scuffed-code/icu4c/source/i18n/number_fluent.cpp

393 lines
13 KiB
C++

// © 2017 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
#include "unicode/utypes.h"
#if !UCONFIG_NO_FORMATTING && !UPRV_INCOMPLETE_CPP11_SUPPORT
#include "uassert.h"
#include "unicode/numberformatter.h"
#include "number_decimalquantity.h"
#include "number_formatimpl.h"
#include "umutex.h"
using namespace icu;
using namespace icu::number;
using namespace icu::number::impl;
template<typename Derived>
Derived NumberFormatterSettings<Derived>::notation(const Notation &notation) const {
Derived copy(*this);
// NOTE: Slicing is OK.
copy.fMacros.notation = notation;
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::unit(const icu::MeasureUnit &unit) const {
Derived copy(*this);
// NOTE: Slicing occurs here. However, CurrencyUnit can be restored from MeasureUnit.
// TimeUnit may be affected, but TimeUnit is not as relevant to number formatting.
copy.fMacros.unit = unit;
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::adoptUnit(icu::MeasureUnit *unit) const {
Derived copy(*this);
// Just copy the unit into the MacroProps by value, and delete it since we have ownership.
// NOTE: Slicing occurs here. However, CurrencyUnit can be restored from MeasureUnit.
// TimeUnit may be affected, but TimeUnit is not as relevant to number formatting.
if (unit != nullptr) {
// TODO: On nullptr, reset to default value?
copy.fMacros.unit = *unit;
delete unit;
}
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::perUnit(const icu::MeasureUnit &perUnit) const {
Derived copy(*this);
// See comments above about slicing.
copy.fMacros.perUnit = perUnit;
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::adoptPerUnit(icu::MeasureUnit *perUnit) const {
Derived copy(*this);
// See comments above about slicing and ownership.
if (perUnit != nullptr) {
// TODO: On nullptr, reset to default value?
copy.fMacros.perUnit = *perUnit;
delete perUnit;
}
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::rounding(const Rounder &rounder) const {
Derived copy(*this);
// NOTE: Slicing is OK.
copy.fMacros.rounder = rounder;
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::grouping(const UGroupingStrategy &strategy) const {
Derived copy(*this);
// NOTE: This is slightly different than how the setting is stored in Java
// because we want to put it on the stack.
copy.fMacros.grouper = Grouper::forStrategy(strategy);
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::integerWidth(const IntegerWidth &style) const {
Derived copy(*this);
copy.fMacros.integerWidth = style;
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::symbols(const DecimalFormatSymbols &symbols) const {
Derived copy(*this);
copy.fMacros.symbols.setTo(symbols);
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::adoptSymbols(NumberingSystem *ns) const {
Derived copy(*this);
copy.fMacros.symbols.setTo(ns);
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::unitWidth(const UNumberUnitWidth &width) const {
Derived copy(*this);
copy.fMacros.unitWidth = width;
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::sign(const UNumberSignDisplay &style) const {
Derived copy(*this);
copy.fMacros.sign = style;
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::decimal(const UNumberDecimalSeparatorDisplay &style) const {
Derived copy(*this);
copy.fMacros.decimal = style;
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::padding(const Padder &padder) const {
Derived copy(*this);
copy.fMacros.padder = padder;
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::threshold(int32_t threshold) const {
Derived copy(*this);
copy.fMacros.threshold = threshold;
return copy;
}
// Declare all classes that implement NumberFormatterSettings
// See https://stackoverflow.com/a/495056/1407170
template
class icu::number::NumberFormatterSettings<icu::number::UnlocalizedNumberFormatter>;
template
class icu::number::NumberFormatterSettings<icu::number::LocalizedNumberFormatter>;
UnlocalizedNumberFormatter NumberFormatter::with() {
UnlocalizedNumberFormatter result;
return result;
}
LocalizedNumberFormatter NumberFormatter::withLocale(const Locale &locale) {
return with().locale(locale);
}
// Make the child class constructor that takes the parent class call the parent class's copy constructor
UnlocalizedNumberFormatter::UnlocalizedNumberFormatter(
const NumberFormatterSettings <UnlocalizedNumberFormatter> &other)
: NumberFormatterSettings<UnlocalizedNumberFormatter>(other) {
}
// Make the child class constructor that takes the parent class call the parent class's copy constructor
// For LocalizedNumberFormatter, also copy over the extra fields
LocalizedNumberFormatter::LocalizedNumberFormatter(
const NumberFormatterSettings <LocalizedNumberFormatter> &other)
: NumberFormatterSettings<LocalizedNumberFormatter>(other) {
// No additional copies required
}
LocalizedNumberFormatter::LocalizedNumberFormatter(const MacroProps &macros, const Locale &locale) {
fMacros = macros;
fMacros.locale = locale;
}
LocalizedNumberFormatter UnlocalizedNumberFormatter::locale(const Locale &locale) const {
return LocalizedNumberFormatter(fMacros, locale);
}
SymbolsWrapper::SymbolsWrapper(const SymbolsWrapper &other) {
doCopyFrom(other);
}
SymbolsWrapper &SymbolsWrapper::operator=(const SymbolsWrapper &other) {
if (this == &other) {
return *this;
}
doCleanup();
doCopyFrom(other);
return *this;
}
SymbolsWrapper::~SymbolsWrapper() {
doCleanup();
}
void SymbolsWrapper::setTo(const DecimalFormatSymbols &dfs) {
doCleanup();
fType = SYMPTR_DFS;
fPtr.dfs = new DecimalFormatSymbols(dfs);
}
void SymbolsWrapper::setTo(const NumberingSystem *ns) {
doCleanup();
fType = SYMPTR_NS;
fPtr.ns = ns;
}
void SymbolsWrapper::doCopyFrom(const SymbolsWrapper &other) {
fType = other.fType;
switch (fType) {
case SYMPTR_NONE:
// No action necessary
break;
case SYMPTR_DFS:
// Memory allocation failures are exposed in copyErrorTo()
if (other.fPtr.dfs != nullptr) {
fPtr.dfs = new DecimalFormatSymbols(*other.fPtr.dfs);
} else {
fPtr.dfs = nullptr;
}
break;
case SYMPTR_NS:
// Memory allocation failures are exposed in copyErrorTo()
if (other.fPtr.ns != nullptr) {
fPtr.ns = new NumberingSystem(*other.fPtr.ns);
} else {
fPtr.ns = nullptr;
}
break;
}
}
void SymbolsWrapper::doCleanup() {
switch (fType) {
case SYMPTR_NONE:
// No action necessary
break;
case SYMPTR_DFS:
delete fPtr.dfs;
break;
case SYMPTR_NS:
delete fPtr.ns;
break;
}
}
bool SymbolsWrapper::isDecimalFormatSymbols() const {
return fType == SYMPTR_DFS;
}
bool SymbolsWrapper::isNumberingSystem() const {
return fType == SYMPTR_NS;
}
const DecimalFormatSymbols* SymbolsWrapper::getDecimalFormatSymbols() const {
U_ASSERT(fType == SYMPTR_DFS);
return fPtr.dfs;
}
const NumberingSystem* SymbolsWrapper::getNumberingSystem() const {
U_ASSERT(fType == SYMPTR_NS);
return fPtr.ns;
}
LocalizedNumberFormatter::~LocalizedNumberFormatter() {
delete fCompiled;
}
FormattedNumber LocalizedNumberFormatter::formatInt(int64_t value, UErrorCode &status) const {
if (U_FAILURE(status)) { return FormattedNumber(U_ILLEGAL_ARGUMENT_ERROR); }
auto results = new NumberFormatterResults();
if (results == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return FormattedNumber(status);
}
results->quantity.setToLong(value);
return formatImpl(results, status);
}
FormattedNumber LocalizedNumberFormatter::formatDouble(double value, UErrorCode &status) const {
if (U_FAILURE(status)) { return FormattedNumber(U_ILLEGAL_ARGUMENT_ERROR); }
auto results = new NumberFormatterResults();
if (results == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return FormattedNumber(status);
}
results->quantity.setToDouble(value);
return formatImpl(results, status);
}
FormattedNumber LocalizedNumberFormatter::formatDecimal(StringPiece value, UErrorCode &status) const {
if (U_FAILURE(status)) { return FormattedNumber(U_ILLEGAL_ARGUMENT_ERROR); }
auto results = new NumberFormatterResults();
if (results == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return FormattedNumber(status);
}
results->quantity.setToDecNumber(value);
return formatImpl(results, status);
}
FormattedNumber
LocalizedNumberFormatter::formatImpl(impl::NumberFormatterResults *results, UErrorCode &status) const {
// fUnsafeCallCount contains memory to be interpreted as an atomic int, most commonly
// std::atomic<int32_t>. Since the type of atomic int is platform-dependent, we cast the
// bytes in fUnsafeCallCount to u_atomic_int32_t, a typedef for the platform-dependent
// atomic int type defined in umutex.h.
static_assert(sizeof(u_atomic_int32_t) <= sizeof(fUnsafeCallCount),
"Atomic integer size on this platform exceeds the size allocated by fUnsafeCallCount");
u_atomic_int32_t* callCount = reinterpret_cast<u_atomic_int32_t*>(
const_cast<LocalizedNumberFormatter*>(this)->fUnsafeCallCount);
// A positive value in the atomic int indicates that the data structure is not yet ready;
// a negative value indicates that it is ready. If, after the increment, the atomic int
// is exactly threshold, then it is the current thread's job to build the data structure.
// Note: We set the callCount to INT32_MIN so that if another thread proceeds to increment
// the atomic int, the value remains below zero.
int32_t currentCount = umtx_loadAcquire(*callCount);
if (0 <= currentCount && currentCount <= fMacros.threshold && fMacros.threshold > 0) {
currentCount = umtx_atomic_inc(callCount);
}
if (currentCount == fMacros.threshold && fMacros.threshold > 0) {
// Build the data structure and then use it (slow to fast path).
const NumberFormatterImpl* compiled =
NumberFormatterImpl::fromMacros(fMacros, status);
U_ASSERT(fCompiled == nullptr);
const_cast<LocalizedNumberFormatter *>(this)->fCompiled = compiled;
umtx_storeRelease(*callCount, INT32_MIN);
compiled->apply(results->quantity, results->string, status);
} else if (currentCount < 0) {
// The data structure is already built; use it (fast path).
U_ASSERT(fCompiled != nullptr);
fCompiled->apply(results->quantity, results->string, status);
} else {
// Format the number without building the data structure (slow path).
NumberFormatterImpl::applyStatic(fMacros, results->quantity, results->string, status);
}
// Do not save the results object if we encountered a failure.
if (U_SUCCESS(status)) {
return FormattedNumber(results);
} else {
delete results;
return FormattedNumber(status);
}
}
UnicodeString FormattedNumber::toString() const {
if (fResults == nullptr) {
// TODO: http://bugs.icu-project.org/trac/ticket/13437
return {};
}
return fResults->string.toUnicodeString();
}
Appendable &FormattedNumber::appendTo(Appendable &appendable) {
if (fResults == nullptr) {
// TODO: http://bugs.icu-project.org/trac/ticket/13437
return appendable;
}
appendable.appendString(fResults->string.chars(), fResults->string.length());
return appendable;
}
void FormattedNumber::populateFieldPosition(FieldPosition &fieldPosition, UErrorCode &status) {
if (U_FAILURE(status)) { return; }
if (fResults == nullptr) {
status = fErrorCode;
return;
}
fResults->string.populateFieldPosition(fieldPosition, 0, status);
}
void
FormattedNumber::populateFieldPositionIterator(FieldPositionIterator &iterator, UErrorCode &status) {
if (U_FAILURE(status)) { return; }
if (fResults == nullptr) {
status = fErrorCode;
return;
}
fResults->string.populateFieldPositionIterator(iterator, status);
}
FormattedNumber::~FormattedNumber() {
delete fResults;
}
#endif /* #if !UCONFIG_NO_FORMATTING */