19446aeeba
X-SVN-Rev: 22053
198 lines
5.8 KiB
C++
198 lines
5.8 KiB
C++
/*
|
|
**********************************************************************
|
|
* Copyright (C) 2007, International Business Machines
|
|
* Corporation and others. All Rights Reserved.
|
|
**********************************************************************
|
|
* file name: bitset.cpp
|
|
* encoding: US-ASCII
|
|
* tab size: 8 (not used)
|
|
* indentation:4
|
|
*
|
|
* created on: 2007jan15
|
|
* created by: Markus Scherer
|
|
*
|
|
* Idea for a "compiled", fast, read-only (immutable) version of a UnicodeSet
|
|
* using a folded bit set consisting of a 1k-entry index table and a
|
|
* compacted array of 64-bit words.
|
|
* Uses a simple hash table for compaction.
|
|
* Uses the original set for supplementary code points.
|
|
*/
|
|
|
|
#include "unicode/utypes.h"
|
|
#include "unicont.h"
|
|
|
|
/*
|
|
* Hash table for up to 1k 64-bit words, for 1 bit per BMP code point.
|
|
* Hashes 64-bit words and maps them to 16-bit integers which are
|
|
* assigned in order of new incoming words for subsequent storage
|
|
* in a contiguous array.
|
|
*/
|
|
struct BMPBitHash : public UObject {
|
|
int64_t keys[0x800]; // 2k
|
|
uint16_t values[0x800];
|
|
uint16_t reverse[0x400];
|
|
uint16_t count;
|
|
const int32_t prime=1301; // Less than 2k.
|
|
|
|
BMPBitHash() : count(0) {
|
|
// Fill values[] with 0xffff.
|
|
uprv_memset(values, 0xff, sizeof(values));
|
|
}
|
|
|
|
/*
|
|
* Map a key to an integer count.
|
|
* Map at most 1k=0x400 different keys with this data structure.
|
|
*/
|
|
uint16_t map(int64_t key) {
|
|
int32_t hash=(int32_t)(key>>55)&0x1ff;
|
|
hash^=(int32_t)(key>>44)&0x7ff;
|
|
hash^=(int32_t)(key>>33)&0x7ff;
|
|
hash^=(int32_t)(key>>22)&0x7ff;
|
|
hash^=(int32_t)(key>>11)&0x7ff;
|
|
hash^=(int32_t)key&0x7ff;
|
|
for(;;) {
|
|
if(values[hash]==0xffff) {
|
|
// Unused slot.
|
|
keys[hash]=key;
|
|
reverse[count]=hash;
|
|
return values[hash]=count++;
|
|
} else if(keys[hash]==key) {
|
|
// Found a slot with this key.
|
|
return values[hash];
|
|
} else {
|
|
// Used slot with a different key, move to another slot.
|
|
hash=(hash+prime)&0x7ff;
|
|
}
|
|
}
|
|
}
|
|
|
|
uint16_t countKeys() const { return count; }
|
|
|
|
/*
|
|
* Invert the hash map: Fill an array of length countKeys() with the keys
|
|
* indexed by their mapped values.
|
|
*/
|
|
void invert(int64_t *k) const {
|
|
uint16_t i;
|
|
|
|
for(i=0; i<count; ++i) {
|
|
k[i]=keys[reverse[i]];
|
|
}
|
|
}
|
|
};
|
|
|
|
class BitSet : public UObject, public UnicodeContainable {
|
|
public:
|
|
BitSet(const UnicodeSet &set, UErrorCode &errorCode) : bits(shortBits), restSet(set.clone()) {
|
|
if(U_FAILURE(errorCode)) {
|
|
return;
|
|
}
|
|
BMPBitHash *bitHash=new BMPBitHash;
|
|
if(bitHash==NULL || restSet==NULL) {
|
|
errorCode=U_MEMORY_ALLOCATION_ERROR;
|
|
return;
|
|
}
|
|
|
|
UnicodeSetIterator iter(set);
|
|
int64_t b;
|
|
UChar32 start, end;
|
|
int32_t prevIndex, i, j;
|
|
|
|
b=0; // Not necessary but makes compilers happy.
|
|
prevIndex=-1;
|
|
for(;;) {
|
|
if(iter.nextRange() && !iter.isString()) {
|
|
start=iter.getCodepoint();
|
|
end=iter.getCodepointEnd();
|
|
} else {
|
|
start=0x10000;
|
|
}
|
|
i=start>>6;
|
|
if(prevIndex!=i) {
|
|
// Finish the end of the previous range.
|
|
if(prevIndex<0) {
|
|
prevIndex=0;
|
|
} else {
|
|
index[prevIndex++]=bitHash->map(b);
|
|
}
|
|
// Fill all-zero entries between ranges.
|
|
if(prevIndex<i) {
|
|
uint16_t zero=bitHash->map(0);
|
|
do {
|
|
index[prevIndex++]=zero;
|
|
} while(prevIndex<i);
|
|
}
|
|
b=0;
|
|
}
|
|
if(start>0xffff) {
|
|
break;
|
|
}
|
|
b|=~((INT64_C(1)<<(start&0x3f))-1);
|
|
j=end>>6;
|
|
if(i<j) {
|
|
// Set bits for the start of the range.
|
|
index[i++]=bitHash->map(b);
|
|
// Fill all-one entries inside the range.
|
|
if(i<j) {
|
|
uint16_t all=bitHash->map(INT64_C(0xffffffffffffffff));
|
|
do {
|
|
index[i++]=all;
|
|
} while(i<j);
|
|
}
|
|
b=INT64_C(0xffffffffffffffff);
|
|
}
|
|
/* i==j */
|
|
b&=(INT64_C(1)<<(end&0x3f))-1;
|
|
prevIndex=j;
|
|
}
|
|
|
|
if(bitHash->countKeys()>LENGTHOF(shortBits)) {
|
|
bits=(int64_t *)uprv_malloc(bitHash->countKeys()*8);
|
|
}
|
|
if(bits!=NULL) {
|
|
bitHash->invert(bits);
|
|
} else {
|
|
bits=shortBits;
|
|
errorCode=U_MEMORY_ALLOCATION_ERROR;
|
|
return;
|
|
}
|
|
|
|
latin1Set[0]=(uint32_t)bits[0];
|
|
latin1Set[1]=(uint32_t)(bits[0]>>32);
|
|
latin1Set[2]=(uint32_t)bits[1];
|
|
latin1Set[3]=(uint32_t)(bits[1]>>32);
|
|
latin1Set[4]=(uint32_t)bits[2];
|
|
latin1Set[5]=(uint32_t)(bits[2]>>32);
|
|
latin1Set[6]=(uint32_t)bits[3];
|
|
latin1Set[7]=(uint32_t)(bits[3]>>32);
|
|
|
|
restSet.remove(0, 0xffff);
|
|
}
|
|
|
|
~BitSet() {
|
|
if(bits!=shortBits) {
|
|
uprv_free(bits);
|
|
}
|
|
delete restSet;
|
|
}
|
|
|
|
UBool contains(UChar32 c) const {
|
|
if((uint32_t)c<=0xff) {
|
|
return (UBool)((latin1Set[c>>5]&((uint32_t)1<<(c&0x1f)))!=0);
|
|
} else if((uint32_t)c<0xffff) {
|
|
return (UBool)((bits[c>>6]&(INT64_C(1)<<(c&0x3f)))!=0);
|
|
} else {
|
|
return restSet->contains(c);
|
|
}
|
|
}
|
|
|
|
private:
|
|
uint16_t index[0x400];
|
|
int64_t shortBits[32];
|
|
int64_t *bits;
|
|
|
|
uint32_t latin1Bits[8];
|
|
|
|
UnicodeSet *restSet;
|
|
};
|