scuffed-code/icu4c/source/i18n/regexcst.txt
2002-10-29 01:20:15 +00:00

241 lines
11 KiB
Plaintext

#*****************************************************************************
#
# Copyright (C) 2002, International Business Machines Corporation and others.
# All Rights Reserved.
#
#*****************************************************************************
#
# file: regexcst.txt
# ICU Regular Expression Parser State Table
#
# This state table is used when reading and parsing a regular expression pattern
# The pattern parser uses a state machine; the data in this file define the
# state transitions that occur for each input character.
#
# *** This file defines the regex pattern grammar. This is it.
# *** The determination of what is accepted is here.
#
# This file is processed by a perl script "regexcst.pl" to produce initialized C arrays
# that are then built with the rule parser.
#
#
# Here is the syntax of the state definitions in this file:
#
#
#StateName:
# input-char n next-state ^push-state action
# input-char n next-state ^push-state action
# | | | | |
# | | | | |--- action to be performed by state machine
# | | | | See function RBBIRuleScanner::doParseActions()
# | | | |
# | | | |--- Push this named state onto the state stack.
# | | | Later, when next state is specified as "pop",
# | | | the pushed state will become the current state.
# | | |
# | | |--- Transition to this state if the current input character matches the input
# | | character or char class in the left hand column. "pop" causes the next
# | | state to be popped from the state stack.
# | |
# | |--- When making the state transition specified on this line, advance to the next
# | character from the input only if 'n' appears here.
# |
# |--- Character or named character classes to test for. If the current character being scanned
# matches, peform the actions and go to the state specified on this line.
# The input character is tested sequentally, in the order written. The characters and
# character classes tested for do not need to be mutually exclusive. The first match wins.
#
#
# start state, scan position is at the beginning of the pattern.
#
start:
default term ^finish doPatStart
#
# finish - We've scanned off the end of the pattern string.
# The "doPatFinish" action will stop the pattern scanning state machine.
#
finish:
default finish doPatFinish
#
# term. Eat through a single rule character, or a composite thing, which
# could be a parenthesized expression or a Unicode Set.
#
term:
quoted n string doStartString
rule_char n string doStartString
'[' n expr-quant doScanUnicodeSet
'(' n open-paren ^expr-quant
'.' n expr-quant doDotAny
'\' n backslash
eof finish
default errorDeath doRuleError
#
# string We've encountered a literal character, or an escaped character.
# Continue with any additional literal chars, building the sequence
# into a string.
#
string:
quoted n string doStringChar
rule_char n string doStringChar
# If the string ends in a quatinfier, we need to split off the last character so that
# the quantifier effects only it, and not the entire string. (e.g. "ABC*")
'?' expr-quant doSplitString
'+' expr-quant doSplitString
'*' expr-quant doSplitString
'{' expr-quant doSplitString
default expr-quant doEndString
#
# expr-quant We've just finished scanning a term, now look for the optional
# trailing quantifier - *, +, ?, *?, etc.
#
expr-quant:
'*' n quant-star
'+' n quant-plus
'?' n quant-opt
default expr-cont
#
# expr-cont Expression, continuation. At a point where additional terms are
# allowed, but not required. No Quantifiers
#
expr-cont:
'|' n term doOrOperator
')' n pop doCloseParen
default term
#
# open-paren We've got an open paren. We need to scan further to
# determine what kind of quantifier it is - plain (, (?:, (?>, or whatever.
#
open-paren:
'?' n open-paren-extended
default term ^expr-quant doOpenCaptureParen
open-paren-extended:
':' n term ^expr-quant doOpenNonCaptureParen # (?:
'>' n term ^expr-quant doOpenAtomicParen # (?>
'=' n term ^expr-cont doOpenLookAhead # (?=
'!' n term ^expr-cont doOpenLookAheadNeg # (?!
'<' n open-paren-lookbehind
default errorDeath doBadOpenParenType
open-paren-lookbehind:
'=' n term ^expr-cont doOpenLookBehind # (?<=
'!' n term ^expr-cont doOpenLookBehindNeg # (?<!
default errorDeath doBadOpenParenType
#
# quant-star Scanning a '*' quantifier. Need to look ahead to decide
# between plain '*', '*?', '*+'
#
quant-star:
'?' n expr-cont doNGStar # *?
'+' n expr-cont doPossesiveStar # *+
default expr-cont doStar
#
# quant-plus Scanning a '+' quantifier. Need to look ahead to decide
# between plain '+', '+?', '++'
#
quant-plus:
'?' n expr-cont doNGPlus # *?
'+' n expr-cont doPossesivePlus # *+
default expr-cont doPlus
#
# quant-opt Scanning a '?' quantifier. Need to look ahead to decide
# between plain '?', '??', '?+'
#
quant-opt:
'?' n expr-cont doNGOpt # ??
'+' n expr-cont doPossesiveOpt # ?+
default expr-cont doOpt # ?
#
# Interval scanning a '{', the opening delimiter for an interval specification
# {number} or {min, max}
#
interval-open:
white_space n interval-open
digit_char interval-value doIntervalMinValue
default errorDeath doNumberExpectedError
interval-value:
white_space n interval-close
'}' interval-close
digit_char n interval-value doIntervalDigit
default errorDeath doNumberExpectedError
interval-close:
white_space n interval-close
'}' n expr-cont-no-interval doTagValue
default errorDeath doNumberExpectedError
#
# expr-cont-no-tag Expression, continuation. At a point where additional terms are
# allowed, but not required. Just like
# expr-cont, above, except that no interval
# specification {min, max} is permitted.
#
expr-cont-no-interval:
quoted term
'|' n term doExprOrOperator
')' n pop doExprRParen
default term
#
# backslash # Backslash. Figure out which of the \thingies we have encountered.
# The low level next-char function will have preprocessed
# some of them already; those won't come here.
backslash:
'A' n term doBackslashA
'B' n term doBackslashB
'b' n term doBackslashb
'G' n term doBackslashG
'p' expr-quant doProperty # \p{Lu} style property
'P' expr-quant doProperty
'W' n term doBackslashW
'w' n term doBackslashw
'X' n term doBackslashX
'Z' n term doBackslashZ
'z' n term doBackslashz
default n string doStartString
#
# errorDeath. This state is specified as the next state whenever a syntax error
# in the source rules is detected. Barring bugs, the state machine will never
# actually get here, but will stop because of the action associated with the error.
# But, just in case, this state asks the state machine to exit.
errorDeath:
default n errorDeath doExit