scuffed-code/icu4c/source/common/rbbinode.cpp
2003-11-06 21:26:07 +00:00

355 lines
11 KiB
C++

/*
***************************************************************************
* Copyright (C) 2002-2003 International Business Machines Corporation *
* and others. All rights reserved. *
***************************************************************************
*/
//
// File: rbbinode.cpp
//
// Implementation of class RBBINode, which represents a node in the
// tree generated when parsing the Rules Based Break Iterator rules.
//
// This "Class" is actually closer to a struct.
// Code using it is expected to directly access fields much of the time.
//
#include "unicode/utypes.h"
#if !UCONFIG_NO_BREAK_ITERATION
#include "unicode/unistr.h"
#include "unicode/uniset.h"
#include "unicode/uchar.h"
#include "unicode/parsepos.h"
#include "uvector.h"
#include "rbbirb.h"
#include "rbbinode.h"
#include "uassert.h"
U_NAMESPACE_BEGIN
int RBBINode::gLastSerial = 0;
//-------------------------------------------------------------------------
//
// Constructor. Just set the fields to reasonable default values.
//
//-------------------------------------------------------------------------
RBBINode::RBBINode(NodeType t) : UMemory() {
fSerialNum = ++gLastSerial;
fType = t;
fParent = NULL;
fLeftChild = NULL;
fRightChild = NULL;
fInputSet = NULL;
fFirstPos = 0;
fLastPos = 0;
fNullable = FALSE;
fLookAheadEnd = FALSE;
fVal = 0;
fPrecedence = precZero;
UErrorCode status = U_ZERO_ERROR;
fFirstPosSet = new UVector(status); // TODO - get a real status from somewhere
fLastPosSet = new UVector(status);
fFollowPos = new UVector(status);
if (t==opCat) {fPrecedence = precOpCat;}
else if (t==opOr) {fPrecedence = precOpOr;}
else if (t==opStart) {fPrecedence = precStart;}
else if (t==opLParen) {fPrecedence = precLParen;}
}
RBBINode::RBBINode(const RBBINode &other) : UMemory(other) {
fSerialNum = ++gLastSerial;
fType = other.fType;
fParent = NULL;
fLeftChild = NULL;
fRightChild = NULL;
fInputSet = other.fInputSet;
fPrecedence = other.fPrecedence;
fText = other.fText;
fFirstPos = other.fFirstPos;
fLastPos = other.fLastPos;
fNullable = other.fNullable;
fVal = other.fVal;
UErrorCode status = U_ZERO_ERROR;
fFirstPosSet = new UVector(status); // TODO - get a real status from somewhere
fLastPosSet = new UVector(status);
fFollowPos = new UVector(status);
}
//-------------------------------------------------------------------------
//
// Destructor. Deletes both this node AND any child nodes,
// except in the case of variable reference nodes. For
// these, the l. child points back to the definition, which
// is common for all references to the variable, meaning
// it can't be deleted here.
//
//-------------------------------------------------------------------------
RBBINode::~RBBINode() {
// printf("deleting node %8x serial %4d\n", this, this->fSerialNum);
delete fInputSet;
fInputSet = NULL;
switch (this->fType) {
case varRef:
case setRef:
// for these node types, multiple instances point to the same "children"
// Storage ownership of children handled elsewhere. Don't delete here.
break;
default:
delete fLeftChild;
fLeftChild = NULL;
delete fRightChild;
fRightChild = NULL;
}
delete fFirstPosSet;
delete fLastPosSet;
delete fFollowPos;
}
//-------------------------------------------------------------------------
//
// cloneTree Make a copy of the subtree rooted at this node.
// Discard any variable references encountered along the way,
// and replace with copies of the variable's definitions.
// Used to replicate the expression underneath variable
// references in preparation for generating the DFA tables.
//
//-------------------------------------------------------------------------
RBBINode *RBBINode::cloneTree() {
RBBINode *n;
if (fType == RBBINode::varRef) {
// If the current node is a variable reference, skip over it
// and clone the definition of the variable instead.
n = fLeftChild->cloneTree();
} else if (fType == RBBINode::uset) {
n = this;
} else {
n = new RBBINode(*this);
if (fLeftChild != NULL) {
n->fLeftChild = fLeftChild->cloneTree();
n->fLeftChild->fParent = n;
}
if (fRightChild != NULL) {
n->fRightChild = fRightChild->cloneTree();
n->fRightChild->fParent = n;
}
}
return n;
}
//-------------------------------------------------------------------------
//
// flattenVariables Walk a parse tree, replacing any variable
// references with a copy of the variable's definition.
// Aside from variables, the tree is not changed.
//
// Return the root of the tree. If the root was not a variable
// reference, it remains unchanged - the root we started with
// is the root we return. If, however, the root was a variable
// reference, the root of the newly cloned replacement tree will
// be returned, and the original tree deleted.
//
// This function works by recursively walking the tree
// without doing anything until a variable reference is
// found, then calling cloneTree() at that point. Any
// nested references are handled by cloneTree(), not here.
//
//-------------------------------------------------------------------------
RBBINode *RBBINode::flattenVariables() {
if (fType == varRef) {
RBBINode *retNode = fLeftChild->cloneTree();
delete this;
return retNode;
}
if (fLeftChild != NULL) {
fLeftChild = fLeftChild->flattenVariables();
fLeftChild->fParent = this;
}
if (fRightChild != NULL) {
fRightChild = fRightChild->flattenVariables();
fRightChild->fParent = this;
}
return this;
}
//-------------------------------------------------------------------------
//
// flattenSets Walk the parse tree, replacing any nodes of type setRef
// with a copy of the expression tree for the set. A set's
// equivalent expression tree is precomputed and saved as
// the left child of the uset node.
//
//-------------------------------------------------------------------------
void RBBINode::flattenSets() {
U_ASSERT(fType != setRef);
if (fLeftChild != NULL) {
if (fLeftChild->fType==setRef) {
RBBINode *setRefNode = fLeftChild;
RBBINode *usetNode = setRefNode->fLeftChild;
RBBINode *replTree = usetNode->fLeftChild;
fLeftChild = replTree->cloneTree();
fLeftChild->fParent = this;
delete setRefNode;
} else {
fLeftChild->flattenSets();
}
}
if (fRightChild != NULL) {
if (fRightChild->fType==setRef) {
RBBINode *setRefNode = fRightChild;
RBBINode *usetNode = setRefNode->fLeftChild;
RBBINode *replTree = usetNode->fLeftChild;
fRightChild = replTree->cloneTree();
fRightChild->fParent = this;
delete setRefNode;
} else {
fRightChild->flattenSets();
}
}
}
//-------------------------------------------------------------------------
//
// findNodes() Locate all the nodes of the specified type, starting
// at the specified root.
//
//-------------------------------------------------------------------------
void RBBINode::findNodes(UVector *dest, RBBINode::NodeType kind, UErrorCode &status) {
/* test for buffer overflows */
if (U_FAILURE(status)) {
return;
}
if (fType == kind) {
dest->addElement(this, status);
}
if (fLeftChild != NULL) {
fLeftChild->findNodes(dest, kind, status);
}
if (fRightChild != NULL) {
fRightChild->findNodes(dest, kind, status);
}
}
//-------------------------------------------------------------------------
//
// print. Print out a single node, for debugging.
//
//-------------------------------------------------------------------------
void RBBINode::print() {
#ifdef RBBI_DEBUG
static const char * const nodeTypeNames[] = {
"setRef",
"uset",
"varRef",
"leafChar",
"lookAhead",
"tag",
"endMark",
"opStart",
"opCat",
"opOr",
"opStar",
"opPlus",
"opQuestion",
"opBreak",
"opReverse",
"opLParen"
};
if (this==NULL) {
RBBIDebugPrintf("%10p", (void *)this);
} else {
RBBIDebugPrintf("%10p %12s %10p %10p %10p %4d %6d %d ",
(void *)this, nodeTypeNames[fType], (void *)fParent, (void *)fLeftChild, (void *)fRightChild,
fSerialNum, fFirstPos, fVal);
if (fType == varRef) {
printUnicodeString(fText);
}
}
RBBIDebugPrintf("\n");
#endif
}
#ifdef RBBI_DEBUG
void RBBINode::printUnicodeString(const UnicodeString &, int) {}
#else
void RBBINode::printUnicodeString(const UnicodeString &s, int minWidth)
{
int i;
for (i=0; i<s.length(); i++) {
RBBIDebugPrintf("%c", s.charAt(i));
// putc(s.charAt(i), stdout);
}
for (i=s.length(); i<minWidth; i++) {
RBBIDebugPrintf(" ");
}
}
#endif
//-------------------------------------------------------------------------
//
// print. Print out the tree of nodes rooted at "this"
//
//-------------------------------------------------------------------------
#ifndef RBBI_DEBUG
void RBBINode::printTree(UBool, UBool) {}
#else
void RBBINode::printTree(UBool printHeading, UBool doVars) {
if (printHeading) {
RBBIDebugPrintf( "-------------------------------------------------------------------\n"
" Address type Parent LeftChild RightChild serial position value\n"
);
}
this->print();
if (this != NULL) {
// Only dump the definition under a variable reference if asked to.
// Unconditinally dump children of all other node types.
if (fType != varRef || doVars) {
if (fLeftChild != NULL) {
fLeftChild->printTree(FALSE);
}
if (fRightChild != NULL) {
fRightChild->printTree(FALSE);
}
}
}
}
#endif
U_NAMESPACE_END
#endif /* #if !UCONFIG_NO_BREAK_ITERATION */