e69c18cd1f
X-SVN-Rev: 16588
416 lines
12 KiB
C
416 lines
12 KiB
C
/*
|
||
*******************************************************************************
|
||
* Copyright (C) 2004, International Business Machines Corporation and
|
||
* others. All Rights Reserved.
|
||
*******************************************************************************
|
||
*/
|
||
|
||
#ifndef UTMSCALE_H
|
||
#define UTMSCALE_H
|
||
|
||
#include "unicode/utypes.h"
|
||
|
||
#if !UCONFIG_NO_FORMATTING
|
||
|
||
/**
|
||
* \file
|
||
* \brief C API: Universal Time Scale
|
||
*
|
||
* There are quite a few different conventions for binary datetime, depending on different
|
||
* platforms and protocols. Some of these have severe drawbacks. For example, people using
|
||
* Unix time (seconds since Jan 1, 1970) think that they are safe until near the year 2038.
|
||
* But cases can and do arise where arithmetic manipulations causes serious problems. Consider
|
||
* the computation of the average of two datetimes, for example: if one calculates them with
|
||
* <code>averageTime = (time1 + time2)/2</code>, there will be overflow even with dates
|
||
* around the present. Moreover, even if these problems don't occur, there is the issue of
|
||
* conversion back and forth between different systems.
|
||
*
|
||
* <p>
|
||
* Binary datetimes differ in a number of ways: the datatype, the unit,
|
||
* and the epoch (origin). We'll refer to these as time scales. For example:
|
||
*
|
||
* <table border="1" cellspacing="0" cellpadding="4">
|
||
* <caption>
|
||
* <h3>Table 1: Binary Time Scales</h3>
|
||
*
|
||
* </caption>
|
||
* <tr>
|
||
* <th align="left">Source</th>
|
||
* <th align="left">Datatype</th>
|
||
* <th align="left">Unit</th>
|
||
* <th align="left">Epoch</th>
|
||
* </tr>
|
||
*
|
||
* <tr>
|
||
* <td>JAVA_TIME</td>
|
||
* <td>int64_t</td>
|
||
* <td>milliseconds</td>
|
||
* <td>Jan 1, 1970</td>
|
||
* </tr>
|
||
* <tr>
|
||
*
|
||
* <td>UNIX_TIME</td>
|
||
* <td>int32_t or int64_t</td>
|
||
* <td>seconds</td>
|
||
* <td>Jan 1, 1970</td>
|
||
* </tr>
|
||
* <tr>
|
||
* <td>ICU4C_TIME</td>
|
||
*
|
||
* <td>double</td>
|
||
* <td>milliseconds</td>
|
||
* <td>Jan 1, 1970</td>
|
||
* </tr>
|
||
* <tr>
|
||
* <td>WINDOWS_FILE_TIME</td>
|
||
* <td>int64_t</td>
|
||
*
|
||
* <td>ticks (100 nanoseconds)</td>
|
||
* <td>Jan 1, 1601</td>
|
||
* </tr>
|
||
* <tr>
|
||
* <td>WINDOWS_DATE_TIME</td>
|
||
* <td>int64_t</td>
|
||
* <td>ticks (100 nanoseconds)</td>
|
||
*
|
||
* <td>Jan 1, 0001</td>
|
||
* </tr>
|
||
* <tr>
|
||
* <td>MAC_OLD_TIME</td>
|
||
* <td>int32_t</td>
|
||
* <td>seconds</td>
|
||
* <td>Jan 1, 1904</td>
|
||
*
|
||
* </tr>
|
||
* <tr>
|
||
* <td>MAC_TIME</td>
|
||
* <td>double</td>
|
||
* <td>seconds</td>
|
||
* <td>Jan 1, 2001</td>
|
||
* </tr>
|
||
*
|
||
* <tr>
|
||
* <td>EXCEL_TIME</td>
|
||
* <td>?</td>
|
||
* <td>days</td>
|
||
* <td>Dec 31, 1899</td>
|
||
* </tr>
|
||
* <tr>
|
||
*
|
||
* <td>DB2_TIME</td>
|
||
* <td>?</td>
|
||
* <td>days</td>
|
||
* <td>Dec 31, 1899</td>
|
||
* </tr>
|
||
* </table>
|
||
*
|
||
* <p>
|
||
* All of the epochs start at 00:00 am (the earliest possible time on the day in question),
|
||
* and are assumed to be UTC.
|
||
*
|
||
* <p>
|
||
* The ranges for different datatypes are given in the following table (all values in years).
|
||
* The range of years includes the entire range expressible with positive and negative
|
||
* values of the datatype. The range of years for double is the range that would be allowed
|
||
* without losing precision to the corresponding unit.
|
||
*
|
||
* <table border="1" cellspacing="0" cellpadding="4">
|
||
* <tr>
|
||
* <th align="left">Units</th>
|
||
* <th align="left">int64_t</th>
|
||
* <th align="left">double</th>
|
||
* <th align="left">int32_t</th>
|
||
* </tr>
|
||
*
|
||
* <tr>
|
||
* <td>1 sec</td>
|
||
* <td align="right">5.84542<EFBFBD>10<EFBFBD><EFBFBD></td>
|
||
* <td align="right">285,420,920.94</td>
|
||
* <td align="right">136.10</td>
|
||
* </tr>
|
||
* <tr>
|
||
*
|
||
* <td>1 millisecond</td>
|
||
* <td align="right">584,542,046.09</td>
|
||
* <td align="right">285,420.92</td>
|
||
* <td align="right">0.14</td>
|
||
* </tr>
|
||
* <tr>
|
||
* <td>1 microsecond</td>
|
||
*
|
||
* <td align="right">584,542.05</td>
|
||
* <td align="right">285.42</td>
|
||
* <td align="right">0.00</td>
|
||
* </tr>
|
||
* <tr>
|
||
* <td>100 nanoseconds (tick)</td>
|
||
* <td align="right">58,454.20</td>
|
||
* <td align="right">28.54</td>
|
||
* <td align="right">0.00</td>
|
||
* </tr>
|
||
* <tr>
|
||
* <td>1 nanosecond</td>
|
||
* <td align="right">584.5420461</td>
|
||
* <td align="right">0.2854</td>
|
||
* <td align="right">0.00</td>
|
||
* </tr>
|
||
* </table>
|
||
*
|
||
* <p>
|
||
* These functions implement a universal time scale which can be used as a 'pivot',
|
||
* and provide conversion functions to and from all other major time scales.
|
||
* This datetimes to be converted to the pivot time, safely manipulated,
|
||
* and converted back to any other datetime time scale.
|
||
*
|
||
*<p>
|
||
* So what to use for this pivot? Java time has plenty of range, but cannot represent
|
||
* Windows datetimes without severe loss of precision. ICU4C time addresses this by using a
|
||
* <code>double</code> that is otherwise equivalent to the Java time. However, there are disadvantages
|
||
* with <code>doubles</code>. They provide for much more graceful degradation in arithmetic operations.
|
||
* But they only have 53 bits of accuracy, which means that they will lose precision when
|
||
* converting back and forth to ticks. What would really be nice would be a
|
||
* long double (80 bits -- 64 bit mantissa), but that is not supported on most systems.
|
||
*
|
||
*<p>
|
||
* The Unix extended time uses a structure with two components: time in seconds and a
|
||
* fractional field (microseconds). However, this is clumsy, slow, and
|
||
* prone to error (you always have to keep track of overflow and underflow in the
|
||
* fractional field). <code>BigDecimal</code> would allow for arbitrary precision and arbitrary range,
|
||
* but we do not want to use this as the normal type, because it is slow and does not
|
||
* have a fixed size.
|
||
*
|
||
*<p>
|
||
* Because of these issues, we ended up concluding that the Windows datetime would be the
|
||
* best pivot. However, we use the full range allowed by the datatype, allowing for
|
||
* datetimes back to 29,000 BC and up to 29,000 AD. This time scale is very fine grained,
|
||
* does not lose precision, and covers a range that will meet almost all requirements.
|
||
* It will not handle the range that Java times do, but frankly, being able to handle dates
|
||
* before 29,000 BC or after 29,000 AD is of very limited interest.
|
||
*
|
||
*/
|
||
|
||
/**
|
||
* UDateTimeScale values are used to specify the time scale used for
|
||
* conversion into or out if the universal time scale.
|
||
*
|
||
* @draft ICU 3.2
|
||
*/
|
||
typedef enum UDateTimeScale {
|
||
/**
|
||
* Used in the JDK. Data is a Java <code>long</code> (<code>int64_t</code>). Value
|
||
* is milliseconds since January 1, 1970.
|
||
*
|
||
* @draft ICU 3.2
|
||
*/
|
||
UDTS_JAVA_TIME = 0,
|
||
|
||
/**
|
||
* Used on Unix systems. Data is <code>int32_t</code> or <code>int64_t</code>. Value
|
||
* is seconds since January 1, 1970.
|
||
*
|
||
* @draft ICU 3.2
|
||
*/
|
||
UDTS_UNIX_TIME,
|
||
|
||
/**
|
||
* Used in IUC4C. Data is a <code>double</code>. Value
|
||
* is milliseconds since January 1, 1970.
|
||
*
|
||
* @draft ICU 3.2
|
||
*/
|
||
UDTS_ICU4C_TIME,
|
||
|
||
/**
|
||
* Used in Windows for file times. Data is an <code>int64_t</code>. Value
|
||
* is ticks (1 tick == 100 nanoseconds) since January 1, 1601.
|
||
*
|
||
* @draft ICU 3.2
|
||
*/
|
||
UDTS_WINDOWS_FILE_TIME,
|
||
|
||
/**
|
||
* Used in Windows for dates and times (?). Data is an <code>int64_t</code>. Value
|
||
* is ticks (1 tick == 100 nanoseconds) since January 1, 0001.
|
||
*
|
||
* @draft ICU 3.2
|
||
*/
|
||
UDTS_WINDOWS_DATE_TIME,
|
||
|
||
/**
|
||
* Used in older Macintosh systems. Data is an <code>int32_t</code>. Value
|
||
* is seconds since January 1, 1904.
|
||
*
|
||
* @draft ICU 3.2
|
||
*/
|
||
UDTS_MAC_OLD_TIME,
|
||
|
||
/**
|
||
* Used in newer Macintosh systems. Data is a <code>double</code>. Value
|
||
* is seconds since January 1, 2001.
|
||
*
|
||
* @draft ICU 3.2
|
||
*/
|
||
UDTS_MAC_TIME,
|
||
|
||
/**
|
||
* Used in Excel. Data is an <code>?unknown?</code>. Value
|
||
* is days since December 31, 1899.
|
||
*
|
||
* @draft ICU 3.2
|
||
*/
|
||
UDTS_EXCEL_TIME,
|
||
|
||
/**
|
||
* Used in DB2. Data is an <code>?unknown?</code>. Value
|
||
* is days since December 31, 1899.
|
||
*
|
||
* @draft ICU 3.2
|
||
*/
|
||
UDTS_DB2_TIME,
|
||
|
||
/**
|
||
* The first unused time scale value.
|
||
*
|
||
* @draft ICU 3.2
|
||
*/
|
||
UDTS_MAX_SCALE
|
||
} UDateTimeScale;
|
||
|
||
/**
|
||
* This structure contains infomration about a particular
|
||
* time scale. Use <code>utmscale_getTimeScaleData</code> to
|
||
* get the data.
|
||
*
|
||
* @see utmscale_getTimeScaleData.
|
||
*
|
||
* @draft ICU 3.2
|
||
*/
|
||
typedef struct
|
||
{
|
||
/**
|
||
* The units of the time scale, expressed in ticks.
|
||
* (One tick == 100 nanseconds)
|
||
*
|
||
* @draft ICU 3.2
|
||
*/
|
||
int64_t units;
|
||
|
||
/**
|
||
* The distance from the universal time scale's epoch to
|
||
* the time scale's epoch, expressed in the time scale's units.
|
||
*
|
||
* @draft ICU 3.2
|
||
*/
|
||
int64_t epochOffset;
|
||
|
||
/**
|
||
* The minimum time scale value that can be conveted
|
||
* to the Universal Time Scale without underflowing.
|
||
*
|
||
* @draft ICU 3.2
|
||
*/
|
||
int64_t fromMin;
|
||
|
||
/**
|
||
* The maximum time scale value that can be conveted
|
||
* to the Universal Time Scale without overflowing.
|
||
*
|
||
* @draft ICU 3.2
|
||
*/
|
||
int64_t fromMax;
|
||
|
||
/**
|
||
* The minimum Universal Time Scale value that can
|
||
* be converted to the time scale without underflowing.
|
||
*
|
||
* @draft ICU 3.2
|
||
*/
|
||
int64_t toMin;
|
||
|
||
/**
|
||
* The maximum Universal Time Scale value that can
|
||
* be converted to the time scale without overflowing.
|
||
*
|
||
* @draft ICU 3.2
|
||
*/
|
||
int64_t toMax;
|
||
} UTimeScaleData;
|
||
|
||
/**
|
||
* Fill in a <code>UTimeScaleData</code> structure for the given time
|
||
* scale.
|
||
*
|
||
* @param timeScale - The time scale
|
||
* @param data - The address of the <code>UTimeScaleData</code> structure to be filled in.
|
||
* @param status - The status code. Set to <code>U_ILLEGAL_ARGUMENT_ERROR</code> if <code>timeScale</code> is out of range.
|
||
*
|
||
* @draft ICU 3.2
|
||
*/
|
||
U_DRAFT void U_EXPORT2
|
||
utmscale_getTimeScaleData(UDateTimeScale timeScale, UTimeScaleData *data, UErrorCode *status);
|
||
|
||
/* Conversion to 'universal time scale' */
|
||
|
||
/**
|
||
* Convert a <code>double</code> datetime from the given time scale to the universal time scale.
|
||
*
|
||
* @param otherTime The <code>double</code> datetime
|
||
* @param timeScale The time scale to convert from
|
||
* @param status The status code. Set to <code>U_ILLEGAL_ARGUMENT_ERROR</code> if the conversion is out of range.
|
||
*
|
||
* @return The datetime converted to the universal time scale
|
||
*
|
||
* @draft ICU 3.2
|
||
*/
|
||
U_DRAFT int64_t U_EXPORT2
|
||
utmscale_fromDouble(double otherTime, UDateTimeScale timeScale, UErrorCode *status);
|
||
|
||
/**
|
||
* Convert a <code>int64_t</code> datetime from the given time scale to the universal time scale.
|
||
*
|
||
* @param otherTime The <code>int64_t</code> datetime
|
||
* @param timeScale The time scale to convert from
|
||
* @param status The status code. Set to <code>U_ILLEGAL_ARGUMENT_ERROR</code> if the conversion is out of range.
|
||
*
|
||
* @return The datetime converted to the universal time scale
|
||
*
|
||
* @draft ICU 3.2
|
||
*/
|
||
U_DRAFT int64_t U_EXPORT2
|
||
utmscale_fromInt64(int64_t otherTime, UDateTimeScale timeScale, UErrorCode *status);
|
||
|
||
/* Conversion from 'universal time scale' */
|
||
|
||
/**
|
||
* Convert a datetime from the universal time scale to a <code>double</code> in the given time scale.
|
||
*
|
||
* @param universal The datetime in the universal time scale
|
||
* @param timeScale The time scale to convert to
|
||
* @param status The status code. Set to <code>U_ILLEGAL_ARGUMENT_ERROR</code> if the conversion is out of range.
|
||
*
|
||
* @return The datetime converted to the given time scale
|
||
*
|
||
* @draft ICU 3.2
|
||
*/
|
||
U_DRAFT double U_EXPORT2
|
||
utmscale_toDouble(int64_t universalTime, UDateTimeScale timeScale, UErrorCode *status);
|
||
|
||
/**
|
||
* Convert a datetime from the universal time scale to a <code>int64_t</code> in the given time scale.
|
||
*
|
||
* @param universal The datetime in the universal time scale
|
||
* @param timeScale The time scale to convert to
|
||
* @param status The status code. Set to <code>U_ILLEGAL_ARGUMENT_ERROR</code> if the conversion is out of range.
|
||
*
|
||
* @return The datetime converted to the given time scale
|
||
*
|
||
* @draft ICU 3.2
|
||
*/
|
||
U_DRAFT int64_t U_EXPORT2
|
||
utmscale_toInt64(int64_t universalTime, UDateTimeScale timeScale, UErrorCode *status);
|
||
|
||
#endif /* #if !UCONFIG_NO_FORMATTING */
|
||
|
||
#endif
|
||
|