scuffed-code/icu4c/source/i18n/number_skeletons.cpp

1441 lines
50 KiB
C++

// © 2018 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
#include "unicode/utypes.h"
#if !UCONFIG_NO_FORMATTING && !UPRV_INCOMPLETE_CPP11_SUPPORT
// Allow implicit conversion from char16_t* to UnicodeString for this file:
// Helpful in toString methods and elsewhere.
#define UNISTR_FROM_STRING_EXPLICIT
#include "number_skeletons.h"
#include "umutex.h"
#include "ucln_in.h"
#include "patternprops.h"
#include "unicode/ucharstriebuilder.h"
#include "number_utils.h"
#include "number_decimalquantity.h"
#include "unicode/numberformatter.h"
#include "uinvchar.h"
#include "charstr.h"
using namespace icu;
using namespace icu::number;
using namespace icu::number::impl;
using namespace icu::number::impl::skeleton;
namespace {
icu::UInitOnce gNumberSkeletonsInitOnce = U_INITONCE_INITIALIZER;
char16_t* kSerializedStemTrie = nullptr;
UBool U_CALLCONV cleanupNumberSkeletons() {
uprv_free(kSerializedStemTrie);
kSerializedStemTrie = nullptr;
gNumberSkeletonsInitOnce.reset();
return TRUE;
}
void U_CALLCONV initNumberSkeletons(UErrorCode& status) {
ucln_i18n_registerCleanup(UCLN_I18N_NUMBER_SKELETONS, cleanupNumberSkeletons);
UCharsTrieBuilder b(status);
if (U_FAILURE(status)) { return; }
// Section 1:
b.add(u"compact-short", STEM_COMPACT_SHORT, status);
b.add(u"compact-long", STEM_COMPACT_LONG, status);
b.add(u"scientific", STEM_SCIENTIFIC, status);
b.add(u"engineering", STEM_ENGINEERING, status);
b.add(u"notation-simple", STEM_NOTATION_SIMPLE, status);
b.add(u"base-unit", STEM_BASE_UNIT, status);
b.add(u"percent", STEM_PERCENT, status);
b.add(u"permille", STEM_PERMILLE, status);
b.add(u"round-integer", STEM_ROUND_INTEGER, status);
b.add(u"round-unlimited", STEM_ROUND_UNLIMITED, status);
b.add(u"round-currency-standard", STEM_ROUND_CURRENCY_STANDARD, status);
b.add(u"round-currency-cash", STEM_ROUND_CURRENCY_CASH, status);
b.add(u"group-off", STEM_GROUP_OFF, status);
b.add(u"group-min2", STEM_GROUP_MIN2, status);
b.add(u"group-auto", STEM_GROUP_AUTO, status);
b.add(u"group-on-aligned", STEM_GROUP_ON_ALIGNED, status);
b.add(u"group-thousands", STEM_GROUP_THOUSANDS, status);
b.add(u"latin", STEM_LATIN, status);
b.add(u"unit-width-narrow", STEM_UNIT_WIDTH_NARROW, status);
b.add(u"unit-width-short", STEM_UNIT_WIDTH_SHORT, status);
b.add(u"unit-width-full-name", STEM_UNIT_WIDTH_FULL_NAME, status);
b.add(u"unit-width-iso-code", STEM_UNIT_WIDTH_ISO_CODE, status);
b.add(u"unit-width-hidden", STEM_UNIT_WIDTH_HIDDEN, status);
b.add(u"sign-auto", STEM_SIGN_AUTO, status);
b.add(u"sign-always", STEM_SIGN_ALWAYS, status);
b.add(u"sign-never", STEM_SIGN_NEVER, status);
b.add(u"sign-accounting", STEM_SIGN_ACCOUNTING, status);
b.add(u"sign-accounting-always", STEM_SIGN_ACCOUNTING_ALWAYS, status);
b.add(u"sign-except-zero", STEM_SIGN_EXCEPT_ZERO, status);
b.add(u"sign-accounting-except-zero", STEM_SIGN_ACCOUNTING_EXCEPT_ZERO, status);
b.add(u"decimal-auto", STEM_DECIMAL_AUTO, status);
b.add(u"decimal-always", STEM_DECIMAL_ALWAYS, status);
if (U_FAILURE(status)) { return; }
// Section 2:
b.add(u"round-increment", STEM_ROUND_INCREMENT, status);
b.add(u"measure-unit", STEM_MEASURE_UNIT, status);
b.add(u"per-measure-unit", STEM_PER_MEASURE_UNIT, status);
b.add(u"currency", STEM_CURRENCY, status);
b.add(u"integer-width", STEM_INTEGER_WIDTH, status);
b.add(u"numbering-system", STEM_NUMBERING_SYSTEM, status);
b.add(u"scale", STEM_SCALE, status);
if (U_FAILURE(status)) { return; }
// Build the CharsTrie
// TODO: Use SLOW or FAST here?
UnicodeString result;
b.buildUnicodeString(USTRINGTRIE_BUILD_FAST, result, status);
if (U_FAILURE(status)) { return; }
// Copy the result into the global constant pointer
size_t numBytes = result.length() * sizeof(char16_t);
kSerializedStemTrie = static_cast<char16_t*>(uprv_malloc(numBytes));
uprv_memcpy(kSerializedStemTrie, result.getBuffer(), numBytes);
}
inline void appendMultiple(UnicodeString& sb, UChar32 cp, int32_t count) {
for (int i = 0; i < count; i++) {
sb.append(cp);
}
}
#define CHECK_NULL(seen, field, status) (void)(seen); /* for auto-format line wrapping */ \
{ \
if ((seen).field) { \
(status) = U_NUMBER_SKELETON_SYNTAX_ERROR; \
return STATE_NULL; \
} \
(seen).field = true; \
}
#define SKELETON_UCHAR_TO_CHAR(dest, src, start, end, status) (void)(dest); \
{ \
UErrorCode conversionStatus = U_ZERO_ERROR; \
(dest).appendInvariantChars({FALSE, (src).getBuffer() + (start), (end) - (start)}, conversionStatus); \
if (conversionStatus == U_INVARIANT_CONVERSION_ERROR) { \
/* Don't propagate the invariant conversion error; it is a skeleton syntax error */ \
(status) = U_NUMBER_SKELETON_SYNTAX_ERROR; \
return; \
} else if (U_FAILURE(conversionStatus)) { \
(status) = conversionStatus; \
return; \
} \
}
// NOTE: The order of these strings must be consistent with UNumberFormatRoundingMode
const char16_t* const kRoundingModeStrings[] = {
u"ceiling", u"floor", u"down", u"up", u"half-even", u"half-down", u"half-up", u"unnecessary"};
constexpr int32_t kRoundingModeCount = 8;
static_assert(
sizeof(kRoundingModeStrings) / sizeof(*kRoundingModeStrings) == kRoundingModeCount,
"kRoundingModeCount should be the number of rounding modes");
} // anonymous namespace
Notation stem_to_object::notation(skeleton::StemEnum stem) {
switch (stem) {
case STEM_COMPACT_SHORT:
return Notation::compactShort();
case STEM_COMPACT_LONG:
return Notation::compactLong();
case STEM_SCIENTIFIC:
return Notation::scientific();
case STEM_ENGINEERING:
return Notation::engineering();
case STEM_NOTATION_SIMPLE:
return Notation::simple();
default:
U_ASSERT(false);
}
}
MeasureUnit stem_to_object::unit(skeleton::StemEnum stem) {
switch (stem) {
case STEM_BASE_UNIT:
// Slicing is okay
return NoUnit::base(); // NOLINT
case STEM_PERCENT:
// Slicing is okay
return NoUnit::percent(); // NOLINT
case STEM_PERMILLE:
// Slicing is okay
return NoUnit::permille(); // NOLINT
default:
U_ASSERT(false);
}
}
Rounder stem_to_object::rounder(skeleton::StemEnum stem) {
switch (stem) {
case STEM_ROUND_INTEGER:
return Rounder::integer();
case STEM_ROUND_UNLIMITED:
return Rounder::unlimited();
case STEM_ROUND_CURRENCY_STANDARD:
return Rounder::currency(UCURR_USAGE_STANDARD);
case STEM_ROUND_CURRENCY_CASH:
return Rounder::currency(UCURR_USAGE_CASH);
default:
U_ASSERT(false);
}
}
UGroupingStrategy stem_to_object::groupingStrategy(skeleton::StemEnum stem) {
switch (stem) {
case STEM_GROUP_OFF:
return UNUM_GROUPING_OFF;
case STEM_GROUP_MIN2:
return UNUM_GROUPING_MIN2;
case STEM_GROUP_AUTO:
return UNUM_GROUPING_AUTO;
case STEM_GROUP_ON_ALIGNED:
return UNUM_GROUPING_ON_ALIGNED;
case STEM_GROUP_THOUSANDS:
return UNUM_GROUPING_THOUSANDS;
default:
return UNUM_GROUPING_COUNT; // for objects, throw; for enums, return COUNT
}
}
UNumberUnitWidth stem_to_object::unitWidth(skeleton::StemEnum stem) {
switch (stem) {
case STEM_UNIT_WIDTH_NARROW:
return UNUM_UNIT_WIDTH_NARROW;
case STEM_UNIT_WIDTH_SHORT:
return UNUM_UNIT_WIDTH_SHORT;
case STEM_UNIT_WIDTH_FULL_NAME:
return UNUM_UNIT_WIDTH_FULL_NAME;
case STEM_UNIT_WIDTH_ISO_CODE:
return UNUM_UNIT_WIDTH_ISO_CODE;
case STEM_UNIT_WIDTH_HIDDEN:
return UNUM_UNIT_WIDTH_HIDDEN;
default:
return UNUM_UNIT_WIDTH_COUNT; // for objects, throw; for enums, return COUNT
}
}
UNumberSignDisplay stem_to_object::signDisplay(skeleton::StemEnum stem) {
switch (stem) {
case STEM_SIGN_AUTO:
return UNUM_SIGN_AUTO;
case STEM_SIGN_ALWAYS:
return UNUM_SIGN_ALWAYS;
case STEM_SIGN_NEVER:
return UNUM_SIGN_NEVER;
case STEM_SIGN_ACCOUNTING:
return UNUM_SIGN_ACCOUNTING;
case STEM_SIGN_ACCOUNTING_ALWAYS:
return UNUM_SIGN_ACCOUNTING_ALWAYS;
case STEM_SIGN_EXCEPT_ZERO:
return UNUM_SIGN_EXCEPT_ZERO;
case STEM_SIGN_ACCOUNTING_EXCEPT_ZERO:
return UNUM_SIGN_ACCOUNTING_EXCEPT_ZERO;
default:
return UNUM_SIGN_COUNT; // for objects, throw; for enums, return COUNT
}
}
UNumberDecimalSeparatorDisplay stem_to_object::decimalSeparatorDisplay(skeleton::StemEnum stem) {
switch (stem) {
case STEM_DECIMAL_AUTO:
return UNUM_DECIMAL_SEPARATOR_AUTO;
case STEM_DECIMAL_ALWAYS:
return UNUM_DECIMAL_SEPARATOR_ALWAYS;
default:
return UNUM_DECIMAL_SEPARATOR_COUNT; // for objects, throw; for enums, return COUNT
}
}
void enum_to_stem_string::groupingStrategy(UGroupingStrategy value, UnicodeString& sb) {
switch (value) {
case UNUM_GROUPING_OFF:
sb.append(u"group-off", -1);
break;
case UNUM_GROUPING_MIN2:
sb.append(u"group-min2", -1);
break;
case UNUM_GROUPING_AUTO:
sb.append(u"group-auto", -1);
break;
case UNUM_GROUPING_ON_ALIGNED:
sb.append(u"group-on-aligned", -1);
break;
case UNUM_GROUPING_THOUSANDS:
sb.append(u"group-thousands", -1);
break;
default:
U_ASSERT(false);
}
}
void enum_to_stem_string::unitWidth(UNumberUnitWidth value, UnicodeString& sb) {
switch (value) {
case UNUM_UNIT_WIDTH_NARROW:
sb.append(u"unit-width-narrow", -1);
break;
case UNUM_UNIT_WIDTH_SHORT:
sb.append(u"unit-width-short", -1);
break;
case UNUM_UNIT_WIDTH_FULL_NAME:
sb.append(u"unit-width-full-name", -1);
break;
case UNUM_UNIT_WIDTH_ISO_CODE:
sb.append(u"unit-width-iso-code", -1);
break;
case UNUM_UNIT_WIDTH_HIDDEN:
sb.append(u"unit-width-hidden", -1);
break;
default:
U_ASSERT(false);
}
}
void enum_to_stem_string::signDisplay(UNumberSignDisplay value, UnicodeString& sb) {
switch (value) {
case UNUM_SIGN_AUTO:
sb.append(u"sign-auto", -1);
break;
case UNUM_SIGN_ALWAYS:
sb.append(u"sign-always", -1);
break;
case UNUM_SIGN_NEVER:
sb.append(u"sign-never", -1);
break;
case UNUM_SIGN_ACCOUNTING:
sb.append(u"sign-accounting", -1);
break;
case UNUM_SIGN_ACCOUNTING_ALWAYS:
sb.append(u"sign-accounting-always", -1);
break;
case UNUM_SIGN_EXCEPT_ZERO:
sb.append(u"sign-except-zero", -1);
break;
case UNUM_SIGN_ACCOUNTING_EXCEPT_ZERO:
sb.append(u"sign-accounting-except-zero", -1);
break;
default:
U_ASSERT(false);
}
}
void
enum_to_stem_string::decimalSeparatorDisplay(UNumberDecimalSeparatorDisplay value, UnicodeString& sb) {
switch (value) {
case UNUM_DECIMAL_SEPARATOR_AUTO:
sb.append(u"decimal-auto", -1);
break;
case UNUM_DECIMAL_SEPARATOR_ALWAYS:
sb.append(u"decimal-always", -1);
break;
default:
U_ASSERT(false);
}
}
UnlocalizedNumberFormatter skeleton::create(const UnicodeString& skeletonString, UErrorCode& status) {
if (U_FAILURE(status)) { return {}; }
umtx_initOnce(gNumberSkeletonsInitOnce, &initNumberSkeletons, status);
if (U_FAILURE(status)) { return {}; }
MacroProps macros = parseSkeleton(skeletonString, status);
return NumberFormatter::with().macros(macros);
}
UnicodeString skeleton::generate(const MacroProps& macros, UErrorCode& status) {
if (U_FAILURE(status)) { return {}; }
umtx_initOnce(gNumberSkeletonsInitOnce, &initNumberSkeletons, status);
if (U_FAILURE(status)) { return {}; }
UnicodeString sb;
GeneratorHelpers::generateSkeleton(macros, sb, status);
return sb;
}
MacroProps skeleton::parseSkeleton(const UnicodeString& skeletonString, UErrorCode& status) {
// Add a trailing whitespace to the end of the skeleton string to make code cleaner.
UnicodeString tempSkeletonString(skeletonString);
tempSkeletonString.append(u' ');
SeenMacroProps seen;
MacroProps macros;
StringSegment segment(tempSkeletonString, false);
UCharsTrie stemTrie(kSerializedStemTrie);
ParseState stem = STATE_NULL;
int32_t offset = 0;
// Primary skeleton parse loop:
while (offset < segment.length()) {
UChar32 cp = segment.codePointAt(offset);
bool isTokenSeparator = PatternProps::isWhiteSpace(cp);
bool isOptionSeparator = (cp == u'/');
if (!isTokenSeparator && !isOptionSeparator) {
// Non-separator token; consume it.
offset += U16_LENGTH(cp);
if (stem == STATE_NULL) {
// We are currently consuming a stem.
// Go to the next state in the stem trie.
stemTrie.nextForCodePoint(cp);
}
continue;
}
// We are looking at a token or option separator.
// If the segment is nonempty, parse it and reset the segment.
// Otherwise, make sure it is a valid repeating separator.
if (offset != 0) {
segment.setLength(offset);
if (stem == STATE_NULL) {
// The first separator after the start of a token. Parse it as a stem.
stem = parseStem(segment, stemTrie, seen, macros, status);
stemTrie.reset();
} else {
// A separator after the first separator of a token. Parse it as an option.
stem = parseOption(stem, segment, macros, status);
}
segment.resetLength();
if (U_FAILURE(status)) { return macros; }
// Consume the segment:
segment.adjustOffset(offset);
offset = 0;
} else if (stem != STATE_NULL) {
// A separator ('/' or whitespace) following an option separator ('/')
// segment.setLength(U16_LENGTH(cp)); // for error message
// throw new SkeletonSyntaxException("Unexpected separator character", segment);
status = U_NUMBER_SKELETON_SYNTAX_ERROR;
return macros;
} else {
// Two spaces in a row; this is OK.
}
// Does the current stem forbid options?
if (isOptionSeparator && stem == STATE_NULL) {
// segment.setLength(U16_LENGTH(cp)); // for error message
// throw new SkeletonSyntaxException("Unexpected option separator", segment);
status = U_NUMBER_SKELETON_SYNTAX_ERROR;
return macros;
}
// Does the current stem require an option?
if (isTokenSeparator && stem != STATE_NULL) {
switch (stem) {
case STATE_INCREMENT_ROUNDER:
case STATE_MEASURE_UNIT:
case STATE_PER_MEASURE_UNIT:
case STATE_CURRENCY_UNIT:
case STATE_INTEGER_WIDTH:
case STATE_NUMBERING_SYSTEM:
case STATE_SCALE:
// segment.setLength(U16_LENGTH(cp)); // for error message
// throw new SkeletonSyntaxException("Stem requires an option", segment);
status = U_NUMBER_SKELETON_SYNTAX_ERROR;
return macros;
default:
break;
}
stem = STATE_NULL;
}
// Consume the separator:
segment.adjustOffset(U16_LENGTH(cp));
}
U_ASSERT(stem == STATE_NULL);
return macros;
}
ParseState
skeleton::parseStem(const StringSegment& segment, const UCharsTrie& stemTrie, SeenMacroProps& seen,
MacroProps& macros, UErrorCode& status) {
// First check for "blueprint" stems, which start with a "signal char"
switch (segment.charAt(0)) {
case u'.':
CHECK_NULL(seen, rounder, status);
blueprint_helpers::parseFractionStem(segment, macros, status);
return STATE_FRACTION_ROUNDER;
case u'@':
CHECK_NULL(seen, rounder, status);
blueprint_helpers::parseDigitsStem(segment, macros, status);
return STATE_NULL;
default:
break;
}
// Now look at the stemsTrie, which is already be pointing at our stem.
UStringTrieResult stemResult = stemTrie.current();
if (stemResult != USTRINGTRIE_INTERMEDIATE_VALUE && stemResult != USTRINGTRIE_FINAL_VALUE) {
// throw new SkeletonSyntaxException("Unknown stem", segment);
status = U_NUMBER_SKELETON_SYNTAX_ERROR;
return STATE_NULL;
}
auto stem = static_cast<StemEnum>(stemTrie.getValue());
switch (stem) {
// Stems with meaning on their own, not requiring an option:
case STEM_COMPACT_SHORT:
case STEM_COMPACT_LONG:
case STEM_SCIENTIFIC:
case STEM_ENGINEERING:
case STEM_NOTATION_SIMPLE:
CHECK_NULL(seen, notation, status);
macros.notation = stem_to_object::notation(stem);
switch (stem) {
case STEM_SCIENTIFIC:
case STEM_ENGINEERING:
return STATE_SCIENTIFIC; // allows for scientific options
default:
return STATE_NULL;
}
case STEM_BASE_UNIT:
case STEM_PERCENT:
case STEM_PERMILLE:
CHECK_NULL(seen, unit, status);
macros.unit = stem_to_object::unit(stem);
return STATE_NULL;
case STEM_ROUND_INTEGER:
case STEM_ROUND_UNLIMITED:
case STEM_ROUND_CURRENCY_STANDARD:
case STEM_ROUND_CURRENCY_CASH:
CHECK_NULL(seen, rounder, status);
macros.rounder = stem_to_object::rounder(stem);
switch (stem) {
case STEM_ROUND_INTEGER:
return STATE_FRACTION_ROUNDER; // allows for "round-integer/@##"
default:
return STATE_ROUNDER; // allows for rounding mode options
}
case STEM_GROUP_OFF:
case STEM_GROUP_MIN2:
case STEM_GROUP_AUTO:
case STEM_GROUP_ON_ALIGNED:
case STEM_GROUP_THOUSANDS:
CHECK_NULL(seen, grouper, status);
macros.grouper = Grouper::forStrategy(stem_to_object::groupingStrategy(stem));
return STATE_NULL;
case STEM_LATIN:
CHECK_NULL(seen, symbols, status);
macros.symbols.setTo(NumberingSystem::createInstanceByName("latn", status));
return STATE_NULL;
case STEM_UNIT_WIDTH_NARROW:
case STEM_UNIT_WIDTH_SHORT:
case STEM_UNIT_WIDTH_FULL_NAME:
case STEM_UNIT_WIDTH_ISO_CODE:
case STEM_UNIT_WIDTH_HIDDEN:
CHECK_NULL(seen, unitWidth, status);
macros.unitWidth = stem_to_object::unitWidth(stem);
return STATE_NULL;
case STEM_SIGN_AUTO:
case STEM_SIGN_ALWAYS:
case STEM_SIGN_NEVER:
case STEM_SIGN_ACCOUNTING:
case STEM_SIGN_ACCOUNTING_ALWAYS:
case STEM_SIGN_EXCEPT_ZERO:
case STEM_SIGN_ACCOUNTING_EXCEPT_ZERO:
CHECK_NULL(seen, sign, status);
macros.sign = stem_to_object::signDisplay(stem);
return STATE_NULL;
case STEM_DECIMAL_AUTO:
case STEM_DECIMAL_ALWAYS:
CHECK_NULL(seen, decimal, status);
macros.decimal = stem_to_object::decimalSeparatorDisplay(stem);
return STATE_NULL;
// Stems requiring an option:
case STEM_ROUND_INCREMENT:
CHECK_NULL(seen, rounder, status);
return STATE_INCREMENT_ROUNDER;
case STEM_MEASURE_UNIT:
CHECK_NULL(seen, unit, status);
return STATE_MEASURE_UNIT;
case STEM_PER_MEASURE_UNIT:
CHECK_NULL(seen, perUnit, status);
return STATE_PER_MEASURE_UNIT;
case STEM_CURRENCY:
CHECK_NULL(seen, unit, status);
return STATE_CURRENCY_UNIT;
case STEM_INTEGER_WIDTH:
CHECK_NULL(seen, integerWidth, status);
return STATE_INTEGER_WIDTH;
case STEM_NUMBERING_SYSTEM:
CHECK_NULL(seen, symbols, status);
return STATE_NUMBERING_SYSTEM;
case STEM_SCALE:
CHECK_NULL(seen, scale, status);
return STATE_SCALE;
default:
U_ASSERT(false);
}
}
ParseState skeleton::parseOption(ParseState stem, const StringSegment& segment, MacroProps& macros,
UErrorCode& status) {
///// Required options: /////
switch (stem) {
case STATE_CURRENCY_UNIT:
blueprint_helpers::parseCurrencyOption(segment, macros, status);
return STATE_NULL;
case STATE_MEASURE_UNIT:
blueprint_helpers::parseMeasureUnitOption(segment, macros, status);
return STATE_NULL;
case STATE_PER_MEASURE_UNIT:
blueprint_helpers::parseMeasurePerUnitOption(segment, macros, status);
return STATE_NULL;
case STATE_INCREMENT_ROUNDER:
blueprint_helpers::parseIncrementOption(segment, macros, status);
return STATE_ROUNDER;
case STATE_INTEGER_WIDTH:
blueprint_helpers::parseIntegerWidthOption(segment, macros, status);
return STATE_NULL;
case STATE_NUMBERING_SYSTEM:
blueprint_helpers::parseNumberingSystemOption(segment, macros, status);
return STATE_NULL;
case STATE_SCALE:
blueprint_helpers::parseScaleOption(segment, macros, status);
return STATE_NULL;
default:
break;
}
///// Non-required options: /////
// Scientific options
switch (stem) {
case STATE_SCIENTIFIC:
if (blueprint_helpers::parseExponentWidthOption(segment, macros, status)) {
return STATE_SCIENTIFIC;
}
if (blueprint_helpers::parseExponentSignOption(segment, macros, status)) {
return STATE_SCIENTIFIC;
}
break;
default:
break;
}
// Frac-sig option
switch (stem) {
case STATE_FRACTION_ROUNDER:
if (blueprint_helpers::parseFracSigOption(segment, macros, status)) {
return STATE_ROUNDER;
}
break;
default:
break;
}
// Rounding mode option
switch (stem) {
case STATE_ROUNDER:
case STATE_FRACTION_ROUNDER:
if (blueprint_helpers::parseRoundingModeOption(segment, macros, status)) {
return STATE_ROUNDER;
}
break;
default:
break;
}
// Unknown option
// throw new SkeletonSyntaxException("Invalid option", segment);
status = U_NUMBER_SKELETON_SYNTAX_ERROR;
return STATE_NULL;
}
void GeneratorHelpers::generateSkeleton(const MacroProps& macros, UnicodeString& sb, UErrorCode& status) {
// Supported options
if (GeneratorHelpers::notation(macros, sb, status)) {
sb.append(u' ');
}
if (U_FAILURE(status)) { return; }
if (GeneratorHelpers::unit(macros, sb, status)) {
sb.append(u' ');
}
if (U_FAILURE(status)) { return; }
if (GeneratorHelpers::perUnit(macros, sb, status)) {
sb.append(u' ');
}
if (U_FAILURE(status)) { return; }
if (GeneratorHelpers::rounding(macros, sb, status)) {
sb.append(u' ');
}
if (U_FAILURE(status)) { return; }
if (GeneratorHelpers::grouping(macros, sb, status)) {
sb.append(u' ');
}
if (U_FAILURE(status)) { return; }
if (GeneratorHelpers::integerWidth(macros, sb, status)) {
sb.append(u' ');
}
if (U_FAILURE(status)) { return; }
if (GeneratorHelpers::symbols(macros, sb, status)) {
sb.append(u' ');
}
if (U_FAILURE(status)) { return; }
if (GeneratorHelpers::unitWidth(macros, sb, status)) {
sb.append(u' ');
}
if (U_FAILURE(status)) { return; }
if (GeneratorHelpers::sign(macros, sb, status)) {
sb.append(u' ');
}
if (U_FAILURE(status)) { return; }
if (GeneratorHelpers::decimal(macros, sb, status)) {
sb.append(u' ');
}
if (U_FAILURE(status)) { return; }
if (GeneratorHelpers::scale(macros, sb, status)) {
sb.append(u' ');
}
if (U_FAILURE(status)) { return; }
// Unsupported options
if (!macros.padder.isBogus()) {
status = U_UNSUPPORTED_ERROR;
return;
}
if (macros.affixProvider != nullptr) {
status = U_UNSUPPORTED_ERROR;
return;
}
if (macros.rules != nullptr) {
status = U_UNSUPPORTED_ERROR;
return;
}
if (macros.currencySymbols != nullptr) {
status = U_UNSUPPORTED_ERROR;
return;
}
// Remove the trailing space
if (sb.length() > 0) {
sb.truncate(sb.length() - 1);
}
}
bool blueprint_helpers::parseExponentWidthOption(const StringSegment& segment, MacroProps& macros,
UErrorCode&) {
if (segment.charAt(0) != u'+') {
return false;
}
int32_t offset = 1;
int32_t minExp = 0;
for (; offset < segment.length(); offset++) {
if (segment.charAt(offset) == u'e') {
minExp++;
} else {
break;
}
}
if (offset < segment.length()) {
return false;
}
// Use the public APIs to enforce bounds checking
macros.notation = static_cast<ScientificNotation&>(macros.notation).withMinExponentDigits(minExp);
return true;
}
void
blueprint_helpers::generateExponentWidthOption(int32_t minExponentDigits, UnicodeString& sb, UErrorCode&) {
sb.append(u'+');
appendMultiple(sb, u'e', minExponentDigits);
}
bool
blueprint_helpers::parseExponentSignOption(const StringSegment& segment, MacroProps& macros, UErrorCode&) {
// Get the sign display type out of the CharsTrie data structure.
UCharsTrie tempStemTrie(kSerializedStemTrie);
UStringTrieResult result = tempStemTrie.next(
segment.toTempUnicodeString().getBuffer(),
segment.length());
if (result != USTRINGTRIE_INTERMEDIATE_VALUE && result != USTRINGTRIE_FINAL_VALUE) {
return false;
}
auto sign = stem_to_object::signDisplay(static_cast<StemEnum>(tempStemTrie.getValue()));
if (sign == UNUM_SIGN_COUNT) {
return false;
}
macros.notation = static_cast<ScientificNotation&>(macros.notation).withExponentSignDisplay(sign);
return true;
}
void blueprint_helpers::parseCurrencyOption(const StringSegment& segment, MacroProps& macros,
UErrorCode& status) {
// Unlike ICU4J, have to check length manually because ICU4C CurrencyUnit does not check it for us
if (segment.length() != 3) {
status = U_NUMBER_SKELETON_SYNTAX_ERROR;
return;
}
const UChar* currencyCode = segment.toTempUnicodeString().getBuffer();
UErrorCode localStatus = U_ZERO_ERROR;
CurrencyUnit currency(currencyCode, localStatus);
if (U_FAILURE(localStatus)) {
// Not 3 ascii chars
// throw new SkeletonSyntaxException("Invalid currency", segment);
status = U_NUMBER_SKELETON_SYNTAX_ERROR;
return;
}
// Slicing is OK
macros.unit = currency; // NOLINT
}
void
blueprint_helpers::generateCurrencyOption(const CurrencyUnit& currency, UnicodeString& sb, UErrorCode&) {
sb.append(currency.getISOCurrency(), -1);
}
void blueprint_helpers::parseMeasureUnitOption(const StringSegment& segment, MacroProps& macros,
UErrorCode& status) {
const UnicodeString stemString = segment.toTempUnicodeString();
// NOTE: The category (type) of the unit is guaranteed to be a valid subtag (alphanumeric)
// http://unicode.org/reports/tr35/#Validity_Data
int firstHyphen = 0;
while (firstHyphen < stemString.length() && stemString.charAt(firstHyphen) != '-') {
firstHyphen++;
}
if (firstHyphen == stemString.length()) {
// throw new SkeletonSyntaxException("Invalid measure unit option", segment);
status = U_NUMBER_SKELETON_SYNTAX_ERROR;
return;
}
// Need to do char <-> UChar conversion...
if (U_FAILURE(status)) { return; }
CharString type;
SKELETON_UCHAR_TO_CHAR(type, stemString, 0, firstHyphen, status);
CharString subType;
SKELETON_UCHAR_TO_CHAR(subType, stemString, firstHyphen + 1, stemString.length(), status);
// Note: the largest type as of this writing (March 2018) is "volume", which has 24 units.
static constexpr int32_t CAPACITY = 30;
MeasureUnit units[CAPACITY];
UErrorCode localStatus = U_ZERO_ERROR;
int32_t numUnits = MeasureUnit::getAvailable(type.data(), units, CAPACITY, localStatus);
if (U_FAILURE(localStatus)) {
// More than 30 units in this type?
status = U_INTERNAL_PROGRAM_ERROR;
return;
}
for (int32_t i = 0; i < numUnits; i++) {
auto& unit = units[i];
if (uprv_strcmp(subType.data(), unit.getSubtype()) == 0) {
macros.unit = unit;
return;
}
}
// throw new SkeletonSyntaxException("Unknown measure unit", segment);
status = U_NUMBER_SKELETON_SYNTAX_ERROR;
}
void blueprint_helpers::generateMeasureUnitOption(const MeasureUnit& measureUnit, UnicodeString& sb,
UErrorCode&) {
// Need to do char <-> UChar conversion...
sb.append(UnicodeString(measureUnit.getType(), -1, US_INV));
sb.append(u'-');
sb.append(UnicodeString(measureUnit.getSubtype(), -1, US_INV));
}
void blueprint_helpers::parseMeasurePerUnitOption(const StringSegment& segment, MacroProps& macros,
UErrorCode& status) {
// A little bit of a hack: safe the current unit (numerator), call the main measure unit
// parsing code, put back the numerator unit, and put the new unit into per-unit.
MeasureUnit numerator = macros.unit;
parseMeasureUnitOption(segment, macros, status);
macros.perUnit = macros.unit;
macros.unit = numerator;
}
void blueprint_helpers::parseFractionStem(const StringSegment& segment, MacroProps& macros,
UErrorCode& status) {
U_ASSERT(segment.charAt(0) == u'.');
int32_t offset = 1;
int32_t minFrac = 0;
int32_t maxFrac;
for (; offset < segment.length(); offset++) {
if (segment.charAt(offset) == u'0') {
minFrac++;
} else {
break;
}
}
if (offset < segment.length()) {
if (segment.charAt(offset) == u'+') {
maxFrac = -1;
offset++;
} else {
maxFrac = minFrac;
for (; offset < segment.length(); offset++) {
if (segment.charAt(offset) == u'#') {
maxFrac++;
} else {
break;
}
}
}
} else {
maxFrac = minFrac;
}
if (offset < segment.length()) {
// throw new SkeletonSyntaxException("Invalid fraction stem", segment);
status = U_NUMBER_SKELETON_SYNTAX_ERROR;
return;
}
// Use the public APIs to enforce bounds checking
if (maxFrac == -1) {
macros.rounder = Rounder::minFraction(minFrac);
} else {
macros.rounder = Rounder::minMaxFraction(minFrac, maxFrac);
}
}
void
blueprint_helpers::generateFractionStem(int32_t minFrac, int32_t maxFrac, UnicodeString& sb, UErrorCode&) {
if (minFrac == 0 && maxFrac == 0) {
sb.append(u"round-integer", -1);
return;
}
sb.append(u'.');
appendMultiple(sb, u'0', minFrac);
if (maxFrac == -1) {
sb.append(u'+');
} else {
appendMultiple(sb, u'#', maxFrac - minFrac);
}
}
void
blueprint_helpers::parseDigitsStem(const StringSegment& segment, MacroProps& macros, UErrorCode& status) {
U_ASSERT(segment.charAt(0) == u'@');
int offset = 0;
int minSig = 0;
int maxSig;
for (; offset < segment.length(); offset++) {
if (segment.charAt(offset) == u'@') {
minSig++;
} else {
break;
}
}
if (offset < segment.length()) {
if (segment.charAt(offset) == u'+') {
maxSig = -1;
offset++;
} else {
maxSig = minSig;
for (; offset < segment.length(); offset++) {
if (segment.charAt(offset) == u'#') {
maxSig++;
} else {
break;
}
}
}
} else {
maxSig = minSig;
}
if (offset < segment.length()) {
// throw new SkeletonSyntaxException("Invalid significant digits stem", segment);
status = U_NUMBER_SKELETON_SYNTAX_ERROR;
}
// Use the public APIs to enforce bounds checking
if (maxSig == -1) {
macros.rounder = Rounder::minDigits(minSig);
} else {
macros.rounder = Rounder::minMaxDigits(minSig, maxSig);
}
}
void
blueprint_helpers::generateDigitsStem(int32_t minSig, int32_t maxSig, UnicodeString& sb, UErrorCode&) {
appendMultiple(sb, u'@', minSig);
if (maxSig == -1) {
sb.append(u'+');
} else {
appendMultiple(sb, u'#', maxSig - minSig);
}
}
bool blueprint_helpers::parseFracSigOption(const StringSegment& segment, MacroProps& macros,
UErrorCode& status) {
if (segment.charAt(0) != u'@') {
return false;
}
int offset = 0;
int minSig = 0;
int maxSig;
for (; offset < segment.length(); offset++) {
if (segment.charAt(offset) == u'@') {
minSig++;
} else {
break;
}
}
// For the frac-sig option, there must be minSig or maxSig but not both.
// Valid: @+, @@+, @@@+
// Valid: @#, @##, @###
// Invalid: @, @@, @@@
// Invalid: @@#, @@##, @@@#
if (offset < segment.length()) {
if (segment.charAt(offset) == u'+') {
maxSig = -1;
offset++;
} else if (minSig > 1) {
// @@#, @@##, @@@#
// throw new SkeletonSyntaxException("Invalid digits option for fraction rounder", segment);
status = U_NUMBER_SKELETON_SYNTAX_ERROR;
return false;
} else {
maxSig = minSig;
for (; offset < segment.length(); offset++) {
if (segment.charAt(offset) == u'#') {
maxSig++;
} else {
break;
}
}
}
} else {
// @, @@, @@@
// throw new SkeletonSyntaxException("Invalid digits option for fraction rounder", segment);
status = U_NUMBER_SKELETON_SYNTAX_ERROR;
return false;
}
if (offset < segment.length()) {
// throw new SkeletonSyntaxException("Invalid digits option for fraction rounder", segment);
status = U_NUMBER_SKELETON_SYNTAX_ERROR;
return false;
}
auto& oldRounder = static_cast<const FractionRounder&>(macros.rounder);
if (maxSig == -1) {
macros.rounder = oldRounder.withMinDigits(minSig);
} else {
macros.rounder = oldRounder.withMaxDigits(maxSig);
}
return true;
}
void blueprint_helpers::parseIncrementOption(const StringSegment& segment, MacroProps& macros,
UErrorCode& status) {
// Need to do char <-> UChar conversion...
CharString buffer;
SKELETON_UCHAR_TO_CHAR(buffer, segment.toTempUnicodeString(), 0, segment.length(), status);
// Utilize DecimalQuantity/decNumber to parse this for us.
DecimalQuantity dq;
UErrorCode localStatus = U_ZERO_ERROR;
dq.setToDecNumber({buffer.data(), buffer.length()}, localStatus);
if (U_FAILURE(localStatus)) {
// throw new SkeletonSyntaxException("Invalid rounding increment", segment, e);
status = U_NUMBER_SKELETON_SYNTAX_ERROR;
return;
}
double increment = dq.toDouble();
// We also need to figure out how many digits. Do a brute force string operation.
int decimalOffset = 0;
while (decimalOffset < segment.length() && segment.charAt(decimalOffset) != '.') {
decimalOffset++;
}
if (decimalOffset == segment.length()) {
macros.rounder = Rounder::increment(increment);
} else {
int32_t fractionLength = segment.length() - decimalOffset - 1;
macros.rounder = Rounder::increment(increment).withMinFraction(fractionLength);
}
}
void blueprint_helpers::generateIncrementOption(double increment, int32_t trailingZeros, UnicodeString& sb,
UErrorCode&) {
// Utilize DecimalQuantity/double_conversion to format this for us.
DecimalQuantity dq;
dq.setToDouble(increment);
dq.roundToInfinity();
sb.append(dq.toPlainString());
// We might need to append extra trailing zeros for min fraction...
if (trailingZeros > 0) {
appendMultiple(sb, u'0', trailingZeros);
}
}
bool
blueprint_helpers::parseRoundingModeOption(const StringSegment& segment, MacroProps& macros, UErrorCode&) {
for (int rm = 0; rm < kRoundingModeCount; rm++) {
if (segment == UnicodeString(kRoundingModeStrings[rm], -1)) {
macros.rounder = macros.rounder.withMode(static_cast<RoundingMode>(rm));
return true;
}
}
return false;
}
void blueprint_helpers::generateRoundingModeOption(RoundingMode mode, UnicodeString& sb, UErrorCode&) {
sb.append(kRoundingModeStrings[mode], -1);
}
void blueprint_helpers::parseIntegerWidthOption(const StringSegment& segment, MacroProps& macros,
UErrorCode& status) {
int32_t offset = 0;
int32_t minInt = 0;
int32_t maxInt;
if (segment.charAt(0) == u'+') {
maxInt = -1;
offset++;
} else {
maxInt = 0;
}
for (; offset < segment.length(); offset++) {
if (segment.charAt(offset) == u'#') {
maxInt++;
} else {
break;
}
}
if (offset < segment.length()) {
for (; offset < segment.length(); offset++) {
if (segment.charAt(offset) == u'0') {
minInt++;
} else {
break;
}
}
}
if (maxInt != -1) {
maxInt += minInt;
}
if (offset < segment.length()) {
// throw new SkeletonSyntaxException("Invalid integer width stem", segment);
status = U_NUMBER_SKELETON_SYNTAX_ERROR;
return;
}
// Use the public APIs to enforce bounds checking
if (maxInt == -1) {
macros.integerWidth = IntegerWidth::zeroFillTo(minInt);
} else {
macros.integerWidth = IntegerWidth::zeroFillTo(minInt).truncateAt(maxInt);
}
}
void blueprint_helpers::generateIntegerWidthOption(int32_t minInt, int32_t maxInt, UnicodeString& sb,
UErrorCode&) {
if (maxInt == -1) {
sb.append(u'+');
} else {
appendMultiple(sb, u'#', maxInt - minInt);
}
appendMultiple(sb, u'0', minInt);
}
void blueprint_helpers::parseNumberingSystemOption(const StringSegment& segment, MacroProps& macros,
UErrorCode& status) {
// Need to do char <-> UChar conversion...
CharString buffer;
SKELETON_UCHAR_TO_CHAR(buffer, segment.toTempUnicodeString(), 0, segment.length(), status);
NumberingSystem* ns = NumberingSystem::createInstanceByName(buffer.data(), status);
if (ns == nullptr) {
// throw new SkeletonSyntaxException("Unknown numbering system", segment);
status = U_NUMBER_SKELETON_SYNTAX_ERROR;
return;
}
macros.symbols.setTo(ns);
}
void blueprint_helpers::generateNumberingSystemOption(const NumberingSystem& ns, UnicodeString& sb,
UErrorCode&) {
// Need to do char <-> UChar conversion...
sb.append(UnicodeString(ns.getName(), -1, US_INV));
}
void blueprint_helpers::parseScaleOption(const StringSegment& segment, MacroProps& macros,
UErrorCode& status) {
// Need to do char <-> UChar conversion...
CharString buffer;
SKELETON_UCHAR_TO_CHAR(buffer, segment.toTempUnicodeString(), 0, segment.length(), status);
LocalPointer<DecNum> decnum(new DecNum(), status);
if (U_FAILURE(status)) { return; }
decnum->setTo({buffer.data(), buffer.length()}, status);
if (U_FAILURE(status)) {
status = U_NUMBER_SKELETON_SYNTAX_ERROR;
return;
}
// NOTE: The constructor will optimize the decnum for us if possible.
macros.scale = {0, decnum.orphan()};
}
void
blueprint_helpers::generateScaleOption(int32_t magnitude, const DecNum* arbitrary, UnicodeString& sb,
UErrorCode& status) {
// Utilize DecimalQuantity/double_conversion to format this for us.
DecimalQuantity dq;
if (arbitrary != nullptr) {
dq.setToDecNum(*arbitrary, status);
} else {
dq.setToInt(1);
}
dq.adjustMagnitude(magnitude);
dq.roundToInfinity();
sb.append(dq.toPlainString());
}
bool GeneratorHelpers::notation(const MacroProps& macros, UnicodeString& sb, UErrorCode& status) {
if (macros.notation.fType == Notation::NTN_COMPACT) {
UNumberCompactStyle style = macros.notation.fUnion.compactStyle;
if (style == UNumberCompactStyle::UNUM_LONG) {
sb.append(u"compact-long", -1);
return true;
} else if (style == UNumberCompactStyle::UNUM_SHORT) {
sb.append(u"compact-short", -1);
return true;
} else {
// Compact notation generated from custom data (not supported in skeleton)
// The other compact notations are literals
status = U_UNSUPPORTED_ERROR;
return false;
}
} else if (macros.notation.fType == Notation::NTN_SCIENTIFIC) {
const Notation::ScientificSettings& impl = macros.notation.fUnion.scientific;
if (impl.fEngineeringInterval == 3) {
sb.append(u"engineering", -1);
} else {
sb.append(u"scientific", -1);
}
if (impl.fMinExponentDigits > 1) {
sb.append(u'/');
blueprint_helpers::generateExponentWidthOption(impl.fMinExponentDigits, sb, status);
}
if (impl.fExponentSignDisplay != UNUM_SIGN_AUTO) {
sb.append(u'/');
enum_to_stem_string::signDisplay(impl.fExponentSignDisplay, sb);
}
return true;
} else {
// Default value is not shown in normalized form
return false;
}
}
bool GeneratorHelpers::unit(const MacroProps& macros, UnicodeString& sb, UErrorCode& status) {
if (utils::unitIsCurrency(macros.unit)) {
sb.append(u"currency/", -1);
blueprint_helpers::generateCurrencyOption({macros.unit, status}, sb, status);
return true;
} else if (utils::unitIsNoUnit(macros.unit)) {
if (utils::unitIsPercent(macros.unit)) {
sb.append(u"percent", -1);
return true;
} else if (utils::unitIsPermille(macros.unit)) {
sb.append(u"permille", -1);
return true;
} else {
// Default value is not shown in normalized form
return false;
}
} else {
sb.append(u"measure-unit/", -1);
blueprint_helpers::generateMeasureUnitOption(macros.unit, sb, status);
return true;
}
}
bool GeneratorHelpers::perUnit(const MacroProps& macros, UnicodeString& sb, UErrorCode& status) {
// Per-units are currently expected to be only MeasureUnits.
if (utils::unitIsNoUnit(macros.perUnit)) {
if (utils::unitIsPercent(macros.perUnit) || utils::unitIsPermille(macros.perUnit)) {
status = U_UNSUPPORTED_ERROR;
return false;
} else {
// Default value: ok to ignore
return false;
}
} else if (utils::unitIsCurrency(macros.perUnit)) {
status = U_UNSUPPORTED_ERROR;
return false;
} else {
sb.append(u"per-measure-unit/", -1);
blueprint_helpers::generateMeasureUnitOption(macros.perUnit, sb, status);
return true;
}
}
bool GeneratorHelpers::rounding(const MacroProps& macros, UnicodeString& sb, UErrorCode& status) {
if (macros.rounder.fType == Rounder::RND_NONE) {
sb.append(u"round-unlimited", -1);
} else if (macros.rounder.fType == Rounder::RND_FRACTION) {
const Rounder::FractionSignificantSettings& impl = macros.rounder.fUnion.fracSig;
blueprint_helpers::generateFractionStem(impl.fMinFrac, impl.fMaxFrac, sb, status);
} else if (macros.rounder.fType == Rounder::RND_SIGNIFICANT) {
const Rounder::FractionSignificantSettings& impl = macros.rounder.fUnion.fracSig;
blueprint_helpers::generateDigitsStem(impl.fMinSig, impl.fMaxSig, sb, status);
} else if (macros.rounder.fType == Rounder::RND_FRACTION_SIGNIFICANT) {
const Rounder::FractionSignificantSettings& impl = macros.rounder.fUnion.fracSig;
blueprint_helpers::generateFractionStem(impl.fMinFrac, impl.fMaxFrac, sb, status);
sb.append(u'/');
if (impl.fMinSig == -1) {
blueprint_helpers::generateDigitsStem(1, impl.fMaxSig, sb, status);
} else {
blueprint_helpers::generateDigitsStem(impl.fMinSig, -1, sb, status);
}
} else if (macros.rounder.fType == Rounder::RND_INCREMENT) {
const Rounder::IncrementSettings& impl = macros.rounder.fUnion.increment;
sb.append(u"round-increment/", -1);
blueprint_helpers::generateIncrementOption(
impl.fIncrement,
impl.fMinFrac - impl.fMaxFrac,
sb,
status);
} else if (macros.rounder.fType == Rounder::RND_CURRENCY) {
UCurrencyUsage usage = macros.rounder.fUnion.currencyUsage;
if (usage == UCURR_USAGE_STANDARD) {
sb.append(u"round-currency-standard", -1);
} else {
sb.append(u"round-currency-cash", -1);
}
} else {
// Bogus or Error
return false;
}
// Generate the options
if (macros.rounder.fRoundingMode != kDefaultMode) {
sb.append(u'/');
blueprint_helpers::generateRoundingModeOption(macros.rounder.fRoundingMode, sb, status);
}
// NOTE: Always return true for rounding because the default value depends on other options.
return true;
}
bool GeneratorHelpers::grouping(const MacroProps& macros, UnicodeString& sb, UErrorCode& status) {
if (macros.grouper.isBogus()) {
return false; // No value
} else if (macros.grouper.fStrategy == UNUM_GROUPING_COUNT) {
status = U_UNSUPPORTED_ERROR;
return false;
} else if (macros.grouper.fStrategy == UNUM_GROUPING_AUTO) {
return false; // Default value
} else {
enum_to_stem_string::groupingStrategy(macros.grouper.fStrategy, sb);
return true;
}
}
bool GeneratorHelpers::integerWidth(const MacroProps& macros, UnicodeString& sb, UErrorCode& status) {
if (macros.integerWidth.fHasError || macros.integerWidth.isBogus() ||
macros.integerWidth == IntegerWidth::standard()) {
// Error or Default
return false;
}
sb.append(u"integer-width/", -1);
blueprint_helpers::generateIntegerWidthOption(
macros.integerWidth.fUnion.minMaxInt.fMinInt,
macros.integerWidth.fUnion.minMaxInt.fMaxInt,
sb,
status);
return true;
}
bool GeneratorHelpers::symbols(const MacroProps& macros, UnicodeString& sb, UErrorCode& status) {
if (macros.symbols.isNumberingSystem()) {
const NumberingSystem& ns = *macros.symbols.getNumberingSystem();
if (uprv_strcmp(ns.getName(), "latn") == 0) {
sb.append(u"latin", -1);
} else {
sb.append(u"numbering-system/", -1);
blueprint_helpers::generateNumberingSystemOption(ns, sb, status);
}
return true;
} else if (macros.symbols.isDecimalFormatSymbols()) {
status = U_UNSUPPORTED_ERROR;
return false;
} else {
// No custom symbols
return false;
}
}
bool GeneratorHelpers::unitWidth(const MacroProps& macros, UnicodeString& sb, UErrorCode&) {
if (macros.unitWidth == UNUM_UNIT_WIDTH_SHORT || macros.unitWidth == UNUM_UNIT_WIDTH_COUNT) {
return false; // Default or Bogus
}
enum_to_stem_string::unitWidth(macros.unitWidth, sb);
return true;
}
bool GeneratorHelpers::sign(const MacroProps& macros, UnicodeString& sb, UErrorCode&) {
if (macros.sign == UNUM_SIGN_AUTO || macros.sign == UNUM_SIGN_COUNT) {
return false; // Default or Bogus
}
enum_to_stem_string::signDisplay(macros.sign, sb);
return true;
}
bool GeneratorHelpers::decimal(const MacroProps& macros, UnicodeString& sb, UErrorCode&) {
if (macros.decimal == UNUM_DECIMAL_SEPARATOR_AUTO || macros.decimal == UNUM_DECIMAL_SEPARATOR_COUNT) {
return false; // Default or Bogus
}
enum_to_stem_string::decimalSeparatorDisplay(macros.decimal, sb);
return true;
}
bool GeneratorHelpers::scale(const MacroProps& macros, UnicodeString& sb, UErrorCode& status) {
if (!macros.scale.isValid()) {
return false; // Default or Bogus
}
sb.append(u"scale/", -1);
blueprint_helpers::generateScaleOption(
macros.scale.fMagnitude,
macros.scale.fArbitrary,
sb,
status);
return true;
}
#endif /* #if !UCONFIG_NO_FORMATTING */