18b6ac3369
X-SVN-Rev: 1649
635 lines
22 KiB
C++
635 lines
22 KiB
C++
/*
|
|
*******************************************************************************
|
|
* Copyright (C) 1997-1999, International Business Machines Corporation and *
|
|
* others. All Rights Reserved. *
|
|
*******************************************************************************
|
|
*
|
|
* File TIMEZONE.CPP
|
|
*
|
|
* Modification History:
|
|
*
|
|
* Date Name Description
|
|
* 12/05/96 clhuang Creation.
|
|
* 04/21/97 aliu General clean-up and bug fixing.
|
|
* 05/08/97 aliu Fixed Hashtable code per code review.
|
|
* 07/09/97 helena Changed createInstance to createDefault.
|
|
* 07/29/97 aliu Updated with all-new list of 96 UNIX-derived
|
|
* TimeZones. Changed mechanism to load from static
|
|
* array rather than resource bundle.
|
|
* 07/07/1998 srl Bugfixes from the Java side: UTC GMT CAT NST
|
|
* Added getDisplayName API
|
|
* going to add custom parsing.
|
|
*
|
|
* ISSUES:
|
|
* - should getDisplayName cache something?
|
|
* - should custom time zones be cached? [probably]
|
|
* 08/10/98 stephen Brought getDisplayName() API in-line w/ conventions
|
|
* 08/19/98 stephen Changed createTimeZone() to never return 0
|
|
* 09/02/98 stephen Added getOffset(monthLen) and hasSameRules()
|
|
* 09/15/98 stephen Added getStaticClassID()
|
|
* 02/22/99 stephen Removed character literals for EBCDIC safety
|
|
* 05/04/99 stephen Changed initDefault() for Mutex issues
|
|
* 07/12/99 helena HPUX 11 CC Port.
|
|
* 12/03/99 aliu Moved data out of static table into icudata.dll.
|
|
* Substantial rewrite of zone lookup, default zone, and
|
|
* available IDs code. Misc. cleanup.
|
|
*********************************************************************************/
|
|
|
|
#include "unicode/simpletz.h"
|
|
#include "unicode/smpdtfmt.h"
|
|
#include "unicode/calendar.h"
|
|
#include "mutex.h"
|
|
#include "unicode/udata.h"
|
|
#include "tzdat.h"
|
|
#include "cstring.h"
|
|
|
|
#ifdef _DEBUG
|
|
#include "unistrm.h"
|
|
#endif
|
|
|
|
// static initialization
|
|
char TimeZone::fgClassID = 0; // Value is irrelevant
|
|
|
|
TimeZone* TimeZone::fgDefaultZone = NULL;
|
|
|
|
const UnicodeString TimeZone::GMT_ID = UNICODE_STRING("GMT", 3);
|
|
const int32_t TimeZone::GMT_ID_LENGTH = 3;
|
|
const UnicodeString TimeZone::CUSTOM_ID = UNICODE_STRING("Custom", 6);
|
|
|
|
const TimeZone* TimeZone::GMT = new SimpleTimeZone(0, GMT_ID);
|
|
|
|
// See header file for documentation of the following
|
|
const TZHeader * TimeZone::DATA = 0;
|
|
const uint32_t* TimeZone::INDEX_BY_ID = 0;
|
|
const OffsetIndex* TimeZone::INDEX_BY_OFFSET = 0;
|
|
UnicodeString* TimeZone::ZONE_IDS = 0;
|
|
UBool TimeZone::DATA_LOADED = FALSE;
|
|
UDataMemory* TimeZone::UDATA_POINTER = 0;
|
|
UMTX TimeZone::LOCK;
|
|
|
|
/**
|
|
* Attempt to load the system zone data from icudata.dll (or its
|
|
* equivalent). After this call returns DATA_LOADED will be true.
|
|
* DATA itself will be non-null if the load succeeded; otherwise it
|
|
* will be null. This call does nothing if the load has already
|
|
* happened or or if it happens in another thread concurrently before
|
|
* we can get there.
|
|
*
|
|
* After this call, we are guaranteed that DATA_LOADED is true. We
|
|
* are _not_ guaranteed that DATA will be nonzero. If it is nonzero,
|
|
* we are guaranteed that all associated data structures are
|
|
* initialized.
|
|
*/
|
|
void TimeZone::loadZoneData() {
|
|
if (!DATA_LOADED) {
|
|
Mutex lock(&LOCK);
|
|
if (!DATA_LOADED) {
|
|
UErrorCode status = U_ZERO_ERROR;
|
|
UDATA_POINTER = udata_openChoice(0, TZ_DATA_TYPE, TZ_DATA_NAME, // THIS IS NOT A LEAK!
|
|
isDataAcceptable, 0, &status); // see the comment on udata_close line
|
|
UDataMemory *data = UDATA_POINTER;
|
|
if (U_SUCCESS(status)) {
|
|
DATA = (TZHeader*)udata_getMemory(data);
|
|
// Result guaranteed to be nonzero if data is nonzero
|
|
|
|
// We require that standard zones occur before DST
|
|
// zones. Do a quick check for this here, and if the
|
|
// check fails, don't use this zone data.
|
|
// (Alternatively, we could handle either ordering,
|
|
// with a little extra logic.) See
|
|
// createSystemTimeZone().
|
|
if (DATA->standardDelta > DATA->dstDelta) {
|
|
DATA = 0;
|
|
} else {
|
|
INDEX_BY_ID =
|
|
(const uint32_t*)((int8_t*)DATA + DATA->nameIndexDelta);
|
|
INDEX_BY_OFFSET =
|
|
(const OffsetIndex*)((int8_t*)DATA + DATA->offsetIndexDelta);
|
|
|
|
// Construct the available IDs array. The ordering
|
|
// of this array conforms to the ordering of the
|
|
// index by name table.
|
|
ZONE_IDS = new UnicodeString[DATA->count];
|
|
// Find start of name table, and walk through it
|
|
// linearly. If you're wondering why we don't use
|
|
// the INDEX_BY_ID, it's because that indexes the
|
|
// zone objects, not the name table. The name
|
|
// table is unindexed.
|
|
const char* name = (const char*)DATA + DATA->nameTableDelta;
|
|
for (uint32_t i=0; i<DATA->count; ++i) {
|
|
ZONE_IDS[i] = UnicodeString(name, ""); // invariant converter
|
|
name += uprv_strlen(name) + 1;
|
|
}
|
|
}
|
|
//udata_close(data); // Without udata_close purify will report a leak. However, DATA_LOADED is
|
|
// static, and udata_openChoice will be called only once, and data from
|
|
// udata_openChoice needs to stick around.
|
|
|
|
}
|
|
|
|
// Whether we succeed or fail, stop future attempts
|
|
DATA_LOADED = TRUE;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* udata callback to verify the zone data.
|
|
*/
|
|
UBool U_CALLCONV
|
|
TimeZone::isDataAcceptable(void *context,
|
|
const char *type, const char *name,
|
|
const UDataInfo *pInfo) {
|
|
return
|
|
pInfo->size >= sizeof(UDataInfo) &&
|
|
pInfo->isBigEndian == U_IS_BIG_ENDIAN &&
|
|
pInfo->charsetFamily == U_CHARSET_FAMILY &&
|
|
pInfo->dataFormat[0] == 0x7a && // see TZ_SIG, must be numeric literals to be portable
|
|
pInfo->dataFormat[1] == 0x6f && // (this is not a string, it just looks like one for debugging)
|
|
pInfo->dataFormat[2] == 0x6e &&
|
|
pInfo->dataFormat[3] == 0x65 &&
|
|
pInfo->formatVersion[0] == TZ_FORMAT_VERSION;
|
|
}
|
|
|
|
// *****************************************************************************
|
|
// class TimeZone
|
|
// *****************************************************************************
|
|
|
|
TimeZone::TimeZone()
|
|
{
|
|
}
|
|
|
|
// -------------------------------------
|
|
|
|
TimeZone::~TimeZone()
|
|
{
|
|
}
|
|
|
|
// -------------------------------------
|
|
|
|
TimeZone::TimeZone(const TimeZone &source)
|
|
: fID(source.fID)
|
|
{
|
|
}
|
|
|
|
// -------------------------------------
|
|
|
|
TimeZone &
|
|
TimeZone::operator=(const TimeZone &right)
|
|
{
|
|
if (this != &right) fID = right.fID;
|
|
return *this;
|
|
}
|
|
|
|
// -------------------------------------
|
|
|
|
UBool
|
|
TimeZone::operator==(const TimeZone& that) const
|
|
{
|
|
return getDynamicClassID() == that.getDynamicClassID() &&
|
|
fID == that.fID;
|
|
}
|
|
|
|
// -------------------------------------
|
|
|
|
TimeZone*
|
|
TimeZone::createTimeZone(const UnicodeString& ID)
|
|
{
|
|
/* We first try to lookup the zone ID in our system list. If this
|
|
* fails, we try to parse it as a custom string GMT[+-]hh:mm. If
|
|
* all else fails, we return GMT, which is probably not what the
|
|
* user wants, but at least is a functioning TimeZone object.
|
|
*/
|
|
TimeZone* result = 0;
|
|
if (!DATA_LOADED) {
|
|
loadZoneData();
|
|
}
|
|
if (DATA != 0) {
|
|
result = createSystemTimeZone(ID);
|
|
}
|
|
if (result == 0) {
|
|
result = createCustomTimeZone(ID);
|
|
}
|
|
if (result == 0) {
|
|
result = GMT->clone();
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Lookup the given name in our system zone table. If found,
|
|
* instantiate a new zone of that name and return it. If not
|
|
* found, return 0.
|
|
*/
|
|
TimeZone*
|
|
TimeZone::createSystemTimeZone(const UnicodeString& name) {
|
|
if (0 == DATA) {
|
|
return 0;
|
|
}
|
|
|
|
// Perform a binary search. Possible optimization: Unroll the
|
|
// search. Not worth it given the small number of zones (416 in
|
|
// 1999j).
|
|
uint32_t low = 0;
|
|
uint32_t high = DATA->count;
|
|
while (high > low) {
|
|
// Invariant: match, if present, must be in the range [low,
|
|
// high).
|
|
uint32_t i = (low + high) / 2;
|
|
int8_t c = name.compare(ZONE_IDS[i]);
|
|
if (c == 0) {
|
|
const int8_t* z = (int8_t*)DATA + INDEX_BY_ID[i];
|
|
// NOTE: standard zones must be before DST zones. We test
|
|
// for this when loading up the data; see loadZoneData().
|
|
return INDEX_BY_ID[i] < DATA->dstDelta ?
|
|
new SimpleTimeZone(*(const StandardZone*)z, name) :
|
|
new SimpleTimeZone(*(const DSTZone*)z, name);
|
|
} else if (c < 0) {
|
|
high = i;
|
|
} else {
|
|
low = i + 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
// -------------------------------------
|
|
|
|
void
|
|
TimeZone::initDefault()
|
|
{
|
|
if (!DATA_LOADED) {
|
|
loadZoneData();
|
|
}
|
|
// This function is called by createDefault() to initialize
|
|
// fgDefaultZone from the system default time zone. If
|
|
// fgDefaultZone is already filled in, we obviously don't have to
|
|
// do anything.
|
|
if (fgDefaultZone == 0) {
|
|
Mutex lock(&LOCK);
|
|
if (fgDefaultZone == 0) {
|
|
// We access system timezone data through TPlatformUtilities,
|
|
// including tzset(), timezone, and tzname[].
|
|
int32_t rawOffset = 0;
|
|
const char *hostID;
|
|
|
|
// First, try to create a system timezone, based
|
|
// on the string ID in tzname[0].
|
|
{
|
|
// NOTE: Global mutex here; TimeZone mutex above
|
|
Mutex lock; // mutexed to avoid threading issues in the platform fcns.
|
|
uprv_tzset(); // Initialize tz... system data
|
|
|
|
// get the timezone ID from the host.
|
|
hostID = uprv_tzname(0);
|
|
|
|
// Invert sign because UNIX semantics are backwards
|
|
rawOffset = uprv_timezone() * -U_MILLIS_PER_SECOND;
|
|
}
|
|
|
|
// Try to create a system zone with the given ID. This
|
|
// _always fails on Windows_ because Windows returns a
|
|
// non-standard localized zone name, e.g., "Pacific
|
|
// Standard Time" on U.S. systems set to PST. One way to
|
|
// fix this is to add a Windows-specific mapping table,
|
|
// but that means we'd have to do so for every locale. A
|
|
// better way is to use the offset and find a
|
|
// corresponding zone, which is what we do below.
|
|
fgDefaultZone = createSystemTimeZone(hostID);
|
|
|
|
// If we couldn't get the time zone ID from the host, use
|
|
// the default host timezone offset. Further refinements
|
|
// to this include querying the host to determine if DST
|
|
// is in use or not and possibly using the host locale to
|
|
// select from multiple zones at a the same offset. We
|
|
// don't do any of this now, but we could easily add this.
|
|
if (fgDefaultZone == 0 && DATA != 0) {
|
|
// Use the designated default in the time zone list that has the
|
|
// appropriate GMT offset, if there is one.
|
|
|
|
const OffsetIndex* index = INDEX_BY_OFFSET;
|
|
|
|
for (;;) {
|
|
if (index->gmtOffset > rawOffset) {
|
|
// Went past our desired offset; no match found
|
|
break;
|
|
}
|
|
if (index->gmtOffset == rawOffset) {
|
|
// Found our desired offset
|
|
fgDefaultZone = createTimeZone(ZONE_IDS[index->defaultZone]);
|
|
break;
|
|
}
|
|
// Compute the position of the next entry. If the delta value
|
|
// in this entry is zero, then there is no next entry.
|
|
uint16_t delta = index->nextEntryDelta;
|
|
if (delta == 0) {
|
|
break;
|
|
}
|
|
index = (const OffsetIndex*)((int8_t*)index + delta);
|
|
}
|
|
}
|
|
|
|
// If we _still_ don't have a time zone, use GMT. This
|
|
// can only happen if the raw offset returned by
|
|
// uprv_timezone() does not correspond to any system zone.
|
|
if (fgDefaultZone == 0) {
|
|
fgDefaultZone = GMT->clone();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// -------------------------------------
|
|
|
|
TimeZone*
|
|
TimeZone::createDefault()
|
|
{
|
|
initDefault(); // After this call fgDefaultZone is not NULL
|
|
Mutex lock(&LOCK); // In case adoptDefault is called
|
|
return fgDefaultZone->clone();
|
|
}
|
|
|
|
// -------------------------------------
|
|
|
|
void
|
|
TimeZone::adoptDefault(TimeZone* zone)
|
|
{
|
|
if (zone != NULL)
|
|
{
|
|
Mutex mutex(&LOCK);
|
|
|
|
if (fgDefaultZone != NULL) {
|
|
delete fgDefaultZone;
|
|
}
|
|
|
|
fgDefaultZone = zone;
|
|
}
|
|
}
|
|
// -------------------------------------
|
|
|
|
void
|
|
TimeZone::setDefault(const TimeZone& zone)
|
|
{
|
|
adoptDefault(zone.clone());
|
|
}
|
|
|
|
// -------------------------------------
|
|
|
|
const UnicodeString** const
|
|
TimeZone::createAvailableIDs(int32_t rawOffset, int32_t& numIDs)
|
|
{
|
|
// We are creating a new array to existing UnicodeString pointers.
|
|
// The caller will delete the array when done, but not the pointers
|
|
// in the array.
|
|
|
|
if (!DATA_LOADED) {
|
|
loadZoneData();
|
|
}
|
|
if (0 == DATA) {
|
|
numIDs = 0;
|
|
return 0;
|
|
}
|
|
|
|
/* The offset index table is a table of variable-sized objects.
|
|
* Each entry has an offset to the next entry; the last entry has
|
|
* a next entry offset of zero.
|
|
*
|
|
* The entries are sorted in ascending numerical order of GMT
|
|
* offset. Each entry lists all the system zones at that offset,
|
|
* in lexicographic order of ID. Note that this ordering is
|
|
* somewhat significant in that the _first_ zone in each list is
|
|
* what will be chosen as the default under certain fallback
|
|
* conditions. We currently just let that be the
|
|
* lexicographically first zone, but we could also adjust the list
|
|
* to pick which zone was first for this situation -- probably not
|
|
* worth the trouble, except for the fact that this fallback is
|
|
* _always_ used to determine the default zone on Windows.
|
|
*
|
|
* The list of zones is actually just a list of integers, from
|
|
* 0..n-1, where n is the total number of system zones. The
|
|
* numbering corresponds exactly to the ordering of ZONE_IDS.
|
|
*/
|
|
const OffsetIndex* index = INDEX_BY_OFFSET;
|
|
|
|
for (;;) {
|
|
if (index->gmtOffset > rawOffset) {
|
|
// Went past our desired offset; no match found
|
|
break;
|
|
}
|
|
if (index->gmtOffset == rawOffset) {
|
|
// Found our desired offset
|
|
const UnicodeString** const result =
|
|
(const UnicodeString** const) new UnicodeString*[index->count];
|
|
const uint16_t* zoneNumberArray = &(index->zoneNumber);
|
|
for (uint16_t i=0; i<index->count; ++i) {
|
|
// Pointer assignment - use existing UnicodeString object!
|
|
// Don't create a new UnicodeString on the heap here!
|
|
result[i] = &ZONE_IDS[zoneNumberArray[i]];
|
|
}
|
|
numIDs = index->count;
|
|
return result;
|
|
}
|
|
// Compute the position of the next entry. If the delta value
|
|
// in this entry is zero, then there is no next entry.
|
|
uint16_t delta = index->nextEntryDelta;
|
|
if (delta == 0) {
|
|
break;
|
|
}
|
|
index = (const OffsetIndex*)((int8_t*)index + delta);
|
|
}
|
|
|
|
numIDs = 0;
|
|
return 0;
|
|
}
|
|
|
|
// -------------------------------------
|
|
|
|
const UnicodeString** const
|
|
TimeZone::createAvailableIDs(int32_t& numIDs)
|
|
{
|
|
// We are creating a new array to existing UnicodeString pointers.
|
|
// The caller will delete the array when done, but not the pointers
|
|
// in the array.
|
|
//
|
|
// This is really unnecessary, given the fact that we have an
|
|
// array of the IDs already constructed, and we could just return
|
|
// that. However, that would be a breaking API change, and some
|
|
// callers familiar with the original API might try to delete it.
|
|
|
|
if (!DATA_LOADED) {
|
|
loadZoneData();
|
|
}
|
|
if (0 == DATA) {
|
|
numIDs = 0;
|
|
return 0;
|
|
}
|
|
|
|
const UnicodeString** const result =
|
|
(const UnicodeString** const) new UnicodeString*[DATA->count];
|
|
|
|
// Create a list of pointers to each and every zone ID
|
|
for (uint32_t i=0; i<DATA->count; ++i) {
|
|
// Pointer assignment - use existing UnicodeString object!
|
|
// Don't create a new UnicodeString on the heap here!
|
|
result[i] = &ZONE_IDS[i];
|
|
}
|
|
|
|
numIDs = DATA->count;
|
|
return result;
|
|
}
|
|
|
|
// ---------------------------------------
|
|
|
|
|
|
UnicodeString&
|
|
TimeZone::getDisplayName(UnicodeString& result) const
|
|
{
|
|
return getDisplayName(FALSE,LONG,Locale::getDefault(), result);
|
|
}
|
|
|
|
UnicodeString&
|
|
TimeZone::getDisplayName(const Locale& locale, UnicodeString& result) const
|
|
{
|
|
return getDisplayName(FALSE, LONG, locale, result);
|
|
}
|
|
|
|
UnicodeString&
|
|
TimeZone::getDisplayName(UBool daylight, EDisplayType style, UnicodeString& result) const
|
|
{
|
|
return getDisplayName(daylight,style, Locale::getDefault(), result);
|
|
}
|
|
|
|
UnicodeString&
|
|
TimeZone::getDisplayName(UBool daylight, EDisplayType style, const Locale& locale, UnicodeString& result) const
|
|
{
|
|
// SRL TODO: cache the SDF, just like java.
|
|
UErrorCode status = U_ZERO_ERROR;
|
|
|
|
SimpleDateFormat format(style == LONG ? "zzzz" : "z",locale,status);
|
|
|
|
if(!U_SUCCESS(status))
|
|
{
|
|
// *** SRL what do I do here?!!
|
|
return result.remove();
|
|
}
|
|
|
|
// Create a new SimpleTimeZone as a stand-in for this zone; the
|
|
// stand-in will have no DST, or all DST, but the same ID and offset,
|
|
// and hence the same display name.
|
|
// We don't cache these because they're small and cheap to create.
|
|
UnicodeString tempID;
|
|
SimpleTimeZone *tz = daylight ?
|
|
// For the pure-DST zone, we use JANUARY and DECEMBER
|
|
|
|
new SimpleTimeZone(getRawOffset(), getID(tempID),
|
|
Calendar::JANUARY , 1, 0, 0,
|
|
Calendar::DECEMBER , 31, 0, U_MILLIS_PER_DAY, status) :
|
|
new SimpleTimeZone(getRawOffset(), getID(tempID));
|
|
|
|
format.applyPattern(style == LONG ? "zzzz" : "z");
|
|
Calendar *myCalendar = (Calendar*)format.getCalendar();
|
|
myCalendar->setTimeZone(*tz); // copy
|
|
|
|
delete tz;
|
|
|
|
FieldPosition pos(FieldPosition::DONT_CARE);
|
|
return format.format(UDate(196262345678.), result, pos); // Must use a valid date here.
|
|
}
|
|
|
|
|
|
/**
|
|
* Parse a custom time zone identifier and return a corresponding zone.
|
|
* @param id a string of the form GMT[+-]hh:mm, GMT[+-]hhmm, or
|
|
* GMT[+-]hh.
|
|
* @return a newly created SimpleTimeZone with the given offset and
|
|
* no Daylight Savings Time, or null if the id cannot be parsed.
|
|
*/
|
|
TimeZone*
|
|
TimeZone::createCustomTimeZone(const UnicodeString& id)
|
|
{
|
|
static const int32_t kParseFailed = -99999;
|
|
|
|
NumberFormat* numberFormat = 0;
|
|
|
|
UnicodeString idUppercase = id;
|
|
idUppercase.toUpper();
|
|
|
|
if (id.length() > GMT_ID_LENGTH &&
|
|
idUppercase.startsWith(GMT_ID))
|
|
{
|
|
ParsePosition pos(GMT_ID_LENGTH);
|
|
UBool negative = FALSE;
|
|
int32_t offset;
|
|
|
|
if (id[pos.getIndex()] == 0x002D /*'-'*/)
|
|
negative = TRUE;
|
|
else if (id[pos.getIndex()] != 0x002B /*'+'*/)
|
|
return 0;
|
|
pos.setIndex(pos.getIndex() + 1);
|
|
|
|
UErrorCode success = U_ZERO_ERROR;
|
|
numberFormat = NumberFormat::createInstance(success);
|
|
numberFormat->setParseIntegerOnly(TRUE);
|
|
|
|
|
|
// Look for either hh:mm, hhmm, or hh
|
|
int32_t start = pos.getIndex();
|
|
|
|
Formattable n(kParseFailed);
|
|
|
|
numberFormat->parse(id, n, pos);
|
|
if (pos.getIndex() == start) {
|
|
delete numberFormat;
|
|
return 0;
|
|
}
|
|
offset = n.getLong();
|
|
|
|
if (pos.getIndex() < id.length() &&
|
|
id[pos.getIndex()] == 0x003A /*':'*/)
|
|
{
|
|
// hh:mm
|
|
offset *= 60;
|
|
pos.setIndex(pos.getIndex() + 1);
|
|
int32_t oldPos = pos.getIndex();
|
|
n.setLong(kParseFailed);
|
|
numberFormat->parse(id, n, pos);
|
|
if (pos.getIndex() == oldPos) {
|
|
delete numberFormat;
|
|
return 0;
|
|
}
|
|
offset += n.getLong();
|
|
}
|
|
else
|
|
{
|
|
// hhmm or hh
|
|
|
|
// Be strict about interpreting something as hh; it must be
|
|
// an offset < 30, and it must be one or two digits. Thus
|
|
// 0010 is interpreted as 00:10, but 10 is interpreted as
|
|
// 10:00.
|
|
if (offset < 30 && (pos.getIndex() - start) <= 2)
|
|
offset *= 60; // hh, from 00 to 29; 30 is 00:30
|
|
else
|
|
offset = offset % 100 + offset / 100 * 60; // hhmm
|
|
}
|
|
|
|
if(negative)
|
|
offset = -offset;
|
|
|
|
delete numberFormat;
|
|
return new SimpleTimeZone(offset * 60000, CUSTOM_ID);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
UBool
|
|
TimeZone::hasSameRules(const TimeZone& other) const
|
|
{
|
|
return (getRawOffset() == other.getRawOffset() &&
|
|
useDaylightTime() == other.useDaylightTime());
|
|
}
|
|
|
|
//eof
|