scuffed-code/icu4c/source/common/ubidi.c

2162 lines
86 KiB
C

/*
******************************************************************************
*
* Copyright (C) 1999-2006, International Business Machines
* Corporation and others. All Rights Reserved.
*
******************************************************************************
* file name: ubidi.c
* encoding: US-ASCII
* tab size: 8 (not used)
* indentation:4
*
* created on: 1999jul27
* created by: Markus W. Scherer
*/
/* set import/export definitions */
#ifndef U_COMMON_IMPLEMENTATION
# define U_COMMON_IMPLEMENTATION
#endif
#include "cmemory.h"
#include "unicode/utypes.h"
#include "unicode/ustring.h"
#include "unicode/uchar.h"
#include "unicode/ubidi.h"
#include "ubidi_props.h"
#include "ubidiimp.h"
/*
* General implementation notes:
*
* Throughout the implementation, there are comments like (W2) that refer to
* rules of the BiDi algorithm in its version 5, in this example to the second
* rule of the resolution of weak types.
*
* For handling surrogate pairs, where two UChar's form one "abstract" (or UTF-32)
* character according to UTF-16, the second UChar gets the directional property of
* the entire character assigned, while the first one gets a BN, a boundary
* neutral, type, which is ignored by most of the algorithm according to
* rule (X9) and the implementation suggestions of the BiDi algorithm.
*
* Later, adjustWSLevels() will set the level for each BN to that of the
* following character (UChar), which results in surrogate pairs getting the
* same level on each of their surrogates.
*
* In a UTF-8 implementation, the same thing could be done: the last byte of
* a multi-byte sequence would get the "real" property, while all previous
* bytes of that sequence would get BN.
*
* It is not possible to assign all those parts of a character the same real
* property because this would fail in the resolution of weak types with rules
* that look at immediately surrounding types.
*
* As a related topic, this implementation does not remove Boundary Neutral
* types from the input, but ignores them wherever this is relevant.
* For example, the loop for the resolution of the weak types reads
* types until it finds a non-BN.
* Also, explicit embedding codes are neither changed into BN nor removed.
* They are only treated the same way real BNs are.
* As stated before, adjustWSLevels() takes care of them at the end.
* For the purpose of conformance, the levels of all these codes
* do not matter.
*
* Note that this implementation never modifies the dirProps
* after the initial setup.
*
*
* In this implementation, the resolution of weak types (Wn),
* neutrals (Nn), and the assignment of the resolved level (In)
* are all done in one single loop, in resolveImplicitLevels().
* Changes of dirProp values are done on the fly, without writing
* them back to the dirProps array.
*
*
* This implementation contains code that allows to bypass steps of the
* algorithm that are not needed on the specific paragraph
* in order to speed up the most common cases considerably,
* like text that is entirely LTR, or RTL text without numbers.
*
* Most of this is done by setting a bit for each directional property
* in a flags variable and later checking for whether there are
* any LTR characters or any RTL characters, or both, whether
* there are any explicit embedding codes, etc.
*
* If the (Xn) steps are performed, then the flags are re-evaluated,
* because they will then not contain the embedding codes any more
* and will be adjusted for override codes, so that subsequently
* more bypassing may be possible than what the initial flags suggested.
*
* If the text is not mixed-directional, then the
* algorithm steps for the weak type resolution are not performed,
* and all levels are set to the paragraph level.
*
* If there are no explicit embedding codes, then the (Xn) steps
* are not performed.
*
* If embedding levels are supplied as a parameter, then all
* explicit embedding codes are ignored, and the (Xn) steps
* are not performed.
*
* White Space types could get the level of the run they belong to,
* and are checked with a test of (flags&MASK_EMBEDDING) to
* consider if the paragraph direction should be considered in
* the flags variable.
*
* If there are no White Space types in the paragraph, then
* (L1) is not necessary in adjustWSLevels().
*/
/* to avoid some conditional statements, use tiny constant arrays */
static const Flags flagLR[2]={ DIRPROP_FLAG(L), DIRPROP_FLAG(R) };
static const Flags flagE[2]={ DIRPROP_FLAG(LRE), DIRPROP_FLAG(RLE) };
static const Flags flagO[2]={ DIRPROP_FLAG(LRO), DIRPROP_FLAG(RLO) };
#define DIRPROP_FLAG_LR(level) flagLR[(level)&1]
#define DIRPROP_FLAG_E(level) flagE[(level)&1]
#define DIRPROP_FLAG_O(level) flagO[(level)&1]
/* UBiDi object management -------------------------------------------------- */
U_CAPI UBiDi * U_EXPORT2
ubidi_open(void)
{
UErrorCode errorCode=U_ZERO_ERROR;
return ubidi_openSized(0, 0, &errorCode);
}
U_CAPI UBiDi * U_EXPORT2
ubidi_openSized(int32_t maxLength, int32_t maxRunCount, UErrorCode *pErrorCode) {
UBiDi *pBiDi;
/* check the argument values */
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
return NULL;
} else if(maxLength<0 || maxRunCount<0) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return NULL; /* invalid arguments */
}
/* allocate memory for the object */
pBiDi=(UBiDi *)uprv_malloc(sizeof(UBiDi));
if(pBiDi==NULL) {
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
return NULL;
}
/* reset the object, all pointers NULL, all flags FALSE, all sizes 0 */
uprv_memset(pBiDi, 0, sizeof(UBiDi));
/* get BiDi properties */
pBiDi->bdp=ubidi_getSingleton(pErrorCode);
if(U_FAILURE(*pErrorCode)) {
uprv_free(pBiDi);
return NULL;
}
/* allocate memory for arrays as requested */
if(maxLength>0) {
if( !getInitialDirPropsMemory(pBiDi, maxLength) ||
!getInitialLevelsMemory(pBiDi, maxLength)
) {
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
}
} else {
pBiDi->mayAllocateText=TRUE;
}
if(maxRunCount>0) {
if(maxRunCount==1) {
/* use simpleRuns[] */
pBiDi->runsSize=sizeof(Run);
} else if(!getInitialRunsMemory(pBiDi, maxRunCount)) {
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
}
} else {
pBiDi->mayAllocateRuns=TRUE;
}
if(U_SUCCESS(*pErrorCode)) {
return pBiDi;
} else {
ubidi_close(pBiDi);
return NULL;
}
}
/*
* We are allowed to allocate memory if memory==NULL or
* mayAllocate==TRUE for each array that we need.
* We also try to grow and shrink memory as needed if we
* allocate it.
*
* Assume sizeNeeded>0.
* If *pMemory!=NULL, then assume *pSize>0.
*
* ### this realloc() may unnecessarily copy the old data,
* which we know we don't need any more;
* is this the best way to do this??
*/
U_CFUNC UBool
ubidi_getMemory(void **pMemory, int32_t *pSize, UBool mayAllocate, int32_t sizeNeeded) {
/* check for existing memory */
if(*pMemory==NULL) {
/* we need to allocate memory */
if(mayAllocate && (*pMemory=uprv_malloc(sizeNeeded))!=NULL) {
*pSize=sizeNeeded;
return TRUE;
} else {
return FALSE;
}
} else {
/* there is some memory, is it enough or too much? */
if(sizeNeeded>*pSize && !mayAllocate) {
/* not enough memory, and we must not allocate */
return FALSE;
} else if(sizeNeeded!=*pSize && mayAllocate) {
/* FOOD FOR THOUGHT: in hope to improve performance, we should
* try never shrinking memory, only growing it when required.
*/
/* we may try to grow or shrink */
void *memory;
if((memory=uprv_realloc(*pMemory, sizeNeeded))!=NULL) {
*pMemory=memory;
*pSize=sizeNeeded;
return TRUE;
} else {
/* we failed to grow */
return FALSE;
}
} else {
/* we have at least enough memory and must not allocate */
return TRUE;
}
}
}
U_CAPI void U_EXPORT2
ubidi_close(UBiDi *pBiDi) {
if(pBiDi!=NULL) {
pBiDi->pParaBiDi=NULL; /* in case one tries to reuse this block */
if(pBiDi->dirPropsMemory!=NULL) {
uprv_free(pBiDi->dirPropsMemory);
}
if(pBiDi->levelsMemory!=NULL) {
uprv_free(pBiDi->levelsMemory);
}
if(pBiDi->runsMemory!=NULL) {
uprv_free(pBiDi->runsMemory);
}
if(pBiDi->parasMemory!=NULL) {
uprv_free(pBiDi->parasMemory);
}
if(pBiDi->insertPoints.points!=NULL) {
uprv_free(pBiDi->insertPoints.points);
}
uprv_free(pBiDi);
}
}
/* set to approximate "inverse BiDi" ---------------------------------------- */
U_CAPI void U_EXPORT2
ubidi_setInverse(UBiDi *pBiDi, UBool isInverse) {
if(pBiDi!=NULL) {
pBiDi->isInverse=isInverse;
pBiDi->reorderingMode = isInverse ? UBIDI_REORDER_INVERSE_NUMBERS_AS_L
: UBIDI_REORDER_DEFAULT;
}
}
U_CAPI UBool U_EXPORT2
ubidi_isInverse(UBiDi *pBiDi) {
if(pBiDi!=NULL) {
return pBiDi->isInverse;
} else {
return FALSE;
}
}
/* FOOD FOR THOUGHT: currently the reordering modes are a mixture of
* algorithm for direct BiDi, algorithm for inverse BiDi and the bizarre
* concept of RUNS_ONLY which is a double operation.
* It could be advantageous to divide this into 3 concepts:
* a) Operation: direct / inverse / RUNS_ONLY
* b) Direct algorithm: default / NUMBERS_SPECIAL / GROUP_NUMBERS_WITH_L
* c) Inverse algorithm: default / INVERSE_LIKE_DIRECT / NUMBERS_SPECIAL
* This would allow combinations not possible today like RUNS_ONLY with
* NUMBERS_SPECIAL.
* Also allow to set INSERT_MARKS for the direct step of RUNS_ONLY and
* REMOVE_CONTROLS for the inverse step.
* Not all combinations would be supported, and probably not all do make sense.
* This would need to document which ones are supported and what are the
* fallbacks for unsupported combinations.
*/
U_CAPI void U_EXPORT2
ubidi_setReorderingMode(UBiDi *pBiDi, UBiDiReorderingMode reorderingMode) {
if ((pBiDi != NULL) && (reorderingMode >= UBIDI_REORDER_DEFAULT)
&& (reorderingMode < UBIDI_REORDER_COUNT)) {
pBiDi->reorderingMode = reorderingMode;
pBiDi->isInverse = reorderingMode == UBIDI_REORDER_INVERSE_NUMBERS_AS_L;
}
}
U_CAPI UBiDiReorderingMode U_EXPORT2
ubidi_getReorderingMode(UBiDi *pBiDi) {
if (pBiDi != NULL) {
return pBiDi->reorderingMode;
} else {
return UBIDI_REORDER_DEFAULT;
}
}
U_CAPI void U_EXPORT2
ubidi_setReorderingOptions(UBiDi *pBiDi, uint32_t reorderingOptions) {
if (reorderingOptions & UBIDI_OPTION_REMOVE_CONTROLS) {
reorderingOptions&=~UBIDI_OPTION_INSERT_MARKS;
}
if (pBiDi != NULL) {
pBiDi->reorderingOptions = reorderingOptions;
}
}
U_CAPI uint32_t U_EXPORT2
ubidi_getReorderingOptions(UBiDi *pBiDi) {
if (pBiDi != NULL) {
return pBiDi->reorderingOptions;
} else {
return 0;
}
}
/* perform (P2)..(P3) ------------------------------------------------------- */
/*
* Get the directional properties for the text,
* calculate the flags bit-set, and
* determine the paragraph level if necessary.
*/
static void
getDirProps(UBiDi *pBiDi) {
const UChar *text=pBiDi->text;
DirProp *dirProps=pBiDi->dirPropsMemory; /* pBiDi->dirProps is const */
int32_t i=0, i0, i1, length=pBiDi->originalLength;
Flags flags=0; /* collect all directionalities in the text */
UChar32 uchar;
DirProp dirProp=0, paraDirDefault=0;/* initialize to avoid compiler warnings */
UBool isDefaultLevel=IS_DEFAULT_LEVEL(pBiDi->paraLevel);
/* for inverse BiDi, the default para level is set to RTL if there is a
strong character at either end of the text */
UBool isDefaultLevelInverse=isDefaultLevel &&
(pBiDi->reorderingMode==UBIDI_REORDER_INVERSE_LIKE_DIRECT ||
pBiDi->reorderingMode==UBIDI_REORDER_INVERSE_FOR_NUMBERS_SPECIAL);
int32_t lastArabicPos=-1;
int32_t controlCount=0;
UBool removeBiDiControls = pBiDi->reorderingOptions &
UBIDI_OPTION_REMOVE_CONTROLS;
typedef enum {
NOT_CONTEXTUAL, /* 0: not contextual paraLevel */
LOOKING_FOR_STRONG, /* 1: looking for first strong char */
FOUND_STRONG_CHAR /* 2: found first strong char */
} State;
State state;
int32_t paraStart=0; /* index of first char in paragraph */
DirProp paraDir; /* == CONTEXT_RTL within paragraphs
starting with strong R char */
DirProp lastStrongDir=0; /* for default level & inverse BiDi */
int32_t lastStrongLTR=0; /* for STREAMING option */
if(pBiDi->reorderingOptions & UBIDI_OPTION_STREAMING) {
pBiDi->length=0;
lastStrongLTR=0;
}
if(isDefaultLevel) {
paraDirDefault=pBiDi->paraLevel&1 ? CONTEXT_RTL : 0;
paraDir=paraDirDefault;
lastStrongDir=paraDirDefault;
state=LOOKING_FOR_STRONG;
} else {
state=NOT_CONTEXTUAL;
paraDir=0;
}
/* count paragraphs and determine the paragraph level (P2..P3) */
/*
* see comment in ubidi.h:
* the DEFAULT_XXX values are designed so that
* their bit 0 alone yields the intended default
*/
for( /* i=0 above */ ; i<length; ) {
/* i is incremented by UTF_NEXT_CHAR */
i0=i; /* index of first code unit */
UTF_NEXT_CHAR(text, i, length, uchar);
i1=i-1; /* index of last code unit, gets the directional property */
flags|=DIRPROP_FLAG(dirProp=ubidi_getCustomizedClass(pBiDi, uchar));
dirProps[i1]=dirProp|paraDir;
if(i1>i0) { /* set previous code units' properties to BN */
flags|=DIRPROP_FLAG(BN);
do {
dirProps[--i1]=BN|paraDir;
} while(i1>i0);
}
if(state==LOOKING_FOR_STRONG) {
if(dirProp==L) {
state=FOUND_STRONG_CHAR;
if(paraDir) {
paraDir=0;
for(i1=paraStart; i1<i; i1++) {
dirProps[i1]&=~CONTEXT_RTL;
}
}
continue;
}
if(dirProp==R || dirProp==AL) {
state=FOUND_STRONG_CHAR;
if(paraDir==0) {
paraDir=CONTEXT_RTL;
for(i1=paraStart; i1<i; i1++) {
dirProps[i1]|=CONTEXT_RTL;
}
}
continue;
}
}
if(dirProp==L) {
lastStrongDir=0;
lastStrongLTR=i; /* i is index to next character */
}
else if(dirProp==R) {
lastStrongDir=CONTEXT_RTL;
}
else if(dirProp==AL) {
lastStrongDir=CONTEXT_RTL;
lastArabicPos=i-1;
}
else if(dirProp==B) {
if(pBiDi->reorderingOptions & UBIDI_OPTION_STREAMING) {
pBiDi->length=i; /* i is index to next character */
}
if(isDefaultLevelInverse && (lastStrongDir==CONTEXT_RTL) &&(paraDir!=lastStrongDir)) {
for( ; paraStart<i; paraStart++) {
dirProps[paraStart]|=CONTEXT_RTL;
}
}
if(i<length) { /* B not last char in text */
if(!((uchar==CR) && (text[i]==LF))) {
pBiDi->paraCount++;
}
if(isDefaultLevel) {
state=LOOKING_FOR_STRONG;
paraStart=i; /* i is index to next character */
paraDir=paraDirDefault;
lastStrongDir=paraDirDefault;
}
}
}
if(removeBiDiControls && IS_BIDI_CONTROL_CHAR(uchar)) {
controlCount++;
}
}
if(isDefaultLevelInverse && (lastStrongDir==CONTEXT_RTL) &&(paraDir!=lastStrongDir)) {
for(i1=paraStart; i1<length; i1++) {
dirProps[i1]|=CONTEXT_RTL;
}
}
if(isDefaultLevel) {
pBiDi->paraLevel=GET_PARALEVEL(pBiDi, 0);
}
if(pBiDi->reorderingOptions & UBIDI_OPTION_STREAMING) {
if((lastStrongLTR>pBiDi->length) &&
(GET_PARALEVEL(pBiDi, lastStrongLTR)==0)) {
pBiDi->length = lastStrongLTR;
}
if(pBiDi->length<pBiDi->originalLength) {
pBiDi->paraCount--;
}
}
/* The following line does nothing new for contextual paraLevel, but is
needed for absolute paraLevel. */
flags|=DIRPROP_FLAG_LR(pBiDi->paraLevel);
if(pBiDi->orderParagraphsLTR && (flags&DIRPROP_FLAG(B))) {
flags|=DIRPROP_FLAG(L);
}
pBiDi->controlCount = controlCount;
pBiDi->flags=flags;
pBiDi->lastArabicPos=lastArabicPos;
}
/* perform (X1)..(X9) ------------------------------------------------------- */
/* determine if the text is mixed-directional or single-directional */
static UBiDiDirection
directionFromFlags(UBiDi *pBiDi) {
Flags flags=pBiDi->flags;
/* if the text contains AN and neutrals, then some neutrals may become RTL */
if(!(flags&MASK_RTL || ((flags&DIRPROP_FLAG(AN)) && (flags&MASK_POSSIBLE_N)))) {
return UBIDI_LTR;
} else if(!(flags&MASK_LTR)) {
return UBIDI_RTL;
} else {
return UBIDI_MIXED;
}
}
/*
* Resolve the explicit levels as specified by explicit embedding codes.
* Recalculate the flags to have them reflect the real properties
* after taking the explicit embeddings into account.
*
* The BiDi algorithm is designed to result in the same behavior whether embedding
* levels are externally specified (from "styled text", supposedly the preferred
* method) or set by explicit embedding codes (LRx, RLx, PDF) in the plain text.
* That is why (X9) instructs to remove all explicit codes (and BN).
* However, in a real implementation, this removal of these codes and their index
* positions in the plain text is undesirable since it would result in
* reallocated, reindexed text.
* Instead, this implementation leaves the codes in there and just ignores them
* in the subsequent processing.
* In order to get the same reordering behavior, positions with a BN or an
* explicit embedding code just get the same level assigned as the last "real"
* character.
*
* Some implementations, not this one, then overwrite some of these
* directionality properties at "real" same-level-run boundaries by
* L or R codes so that the resolution of weak types can be performed on the
* entire paragraph at once instead of having to parse it once more and
* perform that resolution on same-level-runs.
* This limits the scope of the implicit rules in effectively
* the same way as the run limits.
*
* Instead, this implementation does not modify these codes.
* On one hand, the paragraph has to be scanned for same-level-runs, but
* on the other hand, this saves another loop to reset these codes,
* or saves making and modifying a copy of dirProps[].
*
*
* Note that (Pn) and (Xn) changed significantly from version 4 of the BiDi algorithm.
*
*
* Handling the stack of explicit levels (Xn):
*
* With the BiDi stack of explicit levels,
* as pushed with each LRE, RLE, LRO, and RLO and popped with each PDF,
* the explicit level must never exceed UBIDI_MAX_EXPLICIT_LEVEL==61.
*
* In order to have a correct push-pop semantics even in the case of overflows,
* there are two overflow counters:
* - countOver60 is incremented with each LRx at level 60
* - from level 60, one RLx increases the level to 61
* - countOver61 is incremented with each LRx and RLx at level 61
*
* Popping levels with PDF must work in the opposite order so that level 61
* is correct at the correct point. Underflows (too many PDFs) must be checked.
*
* This implementation assumes that UBIDI_MAX_EXPLICIT_LEVEL is odd.
*/
static UBiDiDirection
resolveExplicitLevels(UBiDi *pBiDi) {
const DirProp *dirProps=pBiDi->dirProps;
UBiDiLevel *levels=pBiDi->levels;
const UChar *text=pBiDi->text;
int32_t i=0, length=pBiDi->length;
Flags flags=pBiDi->flags; /* collect all directionalities in the text */
DirProp dirProp;
UBiDiLevel level=GET_PARALEVEL(pBiDi, 0);
UBiDiDirection direction;
int32_t paraIndex=0;
/* determine if the text is mixed-directional or single-directional */
direction=directionFromFlags(pBiDi);
/* we may not need to resolve any explicit levels, but for multiple
paragraphs we want to loop on all chars to set the para boundaries */
if((direction!=UBIDI_MIXED) && (pBiDi->paraCount==1)) {
/* not mixed directionality: levels don't matter - trailingWSStart will be 0 */
} else if((pBiDi->paraCount==1) &&
(!(flags&MASK_EXPLICIT) ||
(pBiDi->reorderingMode > UBIDI_REORDER_LAST_LOGICAL_TO_VISUAL))) {
/* mixed, but all characters are at the same embedding level */
/* or we are in "inverse BiDi" */
/* and we don't have contextual multiple paragraphs with some B char */
/* set all levels to the paragraph level */
for(i=0; i<length; ++i) {
levels[i]=level;
}
} else {
/* continue to perform (Xn) */
/* (X1) level is set for all codes, embeddingLevel keeps track of the push/pop operations */
/* both variables may carry the UBIDI_LEVEL_OVERRIDE flag to indicate the override status */
UBiDiLevel embeddingLevel=level, newLevel, stackTop=0;
UBiDiLevel stack[UBIDI_MAX_EXPLICIT_LEVEL]; /* we never push anything >=UBIDI_MAX_EXPLICIT_LEVEL */
uint32_t countOver60=0, countOver61=0; /* count overflows of explicit levels */
/* recalculate the flags */
flags=0;
for(i=0; i<length; ++i) {
dirProp=NO_CONTEXT_RTL(dirProps[i]);
switch(dirProp) {
case LRE:
case LRO:
/* (X3, X5) */
newLevel=(UBiDiLevel)((embeddingLevel+2)&~(UBIDI_LEVEL_OVERRIDE|1)); /* least greater even level */
if(newLevel<=UBIDI_MAX_EXPLICIT_LEVEL) {
stack[stackTop]=embeddingLevel;
++stackTop;
embeddingLevel=newLevel;
if(dirProp==LRO) {
embeddingLevel|=UBIDI_LEVEL_OVERRIDE;
}
/* we don't need to set UBIDI_LEVEL_OVERRIDE off for LRE
since this has already been done for newLevel which is
the source for embeddingLevel.
*/
} else if((embeddingLevel&~UBIDI_LEVEL_OVERRIDE)==UBIDI_MAX_EXPLICIT_LEVEL) {
++countOver61;
} else /* (embeddingLevel&~UBIDI_LEVEL_OVERRIDE)==UBIDI_MAX_EXPLICIT_LEVEL-1 */ {
++countOver60;
}
flags|=DIRPROP_FLAG(BN);
break;
case RLE:
case RLO:
/* (X2, X4) */
newLevel=(UBiDiLevel)(((embeddingLevel&~UBIDI_LEVEL_OVERRIDE)+1)|1); /* least greater odd level */
if(newLevel<=UBIDI_MAX_EXPLICIT_LEVEL) {
stack[stackTop]=embeddingLevel;
++stackTop;
embeddingLevel=newLevel;
if(dirProp==RLO) {
embeddingLevel|=UBIDI_LEVEL_OVERRIDE;
}
/* we don't need to set UBIDI_LEVEL_OVERRIDE off for RLE
since this has already been done for newLevel which is
the source for embeddingLevel.
*/
} else {
++countOver61;
}
flags|=DIRPROP_FLAG(BN);
break;
case PDF:
/* (X7) */
/* handle all the overflow cases first */
if(countOver61>0) {
--countOver61;
} else if(countOver60>0 && (embeddingLevel&~UBIDI_LEVEL_OVERRIDE)!=UBIDI_MAX_EXPLICIT_LEVEL) {
/* handle LRx overflows from level 60 */
--countOver60;
} else if(stackTop>0) {
/* this is the pop operation; it also pops level 61 while countOver60>0 */
--stackTop;
embeddingLevel=stack[stackTop];
/* } else { (underflow) */
}
flags|=DIRPROP_FLAG(BN);
break;
case B:
stackTop=0;
countOver60=countOver61=0;
level=GET_PARALEVEL(pBiDi, i);
if((i+1)<length) {
embeddingLevel=GET_PARALEVEL(pBiDi, i+1);
if(!((text[i]==CR) && (text[i+1]==LF))) {
pBiDi->paras[paraIndex++]=i+1;
}
}
flags|=DIRPROP_FLAG(B);
break;
case BN:
/* BN, LRE, RLE, and PDF are supposed to be removed (X9) */
/* they will get their levels set correctly in adjustWSLevels() */
flags|=DIRPROP_FLAG(BN);
break;
default:
/* all other types get the "real" level */
if(level!=embeddingLevel) {
level=embeddingLevel;
if(level&UBIDI_LEVEL_OVERRIDE) {
flags|=DIRPROP_FLAG_O(level)|DIRPROP_FLAG_MULTI_RUNS;
} else {
flags|=DIRPROP_FLAG_E(level)|DIRPROP_FLAG_MULTI_RUNS;
}
}
if(!(level&UBIDI_LEVEL_OVERRIDE)) {
flags|=DIRPROP_FLAG(dirProp);
}
break;
}
/*
* We need to set reasonable levels even on BN codes and
* explicit codes because we will later look at same-level runs (X10).
*/
levels[i]=level;
}
if(flags&MASK_EMBEDDING) {
flags|=DIRPROP_FLAG_LR(pBiDi->paraLevel);
}
if(pBiDi->orderParagraphsLTR && (flags&DIRPROP_FLAG(B))) {
flags|=DIRPROP_FLAG(L);
}
/* subsequently, ignore the explicit codes and BN (X9) */
/* again, determine if the text is mixed-directional or single-directional */
pBiDi->flags=flags;
direction=directionFromFlags(pBiDi);
}
return direction;
}
/*
* Use a pre-specified embedding levels array:
*
* Adjust the directional properties for overrides (->LEVEL_OVERRIDE),
* ignore all explicit codes (X9),
* and check all the preset levels.
*
* Recalculate the flags to have them reflect the real properties
* after taking the explicit embeddings into account.
*/
static UBiDiDirection
checkExplicitLevels(UBiDi *pBiDi, UErrorCode *pErrorCode) {
const DirProp *dirProps=pBiDi->dirProps;
DirProp dirProp;
UBiDiLevel *levels=pBiDi->levels;
const UChar *text=pBiDi->text;
int32_t i, length=pBiDi->length;
Flags flags=0; /* collect all directionalities in the text */
UBiDiLevel level;
uint32_t paraIndex=0;
for(i=0; i<length; ++i) {
level=levels[i];
dirProp=NO_CONTEXT_RTL(dirProps[i]);
if(level&UBIDI_LEVEL_OVERRIDE) {
/* keep the override flag in levels[i] but adjust the flags */
level&=~UBIDI_LEVEL_OVERRIDE; /* make the range check below simpler */
flags|=DIRPROP_FLAG_O(level);
} else {
/* set the flags */
flags|=DIRPROP_FLAG_E(level)|DIRPROP_FLAG(dirProp);
}
if((level<GET_PARALEVEL(pBiDi, i) &&
!((0==level)&&(dirProp==B))) ||
(UBIDI_MAX_EXPLICIT_LEVEL<level)) {
/* level out of bounds */
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return UBIDI_LTR;
}
if((dirProp==B) && ((i+1)<length)) {
if(!((text[i]==CR) && (text[i+1]==LF))) {
pBiDi->paras[paraIndex++]=i+1;
}
}
}
if(flags&MASK_EMBEDDING) {
flags|=DIRPROP_FLAG_LR(pBiDi->paraLevel);
}
/* determine if the text is mixed-directional or single-directional */
pBiDi->flags=flags;
return directionFromFlags(pBiDi);
}
/*********************************************************************/
/* The Properties state machine table */
/*********************************************************************/
/* */
/* All table cells are 8 bits: */
/* bits 0..4: next state */
/* bits 5..7: action to perform (if > 0) */
/* */
/* Cells may be of format "n" where n represents the next state */
/* (except for the rightmost column). */
/* Cells may also be of format "_(x,y)" where x represents an action */
/* to perform and y represents the next state. */
/* */
/*********************************************************************/
/* Definitions and type for properties state table */
/*********************************************************************/
#define IMPTABPROPS_COLUMNS 14
#define IMPTABPROPS_RES (IMPTABPROPS_COLUMNS - 1)
#define GET_STATEPROPS(cell) ((cell)&0x1f)
#define GET_ACTIONPROPS(cell) ((cell)>>5)
#define _(action, newState) ((uint8_t)(newState+(action<<5)))
static const uint8_t groupProp[] = /* dirProp regrouped */
{
/* L R EN ES ET AN CS B S WS ON LRE LRO AL RLE RLO PDF NSM BN */
0, 1, 2, 7, 8, 3, 9, 6, 5, 4, 4, 10, 10, 12, 10, 10, 10, 11, 10
};
enum { _L=0, _R=1, _EN=2, _AN=3, _ON=4, _S=5, _B=6 }; /* reduced dirProp */
/*********************************************************************/
/* */
/* PROPERTIES STATE TABLE */
/* */
/* In table impTabProps, */
/* - the ON column regroups ON and WS */
/* - the BN column regroups BN, LRE, RLE, LRO, RLO, PDF */
/* - the Res column is the reduced property assigned to a run */
/* */
/* Action 1: process current run1, init new run1 */
/* 2: init new run2 */
/* 3: process run1, process run2, init new run1 */
/* 4: process run1, set run1=run2, init new run2 */
/* */
/* Notes: */
/* 1) This table is used in resolveImplicitLevels(). */
/* 2) This table triggers actions when there is a change in the Bidi*/
/* property of incoming characters (action 1). */
/* 3) Most such property sequences are processed immediately (in */
/* fact, passed to processPropertySeq(). */
/* 4) However, numbers are assembled as one sequence. This means */
/* that undefined situations (like CS following digits, until */
/* it is known if the next char will be a digit) are held until */
/* following chars define them. */
/* Example: digits followed by CS, then comes another CS or ON; */
/* the digits will be processed, then the CS assigned */
/* as the start of an ON sequence (action 3). */
/* 5) There are cases where more than one sequence must be */
/* processed, for instance digits followed by CS followed by L: */
/* the digits must be processed as one sequence, and the CS */
/* must be processed as an ON sequence, all this before starting */
/* assembling chars for the opening L sequence. */
/* */
/* */
static const uint8_t impTabProps[][IMPTABPROPS_COLUMNS] =
{
/* L , R , EN , AN , ON , S , B , ES , ET , CS , BN , NSM , AL , Res */
/* 0 Init */ { 1 , 2 , 4 , 5 , 7 , 15 , 17 , 7 , 9 , 7 , 0 , 7 , 3 , _ON },
/* 1 L */ { 1 , _(1,2), _(1,4), _(1,5), _(1,7),_(1,15),_(1,17), _(1,7), _(1,9), _(1,7), 1 , 1 , _(1,3), _L },
/* 2 R */ { _(1,1), 2 , _(1,4), _(1,5), _(1,7),_(1,15),_(1,17), _(1,7), _(1,9), _(1,7), 2 , 2 , _(1,3), _R },
/* 3 AL */ { _(1,1), _(1,2), _(1,6), _(1,6), _(1,8),_(1,16),_(1,17), _(1,8), _(1,8), _(1,8), 3 , 3 , 3 , _R },
/* 4 EN */ { _(1,1), _(1,2), 4 , _(1,5), _(1,7),_(1,15),_(1,17),_(2,10), 11 ,_(2,10), 4 , 4 , _(1,3), _EN },
/* 5 AN */ { _(1,1), _(1,2), _(1,4), 5 , _(1,7),_(1,15),_(1,17), _(1,7), _(1,9),_(2,12), 5 , 5 , _(1,3), _AN },
/* 6 AL:EN/AN */ { _(1,1), _(1,2), 6 , 6 , _(1,8),_(1,16),_(1,17), _(1,8), _(1,8),_(2,13), 6 , 6 , _(1,3), _AN },
/* 7 ON */ { _(1,1), _(1,2), _(1,4), _(1,5), 7 ,_(1,15),_(1,17), 7 ,_(2,14), 7 , 7 , 7 , _(1,3), _ON },
/* 8 AL:ON */ { _(1,1), _(1,2), _(1,6), _(1,6), 8 ,_(1,16),_(1,17), 8 , 8 , 8 , 8 , 8 , _(1,3), _ON },
/* 9 ET */ { _(1,1), _(1,2), 4 , _(1,5), 7 ,_(1,15),_(1,17), 7 , 9 , 7 , 9 , 9 , _(1,3), _ON },
/*10 EN+ES/CS */ { _(3,1), _(3,2), 4 , _(3,5), _(4,7),_(3,15),_(3,17), _(4,7),_(4,14), _(4,7), 10 , _(4,7), _(3,3), _EN },
/*11 EN+ET */ { _(1,1), _(1,2), 4 , _(1,5), _(1,7),_(1,15),_(1,17), _(1,7), 11 , _(1,7), 11 , 11 , _(1,3), _EN },
/*12 AN+CS */ { _(3,1), _(3,2), _(3,4), 5 , _(4,7),_(3,15),_(3,17), _(4,7),_(4,14), _(4,7), 12 , _(4,7), _(3,3), _AN },
/*13 AL:EN/AN+CS */ { _(3,1), _(3,2), 6 , 6 , _(4,8),_(3,16),_(3,17), _(4,8), _(4,8), _(4,8), 13 , _(4,8), _(3,3), _AN },
/*14 ON+ET */ { _(1,1), _(1,2), _(4,4), _(1,5), 7 ,_(1,15),_(1,17), 7 , 14 , 7 , 14 , 14 , _(1,3), _ON },
/*15 S */ { _(1,1), _(1,2), _(1,4), _(1,5), _(1,7), 15 ,_(1,17), _(1,7), _(1,9), _(1,7), 15 , _(1,7), _(1,3), _S },
/*16 AL:S */ { _(1,1), _(1,2), _(1,6), _(1,6), _(1,8), 16 ,_(1,17), _(1,8), _(1,8), _(1,8), 16 , _(1,8), _(1,3), _S },
/*17 B */ { _(1,1), _(1,2), _(1,4), _(1,5), _(1,7),_(1,15), 17 , _(1,7), _(1,9), _(1,7), 17 , _(1,7), _(1,3), _B }
};
/* we must undef macro _ because the levels table have a different
* structure (4 bits for action and 4 bits for next state.
*/
#undef _
/*********************************************************************/
/* The levels state machine tables */
/*********************************************************************/
/* */
/* All table cells are 8 bits: */
/* bits 0..3: next state */
/* bits 4..7: action to perform (if > 0) */
/* */
/* Cells may be of format "n" where n represents the next state */
/* (except for the rightmost column). */
/* Cells may also be of format "_(x,y)" where x represents an action */
/* to perform and y represents the next state. */
/* */
/* This format limits each table to 16 states each and to 15 actions.*/
/* */
/*********************************************************************/
/* Definitions and type for levels state tables */
/*********************************************************************/
#define IMPTABLEVELS_COLUMNS (_B + 2)
#define IMPTABLEVELS_RES (IMPTABLEVELS_COLUMNS - 1)
#define GET_STATE(cell) ((cell)&0x0f)
#define GET_ACTION(cell) ((cell)>>4)
#define _(action, newState) ((uint8_t)(newState+(action<<4)))
typedef uint8_t ImpTab[][IMPTABLEVELS_COLUMNS];
typedef uint8_t ImpAct[];
/* FOOD FOR THOUGHT: each ImpTab should have its associated ImpAct,
* instead of having a pair of ImpTab and a pair of ImpAct.
*/
typedef struct ImpTabPair {
ImpTab * pImpTab[2];
ImpAct * pImpAct[2];
} ImpTabPair;
/*********************************************************************/
/* */
/* LEVELS STATE TABLES */
/* */
/* In all levels state tables, */
/* - state 0 is the initial state */
/* - the Res column is the increment to add to the text level */
/* for this property sequence. */
/* */
/* The impAct arrays for each table of a pair map the local action */
/* numbers of the table to the total list of actions. For instance, */
/* action 2 in a given table corresponds to the action number which */
/* appears in entry [2] of the impAct array for that table. */
/* The first entry of all impAct arrays must be 0. */
/* */
/* Action 1: init conditional sequence */
/* 2: prepend conditional sequence to current sequence */
/* 3: set ON sequence to new level - 1 */
/* 4: init EN/AN/ON sequence */
/* 5: fix EN/AN/ON sequence followed by R */
/* 6: set previous level sequence to level 2 */
/* */
/* Notes: */
/* 1) These tables are used in processPropertySeq(). The input */
/* is property sequences as determined by resolveImplicitLevels. */
/* 2) Most such property sequences are processed immediately */
/* (levels are assigned). */
/* 3) However, some sequences cannot be assigned a final level till */
/* one or more following sequences are received. For instance, */
/* ON following an R sequence within an even-level paragraph. */
/* If the following sequence is R, the ON sequence will be */
/* assigned basic run level+1, and so will the R sequence. */
/* 4) S is generally handled like ON, since its level will be fixed */
/* to paragraph level in adjustWSLevels(). */
/* */
static const ImpTab impTabL_DEFAULT = /* Even paragraph level */
/* In this table, conditional sequences receive the higher possible level
until proven otherwise.
*/
{
/* L , R , EN , AN , ON , S , B , Res */
/* 0 : init */ { 0 , 1 , 0 , 2 , 0 , 0 , 0 , 0 },
/* 1 : R */ { 0 , 1 , 3 , 3 , _(1,4), _(1,4), 0 , 1 },
/* 2 : AN */ { 0 , 1 , 0 , 2 , _(1,5), _(1,5), 0 , 2 },
/* 3 : R+EN/AN */ { 0 , 1 , 3 , 3 , _(1,4), _(1,4), 0 , 2 },
/* 4 : R+ON */ { _(2,0), 1 , 3 , 3 , 4 , 4 , _(2,0), 1 },
/* 5 : AN+ON */ { _(2,0), 1 , _(2,0), 2 , 5 , 5 , _(2,0), 1 }
};
static const ImpTab impTabR_DEFAULT = /* Odd paragraph level */
/* In this table, conditional sequences receive the lower possible level
until proven otherwise.
*/
{
/* L , R , EN , AN , ON , S , B , Res */
/* 0 : init */ { 1 , 0 , 2 , 2 , 0 , 0 , 0 , 0 },
/* 1 : L */ { 1 , 0 , 1 , 3 , _(1,4), _(1,4), 0 , 1 },
/* 2 : EN/AN */ { 1 , 0 , 2 , 2 , 0 , 0 , 0 , 1 },
/* 3 : L+AN */ { 1 , 0 , 1 , 3 , 5 , 5 , 0 , 1 },
/* 4 : L+ON */ { _(2,1), 0 , _(2,1), 3 , 4 , 4 , 0 , 0 },
/* 5 : L+AN+ON */ { 1 , 0 , 1 , 3 , 5 , 5 , 0 , 0 }
};
static const ImpAct impAct0 = {0,1,2,3,4,5,6};
static const ImpTabPair impTab_DEFAULT = {{(ImpTab*)&impTabL_DEFAULT,
(ImpTab*)&impTabR_DEFAULT},
{(ImpAct*)&impAct0, (ImpAct*)&impAct0}};
static const ImpTab impTabL_NUMBERS_SPECIAL = /* Even paragraph level */
/* In this table, conditional sequences receive the higher possible level
until proven otherwise.
*/
{
/* L , R , EN , AN , ON , S , B , Res */
/* 0 : init */ { 0 , 2 , 1 , 1 , 0 , 0 , 0 , 0 },
/* 1 : L+EN/AN */ { 0 , 2 , 1 , 1 , 0 , 0 , 0 , 2 },
/* 2 : R */ { 0 , 2 , 4 , 4 , _(1,3), 0 , 0 , 1 },
/* 3 : R+ON */ { _(2,0), 2 , 4 , 4 , 3 , 3 , _(2,0), 1 },
/* 4 : R+EN/AN */ { 0 , 2 , 4 , 4 , _(1,3), _(1,3), 0 , 2 }
};
static const ImpTabPair impTab_NUMBERS_SPECIAL = {{(ImpTab*)&impTabL_NUMBERS_SPECIAL,
(ImpTab*)&impTabR_DEFAULT},
{(ImpAct*)&impAct0, (ImpAct*)&impAct0}};
static const ImpTab impTabL_GROUP_NUMBERS_WITH_R =
/* In this table, EN/AN+ON sequences receive levels as if associated with R
until proven that there is L or sor/eor on both sides. AN is handled like EN.
*/
{
/* L , R , EN , AN , ON , S , B , Res */
/* 0 init */ { 0 , 3 , _(1,1), _(1,1), 0 , 0 , 0 , 0 },
/* 1 EN/AN */ { _(2,0), 3 , 1 , 1 , 2 , _(2,0), _(2,0), 2 },
/* 2 EN/AN+ON */ { _(2,0), 3 , 1 , 1 , 2 , _(2,0), _(2,0), 1 },
/* 3 R */ { 0 , 3 , 5 , 5 , _(1,4), 0 , 0 , 1 },
/* 4 R+ON */ { _(2,0), 3 , 5 , 5 , 4 , _(2,0), _(2,0), 1 },
/* 5 R+EN/AN */ { 0 , 3 , 5 , 5 , _(1,4), 0 , 0 , 2 }
};
static const ImpTab impTabR_GROUP_NUMBERS_WITH_R =
/* In this table, EN/AN+ON sequences receive levels as if associated with R
until proven that there is L on both sides. AN is handled like EN.
*/
{
/* L , R , EN , AN , ON , S , B , Res */
/* 0 init */ { 2 , 0 , 1 , 1 , 0 , 0 , 0 , 0 },
/* 1 EN/AN */ { 2 , 0 , 1 , 1 , 0 , 0 , 0 , 1 },
/* 2 L */ { 2 , 0 , _(1,4), _(1,4), _(1,3), 0 , 0 , 1 },
/* 3 L+ON */ { _(2,2), 0 , 4 , 4 , 3 , 0 , 0 , 0 },
/* 4 L+EN/AN */ { _(2,2), 0 , 4 , 4 , 3 , 0 , 0 , 1 }
};
static const ImpTabPair impTab_GROUP_NUMBERS_WITH_R = {
{(ImpTab*)&impTabL_GROUP_NUMBERS_WITH_R,
(ImpTab*)&impTabR_GROUP_NUMBERS_WITH_R},
{(ImpAct*)&impAct0, (ImpAct*)&impAct0}};
static const ImpTab impTabL_INVERSE_NUMBERS_AS_L =
/* This table is identical to the Default LTR table except that EN and AN are
handled like L.
*/
{
/* L , R , EN , AN , ON , S , B , Res */
/* 0 : init */ { 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 },
/* 1 : R */ { 0 , 1 , 0 , 0 , _(1,4), _(1,4), 0 , 1 },
/* 2 : AN */ { 0 , 1 , 0 , 0 , _(1,5), _(1,5), 0 , 2 },
/* 3 : R+EN/AN */ { 0 , 1 , 0 , 0 , _(1,4), _(1,4), 0 , 2 },
/* 4 : R+ON */ { _(2,0), 1 , _(2,0), _(2,0), 4 , 4 , _(2,0), 1 },
/* 5 : AN+ON */ { _(2,0), 1 , _(2,0), _(2,0), 5 , 5 , _(2,0), 1 }
};
static const ImpTab impTabR_INVERSE_NUMBERS_AS_L =
/* This table is identical to the Default RTL table except that EN and AN are
handled like L.
*/
{
/* L , R , EN , AN , ON , S , B , Res */
/* 0 : init */ { 1 , 0 , 1 , 1 , 0 , 0 , 0 , 0 },
/* 1 : L */ { 1 , 0 , 1 , 1 , _(1,4), _(1,4), 0 , 1 },
/* 2 : EN/AN */ { 1 , 0 , 1 , 1 , 0 , 0 , 0 , 1 },
/* 3 : L+AN */ { 1 , 0 , 1 , 1 , 5 , 5 , 0 , 1 },
/* 4 : L+ON */ { _(2,1), 0 , _(2,1), _(2,1), 4 , 4 , 0 , 0 },
/* 5 : L+AN+ON */ { 1 , 0 , 1 , 1 , 5 , 5 , 0 , 0 }
};
static const ImpTabPair impTab_INVERSE_NUMBERS_AS_L = {
{(ImpTab*)&impTabL_INVERSE_NUMBERS_AS_L,
(ImpTab*)&impTabR_INVERSE_NUMBERS_AS_L},
{(ImpAct*)&impAct0, (ImpAct*)&impAct0}};
static const ImpTab impTabR_INVERSE_LIKE_DIRECT = /* Odd paragraph level */
/* In this table, conditional sequences receive the lower possible level
until proven otherwise.
*/
{
/* L , R , EN , AN , ON , S , B , Res */
/* 0 : init */ { 1 , 0 , 2 , 2 , 0 , 0 , 0 , 0 },
/* 1 : L */ { 1 , 0 , 1 , 2 , _(1,3), _(1,3), 0 , 1 },
/* 2 : EN/AN */ { 1 , 0 , 2 , 2 , 0 , 0 , 0 , 1 },
/* 3 : L+ON */ { _(2,1), _(3,0), 6 , 4 , 3 , 3 , _(3,0), 0 },
/* 4 : L+ON+AN */ { _(2,1), _(3,0), 6 , 4 , 5 , 5 , _(3,0), 3 },
/* 5 : L+AN+ON */ { _(2,1), _(3,0), 6 , 4 , 5 , 5 , _(3,0), 2 },
/* 6 : L+ON+EN */ { _(2,1), _(3,0), 6 , 4 , 3 , 3 , _(3,0), 1 }
};
static const ImpAct impAct1 = {0,1,11,12};
/* FOOD FOR THOUGHT: in LTR table below, check case "JKL 123abc"
*/
static const ImpTabPair impTab_INVERSE_LIKE_DIRECT = {
{(ImpTab*)&impTabL_DEFAULT,
(ImpTab*)&impTabR_INVERSE_LIKE_DIRECT},
{(ImpAct*)&impAct0, (ImpAct*)&impAct1}};
static const ImpTab impTabL_INVERSE_LIKE_DIRECT_WITH_MARKS =
/* The case handled in this table is (visually): R EN L
*/
{
/* L , R , EN , AN , ON , S , B , Res */
/* 0 : init */ { 0 , _(6,3), 0 , 1 , 0 , 0 , 0 , 0 },
/* 1 : L+AN */ { 0 , _(6,3), 0 , 1 , _(1,2), _(3,0), 0 , 4 },
/* 2 : L+AN+ON */ { _(2,0), _(6,3), _(2,0), 1 , 2 , _(3,0), _(2,0), 3 },
/* 3 : R */ { 0 , _(6,3), _(5,5), _(5,6), _(1,4), _(3,0), 0 , 3 },
/* 4 : R+ON */ { _(3,0), _(4,3), _(5,5), _(5,6), 4 , _(3,0), _(3,0), 3 },
/* 5 : R+EN */ { _(3,0), _(4,3), 5 , _(5,6), _(1,4), _(3,0), _(3,0), 4 },
/* 6 : R+AN */ { _(3,0), _(4,3), _(5,5), 6 , _(1,4), _(3,0), _(3,0), 4 }
};
static const ImpTab impTabR_INVERSE_LIKE_DIRECT_WITH_MARKS =
/* The cases handled in this table are (visually): R EN L
R L AN L
*/
{
/* L , R , EN , AN , ON , S , B , Res */
/* 0 : init */ { _(1,3), 0 , 1 , 1 , 0 , 0 , 0 , 0 },
/* 1 : R+EN/AN */ { _(2,3), 0 , 1 , 1 , 2 , _(4,0), 0 , 1 },
/* 2 : R+EN/AN+ON */ { _(2,3), 0 , 1 , 1 , 2 , _(4,0), 0 , 0 },
/* 3 : L */ { 3 , 0 , 3 , _(3,6), _(1,4), _(4,0), 0 , 1 },
/* 4 : L+ON */ { _(5,3), _(4,0), 5 , _(3,6), 4 , _(4,0), _(4,0), 0 },
/* 5 : L+ON+EN */ { _(5,3), _(4,0), 5 , _(3,6), 4 , _(4,0), _(4,0), 1 },
/* 6 : L+AN */ { _(5,3), _(4,0), 6 , 6 , 4 , _(4,0), _(4,0), 3 }
};
static const ImpAct impAct2 = {0,1,7,8,9,10};
static const ImpTabPair impTab_INVERSE_LIKE_DIRECT_WITH_MARKS = {
{(ImpTab*)&impTabL_INVERSE_LIKE_DIRECT_WITH_MARKS,
(ImpTab*)&impTabR_INVERSE_LIKE_DIRECT_WITH_MARKS},
{(ImpAct*)&impAct0, (ImpAct*)&impAct2}};
static const ImpTabPair impTab_INVERSE_FOR_NUMBERS_SPECIAL = {
{(ImpTab*)&impTabL_NUMBERS_SPECIAL,
(ImpTab*)&impTabR_INVERSE_LIKE_DIRECT},
{(ImpAct*)&impAct0, (ImpAct*)&impAct1}};
static const ImpTab impTabL_INVERSE_FOR_NUMBERS_SPECIAL_WITH_MARKS =
/* The case handled in this table is (visually): R EN L
*/
{
/* L , R , EN , AN , ON , S , B , Res */
/* 0 : init */ { 0 , _(6,2), 1 , 1 , 0 , 0 , 0 , 0 },
/* 1 : L+EN/AN */ { 0 , _(6,2), 1 , 1 , 0 , _(3,0), 0 , 4 },
/* 2 : R */ { 0 , _(6,2), _(5,4), _(5,4), _(1,3), _(3,0), 0 , 3 },
/* 3 : R+ON */ { _(3,0), _(4,2), _(5,4), _(5,4), 3 , _(3,0), _(3,0), 3 },
/* 4 : R+EN/AN */ { _(3,0), _(4,2), 4 , 4 , _(1,3), _(3,0), _(3,0), 4 }
};
static const ImpTabPair impTab_INVERSE_FOR_NUMBERS_SPECIAL_WITH_MARKS = {
{(ImpTab*)&impTabL_INVERSE_FOR_NUMBERS_SPECIAL_WITH_MARKS,
(ImpTab*)&impTabR_INVERSE_LIKE_DIRECT_WITH_MARKS},
{(ImpAct*)&impAct0, (ImpAct*)&impAct2}};
#undef _
typedef struct {
ImpTab * pImpTab; /* level table pointer */
ImpAct * pImpAct; /* action map array */
int32_t startON; /* start of ON sequence */
int32_t startL2EN; /* start of level 2 sequence */
int32_t lastStrongRTL; /* index of last found R or AL */
int32_t state; /* current state */
UBiDiLevel runLevel; /* run level before implicit solving */
} LevState;
/*------------------------------------------------------------------------*/
static void
addPoint(UBiDi *pBiDi, int32_t pos, int32_t flag)
/* param pos: position where to insert
param flag: one of LRM_BEFORE, LRM_AFTER, RLM_BEFORE, RLM_AFTER
*/
{
#define FIRSTALLOC 10
Point point;
InsertPoints * pInsertPoints=&(pBiDi->insertPoints);
if (pInsertPoints->capacity == 0)
{
pInsertPoints->points=uprv_malloc(sizeof(Point)*FIRSTALLOC);
if (pInsertPoints->points == NULL)
{
pInsertPoints->errorCode=U_MEMORY_ALLOCATION_ERROR;
return;
}
pInsertPoints->capacity=FIRSTALLOC;
}
if (pInsertPoints->size >= pInsertPoints->capacity) /* no room for new point */
{
void * savePoints=pInsertPoints->points;
pInsertPoints->points=uprv_realloc(pInsertPoints->points,
pInsertPoints->capacity*2*sizeof(Point));
if (pInsertPoints->points == NULL)
{
pInsertPoints->points=savePoints;
pInsertPoints->errorCode=U_MEMORY_ALLOCATION_ERROR;
return;
}
else pInsertPoints->capacity*=2;
}
point.pos=pos;
point.flag=flag;
pInsertPoints->points[pInsertPoints->size]=point;
pInsertPoints->size++;
#undef FIRSTALLOC
}
/* perform rules (Wn), (Nn), and (In) on a run of the text ------------------ */
/*
* This implementation of the (Wn) rules applies all rules in one pass.
* In order to do so, it needs a look-ahead of typically 1 character
* (except for W5: sequences of ET) and keeps track of changes
* in a rule Wp that affect a later Wq (p<q).
*
* The (Nn) and (In) rules are also performed in that same single loop,
* but effectively one iteration behind for white space.
*
* Since all implicit rules are performed in one step, it is not necessary
* to actually store the intermediate directional properties in dirProps[].
*/
static void
processPropertySeq(UBiDi *pBiDi, LevState *pLevState, uint8_t _prop,
int32_t start, int32_t limit) {
uint8_t cell, oldStateSeq, actionSeq;
ImpTab * pImpTab=pLevState->pImpTab;
ImpAct * pImpAct=pLevState->pImpAct;
UBiDiLevel * levels=pBiDi->levels;
UBiDiLevel level, addLevel;
InsertPoints * pInsertPoints;
int32_t start0, k;
start0=start; /* save original start position */
oldStateSeq=pLevState->state;
cell=(*pImpTab)[oldStateSeq][_prop];
pLevState->state=GET_STATE(cell); /* isolate the new state */
actionSeq=(*pImpAct)[GET_ACTION(cell)]; /* isolate the action */
addLevel=(*pImpTab)[pLevState->state][IMPTABLEVELS_RES];
if(actionSeq) {
switch(actionSeq) {
case 1: /* init ON seq */
pLevState->startON=start0;
break;
case 2: /* prepend ON seq to current seq */
start=pLevState->startON;
break;
case 3: /* L or S after possible relevant EN/AN */
/* check if we had EN after R/AL */
if (pLevState->startL2EN >= 0) {
addPoint(pBiDi, pLevState->startL2EN, LRM_BEFORE);
}
pLevState->startL2EN=-1; /* not within previous if since could also be -2 */
/* check if we had any relevant EN/AN after R/AL */
pInsertPoints=&(pBiDi->insertPoints);
if ((pInsertPoints->capacity == 0) ||
(pInsertPoints->size <= pInsertPoints->confirmed))
{
/* nothing, just clean up */
pLevState->lastStrongRTL=-1;
/* check if we have a pending conditional segment */
level=(*pImpTab)[oldStateSeq][IMPTABLEVELS_RES];
if ((level & 1) && (pLevState->startON > 0)) { /* after ON */
start=pLevState->startON; /* reset to basic run level */
}
if (_prop == _S) /* add LRM before S */
{
addPoint(pBiDi, start0, LRM_BEFORE);
pInsertPoints->confirmed=pInsertPoints->size;
}
break;
}
/* reset previous RTL cont to level for LTR text */
for (k=pLevState->lastStrongRTL+1; k<start0; k++)
{
/* reset odd level, leave runLevel+2 as is */
levels[k]=(levels[k] - 2) & ~1;
}
/* mark insert points as confirmed */
pInsertPoints->confirmed=pInsertPoints->size;
pLevState->lastStrongRTL=-1;
if (_prop == _S) /* add LRM before S */
{
addPoint(pBiDi, start0, LRM_BEFORE);
pInsertPoints->confirmed=pInsertPoints->size;
}
break;
case 4: /* R/AL after possible relevant EN/AN */
/* just clean up */
pInsertPoints=&(pBiDi->insertPoints);
if (pInsertPoints->capacity > 0)
/* remove all non confirmed insert points */
pInsertPoints->size=pInsertPoints->confirmed;
pLevState->startON=-1;
pLevState->startL2EN=-1;
pLevState->lastStrongRTL=limit - 1;
break;
case 5: /* EN/AN after R/AL + possible cont */
/* check for real AN */
if ((_prop == _AN) && (NO_CONTEXT_RTL(pBiDi->dirProps[start0]) == AN) &&
(pBiDi->reorderingMode!=UBIDI_REORDER_INVERSE_FOR_NUMBERS_SPECIAL))
{
/* real AN */
if (pLevState->startL2EN == -1) /* if no relevant EN already found */
{
/* just note the righmost digit as a strong RTL */
pLevState->lastStrongRTL=limit - 1;
break;
}
if (pLevState->startL2EN >= 0) /* after EN, no AN */
{
addPoint(pBiDi, pLevState->startL2EN, LRM_BEFORE);
pLevState->startL2EN=-2;
}
/* note AN */
addPoint(pBiDi, start0, LRM_BEFORE);
break;
}
/* if first EN/AN after R/AL */
if (pLevState->startL2EN == -1) {
pLevState->startL2EN=start0;
}
break;
case 6: /* note location of latest R/AL */
pLevState->lastStrongRTL=limit - 1;
pLevState->startON=-1;
break;
case 7: /* L after R+ON/EN/AN */
/* include possible adjacent number on the left */
for (k=start0-1; k>=0 && !(levels[k]&1); k--);
if(k>=0) {
addPoint(pBiDi, k, RLM_BEFORE); /* add RLM before */
pInsertPoints=&(pBiDi->insertPoints);
pInsertPoints->confirmed=pInsertPoints->size; /* confirm it */
}
pLevState->startON=start0;
break;
case 8: /* AN after L */
/* AN numbers between L text on both sides may be trouble. */
/* tentatively bracket with LRMs; will be confirmed if followed by L */
addPoint(pBiDi, start0, LRM_BEFORE); /* add LRM before */
addPoint(pBiDi, start0, LRM_AFTER); /* add LRM after */
break;
case 9: /* R after L+ON/EN/AN */
/* false alert, infirm LRMs around previous AN */
pInsertPoints=&(pBiDi->insertPoints);
pInsertPoints->size=pInsertPoints->confirmed;
if (_prop == _S) /* add RLM before S */
{
addPoint(pBiDi, start0, RLM_BEFORE);
pInsertPoints->confirmed=pInsertPoints->size;
}
break;
case 10: /* L after L+ON/AN */
level=pLevState->runLevel + addLevel;
for(k=pLevState->startON; k<start0; k++) {
if (levels[k]<level)
levels[k]=level;
}
pInsertPoints=&(pBiDi->insertPoints);
pInsertPoints->confirmed=pInsertPoints->size; /* confirm inserts */
pLevState->startON=start0;
break;
case 11: /* L after L+ON+EN/AN/ON */
level=pLevState->runLevel;
for(k=start0-1; k>=pLevState->startON; k--) {
if(levels[k]==level+3) {
while(levels[k]==level+3) {
levels[k--]-=2;
}
while(levels[k]==level) {
k--;
}
}
if(levels[k]==level+2) {
levels[k]=level;
continue;
}
levels[k]=level+1;
}
break;
case 12: /* R after L+ON+EN/AN/ON */
level=pLevState->runLevel+1;
for(k=start0-1; k>=pLevState->startON; k--) {
if(levels[k]>level) {
levels[k]-=2;
}
}
break;
default: /* we should never get here */
start=start0+25;
start/=(start-start0-25); /* force program crash */
break;
}
}
if((addLevel) || (start < start0)) {
level=pLevState->runLevel + addLevel;
for(k=start; k<limit; k++) {
levels[k]=level;
}
}
}
static void
resolveImplicitLevels(UBiDi *pBiDi,
int32_t start, int32_t limit,
DirProp sor, DirProp eor) {
const DirProp *dirProps=pBiDi->dirProps;
LevState levState;
int32_t i, start1, start2;
uint8_t oldStateImp, stateImp, actionImp;
uint8_t gprop, resProp, cell;
UBool inverseRTL;
DirProp nextStrongProp=R;
int32_t nextStrongPos=-1;
/* check for RTL inverse BiDi mode */
/* FOOD FOR THOUGHT: in case of RTL inverse BiDi, it would make sense to
* loop on the text characters from end to start.
* This would need a different properties state table (at least different
* actions) and different levels state tables (maybe very similar to the
* LTR corresponding ones.
*/
inverseRTL=((start<pBiDi->lastArabicPos) && (GET_PARALEVEL(pBiDi, start) & 1) &&
(pBiDi->reorderingMode==UBIDI_REORDER_INVERSE_LIKE_DIRECT ||
pBiDi->reorderingMode==UBIDI_REORDER_INVERSE_FOR_NUMBERS_SPECIAL));
/* initialize for levels state table */
levState.startL2EN=-1; /* used for INVERSE_LIKE_DIRECT_WITH_MARKS */
levState.lastStrongRTL=-1; /* used for INVERSE_LIKE_DIRECT_WITH_MARKS */
levState.state=0;
levState.runLevel=pBiDi->levels[start];
levState.pImpTab=((pBiDi->pImpTabPair)->pImpTab)[levState.runLevel&1];
levState.pImpAct=((pBiDi->pImpTabPair)->pImpAct)[levState.runLevel&1];
processPropertySeq(pBiDi, &levState, sor, start, start);
/* initialize for property state table */
if(dirProps[start]==NSM) {
stateImp = 1 + sor;
} else {
stateImp=0;
}
start1=start;
start2=start;
for(i=start; i<=limit; i++) {
if(i>=limit) {
gprop=eor;
} else {
DirProp prop, prop1;
prop=NO_CONTEXT_RTL(dirProps[i]);
if(inverseRTL) {
if(prop==AL) {
/* AL before EN does not make it AN */
prop=R;
} else if(prop==EN) {
if(nextStrongPos<=i) {
/* look for next strong char (L/R/AL) */
int32_t j;
nextStrongProp=R; /* set default */
nextStrongPos=limit;
for(j=i+1; j<limit; j++) {
prop1=NO_CONTEXT_RTL(dirProps[j]);
if(prop1==L || prop1==R || prop1==AL) {
nextStrongProp=prop1;
nextStrongPos=j;
break;
}
}
}
if(nextStrongProp==AL) {
prop=AN;
}
}
}
gprop=groupProp[prop];
}
oldStateImp=stateImp;
cell=impTabProps[oldStateImp][gprop];
stateImp=GET_STATEPROPS(cell); /* isolate the new state */
actionImp=GET_ACTIONPROPS(cell); /* isolate the action */
if((i==limit) && (actionImp==0)) {
/* there is an unprocessed sequence if its property == eor */
actionImp=1; /* process the last sequence */
}
if(actionImp) {
resProp=impTabProps[oldStateImp][IMPTABPROPS_RES];
switch(actionImp) {
case 1: /* process current seq1, init new seq1 */
processPropertySeq(pBiDi, &levState, resProp, start1, i);
start1=i;
break;
case 2: /* init new seq2 */
start2=i;
break;
case 3: /* process seq1, process seq2, init new seq1 */
processPropertySeq(pBiDi, &levState, resProp, start1, start2);
processPropertySeq(pBiDi, &levState, _ON, start2, i);
start1=i;
break;
case 4: /* process seq1, set seq1=seq2, init new seq2 */
processPropertySeq(pBiDi, &levState, resProp, start1, start2);
start1=start2;
start2=i;
break;
default: /* we should never get here */
start=start1+25;
start/=(start-start1-25); /* force program crash */
break;
}
}
}
/* flush possible pending sequence, e.g. ON */
processPropertySeq(pBiDi, &levState, eor, limit, limit);
}
/* perform (L1) and (X9) ---------------------------------------------------- */
/*
* Reset the embedding levels for some non-graphic characters (L1).
* This function also sets appropriate levels for BN, and
* explicit embedding types that are supposed to have been removed
* from the paragraph in (X9).
*/
static void
adjustWSLevels(UBiDi *pBiDi) {
const DirProp *dirProps=pBiDi->dirProps;
UBiDiLevel *levels=pBiDi->levels;
int32_t i;
if(pBiDi->flags&MASK_WS) {
UBool orderParagraphsLTR=pBiDi->orderParagraphsLTR;
Flags flag;
i=pBiDi->trailingWSStart;
while(i>0) {
/* reset a sequence of WS/BN before eop and B/S to the paragraph paraLevel */
while(i>0 && (flag=DIRPROP_FLAG_NC(dirProps[--i]))&MASK_WS) {
if(orderParagraphsLTR&&(flag&DIRPROP_FLAG(B))) {
levels[i]=0;
} else {
levels[i]=GET_PARALEVEL(pBiDi, i);
}
}
/* reset BN to the next character's paraLevel until B/S, which restarts above loop */
/* here, i+1 is guaranteed to be <length */
while(i>0) {
flag=DIRPROP_FLAG_NC(dirProps[--i]);
if(flag&MASK_BN_EXPLICIT) {
levels[i]=levels[i+1];
} else if(orderParagraphsLTR&&(flag&DIRPROP_FLAG(B))) {
levels[i]=0;
break;
} else if(flag&MASK_B_S) {
levels[i]=GET_PARALEVEL(pBiDi, i);
break;
}
}
}
}
}
#define BIDI_MIN(x, y) ((x)<(y) ? (x) : (y))
#define BIDI_ABS(x) ((x)>=0 ? (x) : (-(x)))
static void
setParaRunsOnly(UBiDi *pBiDi, const UChar *text, int32_t length,
UBiDiLevel paraLevel, UErrorCode *pErrorCode) {
void *runsOnlyMemory;
int32_t *visualMap;
UChar *visualText;
const UBiDiLevel *levels;
UBiDiLevel *saveLevels;
Run *runs;
int32_t visualLength, i, j, visualStart, logicalStart,
runCount, runLength, addedRuns, insertRemove,
start, limit, step, indexOddBit, logicalPos,
index, index1;
uint32_t saveOptions;
pBiDi->reorderingMode=UBIDI_REORDER_DEFAULT;
if(length==0) {
ubidi_setPara(pBiDi, text, length, paraLevel, NULL, pErrorCode);
goto cleanup3;
}
/* obtain memory for mapping table and visual text */
runsOnlyMemory=uprv_malloc(length*(sizeof(int32_t)+sizeof(UChar)+sizeof(UBiDiLevel)));
if(runsOnlyMemory==NULL) {
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
goto cleanup3;
}
visualMap=runsOnlyMemory;
visualText=(UChar *)&visualMap[length];
saveLevels=(UBiDiLevel *)&visualText[length];
saveOptions=pBiDi->reorderingOptions;
if(saveOptions & UBIDI_OPTION_INSERT_MARKS) {
pBiDi->reorderingOptions&=~UBIDI_OPTION_INSERT_MARKS;
pBiDi->reorderingOptions|=UBIDI_OPTION_REMOVE_CONTROLS;
}
ubidi_setPara(pBiDi, text, length, paraLevel, NULL, pErrorCode);
levels=ubidi_getLevels(pBiDi, pErrorCode);
/* FOOD FOR THOUGHT: instead of writing the visual text, we could use
* the visual map and the dirProps array to drive the second call
* to ubidi_setPara (but must make provision for possible removal of
* BiDi controls. Alternatively, only use the dirProps array via
* customized classifier callback.
*/
visualLength=ubidi_writeReordered(pBiDi, visualText, length,
UBIDI_DO_MIRRORING, pErrorCode);
pBiDi->reorderingOptions=saveOptions;
ubidi_getVisualMap(pBiDi, visualMap, pErrorCode);
if(U_FAILURE(*pErrorCode)) {
goto cleanup2;
}
uprv_memcpy(saveLevels, levels, length*sizeof(UBiDiLevel));
pBiDi->reorderingMode=UBIDI_REORDER_INVERSE_LIKE_DIRECT;
paraLevel=pBiDi->paraLevel^1;
ubidi_setPara(pBiDi, visualText, visualLength, paraLevel, NULL, pErrorCode);
if(U_FAILURE(*pErrorCode)) {
goto cleanup1;
}
ubidi_getRuns(pBiDi);
/* check if some runs must be split, count how many splits */
addedRuns=0;
runCount=pBiDi->runCount;
runs=pBiDi->runs;
visualStart=0;
for(i=0; i<runCount; i++, visualStart+=runLength) {
runLength=runs[i].visualLimit-visualStart;
if(runLength<2) {
continue;
}
logicalStart=GET_INDEX(runs[i].logicalStart);
for(j=logicalStart+1; j<logicalStart+runLength; j++) {
index=visualMap[j];
index1=visualMap[j-1];
if((BIDI_ABS(index-index1)!=1) || (saveLevels[index]!=saveLevels[index1])) {
addedRuns++;
}
}
}
if(addedRuns) {
if(getRunsMemory(pBiDi, runCount+addedRuns)) {
if(runCount==1) {
/* because we switch from UBiDi.simpleRuns to UBiDi.runs */
pBiDi->runsMemory[0]=runs[0];
}
runs=pBiDi->runs=pBiDi->runsMemory;
pBiDi->runCount+=addedRuns;
} else {
goto cleanup1;
}
}
/* split runs which are not consecutive in source text */
for(i=runCount-1; i>=0; i--) {
runLength= i==0 ? runs[0].visualLimit :
runs[i].visualLimit-runs[i-1].visualLimit;
logicalStart=runs[i].logicalStart;
indexOddBit=GET_ODD_BIT(logicalStart);
logicalStart=GET_INDEX(logicalStart);
if(runLength<2) {
if(addedRuns) {
runs[i+addedRuns]=runs[i];
}
logicalPos=visualMap[logicalStart];
runs[i+addedRuns].logicalStart=MAKE_INDEX_ODD_PAIR(logicalPos,
saveLevels[logicalPos]^indexOddBit);
continue;
}
if(indexOddBit) {
start=logicalStart;
limit=logicalStart+runLength-1;
step=1;
} else {
start=logicalStart+runLength-1;
limit=logicalStart;
step=-1;
}
for(j=start; j!=limit; j+=step) {
index=visualMap[j];
index1=visualMap[j+step];
if((BIDI_ABS(index-index1)!=1) || (saveLevels[index]!=saveLevels[index1])) {
logicalPos=BIDI_MIN(visualMap[start], index);
runs[i+addedRuns].logicalStart=MAKE_INDEX_ODD_PAIR(logicalPos,
saveLevels[logicalPos]^indexOddBit);
runs[i+addedRuns].visualLimit=runs[i].visualLimit;
runs[i].visualLimit-=BIDI_ABS(j-start)+1;
insertRemove=runs[i].insertRemove&(LRM_AFTER|RLM_AFTER);
runs[i+addedRuns].insertRemove=insertRemove;
runs[i].insertRemove&=~insertRemove;
start=j+step;
addedRuns--;
}
}
if(addedRuns) {
runs[i+addedRuns]=runs[i];
}
logicalPos=BIDI_MIN(visualMap[start], visualMap[limit]);
runs[i+addedRuns].logicalStart=MAKE_INDEX_ODD_PAIR(logicalPos,
saveLevels[logicalPos]^indexOddBit);
}
cleanup1:
/* restore initial paraLevel */
pBiDi->paraLevel^=1;
cleanup2:
/* restore real text */
pBiDi->text=text;
/* free memory for mapping table and visual text */
uprv_free(runsOnlyMemory);
cleanup3:
pBiDi->reorderingMode=UBIDI_REORDER_RUNS_ONLY;
}
/* ubidi_setPara ------------------------------------------------------------ */
U_CAPI void U_EXPORT2
ubidi_setPara(UBiDi *pBiDi, const UChar *text, int32_t length,
UBiDiLevel paraLevel, UBiDiLevel *embeddingLevels,
UErrorCode *pErrorCode) {
UBiDiDirection direction;
/* check the argument values */
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
return;
} else if(pBiDi==NULL || text==NULL ||
((UBIDI_MAX_EXPLICIT_LEVEL<paraLevel) && !IS_DEFAULT_LEVEL(paraLevel)) ||
length<-1
) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return;
}
if(length==-1) {
length=u_strlen(text);
}
/* special treatment for RUNS_ONLY mode */
if(pBiDi->reorderingMode==UBIDI_REORDER_RUNS_ONLY) {
setParaRunsOnly(pBiDi, text, length, paraLevel, pErrorCode);
return;
}
/* initialize the UBiDi structure */
pBiDi->pParaBiDi=NULL; /* mark unfinished setPara */
pBiDi->text=text;
pBiDi->length=pBiDi->originalLength=pBiDi->resultLength=length;
pBiDi->paraLevel=paraLevel;
pBiDi->direction=UBIDI_LTR;
pBiDi->paraCount=1;
pBiDi->dirProps=NULL;
pBiDi->levels=NULL;
pBiDi->runs=NULL;
pBiDi->insertPoints.size=0; /* clean up from last call */
pBiDi->insertPoints.confirmed=0; /* clean up from last call */
/*
* Save the original paraLevel if contextual; otherwise, set to 0.
*/
if(IS_DEFAULT_LEVEL(paraLevel)) {
pBiDi->defaultParaLevel=paraLevel;
} else {
pBiDi->defaultParaLevel=0;
}
if(length==0) {
/*
* For an empty paragraph, create a UBiDi object with the paraLevel and
* the flags and the direction set but without allocating zero-length arrays.
* There is nothing more to do.
*/
if(IS_DEFAULT_LEVEL(paraLevel)) {
pBiDi->paraLevel&=1;
pBiDi->defaultParaLevel=0;
}
if(paraLevel&1) {
pBiDi->flags=DIRPROP_FLAG(R);
pBiDi->direction=UBIDI_RTL;
} else {
pBiDi->flags=DIRPROP_FLAG(L);
pBiDi->direction=UBIDI_LTR;
}
pBiDi->runCount=0;
pBiDi->pParaBiDi=pBiDi; /* mark successful setPara */
return;
}
pBiDi->runCount=-1;
/*
* Get the directional properties,
* the flags bit-set, and
* determine the paragraph level if necessary.
*/
if(getDirPropsMemory(pBiDi, length)) {
pBiDi->dirProps=pBiDi->dirPropsMemory;
getDirProps(pBiDi);
} else {
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
return;
}
/* the processed length may have changed if UBIDI_OPTION_STREAMING */
length= pBiDi->length;
pBiDi->trailingWSStart=length; /* the levels[] will reflect the WS run */
/* allocate paras memory */
if(pBiDi->paraCount>1) {
if(getInitialParasMemory(pBiDi, pBiDi->paraCount)) {
pBiDi->paras=pBiDi->parasMemory;
pBiDi->paras[pBiDi->paraCount-1]=length;
} else {
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
return;
}
} else {
/* initialize paras for single paragraph */
pBiDi->paras=pBiDi->simpleParas;
pBiDi->simpleParas[0]=length;
}
/* are explicit levels specified? */
if(embeddingLevels==NULL) {
/* no: determine explicit levels according to the (Xn) rules */\
if(getLevelsMemory(pBiDi, length)) {
pBiDi->levels=pBiDi->levelsMemory;
direction=resolveExplicitLevels(pBiDi);
} else {
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
return;
}
} else {
/* set BN for all explicit codes, check that all levels are 0 or paraLevel..UBIDI_MAX_EXPLICIT_LEVEL */
pBiDi->levels=embeddingLevels;
direction=checkExplicitLevels(pBiDi, pErrorCode);
if(U_FAILURE(*pErrorCode)) {
return;
}
}
/*
* The steps after (X9) in the UBiDi algorithm are performed only if
* the paragraph text has mixed directionality!
*/
pBiDi->direction=direction;
switch(direction) {
case UBIDI_LTR:
/* make sure paraLevel is even */
pBiDi->paraLevel=(UBiDiLevel)((pBiDi->paraLevel+1)&~1);
/* all levels are implicitly at paraLevel (important for ubidi_getLevels()) */
pBiDi->trailingWSStart=0;
break;
case UBIDI_RTL:
/* make sure paraLevel is odd */
pBiDi->paraLevel|=1;
/* all levels are implicitly at paraLevel (important for ubidi_getLevels()) */
pBiDi->trailingWSStart=0;
break;
default:
/*
* Choose the right implicit state table
*/
switch(pBiDi->reorderingMode) {
case UBIDI_REORDER_DEFAULT:
pBiDi->pImpTabPair=&impTab_DEFAULT;
break;
case UBIDI_REORDER_NUMBERS_SPECIAL:
pBiDi->pImpTabPair=&impTab_NUMBERS_SPECIAL;
break;
case UBIDI_REORDER_GROUP_NUMBERS_WITH_R:
pBiDi->pImpTabPair=&impTab_GROUP_NUMBERS_WITH_R;
break;
case UBIDI_REORDER_RUNS_ONLY:
/* we should never get here */
pBiDi=NULL;
pBiDi->text=NULL; /* make the program crash! */
break;
case UBIDI_REORDER_INVERSE_NUMBERS_AS_L:
pBiDi->pImpTabPair=&impTab_INVERSE_NUMBERS_AS_L;
break;
case UBIDI_REORDER_INVERSE_LIKE_DIRECT:
if (pBiDi->reorderingOptions & UBIDI_OPTION_INSERT_MARKS) {
pBiDi->pImpTabPair=&impTab_INVERSE_LIKE_DIRECT_WITH_MARKS;
} else {
pBiDi->pImpTabPair=&impTab_INVERSE_LIKE_DIRECT;
}
break;
case UBIDI_REORDER_INVERSE_FOR_NUMBERS_SPECIAL:
if (pBiDi->reorderingOptions & UBIDI_OPTION_INSERT_MARKS) {
pBiDi->pImpTabPair=&impTab_INVERSE_FOR_NUMBERS_SPECIAL_WITH_MARKS;
} else {
pBiDi->pImpTabPair=&impTab_INVERSE_FOR_NUMBERS_SPECIAL;
}
break;
default:
pBiDi->pImpTabPair=&impTab_DEFAULT;
break;
}
/*
* If there are no external levels specified and there
* are no significant explicit level codes in the text,
* then we can treat the entire paragraph as one run.
* Otherwise, we need to perform the following rules on runs of
* the text with the same embedding levels. (X10)
* "Significant" explicit level codes are ones that actually
* affect non-BN characters.
* Examples for "insignificant" ones are empty embeddings
* LRE-PDF, LRE-RLE-PDF-PDF, etc.
*/
if(embeddingLevels==NULL && !(pBiDi->flags&DIRPROP_FLAG_MULTI_RUNS)) {
resolveImplicitLevels(pBiDi, 0, length,
GET_LR_FROM_LEVEL(GET_PARALEVEL(pBiDi, 0)),
GET_LR_FROM_LEVEL(GET_PARALEVEL(pBiDi, length-1)));
} else {
/* sor, eor: start and end types of same-level-run */
UBiDiLevel *levels=pBiDi->levels;
int32_t start, limit=0;
UBiDiLevel level, nextLevel;
DirProp sor, eor;
/* determine the first sor and set eor to it because of the loop body (sor=eor there) */
level=GET_PARALEVEL(pBiDi, 0);
nextLevel=levels[0];
if(level<nextLevel) {
eor=GET_LR_FROM_LEVEL(nextLevel);
} else {
eor=GET_LR_FROM_LEVEL(level);
}
do {
/* determine start and limit of the run (end points just behind the run) */
/* the values for this run's start are the same as for the previous run's end */
start=limit;
level=nextLevel;
if((start>0) && (NO_CONTEXT_RTL(pBiDi->dirProps[start-1])==B)) {
/* except if this is a new paragraph, then set sor = para level */
sor=GET_LR_FROM_LEVEL(GET_PARALEVEL(pBiDi, start));
} else {
sor=eor;
}
/* search for the limit of this run */
while(++limit<length && levels[limit]==level) {}
/* get the correct level of the next run */
if(limit<length) {
nextLevel=levels[limit];
} else {
nextLevel=GET_PARALEVEL(pBiDi, length-1);
}
/* determine eor from max(level, nextLevel); sor is last run's eor */
if((level&~UBIDI_LEVEL_OVERRIDE)<(nextLevel&~UBIDI_LEVEL_OVERRIDE)) {
eor=GET_LR_FROM_LEVEL(nextLevel);
} else {
eor=GET_LR_FROM_LEVEL(level);
}
/* if the run consists of overridden directional types, then there
are no implicit types to be resolved */
if(!(level&UBIDI_LEVEL_OVERRIDE)) {
resolveImplicitLevels(pBiDi, start, limit, sor, eor);
} else {
/* remove the UBIDI_LEVEL_OVERRIDE flags */
do {
levels[start++]&=~UBIDI_LEVEL_OVERRIDE;
} while(start<limit);
}
} while(limit<length);
}
/* check if we got any memory shortage while adding insert points */
if (U_FAILURE(pBiDi->insertPoints.errorCode))
{
*pErrorCode=pBiDi->insertPoints.errorCode;
return;
}
/* reset the embedding levels for some non-graphic characters (L1), (X9) */
adjustWSLevels(pBiDi);
break;
}
if(pBiDi->reorderingOptions & UBIDI_OPTION_REMOVE_CONTROLS) {
pBiDi->resultLength -= pBiDi->controlCount;
} else {
pBiDi->resultLength += pBiDi->insertPoints.size;
}
pBiDi->pParaBiDi=pBiDi; /* mark successful setPara */
}
U_CAPI void U_EXPORT2
ubidi_orderParagraphsLTR(UBiDi *pBiDi, UBool orderParagraphsLTR) {
if(pBiDi!=NULL) {
pBiDi->orderParagraphsLTR=orderParagraphsLTR;
}
}
U_CAPI UBool U_EXPORT2
ubidi_isOrderParagraphsLTR(UBiDi *pBiDi) {
if(pBiDi!=NULL) {
return pBiDi->orderParagraphsLTR;
} else {
return FALSE;
}
}
U_CAPI UBiDiDirection U_EXPORT2
ubidi_getDirection(const UBiDi *pBiDi) {
if(IS_VALID_PARA_OR_LINE(pBiDi)) {
return pBiDi->direction;
} else {
return UBIDI_LTR;
}
}
U_CAPI const UChar * U_EXPORT2
ubidi_getText(const UBiDi *pBiDi) {
if(IS_VALID_PARA_OR_LINE(pBiDi)) {
return pBiDi->text;
} else {
return NULL;
}
}
U_CAPI int32_t U_EXPORT2
ubidi_getLength(const UBiDi *pBiDi) {
if(IS_VALID_PARA_OR_LINE(pBiDi)) {
return pBiDi->originalLength;
} else {
return 0;
}
}
U_CAPI int32_t U_EXPORT2
ubidi_getProcessedLength(const UBiDi *pBiDi) {
if(IS_VALID_PARA_OR_LINE(pBiDi)) {
return pBiDi->length;
} else {
return 0;
}
}
U_CAPI int32_t U_EXPORT2
ubidi_getResultLength(const UBiDi *pBiDi) {
if(IS_VALID_PARA_OR_LINE(pBiDi)) {
return pBiDi->resultLength;
} else {
return 0;
}
}
/* paragraphs API functions ------------------------------------------------- */
U_CAPI UBiDiLevel U_EXPORT2
ubidi_getParaLevel(const UBiDi *pBiDi) {
if(IS_VALID_PARA_OR_LINE(pBiDi)) {
return pBiDi->paraLevel;
} else {
return 0;
}
}
U_CAPI int32_t U_EXPORT2
ubidi_countParagraphs(UBiDi *pBiDi) {
if(!IS_VALID_PARA_OR_LINE(pBiDi)) {
return 0;
} else {
return pBiDi->paraCount;
}
}
U_CAPI void U_EXPORT2
ubidi_getParagraphByIndex(const UBiDi *pBiDi, int32_t paraIndex,
int32_t *pParaStart, int32_t *pParaLimit,
UBiDiLevel *pParaLevel, UErrorCode *pErrorCode) {
int32_t paraStart;
/* check the argument values */
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
return;
} else if( !IS_VALID_PARA_OR_LINE(pBiDi) || /* no valid setPara/setLine */
paraIndex<0 || paraIndex>=pBiDi->paraCount ) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return;
}
pBiDi=pBiDi->pParaBiDi; /* get Para object if Line object */
if(paraIndex) {
paraStart=pBiDi->paras[paraIndex-1];
} else {
paraStart=0;
}
if(pParaStart!=NULL) {
*pParaStart=paraStart;
}
if(pParaLimit!=NULL) {
*pParaLimit=pBiDi->paras[paraIndex];
}
if(pParaLevel!=NULL) {
*pParaLevel=GET_PARALEVEL(pBiDi, paraStart);
}
return;
}
U_CAPI int32_t U_EXPORT2
ubidi_getParagraph(const UBiDi *pBiDi, int32_t charIndex,
int32_t *pParaStart, int32_t *pParaLimit,
UBiDiLevel *pParaLevel, UErrorCode *pErrorCode) {
uint32_t paraIndex;
/* check the argument values */
/* pErrorCode will be checked by the call to ubidi_getParagraphByIndex */
if( !IS_VALID_PARA_OR_LINE(pBiDi)) {/* no valid setPara/setLine */
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return -1;
}
pBiDi=pBiDi->pParaBiDi; /* get Para object if Line object */
if( charIndex<0 || charIndex>=pBiDi->length ) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return -1;
}
for(paraIndex=0; charIndex>=pBiDi->paras[paraIndex]; paraIndex++);
ubidi_getParagraphByIndex(pBiDi, paraIndex, pParaStart, pParaLimit, pParaLevel, pErrorCode);
return paraIndex;
}
U_CAPI void U_EXPORT2
ubidi_setClassCallback(UBiDi *pBiDi, UBiDiClassCallback *newFn,
const void *newContext, UBiDiClassCallback **oldFn,
const void **oldContext, UErrorCode *pErrorCode)
{
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
return;
} else if(pBiDi==NULL) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return;
}
if( oldFn )
{
*oldFn = pBiDi->fnClassCallback;
}
if( oldContext )
{
*oldContext = pBiDi->coClassCallback;
}
pBiDi->fnClassCallback = newFn;
pBiDi->coClassCallback = newContext;
}
U_CAPI void U_EXPORT2
ubidi_getClassCallback(UBiDi *pBiDi, UBiDiClassCallback **fn, const void **context)
{
if( fn )
{
*fn = pBiDi->fnClassCallback;
}
if( context )
{
*context = pBiDi->coClassCallback;
}
}
U_CAPI UCharDirection U_EXPORT2
ubidi_getCustomizedClass(UBiDi *pBiDi, UChar32 c)
{
UCharDirection dir;
if( pBiDi->fnClassCallback == NULL ||
(dir = (*pBiDi->fnClassCallback)(pBiDi->coClassCallback, c)) == U_BIDI_CLASS_DEFAULT )
{
return ubidi_getClass(pBiDi->bdp, c);
} else {
return dir;
}
}