scuffed-code/icu4c/source/i18n/astro.h
Steven R. Loomis fd0010d370 ICU-2424 warnings cleanup
X-SVN-Rev: 13862
2003-11-24 22:50:45 +00:00

1280 lines
45 KiB
C++

/************************************************************************
* Copyright (C) 1996-2003, International Business Machines Corporation *
* and others. All Rights Reserved. *
************************************************************************
* 2003-nov-07 srl Port from Java
*/
#ifndef ASTRO_H
#define ASTRO_H
#include "unicode/utypes.h"
#if !UCONFIG_NO_FORMATTING
#include "gregoimp.h" // for Math
#include "stdio.h" // for sprintf
#include "unicode/unistr.h"
/**
* <code>CalendarAstronomer</code> is a class that can perform the calculations to
* determine the positions of the sun and moon, the time of sunrise and
* sunset, and other astronomy-related data. The calculations it performs
* are in some cases quite complicated, and this utility class saves you
* the trouble of worrying about them.
* <p>
* The measurement of time is a very important part of astronomy. Because
* astronomical bodies are constantly in motion, observations are only valid
* at a given moment in time. Accordingly, each <code>CalendarAstronomer</code>
* object has a <code>time</code> property that determines the date
* and time for which its calculations are performed. You can set and
* retrieve this property with {@link #setDate setDate}, {@link #getDate getDate}
* and related methods.
* <p>
* Almost all of the calculations performed by this class, or by any
* astronomer, are approximations to various degrees of accuracy. The
* calculations in this class are mostly modelled after those described
* in the book
* <a href="http://www.amazon.com/exec/obidos/ISBN=0521356997" target="_top">
* Practical Astronomy With Your Calculator</a>, by Peter J.
* Duffett-Smith, Cambridge University Press, 1990. This is an excellent
* book, and if you want a greater understanding of how these calculations
* are performed it a very good, readable starting point.
* <p>
* <strong>WARNING:</strong> This class is very early in its development, and
* it is highly likely that its API will change to some degree in the future.
* At the moment, it basically does just enough to support {@link IslamicCalendar}
* and {@link ChineseCalendar}.
*
* @author Laura Werner
* @author Alan Liu
* @internal
*/
class U_I18N_API CalendarAstronomer {
public:
// some classes
public:
/**
* Represents the position of an object in the sky relative to the ecliptic,
* the plane of the earth's orbit around the Sun.
* This is a spherical coordinate system in which the latitude
* specifies the position north or south of the plane of the ecliptic.
* The longitude specifies the position along the ecliptic plane
* relative to the "First Point of Aries", which is the Sun's position in the sky
* at the Vernal Equinox.
* <p>
* Note that Ecliptic objects are immutable and cannot be modified
* once they are constructed. This allows them to be passed and returned by
* value without worrying about whether other code will modify them.
*
* @see CalendarAstronomer.Equatorial
* @see CalendarAstronomer.Horizon
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
class Ecliptic {
public:
/**
* Constructs an Ecliptic coordinate object.
* <p>
* @param lat The ecliptic latitude, measured in radians.
* @param lon The ecliptic longitude, measured in radians.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
Ecliptic(double lat, double lon) {
latitude = lat;
longitude = lon;
}
/**
* Return a string representation of this object
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
UnicodeString toString() {
char tmp[800];
sprintf(tmp, "[%.5f,%.5f]", longitude*RAD_DEG, latitude*RAD_DEG);
return UnicodeString(tmp);
}
/**
* The ecliptic latitude, in radians. This specifies an object's
* position north or south of the plane of the ecliptic,
* with positive angles representing north.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
double latitude;
/**
* The ecliptic longitude, in radians.
* This specifies an object's position along the ecliptic plane
* relative to the "First Point of Aries", which is the Sun's position
* in the sky at the Vernal Equinox,
* with positive angles representing east.
* <p>
* A bit of trivia: the first point of Aries is currently in the
* constellation Pisces, due to the precession of the earth's axis.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
double longitude;
};
/**
* Represents the position of an
* object in the sky relative to the plane of the earth's equator.
* The <i>Right Ascension</i> specifies the position east or west
* along the equator, relative to the sun's position at the vernal
* equinox. The <i>Declination</i> is the position north or south
* of the equatorial plane.
* <p>
* Note that Equatorial objects are immutable and cannot be modified
* once they are constructed. This allows them to be passed and returned by
* value without worrying about whether other code will modify them.
*
* @see CalendarAstronomer.Ecliptic
* @see CalendarAstronomer.Horizon
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
class Equatorial {
public:
/**
* Constructs an Equatorial coordinate object.
* <p>
* @param asc The right ascension, measured in radians.
* @param dec The declination, measured in radians.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
Equatorial(double asc, double dec)
: ascension(asc), declination(dec) { }
/**
* Return a string representation of this object, with the
* angles measured in degrees.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
UnicodeString toString() const {
char tmp[400];
sprintf(tmp, "%f,%f",
(ascension*RAD_DEG), (declination*RAD_DEG));
return UnicodeString(tmp);
}
/**
* Return a string representation of this object with the right ascension
* measured in hours, minutes, and seconds.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
//String toHmsString() {
//return radToHms(ascension) + "," + radToDms(declination);
//}
/**
* The right ascension, in radians.
* This is the position east or west along the equator
* relative to the sun's position at the vernal equinox,
* with positive angles representing East.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
double ascension;
/**
* The declination, in radians.
* This is the position north or south of the equatorial plane,
* with positive angles representing north.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
double declination;
};
/**
* Represents the position of an object in the sky relative to
* the local horizon.
* The <i>Altitude</i> represents the object's elevation above the horizon,
* with objects below the horizon having a negative altitude.
* The <i>Azimuth</i> is the geographic direction of the object from the
* observer's position, with 0 representing north. The azimuth increases
* clockwise from north.
* <p>
* Note that Horizon objects are immutable and cannot be modified
* once they are constructed. This allows them to be passed and returned by
* value without worrying about whether other code will modify them.
*
* @see CalendarAstronomer.Ecliptic
* @see CalendarAstronomer.Equatorial
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
class Horizon {
public:
/**
* Constructs a Horizon coordinate object.
* <p>
* @param alt The altitude, measured in radians above the horizon.
* @param azim The azimuth, measured in radians clockwise from north.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
Horizon(double alt, double azim)
: altitude(alt), azimuth(azim) { }
/**
* Return a string representation of this object, with the
* angles measured in degrees.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
UnicodeString toString() {
char tmp[800];
sprintf(tmp, "[%.5f,%.5f]", altitude*RAD_DEG, azimuth*RAD_DEG);
return UnicodeString(tmp);
}
/**
* The object's altitude above the horizon, in radians.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
const double altitude;
/**
* The object's direction, in radians clockwise from north.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
const double azimuth;
};
public:
//-------------------------------------------------------------------------
// Astronomical constants
//-------------------------------------------------------------------------
/**
* The number of standard hours in one sidereal day.
* Approximately 24.93.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
static const double SIDEREAL_DAY;
/**
* The number of sidereal hours in one mean solar day.
* Approximately 24.07.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
static const double SOLAR_DAY;
/**
* The average number of solar days from one new moon to the next. This is the time
* it takes for the moon to return the same ecliptic longitude as the sun.
* It is longer than the sidereal month because the sun's longitude increases
* during the year due to the revolution of the earth around the sun.
* Approximately 29.53.
*
* @see #SIDEREAL_MONTH
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
static const double SYNODIC_MONTH;
/**
* The average number of days it takes
* for the moon to return to the same ecliptic longitude relative to the
* stellar background. This is referred to as the sidereal month.
* It is shorter than the synodic month due to
* the revolution of the earth around the sun.
* Approximately 27.32.
*
* @see #SYNODIC_MONTH
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
static const double SIDEREAL_MONTH;
/**
* The average number number of days between successive vernal equinoxes.
* Due to the precession of the earth's
* axis, this is not precisely the same as the sidereal year.
* Approximately 365.24
*
* @see #SIDEREAL_YEAR
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
static const double TROPICAL_YEAR;
/**
* The average number of days it takes
* for the sun to return to the same position against the fixed stellar
* background. This is the duration of one orbit of the earth about the sun
* as it would appear to an outside observer.
* Due to the precession of the earth's
* axis, this is not precisely the same as the tropical year.
* Approximately 365.25.
*
* @see #TROPICAL_YEAR
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
static const double SIDEREAL_YEAR;
//-------------------------------------------------------------------------
// Time-related constants
//-------------------------------------------------------------------------
/**
* The number of milliseconds in one second.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
static const int32_t SECOND_MS;
/**
* The number of milliseconds in one minute.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
static const int32_t MINUTE_MS;
/**
* The number of milliseconds in one hour.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
static const int32_t HOUR_MS;
/**
* The number of milliseconds in one day.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
static const double DAY_MS;
/**
* The start of the julian day numbering scheme used by astronomers, which
* is 1/1/4713 BC (Julian), 12:00 GMT. This is given as the number of milliseconds
* since 1/1/1970 AD (Gregorian), a negative number.
* Note that julian day numbers and
* the Julian calendar are <em>not</em> the same thing. Also note that
* julian days start at <em>noon</em>, not midnight.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
static const double JULIAN_EPOCH_MS;
// static {
// Calendar cal = new GregorianCalendar(TimeZone.getTimeZone("GMT"));
// cal.clear();
// cal.set(cal.ERA, 0);
// cal.set(cal.YEAR, 4713);
// cal.set(cal.MONTH, cal.JANUARY);
// cal.set(cal.DATE, 1);
// cal.set(cal.HOUR_OF_DAY, 12);
// System.out.println("1.5 Jan 4713 BC = " + cal.getTime().getTime());
// cal.clear();
// cal.set(cal.YEAR, 2000);
// cal.set(cal.MONTH, cal.JANUARY);
// cal.set(cal.DATE, 1);
// cal.add(cal.DATE, -1);
// System.out.println("0.0 Jan 2000 = " + cal.getTime().getTime());
// }
/**
* Milliseconds value for 0.0 January 2000 AD.
*/
static const double EPOCH_2000_MS;
//-------------------------------------------------------------------------
// Assorted private data used for conversions
//-------------------------------------------------------------------------
// My own copies of these so compilers are more likely to optimize them away
static const double PI;
static const double PI2;
static const double RAD_HOUR;
static const double DEG_RAD;
static const double RAD_DEG;
//-------------------------------------------------------------------------
// Constructors
//-------------------------------------------------------------------------
/**
* Construct a new <code>CalendarAstronomer</code> object that is initialized to
* the current date and time.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
CalendarAstronomer();
/**
* Construct a new <code>CalendarAstronomer</code> object that is initialized to
* the specified date and time.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
CalendarAstronomer(UDate d);
/**
* Construct a new <code>CalendarAstronomer</code> object with the given
* latitude and longitude. The object's time is set to the current
* date and time.
* <p>
* @param longitude The desired longitude, in <em>degrees</em> east of
* the Greenwich meridian.
*
* @param latitude The desired latitude, in <em>degrees</em>. Positive
* values signify North, negative South.
*
* @see java.util.Date#getTime()
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
CalendarAstronomer(double longitude, double latitude);
~CalendarAstronomer();
//-------------------------------------------------------------------------
// Time and date getters and setters
//-------------------------------------------------------------------------
/**
* Set the current date and time of this <code>CalendarAstronomer</code> object. All
* astronomical calculations are performed based on this time setting.
*
* @param aTime the date and time, expressed as the number of milliseconds since
* 1/1/1970 0:00 GMT (Gregorian).
*
* @see #setDate
* @see #getTime
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
void setTime(UDate aTime);
/**
* Set the current date and time of this <code>CalendarAstronomer</code> object. All
* astronomical calculations are performed based on this time setting.
*
* @param aTime the date and time, expressed as the number of milliseconds since
* 1/1/1970 0:00 GMT (Gregorian).
*
* @see #getTime
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
void setDate(UDate aDate) { setTime(aDate); }
/**
* Set the current date and time of this <code>CalendarAstronomer</code> object. All
* astronomical calculations are performed based on this time setting.
*
* @param jdn the desired time, expressed as a "julian day number",
* which is the number of elapsed days since
* 1/1/4713 BC (Julian), 12:00 GMT. Note that julian day
* numbers start at <em>noon</em>. To get the jdn for
* the corresponding midnight, subtract 0.5.
*
* @see #getJulianDay
* @see #JULIAN_EPOCH_MS
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
void setJulianDay(double jdn);
/**
* Get the current time of this <code>CalendarAstronomer</code> object,
* represented as the number of milliseconds since
* 1/1/1970 AD 0:00 GMT (Gregorian).
*
* @see #setTime
* @see #getDate
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
UDate getTime();
/**
* Get the current time of this <code>CalendarAstronomer</code> object,
* expressed as a "julian day number", which is the number of elapsed
* days since 1/1/4713 BC (Julian), 12:00 GMT.
*
* @see #setJulianDay
* @see #JULIAN_EPOCH_MS
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
double getJulianDay();
/**
* Return this object's time expressed in julian centuries:
* the number of centuries after 1/1/1900 AD, 12:00 GMT
*
* @see #getJulianDay
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
double getJulianCentury();
/**
* Returns the current Greenwich sidereal time, measured in hours
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
double getGreenwichSidereal();
private:
double getSiderealOffset();
public:
/**
* Returns the current local sidereal time, measured in hours
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
double getLocalSidereal();
/**
* Converts local sidereal time to Universal Time.
*
* @param lst The Local Sidereal Time, in hours since sidereal midnight
* on this object's current date.
*
* @return The corresponding Universal Time, in milliseconds since
* 1 Jan 1970, GMT.
*/
//private:
double lstToUT(double lst);
Equatorial* eclipticToEquatorial(Ecliptic& ecliptic);
/**
* Convert from ecliptic to equatorial coordinates.
*
* @param eclipLong The ecliptic longitude
* @param eclipLat The ecliptic latitude
*
* @return The corresponding point in equatorial coordinates.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
Equatorial* eclipticToEquatorial(double eclipLong, double eclipLat);
/**
* Convert from ecliptic longitude to equatorial coordinates.
*
* @param eclipLong The ecliptic longitude
*
* @return The corresponding point in equatorial coordinates.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
Equatorial* eclipticToEquatorial(double eclipLong);
/**
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
Horizon* eclipticToHorizon(double eclipLong);
//-------------------------------------------------------------------------
// The Sun
//-------------------------------------------------------------------------
//
// Parameters of the Sun's orbit as of the epoch Jan 0.0 1990
// Angles are in radians (after multiplying by PI/180)
//
static const double JD_EPOCH;
static const double SUN_ETA_G;
static const double SUN_OMEGA_G;
static const double SUN_E ;
//double sunR0 = 1.495585e8; // Semi-major axis in KM
//double sunTheta0 = 0.533128 * PI/180; // Angular diameter at R0
// The following three methods, which compute the sun parameters
// given above for an arbitrary epoch (whatever time the object is
// set to), make only a small difference as compared to using the
// above constants. E.g., Sunset times might differ by ~12
// seconds. Furthermore, the eta-g computation is befuddled by
// Duffet-Smith's incorrect coefficients (p.86). I've corrected
// the first-order coefficient but the others may be off too - no
// way of knowing without consulting another source.
// /**
// * Return the sun's ecliptic longitude at perigee for the current time.
// * See Duffett-Smith, p. 86.
// * @return radians
// */
// private double getSunOmegaG() {
// double T = getJulianCentury();
// return (281.2208444 + (1.719175 + 0.000452778*T)*T) * DEG_RAD;
// }
// /**
// * Return the sun's ecliptic longitude for the current time.
// * See Duffett-Smith, p. 86.
// * @return radians
// */
// private double getSunEtaG() {
// double T = getJulianCentury();
// //return (279.6966778 + (36000.76892 + 0.0003025*T)*T) * DEG_RAD;
// //
// // The above line is from Duffett-Smith, and yields manifestly wrong
// // results. The below constant is derived empirically to match the
// // constant he gives for the 1990 EPOCH.
// //
// return (279.6966778 + (-0.3262541582718024 + 0.0003025*T)*T) * DEG_RAD;
// }
// /**
// * Return the sun's eccentricity of orbit for the current time.
// * See Duffett-Smith, p. 86.
// * @return double
// */
// private double getSunE() {
// double T = getJulianCentury();
// return 0.01675104 - (0.0000418 + 0.000000126*T)*T;
// }
/**
* The longitude of the sun at the time specified by this object.
* The longitude is measured in radians along the ecliptic
* from the "first point of Aries," the point at which the ecliptic
* crosses the earth's equatorial plane at the vernal equinox.
* <p>
* Currently, this method uses an approximation of the two-body Kepler's
* equation for the earth and the sun. It does not take into account the
* perturbations caused by the other planets, the moon, etc.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
double getSunLongitude();
/**
* TODO Make this public when the entire class is package-private.
*/
/*public*/ void getSunLongitude(double julianDay, double &longitude, double &meanAnomaly);
/**
* The position of the sun at this object's current date and time,
* in equatorial coordinates.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
Equatorial* getSunPosition();
public:
class SolarLongitude {
public:
SolarLongitude(double l)
: value(l) { }
double value;
};
public:
/**
* Constant representing the vernal equinox.
* For use with {@link #getSunTime getSunTime}.
* Note: In this case, "vernal" refers to the northern hemisphere's seasons.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
static const SolarLongitude VERNAL_EQUINOX;
/**
* Constant representing the summer solstice.
* For use with {@link #getSunTime getSunTime}.
* Note: In this case, "summer" refers to the northern hemisphere's seasons.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
static const SolarLongitude SUMMER_SOLSTICE;
/**
* Constant representing the autumnal equinox.
* For use with {@link #getSunTime getSunTime}.
* Note: In this case, "autumn" refers to the northern hemisphere's seasons.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
static const SolarLongitude AUTUMN_EQUINOX;
/**
* Constant representing the winter solstice.
* For use with {@link #getSunTime getSunTime}.
* Note: In this case, "winter" refers to the northern hemisphere's seasons.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
static const SolarLongitude WINTER_SOLSTICE;
/**
* Find the next time at which the sun's ecliptic longitude will have
* the desired value.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
UDate getSunTime(UDate desired, UBool next);
/**
* Find the next time at which the sun's ecliptic longitude will have
* the desired value.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
UDate getSunTime(const SolarLongitude& desired, UBool next);
/**
* Returns the time (GMT) of sunrise or sunset on the local date to which
* this calendar is currently set.
*
* NOTE: This method only works well if this object is set to a
* time near local noon. Because of variations between the local
* official time zone and the geographic longitude, the
* computation can flop over into an adjacent day if this object
* is set to a time near local midnight.
*
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
UDate getSunRiseSet(UBool rise);
// Commented out - currently unused. ICU 2.6, Alan
// //-------------------------------------------------------------------------
// // Alternate Sun Rise/Set
// // See Duffett-Smith p.93
// //-------------------------------------------------------------------------
//
// // This yields worse results (as compared to USNO data) than getSunRiseSet().
// /**
// * TODO Make this public when the entire class is package-private.
// */
// /*public*/ long getSunRiseSet2(boolean rise) {
// // 1. Calculate coordinates of the sun's center for midnight
// double jd = Math.floor(getJulianDay() - 0.5) + 0.5;
// double[] sl = getSunLongitude(jd);
// double lambda1 = sl[0];
// Equatorial pos1 = eclipticToEquatorial(lambda1, 0);
//
// // 2. Add ... to lambda to get position 24 hours later
// double lambda2 = lambda1 + 0.985647*DEG_RAD;
// Equatorial pos2 = eclipticToEquatorial(lambda2, 0);
//
// // 3. Calculate LSTs of rising and setting for these two positions
// double tanL = Math.tan(fLatitude);
// double H = Math.acos(-tanL * Math.tan(pos1.declination));
// double lst1r = (PI2 + pos1.ascension - H) * 24 / PI2;
// double lst1s = (pos1.ascension + H) * 24 / PI2;
// H = Math.acos(-tanL * Math.tan(pos2.declination));
// double lst2r = (PI2-H + pos2.ascension ) * 24 / PI2;
// double lst2s = (H + pos2.ascension ) * 24 / PI2;
// if (lst1r > 24) lst1r -= 24;
// if (lst1s > 24) lst1s -= 24;
// if (lst2r > 24) lst2r -= 24;
// if (lst2s > 24) lst2s -= 24;
//
// // 4. Convert LSTs to GSTs. If GST1 > GST2, add 24 to GST2.
// double gst1r = lstToGst(lst1r);
// double gst1s = lstToGst(lst1s);
// double gst2r = lstToGst(lst2r);
// double gst2s = lstToGst(lst2s);
// if (gst1r > gst2r) gst2r += 24;
// if (gst1s > gst2s) gst2s += 24;
//
// // 5. Calculate GST at 0h UT of this date
// double t00 = utToGst(0);
//
// // 6. Calculate GST at 0h on the observer's longitude
// double offset = Math.round(fLongitude*12/PI); // p.95 step 6; he _rounds_ to nearest 15 deg.
// double t00p = t00 - offset*1.002737909;
// if (t00p < 0) t00p += 24; // do NOT normalize
//
// // 7. Adjust
// if (gst1r < t00p) {
// gst1r += 24;
// gst2r += 24;
// }
// if (gst1s < t00p) {
// gst1s += 24;
// gst2s += 24;
// }
//
// // 8.
// double gstr = (24.07*gst1r-t00*(gst2r-gst1r))/(24.07+gst1r-gst2r);
// double gsts = (24.07*gst1s-t00*(gst2s-gst1s))/(24.07+gst1s-gst2s);
//
// // 9. Correct for parallax, refraction, and sun's diameter
// double dec = (pos1.declination + pos2.declination) / 2;
// double psi = Math.acos(Math.sin(fLatitude) / Math.cos(dec));
// double x = 0.830725 * DEG_RAD; // parallax+refraction+diameter
// double y = Math.asin(Math.sin(x) / Math.sin(psi)) * RAD_DEG;
// double delta_t = 240 * y / Math.cos(dec) / 3600; // hours
//
// // 10. Add correction to GSTs, subtract from GSTr
// gstr -= delta_t;
// gsts += delta_t;
//
// // 11. Convert GST to UT and then to local civil time
// double ut = gstToUt(rise ? gstr : gsts);
// //System.out.println((rise?"rise=":"set=") + ut + ", delta_t=" + delta_t);
// long midnight = DAY_MS * (time / DAY_MS); // Find UT midnight on this day
// return midnight + (long) (ut * 3600000);
// }
// Commented out - currently unused. ICU 2.6, Alan
// /**
// * Convert local sidereal time to Greenwich sidereal time.
// * Section 15. Duffett-Smith p.21
// * @param lst in hours (0..24)
// * @return GST in hours (0..24)
// */
// double lstToGst(double lst) {
// double delta = fLongitude * 24 / PI2;
// return normalize(lst - delta, 24);
// }
// Commented out - currently unused. ICU 2.6, Alan
// /**
// * Convert UT to GST on this date.
// * Section 12. Duffett-Smith p.17
// * @param ut in hours
// * @return GST in hours
// */
// double utToGst(double ut) {
// return normalize(getT0() + ut*1.002737909, 24);
// }
// Commented out - currently unused. ICU 2.6, Alan
// /**
// * Convert GST to UT on this date.
// * Section 13. Duffett-Smith p.18
// * @param gst in hours
// * @return UT in hours
// */
// double gstToUt(double gst) {
// return normalize(gst - getT0(), 24) * 0.9972695663;
// }
// Commented out - currently unused. ICU 2.6, Alan
// double getT0() {
// // Common computation for UT <=> GST
//
// // Find JD for 0h UT
// double jd = Math.floor(getJulianDay() - 0.5) + 0.5;
//
// double s = jd - 2451545.0;
// double t = s / 36525.0;
// double t0 = 6.697374558 + (2400.051336 + 0.000025862*t)*t;
// return t0;
// }
// Commented out - currently unused. ICU 2.6, Alan
// //-------------------------------------------------------------------------
// // Alternate Sun Rise/Set
// // See sci.astro FAQ
// // http://www.faqs.org/faqs/astronomy/faq/part3/section-5.html
// //-------------------------------------------------------------------------
//
// // Note: This method appears to produce inferior accuracy as
// // compared to getSunRiseSet().
//
// /**
// * TODO Make this public when the entire class is package-private.
// */
// /*public*/ long getSunRiseSet3(boolean rise) {
//
// // Compute day number for 0.0 Jan 2000 epoch
// double d = (double)(time - EPOCH_2000_MS) / DAY_MS;
//
// // Now compute the Local Sidereal Time, LST:
// //
// double LST = 98.9818 + 0.985647352 * d + /*UT*15 + long*/
// fLongitude*RAD_DEG;
// //
// // (east long. positive). Note that LST is here expressed in degrees,
// // where 15 degrees corresponds to one hour. Since LST really is an angle,
// // it's convenient to use one unit---degrees---throughout.
//
// // COMPUTING THE SUN'S POSITION
// // ----------------------------
// //
// // To be able to compute the Sun's rise/set times, you need to be able to
// // compute the Sun's position at any time. First compute the "day
// // number" d as outlined above, for the desired moment. Next compute:
// //
// double oblecl = 23.4393 - 3.563E-7 * d;
// //
// double w = 282.9404 + 4.70935E-5 * d;
// double M = 356.0470 + 0.9856002585 * d;
// double e = 0.016709 - 1.151E-9 * d;
// //
// // This is the obliquity of the ecliptic, plus some of the elements of
// // the Sun's apparent orbit (i.e., really the Earth's orbit): w =
// // argument of perihelion, M = mean anomaly, e = eccentricity.
// // Semi-major axis is here assumed to be exactly 1.0 (while not strictly
// // true, this is still an accurate approximation). Next compute E, the
// // eccentric anomaly:
// //
// double E = M + e*(180/PI) * Math.sin(M*DEG_RAD) * ( 1.0 + e*Math.cos(M*DEG_RAD) );
// //
// // where E and M are in degrees. This is it---no further iterations are
// // needed because we know e has a sufficiently small value. Next compute
// // the true anomaly, v, and the distance, r:
// //
// /* r * cos(v) = */ double A = Math.cos(E*DEG_RAD) - e;
// /* r * sin(v) = */ double B = Math.sqrt(1 - e*e) * Math.sin(E*DEG_RAD);
// //
// // and
// //
// // r = sqrt( A*A + B*B )
// double v = Math.atan2( B, A )*RAD_DEG;
// //
// // The Sun's true longitude, slon, can now be computed:
// //
// double slon = v + w;
// //
// // Since the Sun is always at the ecliptic (or at least very very close to
// // it), we can use simplified formulae to convert slon (the Sun's ecliptic
// // longitude) to sRA and sDec (the Sun's RA and Dec):
// //
// // sin(slon) * cos(oblecl)
// // tan(sRA) = -------------------------
// // cos(slon)
// //
// // sin(sDec) = sin(oblecl) * sin(slon)
// //
// // As was the case when computing az, the Azimuth, if possible use an
// // atan2() function to compute sRA.
//
// double sRA = Math.atan2(Math.sin(slon*DEG_RAD) * Math.cos(oblecl*DEG_RAD), Math.cos(slon*DEG_RAD))*RAD_DEG;
//
// double sin_sDec = Math.sin(oblecl*DEG_RAD) * Math.sin(slon*DEG_RAD);
// double sDec = Math.asin(sin_sDec)*RAD_DEG;
//
// // COMPUTING RISE AND SET TIMES
// // ----------------------------
// //
// // To compute when an object rises or sets, you must compute when it
// // passes the meridian and the HA of rise/set. Then the rise time is
// // the meridian time minus HA for rise/set, and the set time is the
// // meridian time plus the HA for rise/set.
// //
// // To find the meridian time, compute the Local Sidereal Time at 0h local
// // time (or 0h UT if you prefer to work in UT) as outlined above---name
// // that quantity LST0. The Meridian Time, MT, will now be:
// //
// // MT = RA - LST0
// double MT = normalize(sRA - LST, 360);
// //
// // where "RA" is the object's Right Ascension (in degrees!). If negative,
// // add 360 deg to MT. If the object is the Sun, leave the time as it is,
// // but if it's stellar, multiply MT by 365.2422/366.2422, to convert from
// // sidereal to solar time. Now, compute HA for rise/set, name that
// // quantity HA0:
// //
// // sin(h0) - sin(lat) * sin(Dec)
// // cos(HA0) = ---------------------------------
// // cos(lat) * cos(Dec)
// //
// // where h0 is the altitude selected to represent rise/set. For a purely
// // mathematical horizon, set h0 = 0 and simplify to:
// //
// // cos(HA0) = - tan(lat) * tan(Dec)
// //
// // If you want to account for refraction on the atmosphere, set h0 = -35/60
// // degrees (-35 arc minutes), and if you want to compute the rise/set times
// // for the Sun's upper limb, set h0 = -50/60 (-50 arc minutes).
// //
// double h0 = -50/60 * DEG_RAD;
//
// double HA0 = Math.acos(
// (Math.sin(h0) - Math.sin(fLatitude) * sin_sDec) /
// (Math.cos(fLatitude) * Math.cos(sDec*DEG_RAD)))*RAD_DEG;
//
// // When HA0 has been computed, leave it as it is for the Sun but multiply
// // by 365.2422/366.2422 for stellar objects, to convert from sidereal to
// // solar time. Finally compute:
// //
// // Rise time = MT - HA0
// // Set time = MT + HA0
// //
// // convert the times from degrees to hours by dividing by 15.
// //
// // If you'd like to check that your calculations are accurate or just
// // need a quick result, check the USNO's Sun or Moon Rise/Set Table,
// // <URL:http://aa.usno.navy.mil/AA/data/docs/RS_OneYear.html>.
//
// double result = MT + (rise ? -HA0 : HA0); // in degrees
//
// // Find UT midnight on this day
// long midnight = DAY_MS * (time / DAY_MS);
//
// return midnight + (long) (result * 3600000 / 15);
// }
//-------------------------------------------------------------------------
// The Moon
//-------------------------------------------------------------------------
static const double moonL0; // Mean long. at epoch
static const double moonP0; // Mean long. of perigee
static const double moonN0; // Mean long. of node
static const double moonI; // Inclination of orbit
static const double moonE; // Eccentricity of orbit
// These aren't used right now
static const double moonA; // semi-major axis (km)
static const double moonT0; // Angular size at distance A
static const double moonPi; // Parallax at distance A
/**
* The position of the moon at the time set on this
* object, in equatorial coordinates.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
Equatorial* getMoonPosition();
/**
* The "age" of the moon at the time specified in this object.
* This is really the angle between the
* current ecliptic longitudes of the sun and the moon,
* measured in radians.
*
* @see #getMoonPhase
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
double getMoonAge();
/**
* Calculate the phase of the moon at the time set in this object.
* The returned phase is a <code>double</code> in the range
* <code>0 <= phase < 1</code>, interpreted as follows:
* <ul>
* <li>0.00: New moon
* <li>0.25: First quarter
* <li>0.50: Full moon
* <li>0.75: Last quarter
* </ul>
*
* @see #getMoonAge
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
double getMoonPhase();
class MoonAge {
public:
MoonAge(double l)
: value(l) { }
double value;
};
/**
* Constant representing a new moon.
* For use with {@link #getMoonTime getMoonTime}
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
static const MoonAge NEW_MOON;
/**
* Constant representing the moon's first quarter.
* For use with {@link #getMoonTime getMoonTime}
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
static const MoonAge FIRST_QUARTER;
/**
* Constant representing a full moon.
* For use with {@link #getMoonTime getMoonTime}
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
static const MoonAge FULL_MOON;
/**
* Constant representing the moon's last quarter.
* For use with {@link #getMoonTime getMoonTime}
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
static const MoonAge LAST_QUARTER;
/**
* Find the next or previous time at which the Moon's ecliptic
* longitude will have the desired value.
* <p>
* @param desired The desired longitude.
* @param next <tt>true</tt> if the next occurrance of the phase
* is desired, <tt>false</tt> for the previous occurrance.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
UDate getMoonTime(double desired, UBool next);
UDate getMoonTime(MoonAge desired, UBool next);
/**
* Returns the time (GMT) of sunrise or sunset on the local date to which
* this calendar is currently set.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
UDate getMoonRiseSet(UBool rise);
//-------------------------------------------------------------------------
// Interpolation methods for finding the time at which a given event occurs
//-------------------------------------------------------------------------
// private
class AngleFunc {
public:
virtual double eval(CalendarAstronomer&) = 0;
};
friend class AngleFunc;
UDate timeOfAngle(AngleFunc& func, double desired,
double periodDays, double epsilon, UBool next);
class CoordFunc {
public:
virtual Equatorial* eval(CalendarAstronomer&) = 0;
};
friend class CoordFunc;
double riseOrSet(CoordFunc& func, UBool rise,
double diameter, double refraction,
double epsilon);
//-------------------------------------------------------------------------
// Other utility methods
//-------------------------------------------------------------------------
private:
/***
* Given 'value', add or subtract 'range' until 0 <= 'value' < range.
* The modulus operator.
*/
inline static double normalize(double value, double range) {
return value - range * Math::floorDivide(value, range);
}
/**
* Normalize an angle so that it's in the range 0 - 2pi.
* For positive angles this is just (angle % 2pi), but the Java
* mod operator doesn't work that way for negative numbers....
*/
inline static double norm2PI(double angle) {
return normalize(angle, PI2);
}
/**
* Normalize an angle into the range -PI - PI
*/
inline static double normPI(double angle) {
return normalize(angle + PI, PI2) - PI;
}
/**
* Find the "true anomaly" (longitude) of an object from
* its mean anomaly and the eccentricity of its orbit. This uses
* an iterative solution to Kepler's equation.
*
* @param meanAnomaly The object's longitude calculated as if it were in
* a regular, circular orbit, measured in radians
* from the point of perigee.
*
* @param eccentricity The eccentricity of the orbit
*
* @return The true anomaly (longitude) measured in radians
*/
double trueAnomaly(double meanAnomaly, double eccentricity);
/**
* Return the obliquity of the ecliptic (the angle between the ecliptic
* and the earth's equator) at the current time. This varies due to
* the precession of the earth's axis.
*
* @return the obliquity of the ecliptic relative to the equator,
* measured in radians.
*/
double eclipticObliquity();
//-------------------------------------------------------------------------
// Private data
//-------------------------------------------------------------------------
private:
/**
* Current time in milliseconds since 1/1/1970 AD
* @see java.util.Date#getTime
*/
UDate fTime;
/* These aren't used yet, but they'll be needed for sunset calculations
* and equatorial to horizon coordinate conversions
*/
double fLongitude;
double fLatitude;
double fGmtOffset;
//
// The following fields are used to cache calculated results for improved
// performance. These values all depend on the current time setting
// of this object, so the clearCache method is provided.
//
static const double INVALID;
double julianDay ;
double julianCentury ;
double sunLongitude ;
double meanAnomalySun ;
double moonLongitude ;
double moonEclipLong ;
double meanAnomalyMoon ;
double eclipObliquity ;
double siderealT0 ;
double siderealTime ;
void clearCache();
Equatorial *moonPosition;
//private static void out(String s) {
// System.out.println(s);
//}
//private static String deg(double rad) {
// return Double.toString(rad * RAD_DEG);
//}
//private static String hours(long ms) {
// return Double.toString((double)ms / HOUR_MS) + " hours";
//}
/**
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
UDate local(UDate localMillis);
};
#endif
#endif