scuffed-code/icu4c/source/tools/makeconv/genmbcs.c
2000-07-13 00:17:05 +00:00

887 lines
30 KiB
C

/*
*******************************************************************************
*
* Copyright (C) 2000, International Business Machines
* Corporation and others. All Rights Reserved.
*
*******************************************************************************
* file name: genmbcs.c
* encoding: US-ASCII
* tab size: 8 (not used)
* indentation:4
*
* created on: 2000jul06
* created by: Markus W. Scherer
*/
#include <stdio.h>
#include "unicode/utypes.h"
#include "cstring.h"
#include "cmemory.h"
#include "unewdata.h"
#include "ucnvmbcs.h"
#include "genmbcs.h"
enum {
MBCS_STATE_FLAG_DIRECT=1,
MBCS_STATE_FLAG_SURROGATES,
MBCS_STATE_FLAG_READY=16
};
enum {
MBCS_MAX_STATE_COUNT=128,
MBCS_MAX_FALLBACK_COUNT=1000
};
struct MBCSData {
/* toUnicode */
int32_t stateTable[MBCS_MAX_STATE_COUNT][256];
uint32_t stateFlags[MBCS_MAX_STATE_COUNT],
stateOffsetSum[MBCS_MAX_STATE_COUNT];
_MBCSToUFallback toUFallbacks[MBCS_MAX_FALLBACK_COUNT];
uint16_t *unicodeCodeUnits;
_MBCSHeader header;
uint32_t countToUCodeUnits;
/* fromUnicode */
uint16_t table[0x20440];
uint8_t *fromUBytes;
uint32_t stage2Top, stage3Top, maxCharLength;
};
static void
MBCSInit(MBCSData *mbcsData, uint8_t maxCharLength) {
uprv_memset(mbcsData, 0, sizeof(MBCSData));
mbcsData->header.version[0]=1;
mbcsData->stateFlags[0]=MBCS_STATE_FLAG_DIRECT;
mbcsData->maxCharLength=maxCharLength;
mbcsData->header.flags=maxCharLength-1; /* outputType */
}
MBCSData *
MBCSOpen(uint8_t maxCharLength) {
MBCSData *mbcsData=(MBCSData *)uprv_malloc(sizeof(MBCSData));
if(mbcsData!=NULL) {
MBCSInit(mbcsData, maxCharLength);
}
return mbcsData;
}
void
MBCSClose(MBCSData *mbcsData) {
if(mbcsData!=NULL) {
if(mbcsData->unicodeCodeUnits!=NULL) {
uprv_free(mbcsData->unicodeCodeUnits);
}
if(mbcsData->fromUBytes!=NULL) {
uprv_free(mbcsData->fromUBytes);
}
uprv_free(mbcsData);
}
}
const char *
skipWhitespace(const char *s) {
while(*s==' ' || *s=='\t') {
++s;
}
return s;
}
/*
* state table row grammar (ebnf-style):
* (whitespace is allowed between all tokens)
*
* row=[firstentry ','] entry (',' entry)*
* firstentry="initial" | "surrogates"
* (initial state (default for state 0), output is all surrogate pairs)
* entry=range [':' nextstate] ['.' action]
* range=number ['-' number]
* nextstate=number
* (0..7f)
* action='u' | 's' | 'p'
* (unassigned, state change only, surrogate pair)
* number=(1- or 2-digit hexadecimal number)
*/
static const char *
parseState(const char *s, int32_t state[256], uint32_t *pFlags) {
const char *t;
uint32_t start, end, i;
int32_t value;
/* initialize the state */
for(i=0; i<256; ++i) {
state[i]=0x80000000|(MBCS_STATE_ILLEGAL<<27);
}
/* skip leading white space */
s=skipWhitespace(s);
/* is there a "direct" or "surrogates" directive? */
if(uprv_strncmp("direct", s, 6)==0) {
*pFlags=MBCS_STATE_FLAG_DIRECT;
s=skipWhitespace(s+6);
if(*s++!=',') {
return s-1;
}
} else if(*pFlags==0 && uprv_strncmp("surrogates", s, 10)==0) {
*pFlags=MBCS_STATE_FLAG_SURROGATES;
s=skipWhitespace(s+10);
if(*s++!=',') {
return s-1;
}
}
for(;;) {
/* read an entry, the start of the range first */
s=skipWhitespace(s);
start=uprv_strtoul(s, (char **)&t, 16);
if(s==t || 0xff<start) {
return s;
}
s=skipWhitespace(t);
/* read the end of the range if there is one */
if(*s=='-') {
s=skipWhitespace(s+1);
end=uprv_strtoul(s, (char **)&t, 16);
if(s==t || end<start || 0xff<end) {
return s;
}
s=skipWhitespace(t);
} else {
end=start;
}
/* determine the state values for this range */
if(*s!=':' && *s!='.') {
/* the default is: final state with valid entries */
value=0x80000000|(MBCS_STATE_VALID_16<<27UL);
} else {
value=0;
if(*s==':') {
/* get the next state, default to 0 */
s=skipWhitespace(s+1);
i=uprv_strtoul(s, (char **)&t, 16);
if(s!=t) {
if(0x7f<i) {
return s;
}
s=skipWhitespace(t);
value|=i;
}
}
/* get the state action, default to valid */
if(*s=='.') {
/* this is a final state */
value|=0x80000000;
s=skipWhitespace(s+1);
if(*s=='u') {
value|=MBCS_STATE_UNASSIGNED<<27UL;
s=skipWhitespace(s+1);
} else if(*s=='p') {
if(*pFlags!=MBCS_STATE_FLAG_DIRECT) {
value|=MBCS_STATE_VALID_16_PAIR<<27UL;
} else {
value|=MBCS_STATE_VALID_16<<27UL;
}
s=skipWhitespace(s+1);
} else if(*s=='s') {
value|=MBCS_STATE_CHANGE_ONLY<<27UL;
s=skipWhitespace(s+1);
} else {
value|=MBCS_STATE_VALID_16<<27UL;
}
} else {
/* this is an intermediate state, nothing to do */
}
}
/* adjust "final valid" states according to the state flags */
if(((uint32_t)value>>27U)==(16|MBCS_STATE_VALID_16)) {
switch(*pFlags) {
case 0:
/* no adjustment */
break;
case MBCS_STATE_FLAG_DIRECT:
/* set the valid-direct code point to "unassigned"==0xfffe */
value=value&0x87ffffff|(MBCS_STATE_VALID_DIRECT_16<<27UL)|(0xfffe<<7L);
break;
case MBCS_STATE_FLAG_SURROGATES:
value=value&0x87ffffff|(MBCS_STATE_VALID_16_PAIR<<27UL);
break;
default:
break;
}
}
/* set this value for the range */
for(i=start; i<=end; ++i) {
state[i]=value;
}
if(*s==',') {
++s;
} else {
return *s==0 ? NULL : s;
}
}
}
UBool
MBCSAddState(MBCSData *mbcsData, const char *s) {
const char *error;
if(mbcsData->header.countStates==MBCS_MAX_STATE_COUNT) {
fprintf(stderr, "error: too many states (maximum %u)\n", MBCS_MAX_STATE_COUNT);
return FALSE;
}
error=parseState(s, mbcsData->stateTable[mbcsData->header.countStates],
&mbcsData->stateFlags[mbcsData->header.countStates]);
if(error!=NULL) {
fprintf(stderr, "parse error in state definition at '%s'\n", error);
return FALSE;
}
++mbcsData->header.countStates;
return TRUE;
}
UBool
MBCSProcessStates(MBCSData *mbcsData) {
uint32_t sum, i;
int32_t entry;
int state, cell, count;
UBool allStatesReady;
/*
* first make sure that all "next state" values are within limits
* and that all next states after final ones have the "direct"
* flag of initial states
*/
for(state=mbcsData->header.countStates-1; state>=0; --state) {
for(cell=0; cell<256; ++cell) {
entry=mbcsData->stateTable[state][cell];
if((uint32_t)(entry&0x7f)>=mbcsData->header.countStates) {
fprintf(stderr, "error: state table entry [%x][%x] has a next state of %x that is too high\n",
state, cell, entry&0x7f);
return FALSE;
}
if(entry<0 && mbcsData->stateFlags[entry&0x7f]!=MBCS_STATE_FLAG_DIRECT) {
fprintf(stderr, "error: state table entry [%x][%x] is final but has a non-initial next state of %x\n",
state, cell, entry&0x7f);
return FALSE;
}
}
}
/*
* Sum up the offsets for all states.
* In each final state (where there are only final entries),
* the offsets add up directly.
* In all other state table rows, for each transition entry to another state,
* the offsets sum of that state needs to be added.
* This is achieved in at most countStates iterations.
*/
allStatesReady=FALSE;
for(count=mbcsData->header.countStates; !allStatesReady && count>=0; --count) {
allStatesReady=TRUE;
for(state=mbcsData->header.countStates-1; state>=0; --state) {
if(!(mbcsData->stateFlags[state]&MBCS_STATE_FLAG_READY)) {
allStatesReady=FALSE;
sum=0;
/* at first, add up only the final delta offsets to keep them <512 */
for(cell=0; cell<256; ++cell) {
entry=mbcsData->stateTable[state][cell];
if(entry<0) {
switch((uint32_t)entry>>27U) {
case 16|MBCS_STATE_VALID_16:
mbcsData->stateTable[state][cell]=entry&0xf800007f|(sum<<7L);
sum+=1;
break;
case 16|MBCS_STATE_VALID_16_PAIR:
mbcsData->stateTable[state][cell]=entry&0xf800007f|(sum<<7L);
sum+=2;
break;
default:
/* no addition */
break;
}
}
}
/* now, add up the delta offsets for the transitional entries */
for(cell=0; cell<256; ++cell) {
entry=mbcsData->stateTable[state][cell];
if(entry>=0) {
if(mbcsData->stateFlags[entry&0x7f]&MBCS_STATE_FLAG_READY) {
mbcsData->stateTable[state][cell]=entry&0xf800007f|(sum<<7L);
sum+=mbcsData->stateOffsetSum[entry&0x7f];
} else {
/* that next state does not have a sum yet, we cannot finish the one for this state */
sum=0xffffffff;
break;
}
}
}
if(sum!=0xffffffff) {
mbcsData->stateOffsetSum[state]=sum;
mbcsData->stateFlags[state]|=MBCS_STATE_FLAG_READY;
}
}
}
}
if(!allStatesReady) {
fprintf(stderr, "error: the state table contains loops\n");
return FALSE;
}
/*
* For all "direct" (i.e., initial) states>0,
* the offsets need to be increased by the sum of
* the previous initial states.
*/
sum=mbcsData->stateOffsetSum[0];
for(state=1; state<(int)mbcsData->header.countStates; ++state) {
if((mbcsData->stateFlags[state]&0xf)==MBCS_STATE_FLAG_DIRECT) {
uint32_t sum2=sum<<7;
sum+=mbcsData->stateOffsetSum[state];
for(cell=0; cell<256; ++cell) {
entry=mbcsData->stateTable[state][cell];
if(entry>=0) {
mbcsData->stateTable[state][cell]=entry+sum2;
}
}
}
}
if(VERBOSE) {
printf("the total number of offsets is 0x%lx=%lu\n", sum, sum);
}
/* round up to the next even number to have the following data 32-bit-aligned */
sum=(sum+1)&~1;
mbcsData->countToUCodeUnits=sum;
/* allocate the code unit array and prefill it with "unassigned" values */
mbcsData->unicodeCodeUnits=(uint16_t *)uprv_malloc(sum*sizeof(uint16_t));
if(mbcsData->unicodeCodeUnits==NULL) {
fprintf(stderr, "error: out of memory allocating %ld 16-bit code units\n", sum);
return FALSE;
}
for(i=0; i<sum; ++i) {
mbcsData->unicodeCodeUnits[i]=0xfffe;
}
/* allocate the codepage mappings and preset the first 16 characters to 0 */
mbcsData->fromUBytes=(uint8_t *)uprv_malloc(0x100000*mbcsData->maxCharLength); /* 1M mappings is the maximum possible */
if(mbcsData->fromUBytes==NULL) {
fprintf(stderr, "error: out of memory allocating %ldMB for target mappings\n", mbcsData->maxCharLength);
return FALSE;
}
uprv_memset(mbcsData->fromUBytes, 0, 16*mbcsData->maxCharLength);
mbcsData->stage2Top=0x80;
mbcsData->stage3Top=16*mbcsData->maxCharLength;
return TRUE;
}
static UBool
setFallback(MBCSData *mbcsData, uint32_t offset, UChar32 c) {
_MBCSToUFallback *toUFallbacks=mbcsData->toUFallbacks;
uint32_t i, limit;
/* first, see if there is already a fallback for this offset */
limit=mbcsData->header.countToUFallbacks;
/* do a linear search for the fallback mapping (the table is not yet sorted) */
for(i=0; i<limit; ++i) {
if(offset==toUFallbacks[i].offset) {
toUFallbacks[i].codePoint=c;
return TRUE;
}
}
/* if there is no fallback for this offset, then add one */
if(limit>=MBCS_MAX_FALLBACK_COUNT) {
fprintf(stderr, "error: too many toUnicode fallbacks, currently at: U+%lx\n", c);
return FALSE;
}
toUFallbacks[limit].offset=offset;
toUFallbacks[limit].codePoint=c;
mbcsData->header.countToUFallbacks=limit+1;
return TRUE;
}
static void
removeFallback(MBCSData *mbcsData, uint32_t offset) {
_MBCSToUFallback *toUFallbacks=mbcsData->toUFallbacks;
uint32_t i, limit;
/* see if there is a fallback for this offset */
limit=mbcsData->header.countToUFallbacks;
/* do a linear search for the fallback mapping (the table is not yet sorted) */
for(i=0; i<limit; ++i) {
if(offset==toUFallbacks[limit].offset) {
/* copy the last fallback entry here to keep the list contiguous */
toUFallbacks[i].offset=toUFallbacks[limit-1].offset;
toUFallbacks[i].codePoint=toUFallbacks[limit-1].codePoint;
mbcsData->header.countToUFallbacks=limit-1;
return;
}
}
}
/*
* isFallback is almost a boolean:
* 1 (TRUE) this is a fallback mapping
* 0 (FALSE) this is a precise mapping
* -1 the precision of this mapping is not specified
*/
UBool
MBCSAddToUnicode(MBCSData *mbcsData,
const uint8_t *bytes, int32_t length,
UChar32 c,
int8_t isFallback) {
uint32_t offset=0, b=0;
int32_t i=0, entry;
uint8_t state=0;
if(mbcsData->header.countStates==0) {
fprintf(stderr, "error: there is no state information!\n");
return FALSE;
}
/* put together a 32-bit value for the byte sequence for errors */
for(i=0; i<length; ++i) {
b=(b<<8)|bytes[i];
}
/*
* Walk down the state table like in conversion,
* much like getNextUChar().
* We assume that c<=0x10ffff.
*/
for(i=0;;) {
entry=mbcsData->stateTable[state][bytes[i++]];
if(entry>=0) {
if(i==length) {
fprintf(stderr, "error: byte sequence too short, ends in non-final state %hu: %lx (U+%lx)\n", state, b, c);
return FALSE;
}
state=(uint8_t)entry&0x7f;
offset+=entry>>7;
} else {
if(i<length) {
fprintf(stderr, "error: byte sequence too long by %d bytes, final state %hu: %lx (U+%lx)\n", (length-i), state, b, c);
return FALSE;
}
switch((uint32_t)entry>>27U) {
case 16|MBCS_STATE_ILLEGAL:
fprintf(stderr, "error: byte sequence ends in illegal state: %lx (U+%lx)\n", b, c);
return FALSE;
case 16|MBCS_STATE_CHANGE_ONLY:
fprintf(stderr, "error: byte sequence ends in state-change-only: %lx (U+%lx)\n", b, c);
return FALSE;
case 16|MBCS_STATE_UNASSIGNED:
fprintf(stderr, "error: byte sequence ends in unassigned state: %lx (U+%lx)\n", b, c);
return FALSE;
case 16|MBCS_STATE_FALLBACK_DIRECT_16:
case 16|MBCS_STATE_VALID_DIRECT_16:
case 16|MBCS_STATE_FALLBACK_DIRECT_20:
case 16|MBCS_STATE_VALID_DIRECT_20:
if((entry&0x7ffff80)!=0x7fff00) {
/* the "direct" action's value is not "unassigned" any more */
if(isFallback>=0 && (uint32_t)entry>>27U>=(16|MBCS_STATE_VALID_DIRECT_16)) {
/* do not overwrite precise mappings with specified-precision mappings */
if(isFallback==0) {
/* precise over precise: error */
fprintf(stderr, "error: duplicate byte sequence: %lx (U+%lx)\n", b, c);
return FALSE;
} else {
/* fallback over precise: ignore */
if(VERBOSE) {
fprintf(stderr, "duplicate byte sequence: %lx (U+%lx)\n", b, c);
}
return TRUE;
}
}
if(VERBOSE) {
fprintf(stderr, "duplicate byte sequence: %lx (U+%lx)\n", b, c);
}
/*
* Continue after the above warning
* if the precision of the mapping is unspecified
* or a fallback is overriding a previous fallback.
*/
}
/* reassign the correct action code */
entry=
entry&0x8000007f|
(MBCS_STATE_FALLBACK_DIRECT_16+(isFallback>0 ? 0 : 2)+(c>=0x10000 ? 1 : 0))
<<27;
/* put the code point into bits 22..7 for BMP, c-0x10000 into 26..7 for others */
if(c<=0xffff) {
entry|=c<<7;
} else {
entry|=(c-0x10000)<<7;
}
mbcsData->stateTable[state][bytes[i-1]]=entry;
break;
case 16|MBCS_STATE_VALID_16:
/* bits 26..16 are not used, 0 */
/* bits 15..7 contain the final offset delta to one 16-bit code unit */
offset+=(uint16_t)entry>>7;
if(isFallback>0) {
/* assign only if there is no precise mapping */
if(mbcsData->unicodeCodeUnits[offset]==0xfffe) {
return setFallback(mbcsData, offset, c);
}
} else {
if(c>=0x10000) {
fprintf(stderr, "error: code point does not fit into valid-16-bit state: %lx (U+%lx)\n", b, c);
return FALSE;
}
if(mbcsData->unicodeCodeUnits[offset]!=0xfffe) {
if(isFallback==0) {
fprintf(stderr, "error: duplicate byte sequence: %lx (U+%lx)\n", b, c);
return FALSE;
}
if(VERBOSE) {
fprintf(stderr, "duplicate byte sequence: %lx (U+%lx)\n", b, c);
}
/* continue after the above warning if the precision of the mapping is unspecified */
}
mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
removeFallback(mbcsData, offset);
}
break;
case 16|MBCS_STATE_VALID_16_PAIR:
/* bits 26..16 are not used, 0 */
/* bits 15..7 contain the final offset delta to two 16-bit code units */
offset+=(uint16_t)entry>>7;
if(isFallback>0) {
/* assign only if there is no precise mapping */
if(mbcsData->unicodeCodeUnits[offset]==0xfffe) {
return setFallback(mbcsData, offset, c);
}
} else {
if(mbcsData->unicodeCodeUnits[offset]!=0xfffe) {
if(isFallback==0) {
fprintf(stderr, "error: duplicate byte sequence: %lx (U+%lx)\n", b, c);
return FALSE;
}
if(VERBOSE) {
fprintf(stderr, "duplicate byte sequence: %lx (U+%lx)\n", b, c);
}
/* continue after the above warning if the precision of the mapping is unspecified */
}
if(c<=0xffff) {
/* set BMP code point */
mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
} else {
/* set a surrogate pair */
mbcsData->unicodeCodeUnits[offset++]=(uint16_t)(0xd7c0+(c>>10));
mbcsData->unicodeCodeUnits[offset]=(uint16_t)(0xdc00+(c&0x3ff));
}
removeFallback(mbcsData, offset);
}
break;
default:
/* reserved, must never occur */
fprintf(stderr, "internal error: byte sequence reached reserved action code, entry %lx: %lx (U+%lx)\n", entry, b, c);
return FALSE;
}
return TRUE;
}
}
}
UBool
MBCSAddFromUnicode(MBCSData *mbcsData,
const uint8_t *bytes, int32_t length,
UChar32 c,
int8_t isFallback) {
uint8_t *p;
uint32_t i, b=0, index;
/* put together a 32-bit value for the byte sequence for errors */
for(i=0; i<(uint32_t)length; ++i) {
b=(b<<8)|bytes[i];
}
/*
* Walk down the triple-stage compact array and
* allocate parts as necessary.
* Note that stage 2 and 3 blocks 0 are reserved for all-unassigned mappings.
* We assume that length<=maxCharLength and that c<=0x10ffff.
*/
/* inspect stage 1 */
index=c>>10;
if(mbcsData->table[index]==0) {
/* allocate another block in stage 2 */
if(mbcsData->stage2Top==2*0xffc0) {
fprintf(stderr, "error: too many code points: %lx (U+%lx)\n", b, c);
return FALSE;
}
/*
* each block has 64*2 entries:
* 6 code point bits 9..4 with 1 flags value and 1 stage 3 index
* stage 1 values are half of the indexes to the stage 2 blocks
* so that they fit into 16 bits;
* therefore, stage 1 values increase only by 64 per stage 2 block
*/
mbcsData->table[index]=(uint16_t)(mbcsData->stage2Top/2);
mbcsData->stage2Top+=0x80;
}
/* inspect stage 2 */
index=0x440+2*((uint32_t)mbcsData->table[index]+((c>>4)&0x3f));
if(mbcsData->table[index+1]==0) {
/* allocate another block in stage 3 */
if(mbcsData->stage3Top+16*mbcsData->maxCharLength>=0x100000) {
fprintf(stderr, "error: too many code points: %lx (U+%lx)\n", b, c);
return FALSE;
}
/* each block has 16*maxCharLength bytes */
mbcsData->table[index+1]=(uint16_t)((mbcsData->stage3Top/16)/mbcsData->maxCharLength);
uprv_memset(mbcsData->fromUBytes+mbcsData->stage3Top, 0, 16*mbcsData->maxCharLength);
mbcsData->stage3Top+=16*mbcsData->maxCharLength;
}
if(isFallback<=0) {
/* for a precise mapping, make sure that there is no other precise one */
if((mbcsData->table[index]&(1<<(c&0xf)))!=0) {
if(isFallback==0) {
fprintf(stderr, "error: duplicate code point: %lx (U+%lx)\n", b, c);
return FALSE;
}
if(VERBOSE) {
fprintf(stderr, "duplicate code point: %lx (U+%lx)\n", b, c);
}
/* continue after the above warning if the precision of the mapping is unspecified */
}
/* set the "assigned" flag */
mbcsData->table[index]|=(1<<(c&0xf));
} else {
/* do not write a fallback if there is a precise mapping already */
if((mbcsData->table[index]&(1<<(c&0xf)))!=0) {
return TRUE;
}
}
/* write the codepage bytes into stage 3 */
++index;
p=mbcsData->fromUBytes+(16*(uint32_t)mbcsData->table[index]+(c&0xf))*mbcsData->maxCharLength;
switch(mbcsData->maxCharLength) {
case 4:
*p++=(uint8_t)(b>>24);
case 3:
*p++=(uint8_t)(b>>16);
case 2:
*p++=(uint8_t)(b>>8);
case 1:
*p++=(uint8_t)b;
default:
break;
}
return TRUE;
}
static int
compareFallbacks(const void *fb1, const void *fb2) {
return ((const _MBCSToUFallback *)fb1)->offset-((const _MBCSToUFallback *)fb2)->offset;
}
static UBool
MBCSTransformEUC(MBCSData *mbcsData) {
uint8_t *p, *q;
uint32_t i, oldLength=mbcsData->maxCharLength, old3Top=mbcsData->stage3Top, new3Top;
uint8_t b;
if(oldLength<3) {
return FALSE;
}
/* test if all first bytes are in {0, 0x8e, 0x8f} */
p=mbcsData->fromUBytes;
for(i=0; i<old3Top; i+=oldLength) {
b=p[i];
if(b!=0 && b!=0x8e && b!=0x8f) {
/* some first byte does not fit the EUC pattern, nothing to be done */
return FALSE;
}
}
/* modify outputType and adjust stage3Top */
mbcsData->header.flags=MBCS_OUTPUT_3_EUC+oldLength-3;
mbcsData->stage3Top=new3Top=(old3Top*(oldLength-1))/oldLength;
/*
* EUC-encode all byte sequences;
* see "CJKV Information Processing" (1st ed. 1999) from Ken Lunde, O'Reilly,
* p. 161 in chapter 4 "Encoding Methods"
*/
q=p;
for(i=0; i<old3Top; i+=oldLength) {
b=*p++;
if(b==0) {
/* short sequences are stored directly */
/* code set 0 or 1 */
*q++=*p++;
*q++=*p++;
} else if(b==0x8e) {
/* code set 2 */
*q++=*p++&0x7f;
*q++=*p++;
} else /* b==0x8f */ {
/* code set 3 */
*q++=*p++;
*q++=*p++&0x7f;
}
if(oldLength==4) {
*q++=*p++;
}
}
return TRUE;
}
void
MBCSPostprocess(MBCSData *mbcsData) {
int32_t entry;
int state, cell;
/* this needs to be printed before the EUC transformation because later maxCharLength might not be correct */
if(VERBOSE) {
printf("number of codepage characters in 16-blocks: 0x%lx=%lu\n",
mbcsData->stage3Top/mbcsData->maxCharLength,
mbcsData->stage3Top/mbcsData->maxCharLength);
}
/* test each state table entry */
for(state=0; state<(int)mbcsData->header.countStates; ++state) {
for(cell=0; cell<256; ++cell) {
entry=mbcsData->stateTable[state][cell];
/*
* if the entry is a final one with a "...-direct" action code
* and the code point is "unassigned" (0xfffe), then change it to
* the "unassigned" action code with bits 26..7 set to zero.
*/
if( ((uint32_t)(((entry&0xf8000000)>>27U)-(16|MBCS_STATE_FALLBACK_DIRECT_16))<=3) &&
(entry&0x7ffff80)==0x7fff00
) {
mbcsData->stateTable[state][cell]=(entry&0x8000007f)|(MBCS_STATE_UNASSIGNED<<27UL);
}
}
}
/* sort toUFallbacks */
if(mbcsData->header.countToUFallbacks>0) {
qsort(mbcsData->toUFallbacks, mbcsData->header.countToUFallbacks, sizeof(_MBCSToUFallback), compareFallbacks);
}
MBCSTransformEUC(mbcsData);
}
uint32_t
MBCSWrite(MBCSData *mbcsData, UNewDataMemory *pData) {
/* fill the header */
mbcsData->header.offsetToUCodeUnits=
sizeof(_MBCSHeader)+
mbcsData->header.countStates*1024+
mbcsData->header.countToUFallbacks*sizeof(_MBCSToUFallback);
mbcsData->header.offsetFromUTable=
mbcsData->header.offsetToUCodeUnits+
mbcsData->countToUCodeUnits*2;
mbcsData->header.offsetFromUBytes=
mbcsData->header.offsetFromUTable+
(0x440+mbcsData->stage2Top)*2;
/* write the MBCS data */
udata_writeBlock(pData, &mbcsData->header, sizeof(_MBCSHeader));
udata_writeBlock(pData, mbcsData->stateTable, mbcsData->header.countStates*1024);
udata_writeBlock(pData, mbcsData->toUFallbacks, mbcsData->header.countToUFallbacks*sizeof(_MBCSToUFallback));
udata_writeBlock(pData, mbcsData->unicodeCodeUnits, mbcsData->countToUCodeUnits*2);
udata_writeBlock(pData, mbcsData->table, (0x440+mbcsData->stage2Top)*2);
udata_writeBlock(pData, mbcsData->fromUBytes, mbcsData->stage3Top);
/* return the number of bytes that should have been written */
return mbcsData->header.offsetFromUBytes+mbcsData->stage3Top;
}
#if 0
/* test code, uses only this file and genmbcs.h */
extern int
main(int argc, const char *argv[]) {
MBCSData *mbcsData;
static uint8_t bytes[4];
int32_t entry;
int i, j;
/*
* sample arguments for shift-jis (max 2):
* 0-7f,81-9f:1,a1-df,e0-ef:1 40-7e,80-fc
*
* sample arguments for euc-jp (max 3):
* 0-7f,8e:2,8f:3,a1-fe:1 a1-fe a1-df a1-fe:1
*/
if(argc>=2) {
mbcsData=MBCSOpen(3);
for(i=1; i<argc; ++i) {
if(!MBCSAddState(mbcsData, argv[i])) {
return 2;
}
}
MBCSProcessStates(mbcsData);
bytes[0]=0x5c;
MBCSAddToUnicode(mbcsData, bytes, 1, 0xa5, TRUE);
MBCSAddFromUnicode(mbcsData, bytes, 1, 0xa5, TRUE);
bytes[0]=0xe2;
bytes[1]=0xa3;
MBCSAddToUnicode(mbcsData, bytes, 2, 0x4e00, FALSE);
MBCSAddFromUnicode(mbcsData, bytes, 2, 0x4e00, FALSE);
bytes[0]=0x8e;
bytes[1]=0xdf;
MBCSAddToUnicode(mbcsData, bytes, 2, 0x3415, FALSE);
MBCSAddFromUnicode(mbcsData, bytes, 2, 0x3415, FALSE);
bytes[0]=0x8f;
bytes[1]=0xbb;
bytes[2]=0xcc;
MBCSAddToUnicode(mbcsData, bytes, 3, 0x9876, FALSE);
MBCSAddFromUnicode(mbcsData, bytes, 3, 0x9876, FALSE);
MBCSPostprocess(mbcsData);
for(i=0; i<(int)mbcsData->header.countStates; ++i) {
printf("state=%x: flags=%x\n", i, mbcsData->stateFlags[i]);
for(j=0; j<256; ++j) {
entry=mbcsData->stateTable[i][j];
printf("%2lx %8lx = %u.%x.%5x.%2x\n", j, entry,
(uint32_t)entry>>31, entry>>27&0xf, entry>>7&0xfffff, entry&0x7f);
}
}
MBCSClose(mbcsData);
} else {
fprintf(stderr, "error: missing state table arguments\n");
return 1;
}
return 0;
}
#endif