0x%02lx\n",
|
|
c, (unsigned long)b);
|
|
return FALSE;
|
|
}
|
|
/* each block has 16 uint16_t entries */
|
|
mbcsData->stage2Single[index]=(uint16_t)mbcsData->stage3Top;
|
|
uprv_memset(mbcsData->fromUBytes+2*mbcsData->stage3Top, 0, 32);
|
|
mbcsData->stage3Top+=16;
|
|
}
|
|
|
|
/* write the codepage entry into stage 3 and get the previous entry */
|
|
p=(uint16_t *)mbcsData->fromUBytes+mbcsData->stage2Single[index]+(c&0xf);
|
|
old=*p;
|
|
if(isFallback<=0) {
|
|
*p=(uint16_t)(0xf00|b);
|
|
} else if(IS_PRIVATE_USE(c)) {
|
|
*p=(uint16_t)(0xc00|b);
|
|
} else {
|
|
*p=(uint16_t)(0x800|b);
|
|
}
|
|
|
|
/* check that this Unicode code point was still unassigned */
|
|
if(old>=0xf00) {
|
|
if(isFallback>=0) {
|
|
fprintf(stderr, "error: duplicate Unicode code point at U+%04lx<->0x%02lx see 0x%02x\n",
|
|
c, (unsigned long)b, old);
|
|
return FALSE;
|
|
} else if(VERBOSE) {
|
|
fprintf(stderr, "duplicate Unicode code point at U+%04lx<->0x%02lx see 0x%02x\n",
|
|
c, (unsigned long)b, old);
|
|
}
|
|
/* continue after the above warning if the precision of the mapping is unspecified */
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static UBool
|
|
MBCSAddFromUnicode(NewConverter *cnvData,
|
|
const uint8_t *bytes, int32_t length,
|
|
UChar32 c, uint32_t b,
|
|
int8_t isFallback) {
|
|
MBCSData *mbcsData=(MBCSData *)cnvData;
|
|
uint8_t *p;
|
|
uint32_t index, old;
|
|
|
|
if( (mbcsData->header.flags&0xff)==MBCS_OUTPUT_2_SISO &&
|
|
(*bytes==0xe || *bytes==0xf)
|
|
) {
|
|
fprintf(stderr, "error: illegal mapping to SI or SO for SI/SO codepage: U+%04lx<->0x%02lx\n",
|
|
c, (unsigned long)b);
|
|
return FALSE;
|
|
}
|
|
/*
|
|
* Walk down the triple-stage compact array ("trie") and
|
|
* allocate parts as necessary.
|
|
* Note that the first stage 2 and 3 blocks are reserved for
|
|
* all-unassigned mappings.
|
|
* We assume that length<=maxCharLength and that c<=0x10ffff.
|
|
*/
|
|
|
|
/* inspect stage 1 */
|
|
index=c>>10;
|
|
if(mbcsData->stage1[index]==MBCS_STAGE_2_ALL_UNASSIGNED_INDEX) {
|
|
/* allocate another block in stage 2 */
|
|
if(mbcsData->stage2Top>=MBCS_MAX_STAGE_2_TOP) {
|
|
fprintf(stderr, "error: too many stage 2 entries at U+%04lx<->0x%02lx\n",
|
|
c, (unsigned long)b);
|
|
return FALSE;
|
|
}
|
|
|
|
/*
|
|
* each stage 2 block contains 64 32-bit words:
|
|
* 6 code point bits 9..4 with value with bits 31..16 "assigned" flags and bits 15..0 stage 3 index
|
|
*/
|
|
mbcsData->stage1[index]=(uint16_t)mbcsData->stage2Top;
|
|
mbcsData->stage2Top+=MBCS_STAGE_2_BLOCK_SIZE;
|
|
}
|
|
|
|
/* inspect stage 2 */
|
|
index=mbcsData->stage1[index]+((c>>4)&0x3f);
|
|
if(mbcsData->stage2[index]==0) {
|
|
/* allocate another block in stage 3 */
|
|
if(mbcsData->stage3Top>=0x100000*mbcsData->maxCharLength) {
|
|
fprintf(stderr, "error: too many code points at U+%04lx<->0x%02lx\n",
|
|
c, (unsigned long)b);
|
|
return FALSE;
|
|
}
|
|
/* each block has 16*maxCharLength bytes */
|
|
mbcsData->stage2[index]=(mbcsData->stage3Top/16)/mbcsData->maxCharLength;
|
|
uprv_memset(mbcsData->fromUBytes+mbcsData->stage3Top, 0, 16*mbcsData->maxCharLength);
|
|
mbcsData->stage3Top+=16*mbcsData->maxCharLength;
|
|
}
|
|
|
|
/* write the codepage bytes into stage 3 and get the previous bytes */
|
|
old=0;
|
|
p=mbcsData->fromUBytes+(16*(uint32_t)(uint16_t)mbcsData->stage2[index]+(c&0xf))*mbcsData->maxCharLength;
|
|
switch(mbcsData->maxCharLength) {
|
|
case 2:
|
|
old=*(uint16_t *)p;
|
|
*(uint16_t *)p=(uint16_t)b;
|
|
break;
|
|
case 3:
|
|
old=(uint32_t)*p<<16;
|
|
*p++=(uint8_t)(b>>16);
|
|
old|=(uint32_t)*p<<8;
|
|
*p++=(uint8_t)(b>>8);
|
|
old|=*p;
|
|
*p=(uint8_t)b;
|
|
break;
|
|
case 4:
|
|
old=*(uint32_t *)p;
|
|
*(uint32_t *)p=b;
|
|
break;
|
|
default:
|
|
/* will never occur */
|
|
break;
|
|
}
|
|
|
|
/* check that this Unicode code point was still unassigned */
|
|
if((mbcsData->stage2[index]&(1UL<<(16+(c&0xf))))!=0 || old!=0) {
|
|
if(isFallback>=0) {
|
|
fprintf(stderr, "error: duplicate Unicode code point at U+%04lx<->0x%02lx see 0x%02lx\n",
|
|
c, (unsigned long)b, (unsigned long)old);
|
|
return FALSE;
|
|
} else if(VERBOSE) {
|
|
fprintf(stderr, "duplicate Unicode code point at U+%04lx<->0x%02lx see 0x%02lx\n",
|
|
c, (unsigned long)b, (unsigned long)old);
|
|
}
|
|
/* continue after the above warning if the precision of the mapping is
|
|
unspecified */
|
|
}
|
|
if(isFallback<=0) {
|
|
/* set the "assigned" flag */
|
|
mbcsData->stage2[index]|=(1UL<<(16+(c&0xf)));
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static int
|
|
compareFallbacks(const void *fb1, const void *fb2) {
|
|
return ((const _MBCSToUFallback *)fb1)->offset-((const _MBCSToUFallback *)fb2)->offset;
|
|
}
|
|
|
|
/*
|
|
* This function tries to compact toUnicode tables for 2-byte codepages
|
|
* by finding lead bytes with all-unassigned trail bytes and adding another state
|
|
* for them.
|
|
*/
|
|
static void
|
|
compactToUnicode2(MBCSData *mbcsData) {
|
|
int32_t (*oldStateTable)[256];
|
|
uint16_t count[256];
|
|
uint16_t *oldUnicodeCodeUnits;
|
|
int32_t entry, offset, oldOffset, trailOffset, oldTrailOffset, savings, sum;
|
|
int32_t i, j, leadState, trailState, newState, fallback;
|
|
uint16_t unit;
|
|
|
|
/* find the lead state */
|
|
if((mbcsData->header.flags&0xff)==MBCS_OUTPUT_2_SISO) {
|
|
/* use the DBCS lead state for SI/SO codepages */
|
|
leadState=1;
|
|
} else {
|
|
leadState=0;
|
|
}
|
|
|
|
/* find the main trail state: the most used target state */
|
|
uprv_memset(count, 0, sizeof(count));
|
|
for(i=0; i<256; ++i) {
|
|
entry=mbcsData->stateTable[leadState][i];
|
|
if(MBCS_ENTRY_IS_TRANSITION(entry)) {
|
|
++count[MBCS_ENTRY_TRANSITION_STATE(entry)];
|
|
}
|
|
}
|
|
trailState=0;
|
|
for(i=1; i<(int)mbcsData->header.countStates; ++i) {
|
|
if(count[i]>count[trailState]) {
|
|
trailState=i;
|
|
}
|
|
}
|
|
|
|
/* count possible savings from lead bytes with all-unassigned results in all trail bytes */
|
|
uprv_memset(count, 0, sizeof(count));
|
|
savings=0;
|
|
/* for each lead byte */
|
|
for(i=0; i<256; ++i) {
|
|
entry=mbcsData->stateTable[leadState][i];
|
|
if(MBCS_ENTRY_IS_TRANSITION(entry) && (MBCS_ENTRY_TRANSITION_STATE(entry))==trailState) {
|
|
/* the offset is different for each lead byte */
|
|
offset=MBCS_ENTRY_TRANSITION_OFFSET(entry);
|
|
/* for each trail byte for this lead byte */
|
|
for(j=0; j<256; ++j) {
|
|
entry=mbcsData->stateTable[trailState][j];
|
|
switch(MBCS_ENTRY_FINAL_ACTION(entry)) {
|
|
case MBCS_STATE_VALID_16:
|
|
entry=offset+MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
if(mbcsData->unicodeCodeUnits[entry]==0xfffe && findFallback(mbcsData, entry)<0) {
|
|
++count[i];
|
|
} else {
|
|
j=999; /* do not count for this lead byte because there are assignments */
|
|
}
|
|
break;
|
|
case MBCS_STATE_VALID_16_PAIR:
|
|
entry=offset+MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
if(mbcsData->unicodeCodeUnits[entry]==0xfffe) {
|
|
count[i]+=2;
|
|
} else {
|
|
j=999; /* do not count for this lead byte because there are assignments */
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
if(j==256) {
|
|
/* all trail bytes for this lead byte are unassigned */
|
|
savings+=count[i];
|
|
} else {
|
|
count[i]=0;
|
|
}
|
|
}
|
|
}
|
|
/* subtract from the possible savings the cost of an additional state */
|
|
savings=savings*2-1024; /* count bytes, not 16-bit words */
|
|
if(savings<=0) {
|
|
return;
|
|
}
|
|
if(VERBOSE) {
|
|
printf("compacting toUnicode data saves %ld bytes\n", (long)savings);
|
|
}
|
|
if(mbcsData->header.countStates>=MBCS_MAX_STATE_COUNT) {
|
|
fprintf(stderr, "cannot compact toUnicode because the maximum number of states is reached\n");
|
|
return;
|
|
}
|
|
|
|
/* make a copy of the state table */
|
|
oldStateTable=(int32_t (*)[256])uprv_malloc(mbcsData->header.countStates*1024);
|
|
if(oldStateTable==NULL) {
|
|
fprintf(stderr, "cannot compact toUnicode: out of memory\n");
|
|
return;
|
|
}
|
|
uprv_memcpy(oldStateTable, mbcsData->stateTable, mbcsData->header.countStates*1024);
|
|
|
|
/* add the new state */
|
|
/*
|
|
* this function does not catch the degenerate case where all lead bytes
|
|
* have all-unassigned trail bytes and the lead state could be removed
|
|
*/
|
|
newState=mbcsData->header.countStates++;
|
|
mbcsData->stateFlags[newState]=0;
|
|
/* copy the old trail state, turning all assigned states into unassigned ones */
|
|
for(i=0; i<256; ++i) {
|
|
entry=mbcsData->stateTable[trailState][i];
|
|
switch(MBCS_ENTRY_FINAL_ACTION(entry)) {
|
|
case MBCS_STATE_VALID_16:
|
|
case MBCS_STATE_VALID_16_PAIR:
|
|
mbcsData->stateTable[newState][i]=MBCS_ENTRY_FINAL_SET_ACTION_VALUE(entry, MBCS_STATE_UNASSIGNED, 0xfffe);
|
|
break;
|
|
default:
|
|
mbcsData->stateTable[newState][i]=entry;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* in the lead state, redirect all lead bytes with all-unassigned trail bytes to the new state */
|
|
for(i=0; i<256; ++i) {
|
|
if(count[i]>0) {
|
|
mbcsData->stateTable[leadState][i]=MBCS_ENTRY_SET_STATE(mbcsData->stateTable[leadState][i], newState);
|
|
}
|
|
}
|
|
|
|
/* sum up the new state table */
|
|
for(i=0; i<(int)mbcsData->header.countStates; ++i) {
|
|
mbcsData->stateFlags[i]&=~MBCS_STATE_FLAG_READY;
|
|
}
|
|
sum=sumUpStates(mbcsData);
|
|
|
|
/* allocate a new, smaller code units array */
|
|
oldUnicodeCodeUnits=mbcsData->unicodeCodeUnits;
|
|
if(sum==0) {
|
|
mbcsData->unicodeCodeUnits=NULL;
|
|
if(oldUnicodeCodeUnits!=NULL) {
|
|
uprv_free(oldUnicodeCodeUnits);
|
|
}
|
|
uprv_free(oldStateTable);
|
|
return;
|
|
}
|
|
mbcsData->unicodeCodeUnits=(uint16_t *)uprv_malloc(sum*sizeof(uint16_t));
|
|
if(mbcsData->unicodeCodeUnits==NULL) {
|
|
fprintf(stderr, "cannot compact toUnicode: out of memory allocating %ld 16-bit code units\n",
|
|
(long)sum);
|
|
/* revert to the old state table */
|
|
mbcsData->unicodeCodeUnits=oldUnicodeCodeUnits;
|
|
--mbcsData->header.countStates;
|
|
uprv_memcpy(mbcsData->stateTable, oldStateTable, mbcsData->header.countStates*1024);
|
|
uprv_free(oldStateTable);
|
|
return;
|
|
}
|
|
for(i=0; i<sum; ++i) {
|
|
mbcsData->unicodeCodeUnits[i]=0xfffe;
|
|
}
|
|
|
|
/* copy the code units for all assigned characters */
|
|
/*
|
|
* The old state table has the same lead _and_ trail states for assigned characters!
|
|
* The differences are in the offsets, and in the trail states for some unassigned characters.
|
|
* For each character with an assigned state in the new table, it was assigned in the old one.
|
|
* Only still-assigned characters are copied.
|
|
* Note that fallback mappings need to get their offset values adjusted.
|
|
*/
|
|
|
|
/* for each initial state */
|
|
for(leadState=0; leadState<(int)mbcsData->header.countStates; ++leadState) {
|
|
if((mbcsData->stateFlags[leadState]&0xf)==MBCS_STATE_FLAG_DIRECT) {
|
|
/* for each lead byte from there */
|
|
for(i=0; i<256; ++i) {
|
|
entry=mbcsData->stateTable[leadState][i];
|
|
if(MBCS_ENTRY_IS_TRANSITION(entry)) {
|
|
trailState=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
|
|
/* the new state does not have assigned states */
|
|
if(trailState!=newState) {
|
|
trailOffset=MBCS_ENTRY_TRANSITION_OFFSET(entry);
|
|
oldTrailOffset=MBCS_ENTRY_TRANSITION_OFFSET(oldStateTable[leadState][i]);
|
|
/* for each trail byte */
|
|
for(j=0; j<256; ++j) {
|
|
entry=mbcsData->stateTable[trailState][j];
|
|
/* copy assigned-character code units and adjust fallback offsets */
|
|
switch(MBCS_ENTRY_FINAL_ACTION(entry)) {
|
|
case MBCS_STATE_VALID_16:
|
|
offset=trailOffset+MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
/* find the old offset according to the old state table */
|
|
oldOffset=oldTrailOffset+MBCS_ENTRY_FINAL_VALUE_16(oldStateTable[trailState][j]);
|
|
unit=mbcsData->unicodeCodeUnits[offset]=oldUnicodeCodeUnits[oldOffset];
|
|
if(unit==0xfffe && (fallback=findFallback(mbcsData, oldOffset))>=0) {
|
|
mbcsData->toUFallbacks[fallback].offset=0x80000000|offset;
|
|
}
|
|
break;
|
|
case MBCS_STATE_VALID_16_PAIR:
|
|
offset=trailOffset+MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
/* find the old offset according to the old state table */
|
|
oldOffset=oldTrailOffset+MBCS_ENTRY_FINAL_VALUE_16(oldStateTable[trailState][j]);
|
|
mbcsData->unicodeCodeUnits[offset++]=oldUnicodeCodeUnits[oldOffset++];
|
|
mbcsData->unicodeCodeUnits[offset]=oldUnicodeCodeUnits[oldOffset];
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* remove temporary flags from fallback offsets that protected them from being modified twice */
|
|
sum=mbcsData->header.countToUFallbacks;
|
|
for(i=0; i<sum; ++i) {
|
|
mbcsData->toUFallbacks[i].offset&=0x7fffffff;
|
|
}
|
|
|
|
/* free temporary memory */
|
|
uprv_free(oldUnicodeCodeUnits);
|
|
uprv_free(oldStateTable);
|
|
}
|
|
|
|
/*
|
|
* recursive sub-function of compactToUnicodeHelper()
|
|
* returns:
|
|
* >0 number of bytes that are used in unicodeCodeUnits[] that could be saved,
|
|
* if all sequences from this state are unassigned, returns the
|
|
* <0 there are assignments in unicodeCodeUnits[]
|
|
* 0 no use of unicodeCodeUnits[]
|
|
*/
|
|
static int32_t
|
|
findUnassigned(MBCSData *mbcsData, int32_t state, int32_t offset, uint32_t b) {
|
|
int32_t i, entry, savings, localSavings, belowSavings;
|
|
UBool haveAssigned;
|
|
|
|
localSavings=belowSavings=0;
|
|
haveAssigned=FALSE;
|
|
for(i=0; i<256; ++i) {
|
|
entry=mbcsData->stateTable[state][i];
|
|
if(MBCS_ENTRY_IS_TRANSITION(entry)) {
|
|
savings=findUnassigned(mbcsData, MBCS_ENTRY_TRANSITION_STATE(entry), offset+MBCS_ENTRY_TRANSITION_OFFSET(entry), (b<<8)|(uint32_t)i);
|
|
if(savings<0) {
|
|
haveAssigned=TRUE;
|
|
} else if(savings>0) {
|
|
printf(" all-unassigned sequences from prefix 0x%02lx state %ld use %ld bytes\n",
|
|
(unsigned long)((b<<8)|i), (long)state, (long)savings);
|
|
belowSavings+=savings;
|
|
}
|
|
} else if(!haveAssigned) {
|
|
switch(MBCS_ENTRY_FINAL_ACTION(entry)) {
|
|
case MBCS_STATE_VALID_16:
|
|
entry=offset+MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
if(mbcsData->unicodeCodeUnits[entry]==0xfffe && findFallback(mbcsData, entry)<0) {
|
|
localSavings+=2;
|
|
} else {
|
|
haveAssigned=TRUE;
|
|
}
|
|
break;
|
|
case MBCS_STATE_VALID_16_PAIR:
|
|
entry=offset+MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
if(mbcsData->unicodeCodeUnits[entry]==0xfffe) {
|
|
localSavings+=4;
|
|
} else {
|
|
haveAssigned=TRUE;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if(haveAssigned) {
|
|
return -1;
|
|
} else {
|
|
return localSavings+belowSavings;
|
|
}
|
|
}
|
|
|
|
/* helper function for finding compaction opportunities */
|
|
static void
|
|
compactToUnicodeHelper(MBCSData *mbcsData) {
|
|
int32_t state, savings;
|
|
|
|
if(!VERBOSE) {
|
|
return;
|
|
}
|
|
|
|
/* for each initial state */
|
|
for(state=0; state<(int)mbcsData->header.countStates; ++state) {
|
|
if((mbcsData->stateFlags[state]&0xf)==MBCS_STATE_FLAG_DIRECT) {
|
|
savings=findUnassigned(mbcsData, state, 0, 0);
|
|
if(savings>0) {
|
|
printf(" all-unassigned sequences from initial state %ld use %ld bytes\n",
|
|
(long)state, (long)savings);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static UBool
|
|
transformEUC(MBCSData *mbcsData) {
|
|
uint8_t *p8;
|
|
uint32_t i, value, oldLength=mbcsData->maxCharLength, old3Top=mbcsData->stage3Top, new3Top;
|
|
uint8_t b;
|
|
|
|
if(oldLength<3) {
|
|
return FALSE;
|
|
}
|
|
|
|
/* careful: 2-byte and 4-byte codes are stored in platform endianness! */
|
|
|
|
/* test if all first bytes are in {0, 0x8e, 0x8f} */
|
|
p8=mbcsData->fromUBytes;
|
|
|
|
#if !U_IS_BIG_ENDIAN
|
|
if(oldLength==4) {
|
|
p8+=3;
|
|
}
|
|
#endif
|
|
|
|
for(i=0; i<old3Top; i+=oldLength) {
|
|
b=p8[i];
|
|
if(b!=0 && b!=0x8e && b!=0x8f) {
|
|
/* some first byte does not fit the EUC pattern, nothing to be done */
|
|
return FALSE;
|
|
}
|
|
}
|
|
/* restore p if it was modified above */
|
|
p8=mbcsData->fromUBytes;
|
|
|
|
/* modify outputType and adjust stage3Top */
|
|
mbcsData->header.flags=MBCS_OUTPUT_3_EUC+oldLength-3;
|
|
mbcsData->stage3Top=new3Top=(old3Top*(oldLength-1))/oldLength;
|
|
|
|
/*
|
|
* EUC-encode all byte sequences;
|
|
* see "CJKV Information Processing" (1st ed. 1999) from Ken Lunde, O'Reilly,
|
|
* p. 161 in chapter 4 "Encoding Methods"
|
|
*
|
|
* This also must reverse the byte order if the platform is little-endian!
|
|
*/
|
|
if(oldLength==3) {
|
|
uint16_t *q=(uint16_t *)p8;
|
|
for(i=0; i<old3Top; i+=oldLength) {
|
|
b=*p8;
|
|
if(b==0) {
|
|
/* short sequences are stored directly */
|
|
/* code set 0 or 1 */
|
|
(*q++)=(uint16_t)((p8[1]<<8)|p8[2]);
|
|
} else if(b==0x8e) {
|
|
/* code set 2 */
|
|
(*q++)=(uint16_t)(((p8[1]&0x7f)<<8)|p8[2]);
|
|
} else /* b==0x8f */ {
|
|
/* code set 3 */
|
|
(*q++)=(uint16_t)((p8[1]<<8)|(p8[2]&0x7f));
|
|
}
|
|
p8+=3;
|
|
}
|
|
} else /* oldLength==4 */ {
|
|
uint8_t *q=p8;
|
|
uint32_t *p32=(uint32_t *)p8;
|
|
for(i=0; i<old3Top; i+=4) {
|
|
value=(*p32++);
|
|
if(value<=0xffffff) {
|
|
/* short sequences are stored directly */
|
|
/* code set 0 or 1 */
|
|
(*q++)=(uint8_t)(value>>16);
|
|
(*q++)=(uint8_t)(value>>8);
|
|
(*q++)=(uint8_t)value;
|
|
} else if(value<=0x8effffff) {
|
|
/* code set 2 */
|
|
(*q++)=(uint8_t)((value>>16)&0x7f);
|
|
(*q++)=(uint8_t)(value>>8);
|
|
(*q++)=(uint8_t)value;
|
|
} else /* first byte is 0x8f */ {
|
|
/* code set 3 */
|
|
(*q++)=(uint8_t)(value>>16);
|
|
(*q++)=(uint8_t)((value>>8)&0x7f);
|
|
(*q++)=(uint8_t)value;
|
|
}
|
|
}
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/*
|
|
* Compact stage 2 for SBCS by overlapping adjacent stage 2 blocks as far
|
|
* as possible. Overlapping is done on unassigned head and tail
|
|
* parts of blocks in steps of MBCS_STAGE_2_MULTIPLIER.
|
|
* Stage 1 indexes need to be adjusted accordingly.
|
|
* This function is very similar to genprops/store.c/compactStage().
|
|
*/
|
|
static void
|
|
singleCompactStage2(MBCSData *mbcsData) {
|
|
/* this array maps the ordinal number of a stage 2 block to its new stage 1 index */
|
|
uint16_t map[MBCS_STAGE_2_MAX_BLOCKS];
|
|
uint16_t i, start, prevEnd, newStart;
|
|
|
|
/* enter the all-unassigned first stage 2 block into the map */
|
|
map[0]=MBCS_STAGE_2_ALL_UNASSIGNED_INDEX;
|
|
|
|
/* begin with the first block after the all-unassigned one */
|
|
start=newStart=MBCS_STAGE_2_FIRST_ASSIGNED;
|
|
while(start<mbcsData->stage2Top) {
|
|
prevEnd=(uint16_t)(newStart-1);
|
|
|
|
/* find the size of the overlap */
|
|
for(i=0; i<MBCS_STAGE_2_BLOCK_SIZE && mbcsData->stage2Single[start+i]==0 && mbcsData->stage2Single[prevEnd-i]==0; ++i) {}
|
|
|
|
if(i>0) {
|
|
map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=(uint16_t)(newStart-i);
|
|
|
|
/* move the non-overlapping indexes to their new positions */
|
|
start+=i;
|
|
for(i=(uint16_t)(MBCS_STAGE_2_BLOCK_SIZE-i); i>0; --i) {
|
|
mbcsData->stage2Single[newStart++]=mbcsData->stage2Single[start++];
|
|
}
|
|
} else if(newStart<start) {
|
|
/* move the indexes to their new positions */
|
|
map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=newStart;
|
|
for(i=MBCS_STAGE_2_BLOCK_SIZE; i>0; --i) {
|
|
mbcsData->stage2Single[newStart++]=mbcsData->stage2Single[start++];
|
|
}
|
|
} else /* no overlap && newStart==start */ {
|
|
map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=start;
|
|
start=newStart+=MBCS_STAGE_2_BLOCK_SIZE;
|
|
}
|
|
}
|
|
|
|
/* adjust stage2Top */
|
|
if(VERBOSE && newStart<mbcsData->stage2Top) {
|
|
printf("compacting stage 2 from stage2Top=0x%lx to 0x%lx, saving %ld bytes\n",
|
|
(unsigned long)mbcsData->stage2Top, (unsigned long)newStart,
|
|
(long)(mbcsData->stage2Top-newStart)*2);
|
|
}
|
|
mbcsData->stage2Top=newStart;
|
|
|
|
/* now adjust stage 1 */
|
|
for(i=0; i<MBCS_STAGE_1_SIZE; ++i) {
|
|
mbcsData->stage1[i]=map[mbcsData->stage1[i]>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT];
|
|
}
|
|
}
|
|
|
|
/* Compact stage 3 for SBCS - same algorithm as above. */
|
|
static void
|
|
singleCompactStage3(MBCSData *mbcsData) {
|
|
uint16_t *stage3=(uint16_t *)mbcsData->fromUBytes;
|
|
|
|
/* this array maps the ordinal number of a stage 3 block to its new stage 2 index */
|
|
uint16_t map[0x1000];
|
|
uint16_t i, start, prevEnd, newStart;
|
|
|
|
/* enter the all-unassigned first stage 3 block into the map */
|
|
map[0]=0;
|
|
|
|
/* begin with the first block after the all-unassigned one */
|
|
start=newStart=16;
|
|
while(start<mbcsData->stage3Top) {
|
|
prevEnd=(uint16_t)(newStart-1);
|
|
|
|
/* find the size of the overlap */
|
|
for(i=0; i<16 && stage3[start+i]==0 && stage3[prevEnd-i]==0; ++i) {}
|
|
|
|
if(i>0) {
|
|
map[start>>4]=(uint16_t)(newStart-i);
|
|
|
|
/* move the non-overlapping indexes to their new positions */
|
|
start+=i;
|
|
for(i=(uint16_t)(16-i); i>0; --i) {
|
|
stage3[newStart++]=stage3[start++];
|
|
}
|
|
} else if(newStart<start) {
|
|
/* move the indexes to their new positions */
|
|
map[start>>4]=newStart;
|
|
for(i=16; i>0; --i) {
|
|
stage3[newStart++]=stage3[start++];
|
|
}
|
|
} else /* no overlap && newStart==start */ {
|
|
map[start>>4]=start;
|
|
start=newStart+=16;
|
|
}
|
|
}
|
|
|
|
/* adjust stage3Top */
|
|
if(VERBOSE && newStart<mbcsData->stage3Top) {
|
|
printf("compacting stage 3 from stage3Top=0x%lx to 0x%lx, saving %ld bytes\n",
|
|
(unsigned long)mbcsData->stage3Top, (unsigned long)newStart,
|
|
(long)(mbcsData->stage3Top-newStart)*2);
|
|
}
|
|
mbcsData->stage3Top=newStart;
|
|
|
|
/* now adjust stage 2 */
|
|
for(i=0; i<mbcsData->stage2Top; ++i) {
|
|
mbcsData->stage2Single[i]=map[mbcsData->stage2Single[i]>>4];
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Compact stage 2 by overlapping adjacent stage 2 blocks as far
|
|
* as possible. Overlapping is done on unassigned head and tail
|
|
* parts of blocks in steps of MBCS_STAGE_2_MULTIPLIER.
|
|
* Stage 1 indexes need to be adjusted accordingly.
|
|
* This function is very similar to genprops/store.c/compactStage().
|
|
*/
|
|
static void
|
|
compactStage2(MBCSData *mbcsData) {
|
|
/* this array maps the ordinal number of a stage 2 block to its new stage 1 index */
|
|
uint16_t map[MBCS_STAGE_2_MAX_BLOCKS];
|
|
uint16_t i, start, prevEnd, newStart;
|
|
|
|
/* enter the all-unassigned first stage 2 block into the map */
|
|
map[0]=MBCS_STAGE_2_ALL_UNASSIGNED_INDEX;
|
|
|
|
/* begin with the first block after the all-unassigned one */
|
|
start=newStart=MBCS_STAGE_2_FIRST_ASSIGNED;
|
|
while(start<mbcsData->stage2Top) {
|
|
prevEnd=(uint16_t)(newStart-1);
|
|
|
|
/* find the size of the overlap */
|
|
for(i=0; i<MBCS_STAGE_2_BLOCK_SIZE && mbcsData->stage2[start+i]==0 && mbcsData->stage2[prevEnd-i]==0; ++i) {}
|
|
|
|
if(i>0) {
|
|
map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=(uint16_t)(newStart-i);
|
|
|
|
/* move the non-overlapping indexes to their new positions */
|
|
start+=i;
|
|
for(i=(uint16_t)(MBCS_STAGE_2_BLOCK_SIZE-i); i>0; --i) {
|
|
mbcsData->stage2[newStart++]=mbcsData->stage2[start++];
|
|
}
|
|
} else if(newStart<start) {
|
|
/* move the indexes to their new positions */
|
|
map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=newStart;
|
|
for(i=MBCS_STAGE_2_BLOCK_SIZE; i>0; --i) {
|
|
mbcsData->stage2[newStart++]=mbcsData->stage2[start++];
|
|
}
|
|
} else /* no overlap && newStart==start */ {
|
|
map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=start;
|
|
start=newStart+=MBCS_STAGE_2_BLOCK_SIZE;
|
|
}
|
|
}
|
|
|
|
/* adjust stage2Top */
|
|
if(VERBOSE && newStart<mbcsData->stage2Top) {
|
|
printf("compacting stage 2 from stage2Top=0x%lx to 0x%lx, saving %ld bytes\n",
|
|
(unsigned long)mbcsData->stage2Top, (unsigned long)newStart,
|
|
(long)(mbcsData->stage2Top-newStart)*4);
|
|
}
|
|
mbcsData->stage2Top=newStart;
|
|
|
|
/* now adjust stage 1 */
|
|
for(i=0; i<MBCS_STAGE_1_SIZE; ++i) {
|
|
mbcsData->stage1[i]=map[mbcsData->stage1[i]>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT];
|
|
}
|
|
}
|
|
|
|
static void
|
|
MBCSPostprocess(NewConverter *cnvData, const UConverterStaticData *staticData) {
|
|
MBCSData *mbcsData=(MBCSData *)cnvData;
|
|
int32_t entry;
|
|
int state, cell;
|
|
|
|
/* this needs to be printed before the EUC transformation because later maxCharLength might not be correct */
|
|
if(VERBOSE) {
|
|
printf("number of codepage characters in 16-blocks: 0x%lx=%lu\n",
|
|
(unsigned long)mbcsData->stage3Top/mbcsData->maxCharLength,
|
|
(unsigned long)mbcsData->stage3Top/mbcsData->maxCharLength);
|
|
}
|
|
|
|
/* test each state table entry */
|
|
for(state=0; state<(int)mbcsData->header.countStates; ++state) {
|
|
for(cell=0; cell<256; ++cell) {
|
|
entry=mbcsData->stateTable[state][cell];
|
|
/*
|
|
* if the entry is a final one with an MBCS_STATE_VALID_DIRECT_16 action code
|
|
* and the code point is "unassigned" (0xfffe), then change it to
|
|
* the "unassigned" action code with bits 26..23 set to zero and U+fffe.
|
|
*/
|
|
if(MBCS_ENTRY_SET_STATE(entry, 0)==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, 0xfffe)) {
|
|
mbcsData->stateTable[state][cell]=MBCS_ENTRY_FINAL_SET_ACTION(entry, MBCS_STATE_UNASSIGNED);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* try to compact the toUnicode tables */
|
|
if(mbcsData->maxCharLength==2) {
|
|
compactToUnicode2(mbcsData);
|
|
} else if(mbcsData->maxCharLength>2) {
|
|
compactToUnicodeHelper(mbcsData);
|
|
}
|
|
|
|
/* sort toUFallbacks */
|
|
/*
|
|
* It should be safe to sort them before compactToUnicode2() is called,
|
|
* because it should not change the relative order of the offset values
|
|
* that it adjusts, but they need to be sorted at some point, and
|
|
* it is safest here.
|
|
*/
|
|
if(mbcsData->header.countToUFallbacks>0) {
|
|
qsort(mbcsData->toUFallbacks, mbcsData->header.countToUFallbacks, sizeof(_MBCSToUFallback), compareFallbacks);
|
|
}
|
|
|
|
/* try to compact the fromUnicode tables */
|
|
transformEUC(mbcsData);
|
|
if(mbcsData->maxCharLength==1) {
|
|
singleCompactStage3(mbcsData);
|
|
singleCompactStage2(mbcsData);
|
|
} else {
|
|
compactStage2(mbcsData);
|
|
}
|
|
}
|
|
|
|
static uint32_t
|
|
MBCSWrite(NewConverter *cnvData, const UConverterStaticData *staticData, UNewDataMemory *pData) {
|
|
MBCSData *mbcsData=(MBCSData *)cnvData;
|
|
int32_t i, stage1Top;
|
|
|
|
/* adjust stage 1 entries to include the size of stage 1 in the offsets to stage 2 */
|
|
if(mbcsData->maxCharLength==1) {
|
|
if(staticData->unicodeMask&UCNV_HAS_SUPPLEMENTARY) {
|
|
stage1Top=MBCS_STAGE_1_SIZE; /* 0x440==1088 */
|
|
} else {
|
|
stage1Top=0x40; /* 0x40==64 */
|
|
}
|
|
for(i=0; i<stage1Top; ++i) {
|
|
mbcsData->stage1[i]+=(uint16_t)stage1Top;
|
|
}
|
|
|
|
/* stage2Top has counted 16-bit results, now we need to count bytes */
|
|
mbcsData->stage2Top*=2;
|
|
|
|
/* stage3Top has counted 16-bit results, now we need to count bytes */
|
|
mbcsData->stage3Top*=2;
|
|
} else {
|
|
if(staticData->unicodeMask&UCNV_HAS_SUPPLEMENTARY) {
|
|
stage1Top=MBCS_STAGE_1_SIZE; /* 0x440==1088 */
|
|
} else {
|
|
stage1Top=0x40; /* 0x40==64 */
|
|
}
|
|
for(i=0; i<stage1Top; ++i) {
|
|
mbcsData->stage1[i]+=(uint16_t)stage1Top/2; /* stage 2 contains 32-bit entries, stage 1 16-bit entries */
|
|
}
|
|
|
|
/* stage2Top has counted 32-bit results, now we need to count bytes */
|
|
mbcsData->stage2Top*=4;
|
|
|
|
/* stage3Top has already counted bytes */
|
|
}
|
|
|
|
/* round up stage2Top and stage3Top so that the sizes of all data blocks are multiples of 4 */
|
|
mbcsData->stage2Top=(mbcsData->stage2Top+3)&~3;
|
|
mbcsData->stage3Top=(mbcsData->stage3Top+3)&~3;
|
|
|
|
/* fill the header */
|
|
mbcsData->header.offsetToUCodeUnits=
|
|
sizeof(_MBCSHeader)+
|
|
mbcsData->header.countStates*1024+
|
|
mbcsData->header.countToUFallbacks*sizeof(_MBCSToUFallback);
|
|
mbcsData->header.offsetFromUTable=
|
|
mbcsData->header.offsetToUCodeUnits+
|
|
mbcsData->countToUCodeUnits*2;
|
|
mbcsData->header.offsetFromUBytes=
|
|
mbcsData->header.offsetFromUTable+
|
|
stage1Top*2+
|
|
mbcsData->stage2Top;
|
|
|
|
/* write the MBCS data */
|
|
udata_writeBlock(pData, &mbcsData->header, sizeof(_MBCSHeader));
|
|
udata_writeBlock(pData, mbcsData->stateTable, mbcsData->header.countStates*1024);
|
|
udata_writeBlock(pData, mbcsData->toUFallbacks, mbcsData->header.countToUFallbacks*sizeof(_MBCSToUFallback));
|
|
udata_writeBlock(pData, mbcsData->unicodeCodeUnits, mbcsData->countToUCodeUnits*2);
|
|
udata_writeBlock(pData, mbcsData->stage1, stage1Top*2);
|
|
if(mbcsData->maxCharLength==1) {
|
|
udata_writeBlock(pData, mbcsData->stage2Single, mbcsData->stage2Top);
|
|
} else {
|
|
udata_writeBlock(pData, mbcsData->stage2, mbcsData->stage2Top);
|
|
}
|
|
udata_writeBlock(pData, mbcsData->fromUBytes, mbcsData->stage3Top);
|
|
|
|
/* return the number of bytes that should have been written */
|
|
return mbcsData->header.offsetFromUBytes+mbcsData->stage3Top;
|
|
}
|