scuffed-code/icu4c/source/test/cintltst/cmsccoll.c

5514 lines
181 KiB
C

/********************************************************************
* COPYRIGHT:
* Copyright (c) 2001-2010, International Business Machines Corporation and
* others. All Rights Reserved.
********************************************************************/
/*******************************************************************************
*
* File cmsccoll.C
*
*******************************************************************************/
/**
* These are the tests specific to ICU 1.8 and above, that I didn't know where
* to fit.
*/
#include <stdio.h>
#include "unicode/utypes.h"
#if !UCONFIG_NO_COLLATION
#include "unicode/ucol.h"
#include "unicode/ucoleitr.h"
#include "unicode/uloc.h"
#include "cintltst.h"
#include "ccolltst.h"
#include "callcoll.h"
#include "unicode/ustring.h"
#include "string.h"
#include "ucol_imp.h"
#include "ucol_tok.h"
#include "cmemory.h"
#include "cstring.h"
#include "uassert.h"
#include "unicode/parseerr.h"
#include "unicode/ucnv.h"
#include "unicode/ures.h"
#include "uparse.h"
#include "putilimp.h"
#define LEN(a) (sizeof(a)/sizeof(a[0]))
#define MAX_TOKEN_LEN 16
typedef UCollationResult tst_strcoll(void *collator, const int object,
const UChar *source, const int sLen,
const UChar *target, const int tLen);
const static char cnt1[][10] = {
"AA",
"AC",
"AZ",
"AQ",
"AB",
"ABZ",
"ABQ",
"Z",
"ABC",
"Q",
"B"
};
const static char cnt2[][10] = {
"DA",
"DAD",
"DAZ",
"MAR",
"Z",
"DAVIS",
"MARK",
"DAV",
"DAVI"
};
static void IncompleteCntTest(void)
{
UErrorCode status = U_ZERO_ERROR;
UChar temp[90];
UChar t1[90];
UChar t2[90];
UCollator *coll = NULL;
uint32_t i = 0, j = 0;
uint32_t size = 0;
u_uastrcpy(temp, " & Z < ABC < Q < B");
coll = ucol_openRules(temp, u_strlen(temp), UCOL_OFF, UCOL_DEFAULT_STRENGTH, NULL,&status);
if(U_SUCCESS(status)) {
size = sizeof(cnt1)/sizeof(cnt1[0]);
for(i = 0; i < size-1; i++) {
for(j = i+1; j < size; j++) {
UCollationElements *iter;
u_uastrcpy(t1, cnt1[i]);
u_uastrcpy(t2, cnt1[j]);
doTest(coll, t1, t2, UCOL_LESS);
/* synwee : added collation element iterator test */
iter = ucol_openElements(coll, t2, u_strlen(t2), &status);
if (U_FAILURE(status)) {
log_err("Creation of iterator failed\n");
break;
}
backAndForth(iter);
ucol_closeElements(iter);
}
}
}
ucol_close(coll);
u_uastrcpy(temp, " & Z < DAVIS < MARK <DAV");
coll = ucol_openRules(temp, u_strlen(temp), UCOL_OFF, UCOL_DEFAULT_STRENGTH,NULL, &status);
if(U_SUCCESS(status)) {
size = sizeof(cnt2)/sizeof(cnt2[0]);
for(i = 0; i < size-1; i++) {
for(j = i+1; j < size; j++) {
UCollationElements *iter;
u_uastrcpy(t1, cnt2[i]);
u_uastrcpy(t2, cnt2[j]);
doTest(coll, t1, t2, UCOL_LESS);
/* synwee : added collation element iterator test */
iter = ucol_openElements(coll, t2, u_strlen(t2), &status);
if (U_FAILURE(status)) {
log_err("Creation of iterator failed\n");
break;
}
backAndForth(iter);
ucol_closeElements(iter);
}
}
}
ucol_close(coll);
}
const static char shifted[][20] = {
"black bird",
"black-bird",
"blackbird",
"black Bird",
"black-Bird",
"blackBird",
"black birds",
"black-birds",
"blackbirds"
};
const static UCollationResult shiftedTert[] = {
UCOL_EQUAL,
UCOL_EQUAL,
UCOL_EQUAL,
UCOL_LESS,
UCOL_EQUAL,
UCOL_EQUAL,
UCOL_LESS,
UCOL_EQUAL,
UCOL_EQUAL
};
const static char nonignorable[][20] = {
"black bird",
"black Bird",
"black birds",
"black-bird",
"black-Bird",
"black-birds",
"blackbird",
"blackBird",
"blackbirds"
};
static void BlackBirdTest(void) {
UErrorCode status = U_ZERO_ERROR;
UChar t1[90];
UChar t2[90];
uint32_t i = 0, j = 0;
uint32_t size = 0;
UCollator *coll = ucol_open("en_US", &status);
ucol_setAttribute(coll, UCOL_NORMALIZATION_MODE, UCOL_OFF, &status);
ucol_setAttribute(coll, UCOL_ALTERNATE_HANDLING, UCOL_NON_IGNORABLE, &status);
if(U_SUCCESS(status)) {
size = sizeof(nonignorable)/sizeof(nonignorable[0]);
for(i = 0; i < size-1; i++) {
for(j = i+1; j < size; j++) {
u_uastrcpy(t1, nonignorable[i]);
u_uastrcpy(t2, nonignorable[j]);
doTest(coll, t1, t2, UCOL_LESS);
}
}
}
ucol_setAttribute(coll, UCOL_ALTERNATE_HANDLING, UCOL_SHIFTED, &status);
ucol_setAttribute(coll, UCOL_STRENGTH, UCOL_QUATERNARY, &status);
if(U_SUCCESS(status)) {
size = sizeof(shifted)/sizeof(shifted[0]);
for(i = 0; i < size-1; i++) {
for(j = i+1; j < size; j++) {
u_uastrcpy(t1, shifted[i]);
u_uastrcpy(t2, shifted[j]);
doTest(coll, t1, t2, UCOL_LESS);
}
}
}
ucol_setAttribute(coll, UCOL_STRENGTH, UCOL_TERTIARY, &status);
if(U_SUCCESS(status)) {
size = sizeof(shifted)/sizeof(shifted[0]);
for(i = 1; i < size; i++) {
u_uastrcpy(t1, shifted[i-1]);
u_uastrcpy(t2, shifted[i]);
doTest(coll, t1, t2, shiftedTert[i]);
}
}
ucol_close(coll);
}
const static UChar testSourceCases[][MAX_TOKEN_LEN] = {
{0x0041/*'A'*/, 0x0300, 0x0301, 0x0000},
{0x0041/*'A'*/, 0x0300, 0x0316, 0x0000},
{0x0041/*'A'*/, 0x0300, 0x0000},
{0x00C0, 0x0301, 0x0000},
/* this would work with forced normalization */
{0x00C0, 0x0316, 0x0000}
};
const static UChar testTargetCases[][MAX_TOKEN_LEN] = {
{0x0041/*'A'*/, 0x0301, 0x0300, 0x0000},
{0x0041/*'A'*/, 0x0316, 0x0300, 0x0000},
{0x00C0, 0},
{0x0041/*'A'*/, 0x0301, 0x0300, 0x0000},
/* this would work with forced normalization */
{0x0041/*'A'*/, 0x0316, 0x0300, 0x0000}
};
const static UCollationResult results[] = {
UCOL_GREATER,
UCOL_EQUAL,
UCOL_EQUAL,
UCOL_GREATER,
UCOL_EQUAL
};
static void FunkyATest(void)
{
int32_t i;
UErrorCode status = U_ZERO_ERROR;
UCollator *myCollation;
myCollation = ucol_open("en_US", &status);
if(U_FAILURE(status)){
log_err_status(status, "ERROR: in creation of rule based collator: %s\n", myErrorName(status));
return;
}
log_verbose("Testing some A letters, for some reason\n");
ucol_setAttribute(myCollation, UCOL_NORMALIZATION_MODE, UCOL_ON, &status);
ucol_setStrength(myCollation, UCOL_TERTIARY);
for (i = 0; i < 4 ; i++)
{
doTest(myCollation, testSourceCases[i], testTargetCases[i], results[i]);
}
ucol_close(myCollation);
}
UColAttributeValue caseFirst[] = {
UCOL_OFF,
UCOL_LOWER_FIRST,
UCOL_UPPER_FIRST
};
UColAttributeValue alternateHandling[] = {
UCOL_NON_IGNORABLE,
UCOL_SHIFTED
};
UColAttributeValue caseLevel[] = {
UCOL_OFF,
UCOL_ON
};
UColAttributeValue strengths[] = {
UCOL_PRIMARY,
UCOL_SECONDARY,
UCOL_TERTIARY,
UCOL_QUATERNARY,
UCOL_IDENTICAL
};
#if 0
static const char * strengthsC[] = {
"UCOL_PRIMARY",
"UCOL_SECONDARY",
"UCOL_TERTIARY",
"UCOL_QUATERNARY",
"UCOL_IDENTICAL"
};
static const char * caseFirstC[] = {
"UCOL_OFF",
"UCOL_LOWER_FIRST",
"UCOL_UPPER_FIRST"
};
static const char * alternateHandlingC[] = {
"UCOL_NON_IGNORABLE",
"UCOL_SHIFTED"
};
static const char * caseLevelC[] = {
"UCOL_OFF",
"UCOL_ON"
};
/* not used currently - does not test only prints */
static void PrintMarkDavis(void)
{
UErrorCode status = U_ZERO_ERROR;
UChar m[256];
uint8_t sortkey[256];
UCollator *coll = ucol_open("en_US", &status);
uint32_t h,i,j,k, sortkeysize;
uint32_t sizem = 0;
char buffer[512];
uint32_t len = 512;
log_verbose("PrintMarkDavis");
u_uastrcpy(m, "Mark Davis");
sizem = u_strlen(m);
m[1] = 0xe4;
for(i = 0; i<sizem; i++) {
fprintf(stderr, "\\u%04X ", m[i]);
}
fprintf(stderr, "\n");
for(h = 0; h<sizeof(caseFirst)/sizeof(caseFirst[0]); h++) {
ucol_setAttribute(coll, UCOL_CASE_FIRST, caseFirst[i], &status);
fprintf(stderr, "caseFirst: %s\n", caseFirstC[h]);
for(i = 0; i<sizeof(alternateHandling)/sizeof(alternateHandling[0]); i++) {
ucol_setAttribute(coll, UCOL_ALTERNATE_HANDLING, alternateHandling[i], &status);
fprintf(stderr, " AltHandling: %s\n", alternateHandlingC[i]);
for(j = 0; j<sizeof(caseLevel)/sizeof(caseLevel[0]); j++) {
ucol_setAttribute(coll, UCOL_CASE_LEVEL, caseLevel[j], &status);
fprintf(stderr, " caseLevel: %s\n", caseLevelC[j]);
for(k = 0; k<sizeof(strengths)/sizeof(strengths[0]); k++) {
ucol_setAttribute(coll, UCOL_STRENGTH, strengths[k], &status);
sortkeysize = ucol_getSortKey(coll, m, sizem, sortkey, 256);
fprintf(stderr, " strength: %s\n Sortkey: ", strengthsC[k]);
fprintf(stderr, "%s\n", ucol_sortKeyToString(coll, sortkey, buffer, &len));
}
}
}
}
}
#endif
static void BillFairmanTest(void) {
/*
** check for actual locale via ICU resource bundles
**
** lp points to the original locale ("fr_FR_....")
*/
UResourceBundle *lr,*cr;
UErrorCode lec = U_ZERO_ERROR;
const char *lp = "fr_FR_you_ll_never_find_this_locale";
log_verbose("BillFairmanTest\n");
lr = ures_open(NULL,lp,&lec);
if (lr) {
cr = ures_getByKey(lr,"collations",0,&lec);
if (cr) {
lp = ures_getLocaleByType(cr, ULOC_ACTUAL_LOCALE, &lec);
if (lp) {
if (U_SUCCESS(lec)) {
if(strcmp(lp, "fr") != 0) {
log_err("Wrong locale for French Collation Data, expected \"fr\" got %s", lp);
}
}
}
ures_close(cr);
}
ures_close(lr);
}
}
static void testPrimary(UCollator* col, const UChar* p,const UChar* q){
UChar source[256] = { '\0'};
UChar target[256] = { '\0'};
UChar preP = 0x31a3;
UChar preQ = 0x310d;
/*
UChar preP = (*p>0x0400 && *p<0x0500)?0x00e1:0x491;
UChar preQ = (*p>0x0400 && *p<0x0500)?0x0041:0x413;
*/
/*log_verbose("Testing primary\n");*/
doTest(col, p, q, UCOL_LESS);
/*
UCollationResult result = ucol_strcoll(col,p,u_strlen(p),q,u_strlen(q));
if(result!=UCOL_LESS){
aescstrdup(p,utfSource,256);
aescstrdup(q,utfTarget,256);
fprintf(file,"Primary failed source: %s target: %s \n", utfSource,utfTarget);
}
*/
source[0] = preP;
u_strcpy(source+1,p);
target[0] = preQ;
u_strcpy(target+1,q);
doTest(col, source, target, UCOL_LESS);
/*
fprintf(file,"Primary swamps 2nd failed source: %s target: %s \n", utfSource,utfTarget);
*/
}
static void testSecondary(UCollator* col, const UChar* p,const UChar* q){
UChar source[256] = { '\0'};
UChar target[256] = { '\0'};
/*log_verbose("Testing secondary\n");*/
doTest(col, p, q, UCOL_LESS);
/*
fprintf(file,"secondary failed source: %s target: %s \n", utfSource,utfTarget);
*/
source[0] = 0x0053;
u_strcpy(source+1,p);
target[0]= 0x0073;
u_strcpy(target+1,q);
doTest(col, source, target, UCOL_LESS);
/*
fprintf(file,"secondary swamps 3rd failed source: %s target: %s \n",utfSource,utfTarget);
*/
u_strcpy(source,p);
source[u_strlen(p)] = 0x62;
source[u_strlen(p)+1] = 0;
u_strcpy(target,q);
target[u_strlen(q)] = 0x61;
target[u_strlen(q)+1] = 0;
doTest(col, source, target, UCOL_GREATER);
/*
fprintf(file,"secondary is swamped by 1 failed source: %s target: %s \n",utfSource,utfTarget);
*/
}
static void testTertiary(UCollator* col, const UChar* p,const UChar* q){
UChar source[256] = { '\0'};
UChar target[256] = { '\0'};
/*log_verbose("Testing tertiary\n");*/
doTest(col, p, q, UCOL_LESS);
/*
fprintf(file,"Tertiary failed source: %s target: %s \n",utfSource,utfTarget);
*/
source[0] = 0x0020;
u_strcpy(source+1,p);
target[0]= 0x002D;
u_strcpy(target+1,q);
doTest(col, source, target, UCOL_LESS);
/*
fprintf(file,"Tertiary swamps 4th failed source: %s target: %s \n", utfSource,utfTarget);
*/
u_strcpy(source,p);
source[u_strlen(p)] = 0xE0;
source[u_strlen(p)+1] = 0;
u_strcpy(target,q);
target[u_strlen(q)] = 0x61;
target[u_strlen(q)+1] = 0;
doTest(col, source, target, UCOL_GREATER);
/*
fprintf(file,"Tertiary is swamped by 3rd failed source: %s target: %s \n",utfSource,utfTarget);
*/
}
static void testEquality(UCollator* col, const UChar* p,const UChar* q){
/*
UChar source[256] = { '\0'};
UChar target[256] = { '\0'};
*/
doTest(col, p, q, UCOL_EQUAL);
/*
fprintf(file,"Primary failed source: %s target: %s \n", utfSource,utfTarget);
*/
}
static void testCollator(UCollator *coll, UErrorCode *status) {
const UChar *rules = NULL, *current = NULL;
int32_t ruleLen = 0;
uint32_t strength = 0;
uint32_t chOffset = 0; uint32_t chLen = 0;
uint32_t exOffset = 0; uint32_t exLen = 0;
uint32_t prefixOffset = 0; uint32_t prefixLen = 0;
uint32_t firstEx = 0;
/* uint32_t rExpsLen = 0; */
uint32_t firstLen = 0;
UBool varT = FALSE; UBool top_ = TRUE;
uint16_t specs = 0;
UBool startOfRules = TRUE;
UBool lastReset = FALSE;
UBool before = FALSE;
uint32_t beforeStrength = 0;
UColTokenParser src;
UColOptionSet opts;
UChar first[256];
UChar second[256];
UChar tempB[256];
uint32_t tempLen;
UChar *rulesCopy = NULL;
UParseError parseError;
src.opts = &opts;
rules = ucol_getRules(coll, &ruleLen);
if(U_SUCCESS(*status) && ruleLen > 0) {
rulesCopy = (UChar *)malloc((ruleLen+UCOL_TOK_EXTRA_RULE_SPACE_SIZE)*sizeof(UChar));
uprv_memcpy(rulesCopy, rules, ruleLen*sizeof(UChar));
src.current = src.source = rulesCopy;
src.end = rulesCopy+ruleLen;
src.extraCurrent = src.end;
src.extraEnd = src.end+UCOL_TOK_EXTRA_RULE_SPACE_SIZE;
*first = *second = 0;
while ((current = ucol_tok_parseNextToken(&src, startOfRules,&parseError, status)) != NULL) {
strength = src.parsedToken.strength;
chOffset = src.parsedToken.charsOffset;
chLen = src.parsedToken.charsLen;
exOffset = src.parsedToken.extensionOffset;
exLen = src.parsedToken.extensionLen;
prefixOffset = src.parsedToken.prefixOffset;
prefixLen = src.parsedToken.prefixLen;
specs = src.parsedToken.flags;
startOfRules = FALSE;
varT = (UBool)((specs & UCOL_TOK_VARIABLE_TOP) != 0);
top_ = (UBool)((specs & UCOL_TOK_TOP) != 0);
if(top_) { /* if reset is on top, the sequence is broken. We should have an empty string */
second[0] = 0;
} else {
u_strncpy(second,rulesCopy+chOffset, chLen);
second[chLen] = 0;
if(exLen > 0 && firstEx == 0) {
u_strncat(first, rulesCopy+exOffset, exLen);
first[firstLen+exLen] = 0;
}
if(lastReset == TRUE && prefixLen != 0) {
u_strncpy(first+prefixLen, first, firstLen);
u_strncpy(first, rulesCopy+prefixOffset, prefixLen);
first[firstLen+prefixLen] = 0;
firstLen = firstLen+prefixLen;
}
if(before == TRUE) { /* swap first and second */
u_strcpy(tempB, first);
u_strcpy(first, second);
u_strcpy(second, tempB);
tempLen = firstLen;
firstLen = chLen;
chLen = tempLen;
tempLen = firstEx;
firstEx = exLen;
exLen = tempLen;
if(beforeStrength < strength) {
strength = beforeStrength;
}
}
}
lastReset = FALSE;
switch(strength){
case UCOL_IDENTICAL:
testEquality(coll,first,second);
break;
case UCOL_PRIMARY:
testPrimary(coll,first,second);
break;
case UCOL_SECONDARY:
testSecondary(coll,first,second);
break;
case UCOL_TERTIARY:
testTertiary(coll,first,second);
break;
case UCOL_TOK_RESET:
lastReset = TRUE;
before = (UBool)((specs & UCOL_TOK_BEFORE) != 0);
if(before) {
beforeStrength = (specs & UCOL_TOK_BEFORE)-1;
}
break;
default:
break;
}
if(before == TRUE && strength != UCOL_TOK_RESET) { /* first and second were swapped */
before = FALSE;
} else {
firstLen = chLen;
firstEx = exLen;
u_strcpy(first, second);
}
}
free(rulesCopy);
}
}
static UCollationResult ucaTest(void *collator, const int object, const UChar *source, const int sLen, const UChar *target, const int tLen) {
UCollator *UCA = (UCollator *)collator;
return ucol_strcoll(UCA, source, sLen, target, tLen);
}
/*
static UCollationResult winTest(void *collator, const int object, const UChar *source, const int sLen, const UChar *target, const int tLen) {
#ifdef U_WINDOWS
LCID lcid = (LCID)collator;
return (UCollationResult)CompareString(lcid, 0, source, sLen, target, tLen);
#else
return 0;
#endif
}
*/
static UCollationResult swampEarlier(tst_strcoll* func, void *collator, int opts,
UChar s1, UChar s2,
const UChar *s, const uint32_t sLen,
const UChar *t, const uint32_t tLen) {
UChar source[256] = {0};
UChar target[256] = {0};
source[0] = s1;
u_strcpy(source+1, s);
target[0] = s2;
u_strcpy(target+1, t);
return func(collator, opts, source, sLen+1, target, tLen+1);
}
static UCollationResult swampLater(tst_strcoll* func, void *collator, int opts,
UChar s1, UChar s2,
const UChar *s, const uint32_t sLen,
const UChar *t, const uint32_t tLen) {
UChar source[256] = {0};
UChar target[256] = {0};
u_strcpy(source, s);
source[sLen] = s1;
u_strcpy(target, t);
target[tLen] = s2;
return func(collator, opts, source, sLen+1, target, tLen+1);
}
static uint32_t probeStrength(tst_strcoll* func, void *collator, int opts,
const UChar *s, const uint32_t sLen,
const UChar *t, const uint32_t tLen,
UCollationResult result) {
/*UChar fPrimary = 0x6d;*/
/*UChar sPrimary = 0x6e;*/
UChar fSecondary = 0x310d;
UChar sSecondary = 0x31a3;
UChar fTertiary = 0x310f;
UChar sTertiary = 0x31b7;
UCollationResult oposite;
if(result == UCOL_EQUAL) {
return UCOL_IDENTICAL;
} else if(result == UCOL_GREATER) {
oposite = UCOL_LESS;
} else {
oposite = UCOL_GREATER;
}
if(swampEarlier(func, collator, opts, sSecondary, fSecondary, s, sLen, t, tLen) == result) {
return UCOL_PRIMARY;
} else if((swampEarlier(func, collator, opts, sTertiary, 0x310f, s, sLen, t, tLen) == result) &&
(swampEarlier(func, collator, opts, 0x310f, sTertiary, s, sLen, t, tLen) == result)) {
return UCOL_SECONDARY;
} else if((swampLater(func, collator, opts, sTertiary, fTertiary, s, sLen, t, tLen) == result) &&
(swampLater(func, collator, opts, fTertiary, sTertiary, s, sLen, t, tLen) == result)) {
return UCOL_TERTIARY;
} else if((swampLater(func, collator, opts, sTertiary, 0x310f, s, sLen, t, tLen) == oposite) &&
(swampLater(func, collator, opts, fTertiary, sTertiary, s, sLen, t, tLen) == oposite)) {
return UCOL_QUATERNARY;
} else {
return UCOL_IDENTICAL;
}
}
static char *getRelationSymbol(UCollationResult res, uint32_t strength, char *buffer) {
uint32_t i = 0;
if(res == UCOL_EQUAL || strength == 0xdeadbeef) {
buffer[0] = '=';
buffer[1] = '=';
buffer[2] = '\0';
} else if(res == UCOL_GREATER) {
for(i = 0; i<strength+1; i++) {
buffer[i] = '>';
}
buffer[strength+1] = '\0';
} else {
for(i = 0; i<strength+1; i++) {
buffer[i] = '<';
}
buffer[strength+1] = '\0';
}
return buffer;
}
static void logFailure (const char *platform, const char *test,
const UChar *source, const uint32_t sLen,
const UChar *target, const uint32_t tLen,
UCollationResult realRes, uint32_t realStrength,
UCollationResult expRes, uint32_t expStrength, UBool error) {
uint32_t i = 0;
char sEsc[256], s[256], tEsc[256], t[256], b[256], output[512], relation[256];
static int32_t maxOutputLength = 0;
int32_t outputLength;
*sEsc = *tEsc = *s = *t = 0;
if(error == TRUE) {
log_err("Difference between expected and generated order. Run test with -v for more info\n");
} else if(VERBOSITY == 0) {
return;
}
for(i = 0; i<sLen; i++) {
sprintf(b, "%04X", source[i]);
strcat(sEsc, "\\u");
strcat(sEsc, b);
strcat(s, b);
strcat(s, " ");
if(source[i] < 0x80) {
sprintf(b, "(%c)", source[i]);
strcat(sEsc, b);
}
}
for(i = 0; i<tLen; i++) {
sprintf(b, "%04X", target[i]);
strcat(tEsc, "\\u");
strcat(tEsc, b);
strcat(t, b);
strcat(t, " ");
if(target[i] < 0x80) {
sprintf(b, "(%c)", target[i]);
strcat(tEsc, b);
}
}
/*
strcpy(output, "[[ ");
strcat(output, sEsc);
strcat(output, getRelationSymbol(expRes, expStrength, relation));
strcat(output, tEsc);
strcat(output, " : ");
strcat(output, sEsc);
strcat(output, getRelationSymbol(realRes, realStrength, relation));
strcat(output, tEsc);
strcat(output, " ]] ");
log_verbose("%s", output);
*/
strcpy(output, "DIFF: ");
strcat(output, s);
strcat(output, " : ");
strcat(output, t);
strcat(output, test);
strcat(output, ": ");
strcat(output, sEsc);
strcat(output, getRelationSymbol(expRes, expStrength, relation));
strcat(output, tEsc);
strcat(output, " ");
strcat(output, platform);
strcat(output, ": ");
strcat(output, sEsc);
strcat(output, getRelationSymbol(realRes, realStrength, relation));
strcat(output, tEsc);
outputLength = (int32_t)strlen(output);
if(outputLength > maxOutputLength) {
maxOutputLength = outputLength;
U_ASSERT(outputLength < sizeof(output));
}
log_verbose("%s\n", output);
}
/*
static void printOutRules(const UChar *rules) {
uint32_t len = u_strlen(rules);
uint32_t i = 0;
char toPrint;
uint32_t line = 0;
fprintf(stdout, "Rules:");
for(i = 0; i<len; i++) {
if(rules[i]<0x7f && rules[i]>=0x20) {
toPrint = (char)rules[i];
if(toPrint == '&') {
line = 1;
fprintf(stdout, "\n&");
} else if(toPrint == ';') {
fprintf(stdout, "<<");
line+=2;
} else if(toPrint == ',') {
fprintf(stdout, "<<<");
line+=3;
} else {
fprintf(stdout, "%c", toPrint);
line++;
}
} else if(rules[i]<0x3400 || rules[i]>=0xa000) {
fprintf(stdout, "\\u%04X", rules[i]);
line+=6;
}
if(line>72) {
fprintf(stdout, "\n");
line = 0;
}
}
log_verbose("\n");
}
*/
static uint32_t testSwitch(tst_strcoll* func, void *collator, int opts, uint32_t strength, const UChar *first, const UChar *second, const char* msg, UBool error) {
uint32_t diffs = 0;
UCollationResult realResult;
uint32_t realStrength;
uint32_t sLen = u_strlen(first);
uint32_t tLen = u_strlen(second);
realResult = func(collator, opts, first, sLen, second, tLen);
realStrength = probeStrength(func, collator, opts, first, sLen, second, tLen, realResult);
if(strength == UCOL_IDENTICAL && realResult != UCOL_IDENTICAL) {
logFailure(msg, "tailoring", first, sLen, second, tLen, realResult, realStrength, UCOL_EQUAL, strength, error);
diffs++;
} else if(realResult != UCOL_LESS || realStrength != strength) {
logFailure(msg, "tailoring", first, sLen, second, tLen, realResult, realStrength, UCOL_LESS, strength, error);
diffs++;
}
return diffs;
}
static void testAgainstUCA(UCollator *coll, UCollator *UCA, const char *refName, UBool error, UErrorCode *status) {
const UChar *rules = NULL, *current = NULL;
int32_t ruleLen = 0;
uint32_t strength = 0;
uint32_t chOffset = 0; uint32_t chLen = 0;
uint32_t exOffset = 0; uint32_t exLen = 0;
uint32_t prefixOffset = 0; uint32_t prefixLen = 0;
/* uint32_t rExpsLen = 0; */
uint32_t firstLen = 0, secondLen = 0;
UBool varT = FALSE; UBool top_ = TRUE;
uint16_t specs = 0;
UBool startOfRules = TRUE;
UColTokenParser src;
UColOptionSet opts;
UChar first[256];
UChar second[256];
UChar *rulesCopy = NULL;
uint32_t UCAdiff = 0;
uint32_t Windiff = 1;
UParseError parseError;
src.opts = &opts;
rules = ucol_getRules(coll, &ruleLen);
/*printOutRules(rules);*/
if(U_SUCCESS(*status) && ruleLen > 0) {
rulesCopy = (UChar *)malloc((ruleLen+UCOL_TOK_EXTRA_RULE_SPACE_SIZE)*sizeof(UChar));
uprv_memcpy(rulesCopy, rules, ruleLen*sizeof(UChar));
src.current = src.source = rulesCopy;
src.end = rulesCopy+ruleLen;
src.extraCurrent = src.end;
src.extraEnd = src.end+UCOL_TOK_EXTRA_RULE_SPACE_SIZE;
*first = *second = 0;
while ((current = ucol_tok_parseNextToken(&src, startOfRules, &parseError,status)) != NULL) {
strength = src.parsedToken.strength;
chOffset = src.parsedToken.charsOffset;
chLen = src.parsedToken.charsLen;
exOffset = src.parsedToken.extensionOffset;
exLen = src.parsedToken.extensionLen;
prefixOffset = src.parsedToken.prefixOffset;
prefixLen = src.parsedToken.prefixLen;
specs = src.parsedToken.flags;
startOfRules = FALSE;
varT = (UBool)((specs & UCOL_TOK_VARIABLE_TOP) != 0);
top_ = (UBool)((specs & UCOL_TOK_TOP) != 0);
u_strncpy(second,rulesCopy+chOffset, chLen);
second[chLen] = 0;
secondLen = chLen;
if(exLen > 0) {
u_strncat(first, rulesCopy+exOffset, exLen);
first[firstLen+exLen] = 0;
firstLen += exLen;
}
if(strength != UCOL_TOK_RESET) {
if((*first<0x3400 || *first>=0xa000) && (*second<0x3400 || *second>=0xa000)) {
UCAdiff += testSwitch(&ucaTest, (void *)UCA, 0, strength, first, second, refName, error);
/*Windiff += testSwitch(&winTest, (void *)lcid, 0, strength, first, second, "Win32");*/
}
}
firstLen = chLen;
u_strcpy(first, second);
}
if(UCAdiff != 0 && Windiff != 0) {
log_verbose("\n");
}
if(UCAdiff == 0) {
log_verbose("No immediate difference with %s!\n", refName);
}
if(Windiff == 0) {
log_verbose("No immediate difference with Win32!\n");
}
free(rulesCopy);
}
}
/*
* Takes two CEs (lead and continuation) and
* compares them as CEs should be compared:
* primary vs. primary, secondary vs. secondary
* tertiary vs. tertiary
*/
static int32_t compareCEs(uint32_t s1, uint32_t s2,
uint32_t t1, uint32_t t2) {
uint32_t s = 0, t = 0;
if(s1 == t1 && s2 == t2) {
return 0;
}
s = (s1 & 0xFFFF0000)|((s2 & 0xFFFF0000)>>16);
t = (t1 & 0xFFFF0000)|((t2 & 0xFFFF0000)>>16);
if(s < t) {
return -1;
} else if(s > t) {
return 1;
} else {
s = (s1 & 0x0000FF00) | (s2 & 0x0000FF00)>>8;
t = (t1 & 0x0000FF00) | (t2 & 0x0000FF00)>>8;
if(s < t) {
return -1;
} else if(s > t) {
return 1;
} else {
s = (s1 & 0x000000FF)<<8 | (s2 & 0x000000FF);
t = (t1 & 0x000000FF)<<8 | (t2 & 0x000000FF);
if(s < t) {
return -1;
} else {
return 1;
}
}
}
}
typedef struct {
uint32_t startCE;
uint32_t startContCE;
uint32_t limitCE;
uint32_t limitContCE;
} indirectBoundaries;
/* these values are used for finding CE values for indirect positioning. */
/* Indirect positioning is a mechanism for allowing resets on symbolic */
/* values. It only works for resets and you cannot tailor indirect names */
/* An indirect name can define either an anchor point or a range. An */
/* anchor point behaves in exactly the same way as a code point in reset */
/* would, except that it cannot be tailored. A range (we currently only */
/* know for the [top] range will explicitly set the upper bound for */
/* generated CEs, thus allowing for better control over how many CEs can */
/* be squeezed between in the range without performance penalty. */
/* In that respect, we use [top] for tailoring of locales that use CJK */
/* characters. Other indirect values are currently a pure convenience, */
/* they can be used to assure that the CEs will be always positioned in */
/* the same place relative to a point with known properties (e.g. first */
/* primary ignorable). */
static indirectBoundaries ucolIndirectBoundaries[15];
static UBool indirectBoundariesSet = FALSE;
static void setIndirectBoundaries(uint32_t indexR, uint32_t *start, uint32_t *end) {
/* Set values for the top - TODO: once we have values for all the indirects, we are going */
/* to initalize here. */
ucolIndirectBoundaries[indexR].startCE = start[0];
ucolIndirectBoundaries[indexR].startContCE = start[1];
if(end) {
ucolIndirectBoundaries[indexR].limitCE = end[0];
ucolIndirectBoundaries[indexR].limitContCE = end[1];
} else {
ucolIndirectBoundaries[indexR].limitCE = 0;
ucolIndirectBoundaries[indexR].limitContCE = 0;
}
}
static void testCEs(UCollator *coll, UErrorCode *status) {
const UChar *rules = NULL, *current = NULL;
int32_t ruleLen = 0;
uint32_t strength = 0;
uint32_t maxStrength = UCOL_IDENTICAL;
uint32_t baseCE, baseContCE, nextCE, nextContCE, currCE, currContCE;
uint32_t lastCE;
uint32_t lastContCE;
int32_t result = 0;
uint32_t chOffset = 0; uint32_t chLen = 0;
uint32_t exOffset = 0; uint32_t exLen = 0;
uint32_t prefixOffset = 0; uint32_t prefixLen = 0;
uint32_t oldOffset = 0;
/* uint32_t rExpsLen = 0; */
/* uint32_t firstLen = 0; */
uint16_t specs = 0;
UBool varT = FALSE; UBool top_ = TRUE;
UBool startOfRules = TRUE;
UBool before = FALSE;
UColTokenParser src;
UColOptionSet opts;
UParseError parseError;
UChar *rulesCopy = NULL;
collIterate *c = uprv_new_collIterate(status);
UCAConstants *consts = NULL;
uint32_t UCOL_RESET_TOP_VALUE, /*UCOL_RESET_TOP_CONT, */
UCOL_NEXT_TOP_VALUE, UCOL_NEXT_TOP_CONT;
const char *colLoc;
UCollator *UCA = ucol_open("root", status);
if (U_FAILURE(*status)) {
log_err("Could not open root collator %s\n", u_errorName(*status));
uprv_delete_collIterate(c);
return;
}
colLoc = ucol_getLocaleByType(coll, ULOC_ACTUAL_LOCALE, status);
if (U_FAILURE(*status)) {
log_err("Could not get collator name: %s\n", u_errorName(*status));
ucol_close(UCA);
uprv_delete_collIterate(c);
return;
}
consts = (UCAConstants *)((uint8_t *)UCA->image + UCA->image->UCAConsts);
UCOL_RESET_TOP_VALUE = consts->UCA_LAST_NON_VARIABLE[0];
/*UCOL_RESET_TOP_CONT = consts->UCA_LAST_NON_VARIABLE[1]; */
UCOL_NEXT_TOP_VALUE = consts->UCA_FIRST_IMPLICIT[0];
UCOL_NEXT_TOP_CONT = consts->UCA_FIRST_IMPLICIT[1];
baseCE=baseContCE=nextCE=nextContCE=currCE=currContCE=lastCE=lastContCE = UCOL_NOT_FOUND;
src.opts = &opts;
rules = ucol_getRules(coll, &ruleLen);
src.invUCA = ucol_initInverseUCA(status);
if(indirectBoundariesSet == FALSE) {
/* UCOL_RESET_TOP_VALUE */
setIndirectBoundaries(0, consts->UCA_LAST_NON_VARIABLE, consts->UCA_FIRST_IMPLICIT);
/* UCOL_FIRST_PRIMARY_IGNORABLE */
setIndirectBoundaries(1, consts->UCA_FIRST_PRIMARY_IGNORABLE, 0);
/* UCOL_LAST_PRIMARY_IGNORABLE */
setIndirectBoundaries(2, consts->UCA_LAST_PRIMARY_IGNORABLE, 0);
/* UCOL_FIRST_SECONDARY_IGNORABLE */
setIndirectBoundaries(3, consts->UCA_FIRST_SECONDARY_IGNORABLE, 0);
/* UCOL_LAST_SECONDARY_IGNORABLE */
setIndirectBoundaries(4, consts->UCA_LAST_SECONDARY_IGNORABLE, 0);
/* UCOL_FIRST_TERTIARY_IGNORABLE */
setIndirectBoundaries(5, consts->UCA_FIRST_TERTIARY_IGNORABLE, 0);
/* UCOL_LAST_TERTIARY_IGNORABLE */
setIndirectBoundaries(6, consts->UCA_LAST_TERTIARY_IGNORABLE, 0);
/* UCOL_FIRST_VARIABLE */
setIndirectBoundaries(7, consts->UCA_FIRST_VARIABLE, 0);
/* UCOL_LAST_VARIABLE */
setIndirectBoundaries(8, consts->UCA_LAST_VARIABLE, 0);
/* UCOL_FIRST_NON_VARIABLE */
setIndirectBoundaries(9, consts->UCA_FIRST_NON_VARIABLE, 0);
/* UCOL_LAST_NON_VARIABLE */
setIndirectBoundaries(10, consts->UCA_LAST_NON_VARIABLE, consts->UCA_FIRST_IMPLICIT);
/* UCOL_FIRST_IMPLICIT */
setIndirectBoundaries(11, consts->UCA_FIRST_IMPLICIT, 0);
/* UCOL_LAST_IMPLICIT */
setIndirectBoundaries(12, consts->UCA_LAST_IMPLICIT, consts->UCA_FIRST_TRAILING);
/* UCOL_FIRST_TRAILING */
setIndirectBoundaries(13, consts->UCA_FIRST_TRAILING, 0);
/* UCOL_LAST_TRAILING */
setIndirectBoundaries(14, consts->UCA_LAST_TRAILING, 0);
ucolIndirectBoundaries[14].limitCE = (consts->UCA_PRIMARY_SPECIAL_MIN<<24);
indirectBoundariesSet = TRUE;
}
if(U_SUCCESS(*status) && ruleLen > 0) {
rulesCopy = (UChar *)malloc((ruleLen+UCOL_TOK_EXTRA_RULE_SPACE_SIZE)*sizeof(UChar));
uprv_memcpy(rulesCopy, rules, ruleLen*sizeof(UChar));
src.current = src.source = rulesCopy;
src.end = rulesCopy+ruleLen;
src.extraCurrent = src.end;
src.extraEnd = src.end+UCOL_TOK_EXTRA_RULE_SPACE_SIZE;
while ((current = ucol_tok_parseNextToken(&src, startOfRules, &parseError,status)) != NULL) {
strength = src.parsedToken.strength;
chOffset = src.parsedToken.charsOffset;
chLen = src.parsedToken.charsLen;
exOffset = src.parsedToken.extensionOffset;
exLen = src.parsedToken.extensionLen;
prefixOffset = src.parsedToken.prefixOffset;
prefixLen = src.parsedToken.prefixLen;
specs = src.parsedToken.flags;
startOfRules = FALSE;
varT = (UBool)((specs & UCOL_TOK_VARIABLE_TOP) != 0);
top_ = (UBool)((specs & UCOL_TOK_TOP) != 0);
uprv_init_collIterate(coll, rulesCopy+chOffset, chLen, c, status);
currCE = ucol_getNextCE(coll, c, status);
if(currCE == 0 && UCOL_ISTHAIPREVOWEL(*(rulesCopy+chOffset))) {
log_verbose("Thai prevowel detected. Will pick next CE\n");
currCE = ucol_getNextCE(coll, c, status);
}
currContCE = ucol_getNextCE(coll, c, status);
if(!isContinuation(currContCE)) {
currContCE = 0;
}
/* we need to repack CEs here */
if(strength == UCOL_TOK_RESET) {
before = (UBool)((specs & UCOL_TOK_BEFORE) != 0);
if(top_ == TRUE) {
int32_t index = src.parsedToken.indirectIndex;
nextCE = baseCE = currCE = ucolIndirectBoundaries[index].startCE;
nextContCE = baseContCE = currContCE = ucolIndirectBoundaries[index].startContCE;
} else {
nextCE = baseCE = currCE;
nextContCE = baseContCE = currContCE;
}
maxStrength = UCOL_IDENTICAL;
} else {
if(strength < maxStrength) {
maxStrength = strength;
if(baseCE == UCOL_RESET_TOP_VALUE) {
log_verbose("Resetting to [top]\n");
nextCE = UCOL_NEXT_TOP_VALUE;
nextContCE = UCOL_NEXT_TOP_CONT;
} else {
result = ucol_inv_getNextCE(&src, baseCE & 0xFFFFFF3F, baseContCE, &nextCE, &nextContCE, maxStrength);
}
if(result < 0) {
if(ucol_isTailored(coll, *(rulesCopy+oldOffset), status)) {
log_verbose("Reset is tailored codepoint %04X, don't know how to continue, taking next test\n", *(rulesCopy+oldOffset));
return;
} else {
log_err("%s: couldn't find the CE\n", colLoc);
return;
}
}
}
currCE &= 0xFFFFFF3F;
currContCE &= 0xFFFFFFBF;
if(maxStrength == UCOL_IDENTICAL) {
if(baseCE != currCE || baseContCE != currContCE) {
log_err("%s: current CE (initial strength UCOL_EQUAL)\n", colLoc);
}
} else {
if(strength == UCOL_IDENTICAL) {
if(lastCE != currCE || lastContCE != currContCE) {
log_err("%s: current CE (initial strength UCOL_EQUAL)\n", colLoc);
}
} else {
if(compareCEs(currCE, currContCE, nextCE, nextContCE) > 0) {
/*if(currCE > nextCE || (currCE == nextCE && currContCE >= nextContCE)) {*/
log_err("%s: current CE is not less than base CE\n", colLoc);
}
if(!before) {
if(compareCEs(currCE, currContCE, lastCE, lastContCE) < 0) {
/*if(currCE < lastCE || (currCE == lastCE && currContCE <= lastContCE)) {*/
log_err("%s: sequence of generated CEs is broken\n", colLoc);
}
} else {
before = FALSE;
if(compareCEs(currCE, currContCE, lastCE, lastContCE) > 0) {
/*if(currCE < lastCE || (currCE == lastCE && currContCE <= lastContCE)) {*/
log_err("%s: sequence of generated CEs is broken\n", colLoc);
}
}
}
}
}
oldOffset = chOffset;
lastCE = currCE & 0xFFFFFF3F;
lastContCE = currContCE & 0xFFFFFFBF;
}
free(rulesCopy);
}
ucol_close(UCA);
uprv_delete_collIterate(c);
}
#if 0
/* these locales are now picked from index RB */
static const char* localesToTest[] = {
"ar", "bg", "ca", "cs", "da",
"el", "en_BE", "en_US_POSIX",
"es", "et", "fi", "fr", "hi",
"hr", "hu", "is", "iw", "ja",
"ko", "lt", "lv", "mk", "mt",
"nb", "nn", "nn_NO", "pl", "ro",
"ru", "sh", "sk", "sl", "sq",
"sr", "sv", "th", "tr", "uk",
"vi", "zh", "zh_TW"
};
#endif
static const char* rulesToTest[] = {
/* Funky fa rule */
"&\\u0622 < \\u0627 << \\u0671 < \\u0621",
/*"& Z < p, P",*/
/* Cui Mins rules */
"&[top]<o,O<p,P<q,Q<'?'/u<r,R<u,U", /*"<o,O<p,P<q,Q<r,R<u,U & Qu<'?'",*/
"&[top]<o,O<p,P<q,Q;'?'/u<r,R<u,U", /*"<o,O<p,P<q,Q<r,R<u,U & Qu;'?'",*/
"&[top]<o,O<p,P<q,Q,'?'/u<r,R<u,U", /*"<o,O<p,P<q,Q<r,R<u,U&'Qu','?'",*/
"&[top]<3<4<5<c,C<f,F<m,M<o,O<p,P<q,Q;'?'/u<r,R<u,U", /*"<'?'<3<4<5<a,A<f,F<m,M<o,O<p,P<q,Q<r,R<u,U & Qu;'?'",*/
"&[top]<'?';Qu<3<4<5<c,C<f,F<m,M<o,O<p,P<q,Q<r,R<u,U", /*"<'?'<3<4<5<a,A<f,F<m,M<o,O<p,P<q,Q<r,R<u,U & '?';Qu",*/
"&[top]<3<4<5<c,C<f,F<m,M<o,O<p,P<q,Q;'?'/um<r,R<u,U", /*"<'?'<3<4<5<a,A<f,F<m,M<o,O<p,P<q,Q<r,R<u,U & Qum;'?'",*/
"&[top]<'?';Qum<3<4<5<c,C<f,F<m,M<o,O<p,P<q,Q<r,R<u,U" /*"<'?'<3<4<5<a,A<f,F<m,M<o,O<p,P<q,Q<r,R<u,U & '?';Qum"*/
};
static void TestCollations(void) {
int32_t noOfLoc = uloc_countAvailable();
int32_t i = 0, j = 0;
UErrorCode status = U_ZERO_ERROR;
char cName[256];
UChar name[256];
int32_t nameSize;
const char *locName = NULL;
UCollator *coll = NULL;
UCollator *UCA = ucol_open("", &status);
UColAttributeValue oldStrength = ucol_getAttribute(UCA, UCOL_STRENGTH, &status);
if (U_FAILURE(status)) {
log_err_status(status, "Could not open UCA collator %s\n", u_errorName(status));
return;
}
ucol_setAttribute(UCA, UCOL_STRENGTH, UCOL_QUATERNARY, &status);
for(i = 0; i<noOfLoc; i++) {
status = U_ZERO_ERROR;
locName = uloc_getAvailable(i);
if(uprv_strcmp("ja", locName) == 0) {
log_verbose("Don't know how to test prefixes\n");
continue;
}
if(hasCollationElements(locName)) {
nameSize = uloc_getDisplayName(locName, NULL, name, 256, &status);
for(j = 0; j<nameSize; j++) {
cName[j] = (char)name[j];
}
cName[nameSize] = 0;
log_verbose("\nTesting locale %s (%s)\n", locName, cName);
coll = ucol_open(locName, &status);
if(U_SUCCESS(status)) {
testAgainstUCA(coll, UCA, "UCA", FALSE, &status);
ucol_close(coll);
} else {
log_err("Couldn't instantiate collator for locale %s, error: %s\n", locName, u_errorName(status));
status = U_ZERO_ERROR;
}
}
}
ucol_setAttribute(UCA, UCOL_STRENGTH, oldStrength, &status);
ucol_close(UCA);
}
static void RamsRulesTest(void) {
UErrorCode status = U_ZERO_ERROR;
int32_t i = 0;
UCollator *coll = NULL;
UChar rule[2048];
uint32_t ruleLen;
int32_t noOfLoc = uloc_countAvailable();
const char *locName = NULL;
log_verbose("RamsRulesTest\n");
for(i = 0; i<noOfLoc; i++) {
status = U_ZERO_ERROR;
locName = uloc_getAvailable(i);
if(hasCollationElements(locName)) {
if (uprv_strcmp("ja", locName)==0) {
log_verbose("Don't know how to test Japanese because of prefixes\n");
continue;
}
if (uprv_strcmp("de__PHONEBOOK", locName)==0) {
log_verbose("Don't know how to test Phonebook because the reset is on an expanding character\n");
continue;
}
if (uprv_strcmp("km", locName)==0 ||
uprv_strcmp("km_KH", locName)==0 ||
uprv_strcmp("si", locName)==0 ||
uprv_strcmp("si_LK", locName)==0 ||
uprv_strcmp("zh", locName)==0 ||
uprv_strcmp("zh_Hant", locName)==0 ) {
continue; /* TODO: enable these locale tests after trac#6040 is fixed. */
}
log_verbose("Testing locale %s\n", locName);
coll = ucol_open(locName, &status);
if(U_SUCCESS(status)) {
if(coll->image->jamoSpecial == TRUE) {
log_err("%s has special JAMOs\n", locName);
}
ucol_setAttribute(coll, UCOL_CASE_FIRST, UCOL_OFF, &status);
testCollator(coll, &status);
testCEs(coll, &status);
ucol_close(coll);
}
}
}
for(i = 0; i<sizeof(rulesToTest)/sizeof(rulesToTest[0]); i++) {
log_verbose("Testing rule: %s\n", rulesToTest[i]);
ruleLen = u_unescape(rulesToTest[i], rule, 2048);
coll = ucol_openRules(rule, ruleLen, UCOL_OFF, UCOL_TERTIARY, NULL,&status);
if(U_SUCCESS(status)) {
testCollator(coll, &status);
testCEs(coll, &status);
ucol_close(coll);
}
}
}
static void IsTailoredTest(void) {
UErrorCode status = U_ZERO_ERROR;
uint32_t i = 0;
UCollator *coll = NULL;
UChar rule[2048];
UChar tailored[2048];
UChar notTailored[2048];
uint32_t ruleLen, tailoredLen, notTailoredLen;
log_verbose("IsTailoredTest\n");
u_uastrcpy(rule, "&Z < A, B, C;c < d");
ruleLen = u_strlen(rule);
u_uastrcpy(tailored, "ABCcd");
tailoredLen = u_strlen(tailored);
u_uastrcpy(notTailored, "ZabD");
notTailoredLen = u_strlen(notTailored);
coll = ucol_openRules(rule, ruleLen, UCOL_OFF, UCOL_TERTIARY, NULL,&status);
if(U_SUCCESS(status)) {
for(i = 0; i<tailoredLen; i++) {
if(!ucol_isTailored(coll, tailored[i], &status)) {
log_err("%i: %04X should be tailored - it is reported as not\n", i, tailored[i]);
}
}
for(i = 0; i<notTailoredLen; i++) {
if(ucol_isTailored(coll, notTailored[i], &status)) {
log_err("%i: %04X should not be tailored - it is reported as it is\n", i, notTailored[i]);
}
}
ucol_close(coll);
}
else {
log_err_status(status, "Can't tailor rules\n");
}
/* Code coverage */
status = U_ZERO_ERROR;
coll = ucol_open("ja", &status);
if(!ucol_isTailored(coll, 0x4E9C, &status)) {
log_err_status(status, "0x4E9C should be tailored - it is reported as not\n");
}
ucol_close(coll);
}
const static char chTest[][20] = {
"c",
"C",
"ca", "cb", "cx", "cy", "CZ",
"c\\u030C", "C\\u030C",
"h",
"H",
"ha", "Ha", "harly", "hb", "HB", "hx", "HX", "hy", "HY",
"ch", "cH", "Ch", "CH",
"cha", "charly", "che", "chh", "chch", "chr",
"i", "I", "iarly",
"r", "R",
"r\\u030C", "R\\u030C",
"s",
"S",
"s\\u030C", "S\\u030C",
"z", "Z",
"z\\u030C", "Z\\u030C"
};
static void TestChMove(void) {
UChar t1[256] = {0};
UChar t2[256] = {0};
uint32_t i = 0, j = 0;
uint32_t size = 0;
UErrorCode status = U_ZERO_ERROR;
UCollator *coll = ucol_open("cs", &status);
if(U_SUCCESS(status)) {
size = sizeof(chTest)/sizeof(chTest[0]);
for(i = 0; i < size-1; i++) {
for(j = i+1; j < size; j++) {
u_unescape(chTest[i], t1, 256);
u_unescape(chTest[j], t2, 256);
doTest(coll, t1, t2, UCOL_LESS);
}
}
}
else {
log_err("Can't open collator");
}
ucol_close(coll);
}
const static char impTest[][20] = {
"\\u4e00",
"a",
"A",
"b",
"B",
"\\u4e01"
};
static void TestImplicitTailoring(void) {
static const struct {
const char *rules;
const char *data[10];
const uint32_t len;
} tests[] = {
{ "&[before 1]\\u4e00 < b < c &[before 1]\\u4e00 < d < e", { "d", "e", "b", "c", "\\u4e00"}, 5 },
{ "&\\u4e00 < a <<< A < b <<< B", { "\\u4e00", "a", "A", "b", "B", "\\u4e01"}, 6 },
{ "&[before 1]\\u4e00 < \\u4e01 < \\u4e02", { "\\u4e01", "\\u4e02", "\\u4e00"}, 3},
{ "&[before 1]\\u4e01 < \\u4e02 < \\u4e03", { "\\u4e02", "\\u4e03", "\\u4e01"}, 3}
};
int32_t i = 0;
for(i = 0; i < sizeof(tests)/sizeof(tests[0]); i++) {
genericRulesStarter(tests[i].rules, tests[i].data, tests[i].len);
}
/*
UChar t1[256] = {0};
UChar t2[256] = {0};
const char *rule = "&\\u4e00 < a <<< A < b <<< B";
uint32_t i = 0, j = 0;
uint32_t size = 0;
uint32_t ruleLen = 0;
UErrorCode status = U_ZERO_ERROR;
UCollator *coll = NULL;
ruleLen = u_unescape(rule, t1, 256);
coll = ucol_openRules(t1, ruleLen, UCOL_OFF, UCOL_TERTIARY,NULL, &status);
if(U_SUCCESS(status)) {
size = sizeof(impTest)/sizeof(impTest[0]);
for(i = 0; i < size-1; i++) {
for(j = i+1; j < size; j++) {
u_unescape(impTest[i], t1, 256);
u_unescape(impTest[j], t2, 256);
doTest(coll, t1, t2, UCOL_LESS);
}
}
}
else {
log_err("Can't open collator");
}
ucol_close(coll);
*/
}
static void TestFCDProblem(void) {
UChar t1[256] = {0};
UChar t2[256] = {0};
const char *s1 = "\\u0430\\u0306\\u0325";
const char *s2 = "\\u04D1\\u0325";
UErrorCode status = U_ZERO_ERROR;
UCollator *coll = ucol_open("", &status);
u_unescape(s1, t1, 256);
u_unescape(s2, t2, 256);
ucol_setAttribute(coll, UCOL_NORMALIZATION_MODE, UCOL_OFF, &status);
doTest(coll, t1, t2, UCOL_EQUAL);
ucol_setAttribute(coll, UCOL_NORMALIZATION_MODE, UCOL_ON, &status);
doTest(coll, t1, t2, UCOL_EQUAL);
ucol_close(coll);
}
/*
The largest normalization form is 18 for NFKC/NFKD, 4 for NFD and 3 for NFC
We're only using NFC/NFD in this test.
*/
#define NORM_BUFFER_TEST_LEN 18
typedef struct {
UChar32 u;
UChar NFC[NORM_BUFFER_TEST_LEN];
UChar NFD[NORM_BUFFER_TEST_LEN];
} tester;
static void TestComposeDecompose(void) {
/* [[:NFD_Inert=false:][:NFC_Inert=false:]] */
static const UChar UNICODESET_STR[] = {
0x5B,0x5B,0x3A,0x4E,0x46,0x44,0x5F,0x49,0x6E,0x65,0x72,0x74,0x3D,0x66,0x61,
0x6C,0x73,0x65,0x3A,0x5D,0x5B,0x3A,0x4E,0x46,0x43,0x5F,0x49,0x6E,0x65,0x72,
0x74,0x3D,0x66,0x61,0x6C,0x73,0x65,0x3A,0x5D,0x5D,0
};
int32_t noOfLoc;
int32_t i = 0, j = 0;
UErrorCode status = U_ZERO_ERROR;
const char *locName = NULL;
uint32_t nfcSize;
uint32_t nfdSize;
tester **t;
uint32_t noCases = 0;
UCollator *coll = NULL;
UChar32 u = 0;
UChar comp[NORM_BUFFER_TEST_LEN];
uint32_t len = 0;
UCollationElements *iter;
USet *charsToTest = uset_openPattern(UNICODESET_STR, -1, &status);
int32_t charsToTestSize;
noOfLoc = uloc_countAvailable();
coll = ucol_open("", &status);
if (U_FAILURE(status)) {
log_data_err("Error opening collator -> %s (Are you missing data?)\n", u_errorName(status));
return;
}
charsToTestSize = uset_size(charsToTest);
if (charsToTestSize <= 0) {
log_err("Set was zero. Missing data?\n");
return;
}
t = malloc(charsToTestSize * sizeof(tester *));
t[0] = (tester *)malloc(sizeof(tester));
log_verbose("Testing UCA extensively for %d characters\n", charsToTestSize);
for(u = 0; u < charsToTestSize; u++) {
UChar32 ch = uset_charAt(charsToTest, u);
len = 0;
UTF_APPEND_CHAR_UNSAFE(comp, len, ch);
nfcSize = unorm_normalize(comp, len, UNORM_NFC, 0, t[noCases]->NFC, NORM_BUFFER_TEST_LEN, &status);
nfdSize = unorm_normalize(comp, len, UNORM_NFD, 0, t[noCases]->NFD, NORM_BUFFER_TEST_LEN, &status);
if(nfcSize != nfdSize || (uprv_memcmp(t[noCases]->NFC, t[noCases]->NFD, nfcSize * sizeof(UChar)) != 0)
|| (len != nfdSize || (uprv_memcmp(comp, t[noCases]->NFD, nfdSize * sizeof(UChar)) != 0))) {
t[noCases]->u = ch;
if(len != nfdSize || (uprv_memcmp(comp, t[noCases]->NFD, nfdSize * sizeof(UChar)) != 0)) {
u_strncpy(t[noCases]->NFC, comp, len);
t[noCases]->NFC[len] = 0;
}
noCases++;
t[noCases] = (tester *)malloc(sizeof(tester));
uprv_memset(t[noCases], 0, sizeof(tester));
}
}
log_verbose("Testing %d/%d of possible test cases\n", noCases, charsToTestSize);
uset_close(charsToTest);
charsToTest = NULL;
for(u=0; u<(UChar32)noCases; u++) {
if(!ucol_equal(coll, t[u]->NFC, -1, t[u]->NFD, -1)) {
log_err("Failure: codePoint %05X fails TestComposeDecompose in the UCA\n", t[u]->u);
doTest(coll, t[u]->NFC, t[u]->NFD, UCOL_EQUAL);
}
}
/*
for(u = 0; u < charsToTestSize; u++) {
if(!(u&0xFFFF)) {
log_verbose("%08X ", u);
}
uprv_memset(t[noCases], 0, sizeof(tester));
t[noCases]->u = u;
len = 0;
UTF_APPEND_CHAR_UNSAFE(comp, len, u);
comp[len] = 0;
nfcSize = unorm_normalize(comp, len, UNORM_NFC, 0, t[noCases]->NFC, NORM_BUFFER_TEST_LEN, &status);
nfdSize = unorm_normalize(comp, len, UNORM_NFD, 0, t[noCases]->NFD, NORM_BUFFER_TEST_LEN, &status);
doTest(coll, comp, t[noCases]->NFD, UCOL_EQUAL);
doTest(coll, comp, t[noCases]->NFC, UCOL_EQUAL);
}
*/
ucol_close(coll);
log_verbose("Testing locales, number of cases = %i\n", noCases);
for(i = 0; i<noOfLoc; i++) {
status = U_ZERO_ERROR;
locName = uloc_getAvailable(i);
if(hasCollationElements(locName)) {
char cName[256];
UChar name[256];
int32_t nameSize = uloc_getDisplayName(locName, NULL, name, sizeof(cName), &status);
for(j = 0; j<nameSize; j++) {
cName[j] = (char)name[j];
}
cName[nameSize] = 0;
log_verbose("\nTesting locale %s (%s)\n", locName, cName);
coll = ucol_open(locName, &status);
ucol_setStrength(coll, UCOL_IDENTICAL);
iter = ucol_openElements(coll, t[u]->NFD, u_strlen(t[u]->NFD), &status);
for(u=0; u<(UChar32)noCases; u++) {
if(!ucol_equal(coll, t[u]->NFC, -1, t[u]->NFD, -1)) {
log_err("Failure: codePoint %05X fails TestComposeDecompose for locale %s\n", t[u]->u, cName);
doTest(coll, t[u]->NFC, t[u]->NFD, UCOL_EQUAL);
log_verbose("Testing NFC\n");
ucol_setText(iter, t[u]->NFC, u_strlen(t[u]->NFC), &status);
backAndForth(iter);
log_verbose("Testing NFD\n");
ucol_setText(iter, t[u]->NFD, u_strlen(t[u]->NFD), &status);
backAndForth(iter);
}
}
ucol_closeElements(iter);
ucol_close(coll);
}
}
for(u = 0; u <= (UChar32)noCases; u++) {
free(t[u]);
}
free(t);
}
static void TestEmptyRule(void) {
UErrorCode status = U_ZERO_ERROR;
UChar rulez[] = { 0 };
UCollator *coll = ucol_openRules(rulez, 0, UCOL_OFF, UCOL_TERTIARY,NULL, &status);
ucol_close(coll);
}
static void TestUCARules(void) {
UErrorCode status = U_ZERO_ERROR;
UChar b[256];
UChar *rules = b;
uint32_t ruleLen = 0;
UCollator *UCAfromRules = NULL;
UCollator *coll = ucol_open("", &status);
if(status == U_FILE_ACCESS_ERROR) {
log_data_err("Is your data around?\n");
return;
} else if(U_FAILURE(status)) {
log_err("Error opening collator\n");
return;
}
ruleLen = ucol_getRulesEx(coll, UCOL_FULL_RULES, rules, 256);
log_verbose("TestUCARules\n");
if(ruleLen > 256) {
rules = (UChar *)malloc((ruleLen+1)*sizeof(UChar));
ruleLen = ucol_getRulesEx(coll, UCOL_FULL_RULES, rules, ruleLen);
}
log_verbose("Rules length is %d\n", ruleLen);
UCAfromRules = ucol_openRules(rules, ruleLen, UCOL_OFF, UCOL_TERTIARY, NULL,&status);
if(U_SUCCESS(status)) {
ucol_close(UCAfromRules);
} else {
log_verbose("Unable to create a collator from UCARules!\n");
}
/*
u_unescape(blah, b, 256);
ucol_getSortKey(coll, b, 1, res, 256);
*/
ucol_close(coll);
if(rules != b) {
free(rules);
}
}
/* Pinyin tonal order */
/*
A < .. (\u0101) < .. (\u00e1) < .. (\u01ce) < .. (\u00e0)
(w/macron)< (w/acute)< (w/caron)< (w/grave)
E < .. (\u0113) < .. (\u00e9) < .. (\u011b) < .. (\u00e8)
I < .. (\u012b) < .. (\u00ed) < .. (\u01d0) < .. (\u00ec)
O < .. (\u014d) < .. (\u00f3) < .. (\u01d2) < .. (\u00f2)
U < .. (\u016b) < .. (\u00fa) < .. (\u01d4) < .. (\u00f9)
< .. (\u01d6) < .. (\u01d8) < .. (\u01da) < .. (\u01dc) <
.. (\u00fc)
However, in testing we got the following order:
A < .. (\u00e1) < .. (\u00e0) < .. (\u01ce) < .. (\u0101)
(w/acute)< (w/grave)< (w/caron)< (w/macron)
E < .. (\u00e9) < .. (\u00e8) < .. (\u00ea) < .. (\u011b) <
.. (\u0113)
I < .. (\u00ed) < .. (\u00ec) < .. (\u01d0) < .. (\u012b)
O < .. (\u00f3) < .. (\u00f2) < .. (\u01d2) < .. (\u014d)
U < .. (\u00fa) < .. (\u00f9) < .. (\u01d4) < .. (\u00fc) <
.. (\u01d8)
< .. (\u01dc) < .. (\u01da) < .. (\u01d6) < .. (\u016b)
*/
static void TestBefore(void) {
const static char *data[] = {
"\\u0101", "\\u00e1", "\\u01ce", "\\u00e0", "A",
"\\u0113", "\\u00e9", "\\u011b", "\\u00e8", "E",
"\\u012b", "\\u00ed", "\\u01d0", "\\u00ec", "I",
"\\u014d", "\\u00f3", "\\u01d2", "\\u00f2", "O",
"\\u016b", "\\u00fa", "\\u01d4", "\\u00f9", "U",
"\\u01d6", "\\u01d8", "\\u01da", "\\u01dc", "\\u00fc"
};
genericRulesStarter(
"&[before 1]a<\\u0101<\\u00e1<\\u01ce<\\u00e0"
"&[before 1]e<\\u0113<\\u00e9<\\u011b<\\u00e8"
"&[before 1]i<\\u012b<\\u00ed<\\u01d0<\\u00ec"
"&[before 1]o<\\u014d<\\u00f3<\\u01d2<\\u00f2"
"&[before 1]u<\\u016b<\\u00fa<\\u01d4<\\u00f9"
"&u<\\u01d6<\\u01d8<\\u01da<\\u01dc<\\u00fc",
data, sizeof(data)/sizeof(data[0]));
}
#if 0
/* superceded by TestBeforePinyin */
static void TestJ784(void) {
const static char *data[] = {
"A", "\\u0101", "\\u00e1", "\\u01ce", "\\u00e0",
"E", "\\u0113", "\\u00e9", "\\u011b", "\\u00e8",
"I", "\\u012b", "\\u00ed", "\\u01d0", "\\u00ec",
"O", "\\u014d", "\\u00f3", "\\u01d2", "\\u00f2",
"U", "\\u016b", "\\u00fa", "\\u01d4", "\\u00f9",
"\\u00fc",
"\\u01d6", "\\u01d8", "\\u01da", "\\u01dc"
};
genericLocaleStarter("zh", data, sizeof(data)/sizeof(data[0]));
}
#endif
#if 0
/* superceded by the changes to the lv locale */
static void TestJ831(void) {
const static char *data[] = {
"I",
"i",
"Y",
"y"
};
genericLocaleStarter("lv", data, sizeof(data)/sizeof(data[0]));
}
#endif
static void TestJ815(void) {
const static char *data[] = {
"aa",
"Aa",
"ab",
"Ab",
"ad",
"Ad",
"ae",
"Ae",
"\\u00e6",
"\\u00c6",
"af",
"Af",
"b",
"B"
};
genericLocaleStarter("fr", data, sizeof(data)/sizeof(data[0]));
genericRulesStarter("[backwards 2]&A<<\\u00e6/e<<<\\u00c6/E", data, sizeof(data)/sizeof(data[0]));
}
/*
"& a < b < c < d& r < c", "& a < b < d& r < c",
"& a < b < c < d& c < m", "& a < b < c < m < d",
"& a < b < c < d& a < m", "& a < m < b < c < d",
"& a <<< b << c < d& a < m", "& a <<< b << c < m < d",
"& a < b < c < d& [before 1] c < m", "& a < b < m < c < d",
"& a < b <<< c << d <<< e& [before 3] e <<< x", "& a < b <<< c << d <<< x <<< e",
"& a < b <<< c << d <<< e& [before 2] e <<< x", "& a < b <<< c <<< x << d <<< e",
"& a < b <<< c << d <<< e& [before 1] e <<< x", "& a <<< x < b <<< c << d <<< e",
"& a < b <<< c << d <<< e <<< f < g& [before 1] g < x", "& a < b <<< c << d <<< e <<< f < x < g",
*/
static void TestRedundantRules(void) {
int32_t i;
static const struct {
const char *rules;
const char *expectedRules;
const char *testdata[8];
uint32_t testdatalen;
} tests[] = {
/* this test conflicts with positioning of CODAN placeholder */
/*{
"& a <<< b <<< c << d <<< e& [before 1] e <<< x",
"&\\u2089<<<x",
{"\\u2089", "x"}, 2
}, */
/* this test conflicts with the [before x] syntax tightening */
/*{
"& b <<< c <<< d << e <<< f& [before 1] f <<< x",
"&\\u0252<<<x",
{"\\u0252", "x"}, 2
}, */
/* this test conflicts with the [before x] syntax tightening */
/*{
"& a < b <<< c << d <<< e& [before 1] e <<< x",
"& a <<< x < b <<< c << d <<< e",
{"a", "x", "b", "c", "d", "e"}, 6
}, */
{
"& a < b < c < d& [before 1] c < m",
"& a < b < m < c < d",
{"a", "b", "m", "c", "d"}, 5
},
{
"& a < b <<< c << d <<< e& [before 3] e <<< x",
"& a < b <<< c << d <<< x <<< e",
{"a", "b", "c", "d", "x", "e"}, 6
},
/* this test conflicts with the [before x] syntax tightening */
/* {
"& a < b <<< c << d <<< e& [before 2] e <<< x",
"& a < b <<< c <<< x << d <<< e",
{"a", "b", "c", "x", "d", "e"},, 6
}, */
{
"& a < b <<< c << d <<< e <<< f < g& [before 1] g < x",
"& a < b <<< c << d <<< e <<< f < x < g",
{"a", "b", "c", "d", "e", "f", "x", "g"}, 8
},
{
"& a <<< b << c < d& a < m",
"& a <<< b << c < m < d",
{"a", "b", "c", "m", "d"}, 5
},
{
"&a<b<<b\\u0301 &z<b",
"&a<b\\u0301 &z<b",
{"a", "b\\u0301", "z", "b"}, 4
},
{
"&z<m<<<q<<<m",
"&z<q<<<m",
{"z", "q", "m"},3
},
{
"&z<<<m<q<<<m",
"&z<q<<<m",
{"z", "q", "m"}, 3
},
{
"& a < b < c < d& r < c",
"& a < b < d& r < c",
{"a", "b", "d"}, 3
},
{
"& a < b < c < d& r < c",
"& a < b < d& r < c",
{"r", "c"}, 2
},
{
"& a < b < c < d& c < m",
"& a < b < c < m < d",
{"a", "b", "c", "m", "d"}, 5
},
{
"& a < b < c < d& a < m",
"& a < m < b < c < d",
{"a", "m", "b", "c", "d"}, 5
}
};
UCollator *credundant = NULL;
UCollator *cresulting = NULL;
UErrorCode status = U_ZERO_ERROR;
UChar rlz[2048] = { 0 };
uint32_t rlen = 0;
for(i = 0; i<sizeof(tests)/sizeof(tests[0]); i++) {
log_verbose("testing rule %s, expected to be %s\n", tests[i].rules, tests[i].expectedRules);
rlen = u_unescape(tests[i].rules, rlz, 2048);
credundant = ucol_openRules(rlz, rlen, UCOL_DEFAULT, UCOL_DEFAULT, NULL,&status);
if(status == U_FILE_ACCESS_ERROR) {
log_data_err("Is your data around?\n");
return;
} else if(U_FAILURE(status)) {
log_err("Error opening collator\n");
return;
}
rlen = u_unescape(tests[i].expectedRules, rlz, 2048);
cresulting = ucol_openRules(rlz, rlen, UCOL_DEFAULT, UCOL_DEFAULT, NULL,&status);
testAgainstUCA(cresulting, credundant, "expected", TRUE, &status);
ucol_close(credundant);
ucol_close(cresulting);
log_verbose("testing using data\n");
genericRulesStarter(tests[i].rules, tests[i].testdata, tests[i].testdatalen);
}
}
static void TestExpansionSyntax(void) {
int32_t i;
const static char *rules[] = {
"&AE <<< a << b <<< c &d <<< f",
"&AE <<< a <<< b << c << d < e < f <<< g",
"&AE <<< B <<< C / D <<< F"
};
const static char *expectedRules[] = {
"&A <<< a / E << b / E <<< c /E &d <<< f",
"&A <<< a / E <<< b / E << c / E << d / E < e < f <<< g",
"&A <<< B / E <<< C / ED <<< F / E"
};
const static char *testdata[][8] = {
{"AE", "a", "b", "c"},
{"AE", "a", "b", "c", "d", "e", "f", "g"},
{"AE", "B", "C"} /* / ED <<< F / E"},*/
};
const static uint32_t testdatalen[] = {
4,
8,
3
};
UCollator *credundant = NULL;
UCollator *cresulting = NULL;
UErrorCode status = U_ZERO_ERROR;
UChar rlz[2048] = { 0 };
uint32_t rlen = 0;
for(i = 0; i<sizeof(rules)/sizeof(rules[0]); i++) {
log_verbose("testing rule %s, expected to be %s\n", rules[i], expectedRules[i]);
rlen = u_unescape(rules[i], rlz, 2048);
credundant = ucol_openRules(rlz, rlen, UCOL_DEFAULT, UCOL_DEFAULT, NULL, &status);
if(status == U_FILE_ACCESS_ERROR) {
log_data_err("Is your data around?\n");
return;
} else if(U_FAILURE(status)) {
log_err("Error opening collator\n");
return;
}
rlen = u_unescape(expectedRules[i], rlz, 2048);
cresulting = ucol_openRules(rlz, rlen, UCOL_DEFAULT, UCOL_DEFAULT, NULL,&status);
/* testAgainstUCA still doesn't handle expansions correctly, so this is not run */
/* as a hard error test, but only in information mode */
testAgainstUCA(cresulting, credundant, "expected", FALSE, &status);
ucol_close(credundant);
ucol_close(cresulting);
log_verbose("testing using data\n");
genericRulesStarter(rules[i], testdata[i], testdatalen[i]);
}
}
static void TestCase(void)
{
const static UChar gRules[MAX_TOKEN_LEN] =
/*" & 0 < 1,\u2461<a,A"*/
{ 0x0026, 0x0030, 0x003C, 0x0031, 0x002C, 0x2460, 0x003C, 0x0061, 0x002C, 0x0041, 0x0000 };
const static UChar testCase[][MAX_TOKEN_LEN] =
{
/*0*/ {0x0031 /*'1'*/, 0x0061/*'a'*/, 0x0000},
/*1*/ {0x0031 /*'1'*/, 0x0041/*'A'*/, 0x0000},
/*2*/ {0x2460 /*circ'1'*/, 0x0061/*'a'*/, 0x0000},
/*3*/ {0x2460 /*circ'1'*/, 0x0041/*'A'*/, 0x0000}
};
const static UCollationResult caseTestResults[][9] =
{
{ UCOL_LESS, UCOL_LESS, UCOL_LESS, UCOL_EQUAL, UCOL_LESS, UCOL_LESS, UCOL_EQUAL, UCOL_EQUAL, UCOL_LESS },
{ UCOL_GREATER, UCOL_LESS, UCOL_LESS, UCOL_EQUAL, UCOL_LESS, UCOL_LESS, UCOL_EQUAL, UCOL_EQUAL, UCOL_GREATER },
{ UCOL_LESS, UCOL_LESS, UCOL_LESS, UCOL_EQUAL, UCOL_GREATER, UCOL_LESS, UCOL_EQUAL, UCOL_EQUAL, UCOL_LESS },
{ UCOL_GREATER, UCOL_LESS, UCOL_GREATER, UCOL_EQUAL, UCOL_LESS, UCOL_LESS, UCOL_EQUAL, UCOL_EQUAL, UCOL_GREATER }
};
const static UColAttributeValue caseTestAttributes[][2] =
{
{ UCOL_LOWER_FIRST, UCOL_OFF},
{ UCOL_UPPER_FIRST, UCOL_OFF},
{ UCOL_LOWER_FIRST, UCOL_ON},
{ UCOL_UPPER_FIRST, UCOL_ON}
};
int32_t i,j,k;
UErrorCode status = U_ZERO_ERROR;
UCollationElements *iter;
UCollator *myCollation;
myCollation = ucol_open("en_US", &status);
if(U_FAILURE(status)){
log_err_status(status, "ERROR: in creation of rule based collator: %s\n", myErrorName(status));
return;
}
log_verbose("Testing different case settings\n");
ucol_setStrength(myCollation, UCOL_TERTIARY);
for(k = 0; k<4; k++) {
ucol_setAttribute(myCollation, UCOL_CASE_FIRST, caseTestAttributes[k][0], &status);
ucol_setAttribute(myCollation, UCOL_CASE_LEVEL, caseTestAttributes[k][1], &status);
log_verbose("Case first = %d, Case level = %d\n", caseTestAttributes[k][0], caseTestAttributes[k][1]);
for (i = 0; i < 3 ; i++) {
for(j = i+1; j<4; j++) {
doTest(myCollation, testCase[i], testCase[j], caseTestResults[k][3*i+j-1]);
}
}
}
ucol_close(myCollation);
myCollation = ucol_openRules(gRules, u_strlen(gRules), UCOL_OFF, UCOL_TERTIARY,NULL, &status);
if(U_FAILURE(status)){
log_err("ERROR: in creation of rule based collator: %s\n", myErrorName(status));
return;
}
log_verbose("Testing different case settings with custom rules\n");
ucol_setStrength(myCollation, UCOL_TERTIARY);
for(k = 0; k<4; k++) {
ucol_setAttribute(myCollation, UCOL_CASE_FIRST, caseTestAttributes[k][0], &status);
ucol_setAttribute(myCollation, UCOL_CASE_LEVEL, caseTestAttributes[k][1], &status);
for (i = 0; i < 3 ; i++) {
for(j = i+1; j<4; j++) {
log_verbose("k:%d, i:%d, j:%d\n", k, i, j);
doTest(myCollation, testCase[i], testCase[j], caseTestResults[k][3*i+j-1]);
iter=ucol_openElements(myCollation, testCase[i], u_strlen(testCase[i]), &status);
backAndForth(iter);
ucol_closeElements(iter);
iter=ucol_openElements(myCollation, testCase[j], u_strlen(testCase[j]), &status);
backAndForth(iter);
ucol_closeElements(iter);
}
}
}
ucol_close(myCollation);
{
const static char *lowerFirst[] = {
"h",
"H",
"ch",
"Ch",
"CH",
"cha",
"chA",
"Cha",
"ChA",
"CHa",
"CHA",
"i",
"I"
};
const static char *upperFirst[] = {
"H",
"h",
"CH",
"Ch",
"ch",
"CHA",
"CHa",
"ChA",
"Cha",
"chA",
"cha",
"I",
"i"
};
log_verbose("mixed case test\n");
log_verbose("lower first, case level off\n");
genericRulesStarter("[casefirst lower]&H<ch<<<Ch<<<CH", lowerFirst, sizeof(lowerFirst)/sizeof(lowerFirst[0]));
log_verbose("upper first, case level off\n");
genericRulesStarter("[casefirst upper]&H<ch<<<Ch<<<CH", upperFirst, sizeof(upperFirst)/sizeof(upperFirst[0]));
log_verbose("lower first, case level on\n");
genericRulesStarter("[casefirst lower][caselevel on]&H<ch<<<Ch<<<CH", lowerFirst, sizeof(lowerFirst)/sizeof(lowerFirst[0]));
log_verbose("upper first, case level on\n");
genericRulesStarter("[casefirst upper][caselevel on]&H<ch<<<Ch<<<CH", upperFirst, sizeof(upperFirst)/sizeof(upperFirst[0]));
}
}
static void TestIncrementalNormalize(void) {
/*UChar baseA =0x61;*/
UChar baseA =0x41;
/* UChar baseB = 0x42;*/
static const UChar ccMix[] = {0x316, 0x321, 0x300};
/*UChar ccMix[] = {0x61, 0x61, 0x61};*/
/*
0x316 is combining grave accent below, cc=220
0x321 is combining palatalized hook below, cc=202
0x300 is combining grave accent, cc=230
*/
#define MAXSLEN 2000
/*int maxSLen = 64000;*/
int sLen;
int i;
UCollator *coll;
UErrorCode status = U_ZERO_ERROR;
UCollationResult result;
int32_t myQ = QUICK;
if(QUICK < 0) {
QUICK = 1;
}
{
/* Test 1. Run very long unnormalized strings, to force overflow of*/
/* most buffers along the way.*/
UChar strA[MAXSLEN+1];
UChar strB[MAXSLEN+1];
coll = ucol_open("en_US", &status);
if(status == U_FILE_ACCESS_ERROR) {
log_data_err("Is your data around?\n");
return;
} else if(U_FAILURE(status)) {
log_err("Error opening collator\n");
return;
}
ucol_setAttribute(coll, UCOL_NORMALIZATION_MODE, UCOL_ON, &status);
/*for (sLen = 257; sLen<MAXSLEN; sLen++) {*/
/*for (sLen = 4; sLen<MAXSLEN; sLen++) {*/
/*for (sLen = 1000; sLen<1001; sLen++) {*/
for (sLen = 500; sLen<501; sLen++) {
/*for (sLen = 40000; sLen<65000; sLen+=1000) {*/
strA[0] = baseA;
strB[0] = baseA;
for (i=1; i<=sLen-1; i++) {
strA[i] = ccMix[i % 3];
strB[sLen-i] = ccMix[i % 3];
}
strA[sLen] = 0;
strB[sLen] = 0;
ucol_setStrength(coll, UCOL_TERTIARY); /* Do test with default strength, which runs*/
doTest(coll, strA, strB, UCOL_EQUAL); /* optimized functions in the impl*/
ucol_setStrength(coll, UCOL_IDENTICAL); /* Do again with the slow, general impl.*/
doTest(coll, strA, strB, UCOL_EQUAL);
}
}
QUICK = myQ;
/* Test 2: Non-normal sequence in a string that extends to the last character*/
/* of the string. Checks a couple of edge cases.*/
{
static const UChar strA[] = {0x41, 0x41, 0x300, 0x316, 0};
static const UChar strB[] = {0x41, 0xc0, 0x316, 0};
ucol_setStrength(coll, UCOL_TERTIARY);
doTest(coll, strA, strB, UCOL_EQUAL);
}
/* Test 3: Non-normal sequence is terminated by a surrogate pair.*/
{
/* New UCA 3.1.1.
* test below used a code point from Desseret, which sorts differently
* than d800 dc00
*/
/*UChar strA[] = {0x41, 0x41, 0x300, 0x316, 0xD801, 0xDC00, 0};*/
static const UChar strA[] = {0x41, 0x41, 0x300, 0x316, 0xD800, 0xDC01, 0};
static const UChar strB[] = {0x41, 0xc0, 0x316, 0xD800, 0xDC00, 0};
ucol_setStrength(coll, UCOL_TERTIARY);
doTest(coll, strA, strB, UCOL_GREATER);
}
/* Test 4: Imbedded nulls do not terminate a string when length is specified.*/
{
static const UChar strA[] = {0x41, 0x00, 0x42, 0x00};
static const UChar strB[] = {0x41, 0x00, 0x00, 0x00};
char sortKeyA[50];
char sortKeyAz[50];
char sortKeyB[50];
char sortKeyBz[50];
int r;
/* there used to be -3 here. Hmmmm.... */
/*result = ucol_strcoll(coll, strA, -3, strB, -3);*/
result = ucol_strcoll(coll, strA, 3, strB, 3);
if (result != UCOL_GREATER) {
log_err("ERROR 1 in test 4\n");
}
result = ucol_strcoll(coll, strA, -1, strB, -1);
if (result != UCOL_EQUAL) {
log_err("ERROR 2 in test 4\n");
}
ucol_getSortKey(coll, strA, 3, (uint8_t *)sortKeyA, sizeof(sortKeyA));
ucol_getSortKey(coll, strA, -1, (uint8_t *)sortKeyAz, sizeof(sortKeyAz));
ucol_getSortKey(coll, strB, 3, (uint8_t *)sortKeyB, sizeof(sortKeyB));
ucol_getSortKey(coll, strB, -1, (uint8_t *)sortKeyBz, sizeof(sortKeyBz));
r = strcmp(sortKeyA, sortKeyAz);
if (r <= 0) {
log_err("Error 3 in test 4\n");
}
r = strcmp(sortKeyA, sortKeyB);
if (r <= 0) {
log_err("Error 4 in test 4\n");
}
r = strcmp(sortKeyAz, sortKeyBz);
if (r != 0) {
log_err("Error 5 in test 4\n");
}
ucol_setStrength(coll, UCOL_IDENTICAL);
ucol_getSortKey(coll, strA, 3, (uint8_t *)sortKeyA, sizeof(sortKeyA));
ucol_getSortKey(coll, strA, -1, (uint8_t *)sortKeyAz, sizeof(sortKeyAz));
ucol_getSortKey(coll, strB, 3, (uint8_t *)sortKeyB, sizeof(sortKeyB));
ucol_getSortKey(coll, strB, -1, (uint8_t *)sortKeyBz, sizeof(sortKeyBz));
r = strcmp(sortKeyA, sortKeyAz);
if (r <= 0) {
log_err("Error 6 in test 4\n");
}
r = strcmp(sortKeyA, sortKeyB);
if (r <= 0) {
log_err("Error 7 in test 4\n");
}
r = strcmp(sortKeyAz, sortKeyBz);
if (r != 0) {
log_err("Error 8 in test 4\n");
}
ucol_setStrength(coll, UCOL_TERTIARY);
}
/* Test 5: Null characters in non-normal source strings.*/
{
static const UChar strA[] = {0x41, 0x41, 0x300, 0x316, 0x00, 0x42, 0x00};
static const UChar strB[] = {0x41, 0x41, 0x300, 0x316, 0x00, 0x00, 0x00};
char sortKeyA[50];
char sortKeyAz[50];
char sortKeyB[50];
char sortKeyBz[50];
int r;
result = ucol_strcoll(coll, strA, 6, strB, 6);
if (result != UCOL_GREATER) {
log_err("ERROR 1 in test 5\n");
}
result = ucol_strcoll(coll, strA, -1, strB, -1);
if (result != UCOL_EQUAL) {
log_err("ERROR 2 in test 5\n");
}
ucol_getSortKey(coll, strA, 6, (uint8_t *)sortKeyA, sizeof(sortKeyA));
ucol_getSortKey(coll, strA, -1, (uint8_t *)sortKeyAz, sizeof(sortKeyAz));
ucol_getSortKey(coll, strB, 6, (uint8_t *)sortKeyB, sizeof(sortKeyB));
ucol_getSortKey(coll, strB, -1, (uint8_t *)sortKeyBz, sizeof(sortKeyBz));
r = strcmp(sortKeyA, sortKeyAz);
if (r <= 0) {
log_err("Error 3 in test 5\n");
}
r = strcmp(sortKeyA, sortKeyB);
if (r <= 0) {
log_err("Error 4 in test 5\n");
}
r = strcmp(sortKeyAz, sortKeyBz);
if (r != 0) {
log_err("Error 5 in test 5\n");
}
ucol_setStrength(coll, UCOL_IDENTICAL);
ucol_getSortKey(coll, strA, 6, (uint8_t *)sortKeyA, sizeof(sortKeyA));
ucol_getSortKey(coll, strA, -1, (uint8_t *)sortKeyAz, sizeof(sortKeyAz));
ucol_getSortKey(coll, strB, 6, (uint8_t *)sortKeyB, sizeof(sortKeyB));
ucol_getSortKey(coll, strB, -1, (uint8_t *)sortKeyBz, sizeof(sortKeyBz));
r = strcmp(sortKeyA, sortKeyAz);
if (r <= 0) {
log_err("Error 6 in test 5\n");
}
r = strcmp(sortKeyA, sortKeyB);
if (r <= 0) {
log_err("Error 7 in test 5\n");
}
r = strcmp(sortKeyAz, sortKeyBz);
if (r != 0) {
log_err("Error 8 in test 5\n");
}
ucol_setStrength(coll, UCOL_TERTIARY);
}
/* Test 6: Null character as base of a non-normal combining sequence.*/
{
static const UChar strA[] = {0x41, 0x0, 0x300, 0x316, 0x41, 0x302, 0x00};
static const UChar strB[] = {0x41, 0x0, 0x302, 0x316, 0x41, 0x300, 0x00};
result = ucol_strcoll(coll, strA, 5, strB, 5);
if (result != UCOL_LESS) {
log_err("Error 1 in test 6\n");
}
result = ucol_strcoll(coll, strA, -1, strB, -1);
if (result != UCOL_EQUAL) {
log_err("Error 2 in test 6\n");
}
}
ucol_close(coll);
}
#if 0
static void TestGetCaseBit(void) {
static const char *caseBitData[] = {
"a", "A", "ch", "Ch", "CH",
"\\uFF9E", "\\u0009"
};
static const uint8_t results[] = {
UCOL_LOWER_CASE, UCOL_UPPER_CASE, UCOL_LOWER_CASE, UCOL_MIXED_CASE, UCOL_UPPER_CASE,
UCOL_UPPER_CASE, UCOL_LOWER_CASE
};
uint32_t i, blen = 0;
UChar b[256] = {0};
UErrorCode status = U_ZERO_ERROR;
UCollator *UCA = ucol_open("", &status);
uint8_t res = 0;
for(i = 0; i<sizeof(results)/sizeof(results[0]); i++) {
blen = u_unescape(caseBitData[i], b, 256);
res = ucol_uprv_getCaseBits(UCA, b, blen, &status);
if(results[i] != res) {
log_err("Expected case = %02X, got %02X for %04X\n", results[i], res, b[0]);
}
}
}
#endif
static void TestHangulTailoring(void) {
static const char *koreanData[] = {
"\\uac00", "\\u4f3d", "\\u4f73", "\\u5047", "\\u50f9", "\\u52a0", "\\u53ef", "\\u5475",
"\\u54e5", "\\u5609", "\\u5ac1", "\\u5bb6", "\\u6687", "\\u67b6", "\\u67b7", "\\u67ef",
"\\u6b4c", "\\u73c2", "\\u75c2", "\\u7a3c", "\\u82db", "\\u8304", "\\u8857", "\\u8888",
"\\u8a36", "\\u8cc8", "\\u8dcf", "\\u8efb", "\\u8fe6", "\\u99d5",
"\\u4EEE", "\\u50A2", "\\u5496", "\\u54FF", "\\u5777", "\\u5B8A", "\\u659D", "\\u698E",
"\\u6A9F", "\\u73C8", "\\u7B33", "\\u801E", "\\u8238", "\\u846D", "\\u8B0C"
};
const char *rules =
"&\\uac00 <<< \\u4f3d <<< \\u4f73 <<< \\u5047 <<< \\u50f9 <<< \\u52a0 <<< \\u53ef <<< \\u5475 "
"<<< \\u54e5 <<< \\u5609 <<< \\u5ac1 <<< \\u5bb6 <<< \\u6687 <<< \\u67b6 <<< \\u67b7 <<< \\u67ef "
"<<< \\u6b4c <<< \\u73c2 <<< \\u75c2 <<< \\u7a3c <<< \\u82db <<< \\u8304 <<< \\u8857 <<< \\u8888 "
"<<< \\u8a36 <<< \\u8cc8 <<< \\u8dcf <<< \\u8efb <<< \\u8fe6 <<< \\u99d5 "
"<<< \\u4EEE <<< \\u50A2 <<< \\u5496 <<< \\u54FF <<< \\u5777 <<< \\u5B8A <<< \\u659D <<< \\u698E "
"<<< \\u6A9F <<< \\u73C8 <<< \\u7B33 <<< \\u801E <<< \\u8238 <<< \\u846D <<< \\u8B0C";
UErrorCode status = U_ZERO_ERROR;
UChar rlz[2048] = { 0 };
uint32_t rlen = u_unescape(rules, rlz, 2048);
UCollator *coll = ucol_openRules(rlz, rlen, UCOL_DEFAULT, UCOL_DEFAULT,NULL, &status);
if(status == U_FILE_ACCESS_ERROR) {
log_data_err("Is your data around?\n");
return;
} else if(U_FAILURE(status)) {
log_err("Error opening collator\n");
return;
}
log_verbose("Using start of korean rules\n");
if(U_SUCCESS(status)) {
genericOrderingTest(coll, koreanData, sizeof(koreanData)/sizeof(koreanData[0]));
} else {
log_err("Unable to open collator with rules %s\n", rules);
}
log_verbose("Setting jamoSpecial to TRUE and testing once more\n");
((UCATableHeader *)coll->image)->jamoSpecial = TRUE; /* don't try this at home */
genericOrderingTest(coll, koreanData, sizeof(koreanData)/sizeof(koreanData[0]));
ucol_close(coll);
log_verbose("Using ko__LOTUS locale\n");
genericLocaleStarter("ko__LOTUS", koreanData, sizeof(koreanData)/sizeof(koreanData[0]));
}
static void TestCompressOverlap(void) {
UChar secstr[150];
UChar tertstr[150];
UErrorCode status = U_ZERO_ERROR;
UCollator *coll;
char result[200];
uint32_t resultlen;
int count = 0;
char *tempptr;
coll = ucol_open("", &status);
if (U_FAILURE(status)) {
log_err_status(status, "Collator can't be created -> %s\n", u_errorName(status));
return;
}
while (count < 149) {
secstr[count] = 0x0020; /* [06, 05, 05] */
tertstr[count] = 0x0020;
count ++;
}
/* top down compression ----------------------------------- */
secstr[count] = 0x0332; /* [, 87, 05] */
tertstr[count] = 0x3000; /* [06, 05, 07] */
/* no compression secstr should have 150 secondary bytes, tertstr should
have 150 tertiary bytes.
with correct overlapping compression, secstr should have 4 secondary
bytes, tertstr should have > 2 tertiary bytes */
resultlen = ucol_getSortKey(coll, secstr, 150, (uint8_t *)result, 250);
tempptr = uprv_strchr(result, 1) + 1;
while (*(tempptr + 1) != 1) {
/* the last secondary collation element is not checked since it is not
part of the compression */
if (*tempptr < UCOL_COMMON_TOP2 - UCOL_TOP_COUNT2) {
log_err("Secondary compression overlapped\n");
}
tempptr ++;
}
/* tertiary top/bottom/common for en_US is similar to the secondary
top/bottom/common */
resultlen = ucol_getSortKey(coll, tertstr, 150, (uint8_t *)result, 250);
tempptr = uprv_strrchr(result, 1) + 1;
while (*(tempptr + 1) != 0) {
/* the last secondary collation element is not checked since it is not
part of the compression */
if (*tempptr < coll->tertiaryTop - coll->tertiaryTopCount) {
log_err("Tertiary compression overlapped\n");
}
tempptr ++;
}
/* bottom up compression ------------------------------------- */
secstr[count] = 0;
tertstr[count] = 0;
resultlen = ucol_getSortKey(coll, secstr, 150, (uint8_t *)result, 250);
tempptr = uprv_strchr(result, 1) + 1;
while (*(tempptr + 1) != 1) {
/* the last secondary collation element is not checked since it is not
part of the compression */
if (*tempptr > UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2) {
log_err("Secondary compression overlapped\n");
}
tempptr ++;
}
/* tertiary top/bottom/common for en_US is similar to the secondary
top/bottom/common */
resultlen = ucol_getSortKey(coll, tertstr, 150, (uint8_t *)result, 250);
tempptr = uprv_strrchr(result, 1) + 1;
while (*(tempptr + 1) != 0) {
/* the last secondary collation element is not checked since it is not
part of the compression */
if (*tempptr > coll->tertiaryBottom + coll->tertiaryBottomCount) {
log_err("Tertiary compression overlapped\n");
}
tempptr ++;
}
ucol_close(coll);
}
static void TestCyrillicTailoring(void) {
static const char *test[] = {
"\\u0410b",
"\\u0410\\u0306a",
"\\u04d0A"
};
/* Russian overrides contractions, so this test is not valid anymore */
/*genericLocaleStarter("ru", test, 3);*/
genericLocaleStarter("root", test, 3);
genericRulesStarter("&\\u0410 = \\u0410", test, 3);
genericRulesStarter("&Z < \\u0410", test, 3);
genericRulesStarter("&\\u0410 = \\u0410 < \\u04d0", test, 3);
genericRulesStarter("&Z < \\u0410 < \\u04d0", test, 3);
genericRulesStarter("&\\u0410 = \\u0410 < \\u0410\\u0301", test, 3);
genericRulesStarter("&Z < \\u0410 < \\u0410\\u0301", test, 3);
}
static void TestSuppressContractions(void) {
static const char *testNoCont2[] = {
"\\u0410\\u0302a",
"\\u0410\\u0306b",
"\\u0410c"
};
static const char *testNoCont[] = {
"a\\u0410",
"A\\u0410\\u0306",
"\\uFF21\\u0410\\u0302"
};
genericRulesStarter("[suppressContractions [\\u0400-\\u047f]]", testNoCont, 3);
genericRulesStarter("[suppressContractions [\\u0400-\\u047f]]", testNoCont2, 3);
}
static void TestContraction(void) {
const static char *testrules[] = {
"&A = AB / B",
"&A = A\\u0306/\\u0306",
"&c = ch / h"
};
const static UChar testdata[][2] = {
{0x0041 /* 'A' */, 0x0042 /* 'B' */},
{0x0041 /* 'A' */, 0x0306 /* combining breve */},
{0x0063 /* 'c' */, 0x0068 /* 'h' */}
};
const static UChar testdata2[][2] = {
{0x0063 /* 'c' */, 0x0067 /* 'g' */},
{0x0063 /* 'c' */, 0x0068 /* 'h' */},
{0x0063 /* 'c' */, 0x006C /* 'l' */}
};
const static char *testrules3[] = {
"&z < xyz &xyzw << B",
"&z < xyz &xyz << B / w",
"&z < ch &achm << B",
"&z < ch &a << B / chm",
"&\\ud800\\udc00w << B",
"&\\ud800\\udc00 << B / w",
"&a\\ud800\\udc00m << B",
"&a << B / \\ud800\\udc00m",
};
UErrorCode status = U_ZERO_ERROR;
UCollator *coll;
UChar rule[256] = {0};
uint32_t rlen = 0;
int i;
for (i = 0; i < sizeof(testrules) / sizeof(testrules[0]); i ++) {
UCollationElements *iter1;
int j = 0;
log_verbose("Rule %s for testing\n", testrules[i]);
rlen = u_unescape(testrules[i], rule, 32);
coll = ucol_openRules(rule, rlen, UCOL_ON, UCOL_TERTIARY,NULL, &status);
if (U_FAILURE(status)) {
log_err_status(status, "Collator creation failed %s -> %s\n", testrules[i], u_errorName(status));
return;
}
iter1 = ucol_openElements(coll, testdata[i], 2, &status);
if (U_FAILURE(status)) {
log_err("Collation iterator creation failed\n");
return;
}
while (j < 2) {
UCollationElements *iter2 = ucol_openElements(coll,
&(testdata[i][j]),
1, &status);
uint32_t ce;
if (U_FAILURE(status)) {
log_err("Collation iterator creation failed\n");
return;
}
ce = ucol_next(iter2, &status);
while (ce != UCOL_NULLORDER) {
if ((uint32_t)ucol_next(iter1, &status) != ce) {
log_err("Collation elements in contraction split does not match\n");
return;
}
ce = ucol_next(iter2, &status);
}
j ++;
ucol_closeElements(iter2);
}
if (ucol_next(iter1, &status) != UCOL_NULLORDER) {
log_err("Collation elements not exhausted\n");
return;
}
ucol_closeElements(iter1);
ucol_close(coll);
}
rlen = u_unescape("& a < b < c < ch < d & c = ch / h", rule, 256);
coll = ucol_openRules(rule, rlen, UCOL_ON, UCOL_TERTIARY,NULL, &status);
if (ucol_strcoll(coll, testdata2[0], 2, testdata2[1], 2) != UCOL_LESS) {
log_err("Expected \\u%04x\\u%04x < \\u%04x\\u%04x\n",
testdata2[0][0], testdata2[0][1], testdata2[1][0],
testdata2[1][1]);
return;
}
if (ucol_strcoll(coll, testdata2[1], 2, testdata2[2], 2) != UCOL_LESS) {
log_err("Expected \\u%04x\\u%04x < \\u%04x\\u%04x\n",
testdata2[1][0], testdata2[1][1], testdata2[2][0],
testdata2[2][1]);
return;
}
ucol_close(coll);
for (i = 0; i < sizeof(testrules3) / sizeof(testrules3[0]); i += 2) {
UCollator *coll1,
*coll2;
UCollationElements *iter1,
*iter2;
UChar ch = 0x0042 /* 'B' */;
uint32_t ce;
rlen = u_unescape(testrules3[i], rule, 32);
coll1 = ucol_openRules(rule, rlen, UCOL_ON, UCOL_TERTIARY,NULL, &status);
rlen = u_unescape(testrules3[i + 1], rule, 32);
coll2 = ucol_openRules(rule, rlen, UCOL_ON, UCOL_TERTIARY,NULL, &status);
if (U_FAILURE(status)) {
log_err("Collator creation failed %s\n", testrules[i]);
return;
}
iter1 = ucol_openElements(coll1, &ch, 1, &status);
iter2 = ucol_openElements(coll2, &ch, 1, &status);
if (U_FAILURE(status)) {
log_err("Collation iterator creation failed\n");
return;
}
ce = ucol_next(iter1, &status);
if (U_FAILURE(status)) {
log_err("Retrieving ces failed\n");
return;
}
while (ce != UCOL_NULLORDER) {
if (ce != (uint32_t)ucol_next(iter2, &status)) {
log_err("CEs does not match\n");
return;
}
ce = ucol_next(iter1, &status);
if (U_FAILURE(status)) {
log_err("Retrieving ces failed\n");
return;
}
}
if (ucol_next(iter2, &status) != UCOL_NULLORDER) {
log_err("CEs not exhausted\n");
return;
}
ucol_closeElements(iter1);
ucol_closeElements(iter2);
ucol_close(coll1);
ucol_close(coll2);
}
}
static void TestExpansion(void) {
const static char *testrules[] = {
"&J << K / B & K << M",
"&J << K / B << M"
};
const static UChar testdata[][3] = {
{0x004A /*'J'*/, 0x0041 /*'A'*/, 0},
{0x004D /*'M'*/, 0x0041 /*'A'*/, 0},
{0x004B /*'K'*/, 0x0041 /*'A'*/, 0},
{0x004B /*'K'*/, 0x0043 /*'C'*/, 0},
{0x004A /*'J'*/, 0x0043 /*'C'*/, 0},
{0x004D /*'M'*/, 0x0043 /*'C'*/, 0}
};
UErrorCode status = U_ZERO_ERROR;
UCollator *coll;
UChar rule[256] = {0};
uint32_t rlen = 0;
int i;
for (i = 0; i < sizeof(testrules) / sizeof(testrules[0]); i ++) {
int j = 0;
log_verbose("Rule %s for testing\n", testrules[i]);
rlen = u_unescape(testrules[i], rule, 32);
coll = ucol_openRules(rule, rlen, UCOL_ON, UCOL_TERTIARY,NULL, &status);
if (U_FAILURE(status)) {
log_err_status(status, "Collator creation failed %s -> %s\n", testrules[i], u_errorName(status));
return;
}
for (j = 0; j < 5; j ++) {
doTest(coll, testdata[j], testdata[j + 1], UCOL_LESS);
}
ucol_close(coll);
}
}
#if 0
/* this test tests the current limitations of the engine */
/* it always fail, so it is disabled by default */
static void TestLimitations(void) {
/* recursive expansions */
{
static const char *rule = "&a=b/c&d=c/e";
static const char *tlimit01[] = {"add","b","adf"};
static const char *tlimit02[] = {"aa","b","af"};
log_verbose("recursive expansions\n");
genericRulesStarter(rule, tlimit01, sizeof(tlimit01)/sizeof(tlimit01[0]));
genericRulesStarter(rule, tlimit02, sizeof(tlimit02)/sizeof(tlimit02[0]));
}
/* contractions spanning expansions */
{
static const char *rule = "&a<<<c/e&g<<<eh";
static const char *tlimit01[] = {"ad","c","af","f","ch","h"};
static const char *tlimit02[] = {"ad","c","ch","af","f","h"};
log_verbose("contractions spanning expansions\n");
genericRulesStarter(rule, tlimit01, sizeof(tlimit01)/sizeof(tlimit01[0]));
genericRulesStarter(rule, tlimit02, sizeof(tlimit02)/sizeof(tlimit02[0]));
}
/* normalization: nulls in contractions */
{
static const char *rule = "&a<<<\\u0000\\u0302";
static const char *tlimit01[] = {"a","\\u0000\\u0302\\u0327"};
static const char *tlimit02[] = {"\\u0000\\u0302\\u0327","a"};
static const UColAttribute att[] = { UCOL_DECOMPOSITION_MODE };
static const UColAttributeValue valOn[] = { UCOL_ON };
static const UColAttributeValue valOff[] = { UCOL_OFF };
log_verbose("NULL in contractions\n");
genericRulesStarterWithOptions(rule, tlimit01, 2, att, valOn, 1);
genericRulesStarterWithOptions(rule, tlimit02, 2, att, valOn, 1);
genericRulesStarterWithOptions(rule, tlimit01, 2, att, valOff, 1);
genericRulesStarterWithOptions(rule, tlimit02, 2, att, valOff, 1);
}
/* normalization: contractions spanning normalization */
{
static const char *rule = "&a<<<\\u0000\\u0302";
static const char *tlimit01[] = {"a","\\u0000\\u0302\\u0327"};
static const char *tlimit02[] = {"\\u0000\\u0302\\u0327","a"};
static const UColAttribute att[] = { UCOL_DECOMPOSITION_MODE };
static const UColAttributeValue valOn[] = { UCOL_ON };
static const UColAttributeValue valOff[] = { UCOL_OFF };
log_verbose("contractions spanning normalization\n");
genericRulesStarterWithOptions(rule, tlimit01, 2, att, valOn, 1);
genericRulesStarterWithOptions(rule, tlimit02, 2, att, valOn, 1);
genericRulesStarterWithOptions(rule, tlimit01, 2, att, valOff, 1);
genericRulesStarterWithOptions(rule, tlimit02, 2, att, valOff, 1);
}
/* variable top: */
{
/*static const char *rule2 = "&\\u2010<x=[variable top]<z";*/
static const char *rule = "&\\u2010<x<[variable top]=z";
/*static const char *rule3 = "&' '<x<[variable top]=z";*/
static const char *tlimit01[] = {" ", "z", "zb", "a", " b", "xb", "b", "c" };
static const char *tlimit02[] = {"-", "-x", "x","xb", "-z", "z", "zb", "-a", "a", "-b", "b", "c"};
static const char *tlimit03[] = {" ", "xb", "z", "zb", "a", " b", "b", "c" };
static const UColAttribute att[] = { UCOL_ALTERNATE_HANDLING, UCOL_STRENGTH };
static const UColAttributeValue valOn[] = { UCOL_SHIFTED, UCOL_QUATERNARY };
static const UColAttributeValue valOff[] = { UCOL_NON_IGNORABLE, UCOL_TERTIARY };
log_verbose("variable top\n");
genericRulesStarterWithOptions(rule, tlimit03, sizeof(tlimit03)/sizeof(tlimit03[0]), att, valOn, sizeof(att)/sizeof(att[0]));
genericRulesStarterWithOptions(rule, tlimit01, sizeof(tlimit01)/sizeof(tlimit01[0]), att, valOn, sizeof(att)/sizeof(att[0]));
genericRulesStarterWithOptions(rule, tlimit02, sizeof(tlimit02)/sizeof(tlimit02[0]), att, valOn, sizeof(att)/sizeof(att[0]));
genericRulesStarterWithOptions(rule, tlimit01, sizeof(tlimit01)/sizeof(tlimit01[0]), att, valOff, sizeof(att)/sizeof(att[0]));
genericRulesStarterWithOptions(rule, tlimit02, sizeof(tlimit02)/sizeof(tlimit02[0]), att, valOff, sizeof(att)/sizeof(att[0]));
}
/* case level */
{
static const char *rule = "&c<ch<<<cH<<<Ch<<<CH";
static const char *tlimit01[] = {"c","CH","Ch","cH","ch"};
static const char *tlimit02[] = {"c","CH","cH","Ch","ch"};
static const UColAttribute att[] = { UCOL_CASE_FIRST};
static const UColAttributeValue valOn[] = { UCOL_UPPER_FIRST};
/*static const UColAttributeValue valOff[] = { UCOL_OFF};*/
log_verbose("case level\n");
genericRulesStarterWithOptions(rule, tlimit01, sizeof(tlimit01)/sizeof(tlimit01[0]), att, valOn, sizeof(att)/sizeof(att[0]));
genericRulesStarterWithOptions(rule, tlimit02, sizeof(tlimit02)/sizeof(tlimit02[0]), att, valOn, sizeof(att)/sizeof(att[0]));
/*genericRulesStarterWithOptions(rule, tlimit01, sizeof(tlimit01)/sizeof(tlimit01[0]), att, valOff, sizeof(att)/sizeof(att[0]));*/
/*genericRulesStarterWithOptions(rule, tlimit02, sizeof(tlimit02)/sizeof(tlimit02[0]), att, valOff, sizeof(att)/sizeof(att[0]));*/
}
}
#endif
static void TestBocsuCoverage(void) {
UErrorCode status = U_ZERO_ERROR;
const char *testString = "\\u0041\\u0441\\u4441\\U00044441\\u4441\\u0441\\u0041";
UChar test[256] = {0};
uint32_t tlen = u_unescape(testString, test, 32);
uint8_t key[256] = {0};
uint32_t klen = 0;
UCollator *coll = ucol_open("", &status);
if(U_SUCCESS(status)) {
ucol_setAttribute(coll, UCOL_STRENGTH, UCOL_IDENTICAL, &status);
klen = ucol_getSortKey(coll, test, tlen, key, 256);
ucol_close(coll);
} else {
log_data_err("Couldn't open UCA\n");
}
}
static void TestVariableTopSetting(void) {
UErrorCode status = U_ZERO_ERROR;
const UChar *current = NULL;
uint32_t varTopOriginal = 0, varTop1, varTop2;
UCollator *coll = ucol_open("", &status);
if(U_SUCCESS(status)) {
uint32_t strength = 0;
uint16_t specs = 0;
uint32_t chOffset = 0;
uint32_t chLen = 0;
uint32_t exOffset = 0;
uint32_t exLen = 0;
uint32_t oldChOffset = 0;
uint32_t oldChLen = 0;
uint32_t oldExOffset = 0;
uint32_t oldExLen = 0;
uint32_t prefixOffset = 0;
uint32_t prefixLen = 0;
UBool startOfRules = TRUE;
UColTokenParser src;
UColOptionSet opts;
UChar *rulesCopy = NULL;
uint32_t rulesLen;
UCollationResult result;
UChar first[256] = { 0 };
UChar second[256] = { 0 };
UParseError parseError;
int32_t myQ = QUICK;
src.opts = &opts;
if(QUICK <= 0) {
QUICK = 1;
}
/* this test will fail when normalization is turned on */
/* therefore we always turn off exhaustive mode for it */
{ /* QUICK > 0*/
log_verbose("Slide variable top over UCARules\n");
rulesLen = ucol_getRulesEx(coll, UCOL_FULL_RULES, rulesCopy, 0);
rulesCopy = (UChar *)malloc((rulesLen+UCOL_TOK_EXTRA_RULE_SPACE_SIZE)*sizeof(UChar));
rulesLen = ucol_getRulesEx(coll, UCOL_FULL_RULES, rulesCopy, rulesLen+UCOL_TOK_EXTRA_RULE_SPACE_SIZE);
if(U_SUCCESS(status) && rulesLen > 0) {
ucol_setAttribute(coll, UCOL_ALTERNATE_HANDLING, UCOL_SHIFTED, &status);
src.current = src.source = rulesCopy;
src.end = rulesCopy+rulesLen;
src.extraCurrent = src.end;
src.extraEnd = src.end+UCOL_TOK_EXTRA_RULE_SPACE_SIZE;
while ((current = ucol_tok_parseNextToken(&src, startOfRules, &parseError,&status)) != NULL) {
strength = src.parsedToken.strength;
chOffset = src.parsedToken.charsOffset;
chLen = src.parsedToken.charsLen;
exOffset = src.parsedToken.extensionOffset;
exLen = src.parsedToken.extensionLen;
prefixOffset = src.parsedToken.prefixOffset;
prefixLen = src.parsedToken.prefixLen;
specs = src.parsedToken.flags;
startOfRules = FALSE;
{
log_verbose("%04X %d ", *(rulesCopy+chOffset), chLen);
}
if(strength == UCOL_PRIMARY) {
status = U_ZERO_ERROR;
varTopOriginal = ucol_getVariableTop(coll, &status);
varTop1 = ucol_setVariableTop(coll, rulesCopy+oldChOffset, oldChLen, &status);
if(U_FAILURE(status)) {
char buffer[256];
char *buf = buffer;
uint32_t i = 0, j;
uint32_t CE = UCOL_NO_MORE_CES;
/* before we start screaming, let's see if there is a problem with the rules */
UErrorCode collIterateStatus = U_ZERO_ERROR;
collIterate *s = uprv_new_collIterate(&collIterateStatus);
uprv_init_collIterate(coll, rulesCopy+oldChOffset, oldChLen, s, &collIterateStatus);
CE = ucol_getNextCE(coll, s, &status);
for(i = 0; i < oldChLen; i++) {
j = sprintf(buf, "%04X ", *(rulesCopy+oldChOffset+i));
buf += j;
}
if(status == U_PRIMARY_TOO_LONG_ERROR) {
log_verbose("= Expected failure for %s =", buffer);
} else {
if(uprv_collIterateAtEnd(s)) {
log_err("Unexpected failure setting variable top at offset %d. Error %s. Codepoints: %s\n",
oldChOffset, u_errorName(status), buffer);
} else {
log_verbose("There is a goofy contraction in UCA rules that does not appear in the fractional UCA. Codepoints: %s\n",
buffer);
}
}
uprv_delete_collIterate(s);
}
varTop2 = ucol_getVariableTop(coll, &status);
if((varTop1 & 0xFFFF0000) != (varTop2 & 0xFFFF0000)) {
log_err("cannot retrieve set varTop value!\n");
continue;
}
if((varTop1 & 0xFFFF0000) > 0 && oldExLen == 0) {
u_strncpy(first, rulesCopy+oldChOffset, oldChLen);
u_strncpy(first+oldChLen, rulesCopy+chOffset, chLen);
u_strncpy(first+oldChLen+chLen, rulesCopy+oldChOffset, oldChLen);
first[2*oldChLen+chLen] = 0;
if(oldExLen == 0) {
u_strncpy(second, rulesCopy+chOffset, chLen);
second[chLen] = 0;
} else { /* This is skipped momentarily, but should work once UCARules are fully UCA conformant */
u_strncpy(second, rulesCopy+oldExOffset, oldExLen);
u_strncpy(second+oldChLen, rulesCopy+chOffset, chLen);
u_strncpy(second+oldChLen+chLen, rulesCopy+oldExOffset, oldExLen);
second[2*oldExLen+chLen] = 0;
}
result = ucol_strcoll(coll, first, -1, second, -1);
if(result == UCOL_EQUAL) {
doTest(coll, first, second, UCOL_EQUAL);
} else {
log_verbose("Suspicious strcoll result for %04X and %04X\n", *(rulesCopy+oldChOffset), *(rulesCopy+chOffset));
}
}
}
if(strength != UCOL_TOK_RESET) {
oldChOffset = chOffset;
oldChLen = chLen;
oldExOffset = exOffset;
oldExLen = exLen;
}
}
status = U_ZERO_ERROR;
}
else {
log_err("Unexpected failure getting rules %s\n", u_errorName(status));
return;
}
if (U_FAILURE(status)) {
log_err("Error parsing rules %s\n", u_errorName(status));
return;
}
status = U_ZERO_ERROR;
}
QUICK = myQ;
log_verbose("Testing setting variable top to contractions\n");
{
/* uint32_t tailoredCE = UCOL_NOT_FOUND; */
/*UChar *conts = (UChar *)((uint8_t *)coll->image + coll->image->UCAConsts+sizeof(UCAConstants));*/
UChar *conts = (UChar *)((uint8_t *)coll->image + coll->image->contractionUCACombos);
while(*conts != 0) {
if((*(conts+2) == 0) || (*(conts+1)==0)) { /* contracts or pre-context contractions */
varTop1 = ucol_setVariableTop(coll, conts, -1, &status);
} else {
varTop1 = ucol_setVariableTop(coll, conts, 3, &status);
}
if(U_FAILURE(status)) {
log_err("Couldn't set variable top to a contraction %04X %04X %04X\n",
*conts, *(conts+1), *(conts+2));
status = U_ZERO_ERROR;
}
conts+=3;
}
status = U_ZERO_ERROR;
first[0] = 0x0040;
first[1] = 0x0050;
first[2] = 0x0000;
ucol_setVariableTop(coll, first, -1, &status);
if(U_SUCCESS(status)) {
log_err("Invalid contraction succeded in setting variable top!\n");
}
}
log_verbose("Test restoring variable top\n");
status = U_ZERO_ERROR;
ucol_restoreVariableTop(coll, varTopOriginal, &status);
if(varTopOriginal != ucol_getVariableTop(coll, &status)) {
log_err("Couldn't restore old variable top\n");
}
log_verbose("Testing calling with error set\n");
status = U_INTERNAL_PROGRAM_ERROR;
varTop1 = ucol_setVariableTop(coll, first, 1, &status);
varTop2 = ucol_getVariableTop(coll, &status);
ucol_restoreVariableTop(coll, varTop2, &status);
varTop1 = ucol_setVariableTop(NULL, first, 1, &status);
varTop2 = ucol_getVariableTop(NULL, &status);
ucol_restoreVariableTop(NULL, varTop2, &status);
if(status != U_INTERNAL_PROGRAM_ERROR) {
log_err("Bad reaction to passed error!\n");
}
free(rulesCopy);
ucol_close(coll);
} else {
log_data_err("Couldn't open UCA collator\n");
}
}
static void TestNonChars(void) {
static const char *test[] = {
"\\u0000",
"\\uFFFE", "\\uFFFF",
"\\U0001FFFE", "\\U0001FFFF",
"\\U0002FFFE", "\\U0002FFFF",
"\\U0003FFFE", "\\U0003FFFF",
"\\U0004FFFE", "\\U0004FFFF",
"\\U0005FFFE", "\\U0005FFFF",
"\\U0006FFFE", "\\U0006FFFF",
"\\U0007FFFE", "\\U0007FFFF",
"\\U0008FFFE", "\\U0008FFFF",
"\\U0009FFFE", "\\U0009FFFF",
"\\U000AFFFE", "\\U000AFFFF",
"\\U000BFFFE", "\\U000BFFFF",
"\\U000CFFFE", "\\U000CFFFF",
"\\U000DFFFE", "\\U000DFFFF",
"\\U000EFFFE", "\\U000EFFFF",
"\\U000FFFFE", "\\U000FFFFF",
"\\U0010FFFE", "\\U0010FFFF"
};
UErrorCode status = U_ZERO_ERROR;
UCollator *coll = ucol_open("en_US", &status);
log_verbose("Test non characters\n");
if(U_SUCCESS(status)) {
genericOrderingTestWithResult(coll, test, 35, UCOL_EQUAL);
} else {
log_err_status(status, "Unable to open collator\n");
}
ucol_close(coll);
}
static void TestExtremeCompression(void) {
static char *test[4];
int32_t j = 0, i = 0;
for(i = 0; i<4; i++) {
test[i] = (char *)malloc(2048*sizeof(char));
}
for(j = 20; j < 500; j++) {
for(i = 0; i<4; i++) {
uprv_memset(test[i], 'a', (j-1)*sizeof(char));
test[i][j-1] = (char)('a'+i);
test[i][j] = 0;
}
genericLocaleStarter("en_US", (const char **)test, 4);
}
for(i = 0; i<4; i++) {
free(test[i]);
}
}
#if 0
static void TestExtremeCompression(void) {
static char *test[4];
int32_t j = 0, i = 0;
UErrorCode status = U_ZERO_ERROR;
UCollator *coll = ucol_open("en_US", status);
for(i = 0; i<4; i++) {
test[i] = (char *)malloc(2048*sizeof(char));
}
for(j = 10; j < 2048; j++) {
for(i = 0; i<4; i++) {
uprv_memset(test[i], 'a', (j-2)*sizeof(char));
test[i][j-1] = (char)('a'+i);
test[i][j] = 0;
}
}
genericLocaleStarter("en_US", (const char **)test, 4);
for(j = 10; j < 2048; j++) {
for(i = 0; i<1; i++) {
uprv_memset(test[i], 'a', (j-1)*sizeof(char));
test[i][j] = 0;
}
}
for(i = 0; i<4; i++) {
free(test[i]);
}
}
#endif
static void TestSurrogates(void) {
static const char *test[] = {
"z","\\ud900\\udc25", "\\ud805\\udc50",
"\\ud800\\udc00y", "\\ud800\\udc00r",
"\\ud800\\udc00f", "\\ud800\\udc00",
"\\ud800\\udc00c", "\\ud800\\udc00b",
"\\ud800\\udc00fa", "\\ud800\\udc00fb",
"\\ud800\\udc00a",
"c", "b"
};
static const char *rule =
"&z < \\ud900\\udc25 < \\ud805\\udc50"
"< \\ud800\\udc00y < \\ud800\\udc00r"
"< \\ud800\\udc00f << \\ud800\\udc00"
"< \\ud800\\udc00fa << \\ud800\\udc00fb"
"< \\ud800\\udc00a < c < b" ;
genericRulesStarter(rule, test, 14);
}
/* This is a test for prefix implementation, used by JIS X 4061 collation rules */
static void TestPrefix(void) {
uint32_t i;
static const struct {
const char *rules;
const char *data[50];
const uint32_t len;
} tests[] = {
{ "&z <<< z|a",
{"zz", "za"}, 2 },
{ "&z <<< z| a",
{"zz", "za"}, 2 },
{ "[strength I]"
"&a=\\ud900\\udc25"
"&z<<<\\ud900\\udc25|a",
{"aa", "az", "\\ud900\\udc25z", "\\ud900\\udc25a", "zz"}, 4 },
};
for(i = 0; i<(sizeof(tests)/sizeof(tests[0])); i++) {
genericRulesStarter(tests[i].rules, tests[i].data, tests[i].len);
}
}
/* This test uses data suplied by Masashiko Maedera to test the implementation */
/* JIS X 4061 collation order implementation */
static void TestNewJapanese(void) {
static const char * const test1[] = {
"\\u30b7\\u30e3\\u30fc\\u30ec",
"\\u30b7\\u30e3\\u30a4",
"\\u30b7\\u30e4\\u30a3",
"\\u30b7\\u30e3\\u30ec",
"\\u3061\\u3087\\u3053",
"\\u3061\\u3088\\u3053",
"\\u30c1\\u30e7\\u30b3\\u30ec\\u30fc\\u30c8",
"\\u3066\\u30fc\\u305f",
"\\u30c6\\u30fc\\u30bf",
"\\u30c6\\u30a7\\u30bf",
"\\u3066\\u3048\\u305f",
"\\u3067\\u30fc\\u305f",
"\\u30c7\\u30fc\\u30bf",
"\\u30c7\\u30a7\\u30bf",
"\\u3067\\u3048\\u305f",
"\\u3066\\u30fc\\u305f\\u30fc",
"\\u30c6\\u30fc\\u30bf\\u30a1",
"\\u30c6\\u30a7\\u30bf\\u30fc",
"\\u3066\\u3047\\u305f\\u3041",
"\\u3066\\u3048\\u305f\\u30fc",
"\\u3067\\u30fc\\u305f\\u30fc",
"\\u30c7\\u30fc\\u30bf\\u30a1",
"\\u3067\\u30a7\\u305f\\u30a1",
"\\u30c7\\u3047\\u30bf\\u3041",
"\\u30c7\\u30a8\\u30bf\\u30a2",
"\\u3072\\u3086",
"\\u3073\\u3085\\u3042",
"\\u3074\\u3085\\u3042",
"\\u3073\\u3085\\u3042\\u30fc",
"\\u30d3\\u30e5\\u30a2\\u30fc",
"\\u3074\\u3085\\u3042\\u30fc",
"\\u30d4\\u30e5\\u30a2\\u30fc",
"\\u30d2\\u30e5\\u30a6",
"\\u30d2\\u30e6\\u30a6",
"\\u30d4\\u30e5\\u30a6\\u30a2",
"\\u3073\\u3085\\u30fc\\u3042\\u30fc",
"\\u30d3\\u30e5\\u30fc\\u30a2\\u30fc",
"\\u30d3\\u30e5\\u30a6\\u30a2\\u30fc",
"\\u3072\\u3085\\u3093",
"\\u3074\\u3085\\u3093",
"\\u3075\\u30fc\\u308a",
"\\u30d5\\u30fc\\u30ea",
"\\u3075\\u3045\\u308a",
"\\u3075\\u30a5\\u308a",
"\\u3075\\u30a5\\u30ea",
"\\u30d5\\u30a6\\u30ea",
"\\u3076\\u30fc\\u308a",
"\\u30d6\\u30fc\\u30ea",
"\\u3076\\u3045\\u308a",
"\\u30d6\\u30a5\\u308a",
"\\u3077\\u3046\\u308a",
"\\u30d7\\u30a6\\u30ea",
"\\u3075\\u30fc\\u308a\\u30fc",
"\\u30d5\\u30a5\\u30ea\\u30fc",
"\\u3075\\u30a5\\u308a\\u30a3",
"\\u30d5\\u3045\\u308a\\u3043",
"\\u30d5\\u30a6\\u30ea\\u30fc",
"\\u3075\\u3046\\u308a\\u3043",
"\\u30d6\\u30a6\\u30ea\\u30a4",
"\\u3077\\u30fc\\u308a\\u30fc",
"\\u3077\\u30a5\\u308a\\u30a4",
"\\u3077\\u3046\\u308a\\u30fc",
"\\u30d7\\u30a6\\u30ea\\u30a4",
"\\u30d5\\u30fd",
"\\u3075\\u309e",
"\\u3076\\u309d",
"\\u3076\\u3075",
"\\u3076\\u30d5",
"\\u30d6\\u3075",
"\\u30d6\\u30d5",
"\\u3076\\u309e",
"\\u3076\\u3077",
"\\u30d6\\u3077",
"\\u3077\\u309d",
"\\u30d7\\u30fd",
"\\u3077\\u3075",
};
static const char *test2[] = {
"\\u306f\\u309d", /* H\\u309d */
"\\u30cf\\u30fd", /* K\\u30fd */
"\\u306f\\u306f", /* HH */
"\\u306f\\u30cf", /* HK */
"\\u30cf\\u30cf", /* KK */
"\\u306f\\u309e", /* H\\u309e */
"\\u30cf\\u30fe", /* K\\u30fe */
"\\u306f\\u3070", /* HH\\u309b */
"\\u30cf\\u30d0", /* KK\\u309b */
"\\u306f\\u3071", /* HH\\u309c */
"\\u30cf\\u3071", /* KH\\u309c */
"\\u30cf\\u30d1", /* KK\\u309c */
"\\u3070\\u309d", /* H\\u309b\\u309d */
"\\u30d0\\u30fd", /* K\\u309b\\u30fd */
"\\u3070\\u306f", /* H\\u309bH */
"\\u30d0\\u30cf", /* K\\u309bK */
"\\u3070\\u309e", /* H\\u309b\\u309e */
"\\u30d0\\u30fe", /* K\\u309b\\u30fe */
"\\u3070\\u3070", /* H\\u309bH\\u309b */
"\\u30d0\\u3070", /* K\\u309bH\\u309b */
"\\u30d0\\u30d0", /* K\\u309bK\\u309b */
"\\u3070\\u3071", /* H\\u309bH\\u309c */
"\\u30d0\\u30d1", /* K\\u309bK\\u309c */
"\\u3071\\u309d", /* H\\u309c\\u309d */
"\\u30d1\\u30fd", /* K\\u309c\\u30fd */
"\\u3071\\u306f", /* H\\u309cH */
"\\u30d1\\u30cf", /* K\\u309cK */
"\\u3071\\u3070", /* H\\u309cH\\u309b */
"\\u3071\\u30d0", /* H\\u309cK\\u309b */
"\\u30d1\\u30d0", /* K\\u309cK\\u309b */
"\\u3071\\u3071", /* H\\u309cH\\u309c */
"\\u30d1\\u30d1", /* K\\u309cK\\u309c */
};
/*
static const char *test3[] = {
"\\u221er\\u221e",
"\\u221eR#",
"\\u221et\\u221e",
"#r\\u221e",
"#R#",
"#t%",
"#T%",
"8t\\u221e",
"8T\\u221e",
"8t#",
"8T#",
"8t%",
"8T%",
"8t8",
"8T8",
"\\u03c9r\\u221e",
"\\u03a9R%",
"rr\\u221e",
"rR\\u221e",
"Rr\\u221e",
"RR\\u221e",
"RT%",
"rt8",
"tr\\u221e",
"tr8",
"TR8",
"tt8",
"\\u30b7\\u30e3\\u30fc\\u30ec",
};
*/
static const UColAttribute att[] = { UCOL_STRENGTH };
static const UColAttributeValue val[] = { UCOL_QUATERNARY };
static const UColAttribute attShifted[] = { UCOL_STRENGTH, UCOL_ALTERNATE_HANDLING};
static const UColAttributeValue valShifted[] = { UCOL_QUATERNARY, UCOL_SHIFTED };
genericLocaleStarterWithOptions("ja", test1, sizeof(test1)/sizeof(test1[0]), att, val, 1);
genericLocaleStarterWithOptions("ja", test2, sizeof(test2)/sizeof(test2[0]), att, val, 1);
/*genericLocaleStarter("ja", test3, sizeof(test3)/sizeof(test3[0]));*/
genericLocaleStarterWithOptions("ja", test1, sizeof(test1)/sizeof(test1[0]), attShifted, valShifted, 2);
genericLocaleStarterWithOptions("ja", test2, sizeof(test2)/sizeof(test2[0]), attShifted, valShifted, 2);
}
static void TestStrCollIdenticalPrefix(void) {
const char* rule = "&\\ud9b0\\udc70=\\ud9b0\\udc71";
const char* test[] = {
"ab\\ud9b0\\udc70",
"ab\\ud9b0\\udc71"
};
genericRulesStarterWithResult(rule, test, sizeof(test)/sizeof(test[0]), UCOL_EQUAL);
}
/* Contractions should have all their canonically equivalent */
/* strings included */
static void TestContractionClosure(void) {
static const struct {
const char *rules;
const char *data[10];
const uint32_t len;
} tests[] = {
{ "&b=\\u00e4\\u00e4",
{ "b", "\\u00e4\\u00e4", "a\\u0308a\\u0308", "\\u00e4a\\u0308", "a\\u0308\\u00e4" }, 5},
{ "&b=\\u00C5",
{ "b", "\\u00C5", "A\\u030A", "\\u212B" }, 4},
};
uint32_t i;
for(i = 0; i<(sizeof(tests)/sizeof(tests[0])); i++) {
genericRulesStarterWithResult(tests[i].rules, tests[i].data, tests[i].len, UCOL_EQUAL);
}
}
/* This tests also fails*/
static void TestBeforePrefixFailure(void) {
static const struct {
const char *rules;
const char *data[10];
const uint32_t len;
} tests[] = {
{ "&g <<< a"
"&[before 3]\\uff41 <<< x",
{"x", "\\uff41"}, 2 },
{ "&\\u30A7=\\u30A7=\\u3047=\\uff6a"
"&\\u30A8=\\u30A8=\\u3048=\\uff74"
"&[before 3]\\u30a7<<<\\u30a9",
{"\\u30a9", "\\u30a7"}, 2 },
{ "&[before 3]\\u30a7<<<\\u30a9"
"&\\u30A7=\\u30A7=\\u3047=\\uff6a"
"&\\u30A8=\\u30A8=\\u3048=\\uff74",
{"\\u30a9", "\\u30a7"}, 2 },
};
uint32_t i;
for(i = 0; i<(sizeof(tests)/sizeof(tests[0])); i++) {
genericRulesStarter(tests[i].rules, tests[i].data, tests[i].len);
}
#if 0
const char* rule1 =
"&\\u30A7=\\u30A7=\\u3047=\\uff6a"
"&\\u30A8=\\u30A8=\\u3048=\\uff74"
"&[before 3]\\u30a7<<<\\u30c6|\\u30fc";
const char* rule2 =
"&[before 3]\\u30a7<<<\\u30c6|\\u30fc"
"&\\u30A7=\\u30A7=\\u3047=\\uff6a"
"&\\u30A8=\\u30A8=\\u3048=\\uff74";
const char* test[] = {
"\\u30c6\\u30fc\\u30bf",
"\\u30c6\\u30a7\\u30bf",
};
genericRulesStarter(rule1, test, sizeof(test)/sizeof(test[0]));
genericRulesStarter(rule2, test, sizeof(test)/sizeof(test[0]));
/* this piece of code should be in some sort of verbose mode */
/* it gets the collation elements for elements and prints them */
/* This is useful when trying to see whether the problem is */
{
UErrorCode status = U_ZERO_ERROR;
uint32_t i = 0;
UCollationElements *it = NULL;
uint32_t CE;
UChar string[256];
uint32_t uStringLen;
UCollator *coll = NULL;
uStringLen = u_unescape(rule1, string, 256);
coll = ucol_openRules(string, uStringLen, UCOL_DEFAULT, UCOL_DEFAULT, NULL, &status);
/*coll = ucol_open("ja_JP_JIS", &status);*/
it = ucol_openElements(coll, string, 0, &status);
for(i = 0; i < sizeof(test)/sizeof(test[0]); i++) {
log_verbose("%s\n", test[i]);
uStringLen = u_unescape(test[i], string, 256);
ucol_setText(it, string, uStringLen, &status);
while((CE=ucol_next(it, &status)) != UCOL_NULLORDER) {
log_verbose("%08X\n", CE);
}
log_verbose("\n");
}
ucol_closeElements(it);
ucol_close(coll);
}
#endif
}
static void TestPrefixCompose(void) {
const char* rule1 =
"&\\u30a7<<<\\u30ab|\\u30fc=\\u30ac|\\u30fc";
/*
const char* test[] = {
"\\u30c6\\u30fc\\u30bf",
"\\u30c6\\u30a7\\u30bf",
};
*/
{
UErrorCode status = U_ZERO_ERROR;
/*uint32_t i = 0;*/
/*UCollationElements *it = NULL;*/
/* uint32_t CE;*/
UChar string[256];
uint32_t uStringLen;
UCollator *coll = NULL;
uStringLen = u_unescape(rule1, string, 256);
coll = ucol_openRules(string, uStringLen, UCOL_DEFAULT, UCOL_DEFAULT, NULL, &status);
ucol_close(coll);
}
}
/*
[last variable] last variable value
[last primary ignorable] largest CE for primary ignorable
[last secondary ignorable] largest CE for secondary ignorable
[last tertiary ignorable] largest CE for tertiary ignorable
[top] guaranteed to be above all implicit CEs, for now and in the future (in 1.8)
*/
static void TestRuleOptions(void) {
/* values here are hardcoded and are correct for the current UCA
* when the UCA changes, one might be forced to change these
* values. (\\u02d0, \\U00010FFFC etc...)
*/
static const struct {
const char *rules;
const char *data[10];
const uint32_t len;
} tests[] = {
/* - all befores here amount to zero */
{ "&[before 3][first tertiary ignorable]<<<a",
{ "\\u0000", "a"}, 2
}, /* you cannot go before first tertiary ignorable */
{ "&[before 3][last tertiary ignorable]<<<a",
{ "\\u0000", "a"}, 2
}, /* you cannot go before last tertiary ignorable */
{ "&[before 3][first secondary ignorable]<<<a",
{ "\\u0000", "a"}, 2
}, /* you cannot go before first secondary ignorable */
{ "&[before 3][last secondary ignorable]<<<a",
{ "\\u0000", "a"}, 2
}, /* you cannot go before first secondary ignorable */
/* 'normal' befores */
{ "&[before 3][first primary ignorable]<<<c<<<b &[first primary ignorable]<a",
{ "c", "b", "\\u0332", "a" }, 4
},
/* we don't have a code point that corresponds to
* the last primary ignorable
*/
{ "&[before 3][last primary ignorable]<<<c<<<b &[last primary ignorable]<a",
{ "\\u0332", "\\u20e3", "c", "b", "a" }, 5
},
{ "&[before 3][first variable]<<<c<<<b &[first variable]<a",
{ "c", "b", "\\u0009", "a", "\\u000a" }, 5
},
{ "&[last variable]<a &[before 3][last variable]<<<c<<<b ",
{ "c", "b", "\\uD834\\uDF71", "a", "\\u02d0" }, 5
},
{ "&[first regular]<a"
"&[before 1][first regular]<b",
{ "b", "\\u02d0", "a", "\\u02d1"}, 4
},
/*
* The character in the second ordering test string
* has to match the character that has the [last regular] weight
* which changes with each UCA version.
* See the bottom of FractionalUCA.txt which says something like
* [last regular [CE 27, 05, 05]] # U+1342E EGYPTIAN HIEROGLYPH AA032
*/
{ "&[before 1][last regular]<b"
"&[last regular]<a",
{ "b", "\\U0001342E", "a", "\\u4e00" }, 4
},
{ "&[before 1][first implicit]<b"
"&[first implicit]<a",
{ "b", "\\u4e00", "a", "\\u4e01"}, 4
},
{ "&[before 1][last implicit]<b"
"&[last implicit]<a",
{ "b", "\\U0010FFFD", "a" }, 3
},
{ "&[last variable]<z"
"&[last primary ignorable]<x"
"&[last secondary ignorable]<<y"
"&[last tertiary ignorable]<<<w"
"&[top]<u",
{"\\ufffb", "w", "y", "\\u20e3", "x", "\\u137c", "z", "u"}, 7
}
};
uint32_t i;
for(i = 0; i<(sizeof(tests)/sizeof(tests[0])); i++) {
genericRulesStarter(tests[i].rules, tests[i].data, tests[i].len);
}
}
static void TestOptimize(void) {
/* this is not really a test - just trying out
* whether copying of UCA contents will fail
* Cannot really test, since the functionality
* remains the same.
*/
static const struct {
const char *rules;
const char *data[10];
const uint32_t len;
} tests[] = {
/* - all befores here amount to zero */
{ "[optimize [\\uAC00-\\uD7FF]]",
{ "a", "b"}, 2}
};
uint32_t i;
for(i = 0; i<(sizeof(tests)/sizeof(tests[0])); i++) {
genericRulesStarter(tests[i].rules, tests[i].data, tests[i].len);
}
}
/*
cycheng@ca.ibm.c... we got inconsistent results when using the UTF-16BE iterator and the UTF-8 iterator.
weiv ucol_strcollIter?
cycheng@ca.ibm.c... e.g. s1 = 0xfffc0062, and s2 = d8000021
weiv these are the input strings?
cycheng@ca.ibm.c... yes, using the utf-16 iterator and UCA with normalization on, we have s1 > s2
weiv will check - could be a problem with utf-8 iterator
cycheng@ca.ibm.c... but if we use the utf-8 iterator, i.e. s1 = efbfbc62 and s2 = eda08021, we have s1 < s2
weiv hmmm
cycheng@ca.ibm.c... note that we have a standalone high surrogate
weiv that doesn't sound right
cycheng@ca.ibm.c... we got the same inconsistent results on AIX and Win2000
weiv so you have two strings, you convert them to utf-8 and to utf-16BE
cycheng@ca.ibm.c... yes
weiv and then do the comparison
cycheng@ca.ibm.c... in one case, the input strings are in utf8, and in the other case the input strings are in utf-16be
weiv utf-16 strings look like a little endian ones in the example you sent me
weiv It could be a bug - let me try to test it out
cycheng@ca.ibm.c... ok
cycheng@ca.ibm.c... we can wait till the conf. call
cycheng@ca.ibm.c... next weke
weiv that would be great
weiv hmmm
weiv I might be wrong
weiv let me play with it some more
cycheng@ca.ibm.c... ok
cycheng@ca.ibm.c... also please check s3 = 0x0e3a0062 and s4 = 0x0e400021. both are in utf-16be
cycheng@ca.ibm.c... seems with icu 2.2 we have s3 > s4, but not in icu 2.4 that's built for db2
cycheng@ca.ibm.c... also s1 & s2 that I sent you earlier are also in utf-16be
weiv ok
cycheng@ca.ibm.c... i ask sherman to send you more inconsistent data
weiv thanks
cycheng@ca.ibm.c... the 4 strings we sent are just samples
*/
#if 0
static void Alexis(void) {
UErrorCode status = U_ZERO_ERROR;
UCollator *coll = ucol_open("", &status);
const char utf16be[2][4] = {
{ (char)0xd8, (char)0x00, (char)0x00, (char)0x21 },
{ (char)0xff, (char)0xfc, (char)0x00, (char)0x62 }
};
const char utf8[2][4] = {
{ (char)0xed, (char)0xa0, (char)0x80, (char)0x21 },
{ (char)0xef, (char)0xbf, (char)0xbc, (char)0x62 },
};
UCharIterator iterU161, iterU162;
UCharIterator iterU81, iterU82;
UCollationResult resU16, resU8;
uiter_setUTF16BE(&iterU161, utf16be[0], 4);
uiter_setUTF16BE(&iterU162, utf16be[1], 4);
uiter_setUTF8(&iterU81, utf8[0], 4);
uiter_setUTF8(&iterU82, utf8[1], 4);
ucol_setAttribute(coll, UCOL_NORMALIZATION_MODE, UCOL_ON, &status);
resU16 = ucol_strcollIter(coll, &iterU161, &iterU162, &status);
resU8 = ucol_strcollIter(coll, &iterU81, &iterU82, &status);
if(resU16 != resU8) {
log_err("different results\n");
}
ucol_close(coll);
}
#endif
#define CMSCOLL_ALEXIS2_BUFFER_SIZE 256
static void Alexis2(void) {
UErrorCode status = U_ZERO_ERROR;
UChar U16Source[CMSCOLL_ALEXIS2_BUFFER_SIZE], U16Target[CMSCOLL_ALEXIS2_BUFFER_SIZE];
char U16BESource[CMSCOLL_ALEXIS2_BUFFER_SIZE], U16BETarget[CMSCOLL_ALEXIS2_BUFFER_SIZE];
char U8Source[CMSCOLL_ALEXIS2_BUFFER_SIZE], U8Target[CMSCOLL_ALEXIS2_BUFFER_SIZE];
int32_t U16LenS = 0, U16LenT = 0, U16BELenS = 0, U16BELenT = 0, U8LenS = 0, U8LenT = 0;
UConverter *conv = NULL;
UCharIterator U16BEItS, U16BEItT;
UCharIterator U8ItS, U8ItT;
UCollationResult resU16, resU16BE, resU8;
static const char* const pairs[][2] = {
{ "\\ud800\\u0021", "\\uFFFC\\u0062"},
{ "\\u0435\\u0308\\u0334", "\\u0415\\u0334\\u0340" },
{ "\\u0E40\\u0021", "\\u00A1\\u0021"},
{ "\\u0E40\\u0021", "\\uFE57\\u0062"},
{ "\\u5F20", "\\u5F20\\u4E00\\u8E3F"},
{ "\\u0000\\u0020", "\\u0000\\u0020\\u0000"},
{ "\\u0020", "\\u0020\\u0000"}
/*
5F20 (my result here)
5F204E008E3F
5F20 (your result here)
*/
};
int32_t i = 0;
UCollator *coll = ucol_open("", &status);
if(status == U_FILE_ACCESS_ERROR) {
log_data_err("Is your data around?\n");
return;
} else if(U_FAILURE(status)) {
log_err("Error opening collator\n");
return;
}
ucol_setAttribute(coll, UCOL_NORMALIZATION_MODE, UCOL_ON, &status);
conv = ucnv_open("UTF16BE", &status);
for(i = 0; i < sizeof(pairs)/sizeof(pairs[0]); i++) {
U16LenS = u_unescape(pairs[i][0], U16Source, CMSCOLL_ALEXIS2_BUFFER_SIZE);
U16LenT = u_unescape(pairs[i][1], U16Target, CMSCOLL_ALEXIS2_BUFFER_SIZE);
resU16 = ucol_strcoll(coll, U16Source, U16LenS, U16Target, U16LenT);
log_verbose("Result of strcoll is %i\n", resU16);
U16BELenS = ucnv_fromUChars(conv, U16BESource, CMSCOLL_ALEXIS2_BUFFER_SIZE, U16Source, U16LenS, &status);
U16BELenT = ucnv_fromUChars(conv, U16BETarget, CMSCOLL_ALEXIS2_BUFFER_SIZE, U16Target, U16LenT, &status);
/* use the original sizes, as the result from converter is in bytes */
uiter_setUTF16BE(&U16BEItS, U16BESource, U16LenS);
uiter_setUTF16BE(&U16BEItT, U16BETarget, U16LenT);
resU16BE = ucol_strcollIter(coll, &U16BEItS, &U16BEItT, &status);
log_verbose("Result of U16BE is %i\n", resU16BE);
if(resU16 != resU16BE) {
log_verbose("Different results between UTF16 and UTF16BE for %s & %s\n", pairs[i][0], pairs[i][1]);
}
u_strToUTF8(U8Source, CMSCOLL_ALEXIS2_BUFFER_SIZE, &U8LenS, U16Source, U16LenS, &status);
u_strToUTF8(U8Target, CMSCOLL_ALEXIS2_BUFFER_SIZE, &U8LenT, U16Target, U16LenT, &status);
uiter_setUTF8(&U8ItS, U8Source, U8LenS);
uiter_setUTF8(&U8ItT, U8Target, U8LenT);
resU8 = ucol_strcollIter(coll, &U8ItS, &U8ItT, &status);
if(resU16 != resU8) {
log_verbose("Different results between UTF16 and UTF8 for %s & %s\n", pairs[i][0], pairs[i][1]);
}
}
ucol_close(coll);
ucnv_close(conv);
}
static void TestHebrewUCA(void) {
UErrorCode status = U_ZERO_ERROR;
static const char *first[] = {
"d790d6b8d79cd795d6bcd7a9",
"d790d79cd79ed7a7d799d799d7a1",
"d790d6b4d79ed795d6bcd7a9",
};
char utf8String[3][256];
UChar utf16String[3][256];
int32_t i = 0, j = 0;
int32_t sizeUTF8[3];
int32_t sizeUTF16[3];
UCollator *coll = ucol_open("", &status);
if (U_FAILURE(status)) {
log_err_status(status, "Could not open UCA collation %s\n", u_errorName(status));
return;
}
/*ucol_setAttribute(coll, UCOL_NORMALIZATION_MODE, UCOL_ON, &status);*/
for(i = 0; i < sizeof(first)/sizeof(first[0]); i++) {
sizeUTF8[i] = u_parseUTF8(first[i], -1, utf8String[i], 256, &status);
u_strFromUTF8(utf16String[i], 256, &sizeUTF16[i], utf8String[i], sizeUTF8[i], &status);
log_verbose("%i: ");
for(j = 0; j < sizeUTF16[i]; j++) {
/*log_verbose("\\u%04X", utf16String[i][j]);*/
log_verbose("%04X", utf16String[i][j]);
}
log_verbose("\n");
}
for(i = 0; i < sizeof(first)/sizeof(first[0])-1; i++) {
for(j = i + 1; j < sizeof(first)/sizeof(first[0]); j++) {
doTest(coll, utf16String[i], utf16String[j], UCOL_LESS);
}
}
ucol_close(coll);
}
static void TestPartialSortKeyTermination(void) {
static const char* cases[] = {
"\\u1234\\u1234\\udc00",
"\\udc00\\ud800\\ud800"
};
int32_t i = sizeof(UCollator);
UErrorCode status = U_ZERO_ERROR;
UCollator *coll = ucol_open("", &status);
UCharIterator iter;
UChar currCase[256];
int32_t length = 0;
int32_t pKeyLen = 0;
uint8_t key[256];
for(i = 0; i < sizeof(cases)/sizeof(cases[0]); i++) {
uint32_t state[2] = {0, 0};
length = u_unescape(cases[i], currCase, 256);
uiter_setString(&iter, currCase, length);
pKeyLen = ucol_nextSortKeyPart(coll, &iter, state, key, 256, &status);
log_verbose("Done\n");
}
ucol_close(coll);
}
static void TestSettings(void) {
static const char* cases[] = {
"apple",
"Apple"
};
static const char* locales[] = {
"",
"en"
};
UErrorCode status = U_ZERO_ERROR;
int32_t i = 0, j = 0;
UChar source[256], target[256];
int32_t sLen = 0, tLen = 0;
UCollator *collateObject = NULL;
for(i = 0; i < sizeof(locales)/sizeof(locales[0]); i++) {
collateObject = ucol_open(locales[i], &status);
ucol_setStrength(collateObject, UCOL_PRIMARY);
ucol_setAttribute(collateObject, UCOL_CASE_LEVEL , UCOL_OFF, &status);
for(j = 1; j < sizeof(cases)/sizeof(cases[0]); j++) {
sLen = u_unescape(cases[j-1], source, 256);
source[sLen] = 0;
tLen = u_unescape(cases[j], target, 256);
source[tLen] = 0;
doTest(collateObject, source, target, UCOL_EQUAL);
}
ucol_close(collateObject);
}
}
static int32_t TestEqualsForCollator(const char* locName, UCollator *source, UCollator *target) {
UErrorCode status = U_ZERO_ERROR;
int32_t errorNo = 0;
/*const UChar *sourceRules = NULL;*/
/*int32_t sourceRulesLen = 0;*/
UColAttributeValue french = UCOL_OFF;
int32_t cloneSize = 0;
if(!ucol_equals(source, target)) {
log_err("Same collators, different address not equal\n");
errorNo++;
}
ucol_close(target);
if(uprv_strcmp(ucol_getLocaleByType(source, ULOC_REQUESTED_LOCALE, &status), ucol_getLocaleByType(source, ULOC_ACTUAL_LOCALE, &status)) == 0) {
/* currently, safeClone is implemented through getRules/openRules
* so it is the same as the test below - I will comment that test out.
*/
/* real thing */
target = ucol_safeClone(source, NULL, &cloneSize, &status);
if(U_FAILURE(status)) {
log_err("Error creating clone\n");
errorNo++;
return errorNo;
}
if(!ucol_equals(source, target)) {
log_err("Collator different from it's clone\n");
errorNo++;
}
french = ucol_getAttribute(source, UCOL_FRENCH_COLLATION, &status);
if(french == UCOL_ON) {
ucol_setAttribute(target, UCOL_FRENCH_COLLATION, UCOL_OFF, &status);
} else {
ucol_setAttribute(target, UCOL_FRENCH_COLLATION, UCOL_ON, &status);
}
if(U_FAILURE(status)) {
log_err("Error setting attributes\n");
errorNo++;
return errorNo;
}
if(ucol_equals(source, target)) {
log_err("Collators same even when options changed\n");
errorNo++;
}
ucol_close(target);
/* commented out since safeClone uses exactly the same technique */
/*
sourceRules = ucol_getRules(source, &sourceRulesLen);
target = ucol_openRules(sourceRules, sourceRulesLen, UCOL_DEFAULT, UCOL_DEFAULT, &parseError, &status);
if(U_FAILURE(status)) {
log_err("Error instantiating target from rules\n");
errorNo++;
return errorNo;
}
if(!ucol_equals(source, target)) {
log_err("Collator different from collator that was created from the same rules\n");
errorNo++;
}
ucol_close(target);
*/
}
return errorNo;
}
static void TestEquals(void) {
/* ucol_equals is not currently a public API. There is a chance that it will become
* something like this, but currently it is only used by RuleBasedCollator::operator==
*/
/* test whether the two collators instantiated from the same locale are equal */
UErrorCode status = U_ZERO_ERROR;
UParseError parseError;
int32_t noOfLoc = uloc_countAvailable();
const char *locName = NULL;
UCollator *source = NULL, *target = NULL;
int32_t i = 0;
const char* rules[] = {
"&l < lj <<< Lj <<< LJ",
"&n < nj <<< Nj <<< NJ",
"&ae <<< \\u00e4",
"&AE <<< \\u00c4"
};
/*
const char* badRules[] = {
"&l <<< Lj",
"&n < nj <<< nJ <<< NJ",
"&a <<< \\u00e4",
"&AE <<< \\u00c4 <<< x"
};
*/
UChar sourceRules[1024], targetRules[1024];
int32_t sourceRulesSize = 0, targetRulesSize = 0;
int32_t rulesSize = sizeof(rules)/sizeof(rules[0]);
for(i = 0; i < rulesSize; i++) {
sourceRulesSize += u_unescape(rules[i], sourceRules+sourceRulesSize, 1024 - sourceRulesSize);
targetRulesSize += u_unescape(rules[rulesSize-i-1], targetRules+targetRulesSize, 1024 - targetRulesSize);
}
source = ucol_openRules(sourceRules, sourceRulesSize, UCOL_DEFAULT, UCOL_DEFAULT, &parseError, &status);
if(status == U_FILE_ACCESS_ERROR) {
log_data_err("Is your data around?\n");
return;
} else if(U_FAILURE(status)) {
log_err("Error opening collator\n");
return;
}
target = ucol_openRules(targetRules, targetRulesSize, UCOL_DEFAULT, UCOL_DEFAULT, &parseError, &status);
if(!ucol_equals(source, target)) {
log_err("Equivalent collators not equal!\n");
}
ucol_close(source);
ucol_close(target);
source = ucol_open("root", &status);
target = ucol_open("root", &status);
log_verbose("Testing root\n");
if(!ucol_equals(source, source)) {
log_err("Same collator not equal\n");
}
if(TestEqualsForCollator(locName, source, target)) {
log_err("Errors for root\n", locName);
}
ucol_close(source);
for(i = 0; i<noOfLoc; i++) {
status = U_ZERO_ERROR;
locName = uloc_getAvailable(i);
/*if(hasCollationElements(locName)) {*/
log_verbose("Testing equality for locale %s\n", locName);
source = ucol_open(locName, &status);
target = ucol_open(locName, &status);
if (U_FAILURE(status)) {
log_err("Error opening collator for locale %s %s\n", locName, u_errorName(status));
continue;
}
if(TestEqualsForCollator(locName, source, target)) {
log_err("Errors for locale %s\n", locName);
}
ucol_close(source);
/*}*/
}
}
static void TestJ2726(void) {
UChar a[2] = { 0x61, 0x00 }; /*"a"*/
UChar aSpace[3] = { 0x61, 0x20, 0x00 }; /*"a "*/
UChar spaceA[3] = { 0x20, 0x61, 0x00 }; /*" a"*/
UErrorCode status = U_ZERO_ERROR;
UCollator *coll = ucol_open("en", &status);
ucol_setAttribute(coll, UCOL_ALTERNATE_HANDLING, UCOL_SHIFTED, &status);
ucol_setAttribute(coll, UCOL_STRENGTH, UCOL_PRIMARY, &status);
doTest(coll, a, aSpace, UCOL_EQUAL);
doTest(coll, aSpace, a, UCOL_EQUAL);
doTest(coll, a, spaceA, UCOL_EQUAL);
doTest(coll, spaceA, a, UCOL_EQUAL);
doTest(coll, spaceA, aSpace, UCOL_EQUAL);
doTest(coll, aSpace, spaceA, UCOL_EQUAL);
ucol_close(coll);
}
static void NullRule(void) {
UChar r[3] = {0};
UErrorCode status = U_ZERO_ERROR;
UCollator *coll = ucol_openRules(r, 1, UCOL_DEFAULT, UCOL_DEFAULT, NULL, &status);
if(U_SUCCESS(status)) {
log_err("This should have been an error!\n");
ucol_close(coll);
} else {
status = U_ZERO_ERROR;
}
coll = ucol_openRules(r, 0, UCOL_DEFAULT, UCOL_DEFAULT, NULL, &status);
if(U_FAILURE(status)) {
log_err_status(status, "Empty rules should have produced a valid collator -> %s\n", u_errorName(status));
} else {
ucol_close(coll);
}
}
/**
* Test for CollationElementIterator previous and next for the whole set of
* unicode characters with normalization on.
*/
static void TestNumericCollation(void)
{
UErrorCode status = U_ZERO_ERROR;
const static char *basicTestStrings[]={
"hello1",
"hello2",
"hello2002",
"hello2003",
"hello123456",
"hello1234567",
"hello10000000",
"hello100000000",
"hello1000000000",
"hello10000000000",
};
const static char *preZeroTestStrings[]={
"avery10000",
"avery010000",
"avery0010000",
"avery00010000",
"avery000010000",
"avery0000010000",
"avery00000010000",
"avery000000010000",
};
const static char *thirtyTwoBitNumericStrings[]={
"avery42949672960",
"avery42949672961",
"avery42949672962",
"avery429496729610"
};
const static char *longNumericStrings[]={
/* Some of these sort out of the order that would expected if digits-as-numbers handled arbitrarily-long digit strings.
In fact, a single collation element can represent a maximum of 254 digits as a number. Digit strings longer than that
are treated as multiple collation elements. */
"num9234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123z", /*253digits, num + 9.23E252 + z */
"num10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", /*254digits, num + 1.00E253 */
"num100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", /*255digits, num + 1.00E253 + 0, out of numeric order but expected */
"num12345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234", /*254digits, num + 1.23E253 */
"num123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345", /*255digits, num + 1.23E253 + 5 */
"num1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456", /*256digits, num + 1.23E253 + 56 */
"num12345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567", /*257digits, num + 1.23E253 + 567 */
"num12345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234a", /*254digits, num + 1.23E253 + a, out of numeric order but expected */
"num92345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234", /*254digits, num + 9.23E253, out of numeric order but expected */
"num92345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234a", /*254digits, num + 9.23E253 + a, out of numeric order but expected */
};
const static char *supplementaryDigits[] = {
"\\uD835\\uDFCE", /* 0 */
"\\uD835\\uDFCF", /* 1 */
"\\uD835\\uDFD0", /* 2 */
"\\uD835\\uDFD1", /* 3 */
"\\uD835\\uDFCF\\uD835\\uDFCE", /* 10 */
"\\uD835\\uDFCF\\uD835\\uDFCF", /* 11 */
"\\uD835\\uDFCF\\uD835\\uDFD0", /* 12 */
"\\uD835\\uDFD0\\uD835\\uDFCE", /* 20 */
"\\uD835\\uDFD0\\uD835\\uDFCF", /* 21 */
"\\uD835\\uDFD0\\uD835\\uDFD0" /* 22 */
};
const static char *foreignDigits[] = {
"\\u0661",
"\\u0662",
"\\u0663",
"\\u0661\\u0660",
"\\u0661\\u0662",
"\\u0661\\u0663",
"\\u0662\\u0660",
"\\u0662\\u0662",
"\\u0662\\u0663",
"\\u0663\\u0660",
"\\u0663\\u0662",
"\\u0663\\u0663"
};
const static char *evenZeroes[] = {
"2000",
"2001",
"2002",
"2003"
};
UColAttribute att = UCOL_NUMERIC_COLLATION;
UColAttributeValue val = UCOL_ON;
/* Open our collator. */
UCollator* coll = ucol_open("root", &status);
if (U_FAILURE(status)){
log_err_status(status, "ERROR: in using ucol_open() -> %s\n",
myErrorName(status));
return;
}
genericLocaleStarterWithOptions("root", basicTestStrings, sizeof(basicTestStrings)/sizeof(basicTestStrings[0]), &att, &val, 1);
genericLocaleStarterWithOptions("root", thirtyTwoBitNumericStrings, sizeof(thirtyTwoBitNumericStrings)/sizeof(thirtyTwoBitNumericStrings[0]), &att, &val, 1);
genericLocaleStarterWithOptions("root", longNumericStrings, sizeof(longNumericStrings)/sizeof(longNumericStrings[0]), &att, &val, 1);
genericLocaleStarterWithOptions("en_US", foreignDigits, sizeof(foreignDigits)/sizeof(foreignDigits[0]), &att, &val, 1);
genericLocaleStarterWithOptions("root", supplementaryDigits, sizeof(supplementaryDigits)/sizeof(supplementaryDigits[0]), &att, &val, 1);
genericLocaleStarterWithOptions("root", evenZeroes, sizeof(evenZeroes)/sizeof(evenZeroes[0]), &att, &val, 1);
/* Setting up our collator to do digits. */
ucol_setAttribute(coll, UCOL_NUMERIC_COLLATION, UCOL_ON, &status);
if (U_FAILURE(status)){
log_err("ERROR: in setting UCOL_NUMERIC_COLLATION as an attribute\n %s\n",
myErrorName(status));
return;
}
/*
Testing that prepended zeroes still yield the correct collation behavior.
We expect that every element in our strings array will be equal.
*/
genericOrderingTestWithResult(coll, preZeroTestStrings, sizeof(preZeroTestStrings)/sizeof(preZeroTestStrings[0]), UCOL_EQUAL);
ucol_close(coll);
}
static void TestTibetanConformance(void)
{
const char* test[] = {
"\\u0FB2\\u0591\\u0F71\\u0061",
"\\u0FB2\\u0F71\\u0061"
};
UErrorCode status = U_ZERO_ERROR;
UCollator *coll = ucol_open("", &status);
UChar source[100];
UChar target[100];
int result;
ucol_setAttribute(coll, UCOL_NORMALIZATION_MODE, UCOL_ON, &status);
if (U_SUCCESS(status)) {
u_unescape(test[0], source, 100);
u_unescape(test[1], target, 100);
doTest(coll, source, target, UCOL_EQUAL);
result = ucol_strcoll(coll, source, -1, target, -1);
log_verbose("result %d\n", result);
if (UCOL_EQUAL != result) {
log_err("Tibetan comparison error\n");
}
}
ucol_close(coll);
genericLocaleStarterWithResult("", test, 2, UCOL_EQUAL);
}
static void TestPinyinProblem(void) {
static const char *test[] = { "\\u4E56\\u4E56\\u7761", "\\u4E56\\u5B69\\u5B50" };
genericLocaleStarter("zh__PINYIN", test, sizeof(test)/sizeof(test[0]));
}
#define TST_UCOL_MAX_INPUT 0x220001
#define topByte 0xFF000000;
#define bottomByte 0xFF;
#define fourBytes 0xFFFFFFFF;
static void showImplicit(UChar32 i) {
if (i >= 0 && i <= TST_UCOL_MAX_INPUT) {
log_verbose("%08X\t%08X\n", i, uprv_uca_getImplicitFromRaw(i));
}
}
static void TestImplicitGeneration(void) {
UErrorCode status = U_ZERO_ERROR;
UChar32 last = 0;
UChar32 current;
UChar32 i = 0, j = 0;
UChar32 roundtrip = 0;
UChar32 lastBottom = 0;
UChar32 currentBottom = 0;
UChar32 lastTop = 0;
UChar32 currentTop = 0;
UCollator *coll = ucol_open("root", &status);
if(U_FAILURE(status)) {
log_err_status(status, "Couldn't open UCA -> %s\n", u_errorName(status));
return;
}
uprv_uca_getRawFromImplicit(0xE20303E7);
for (i = 0; i <= TST_UCOL_MAX_INPUT; ++i) {
current = uprv_uca_getImplicitFromRaw(i) & fourBytes;
/* check that it round-trips AND that all intervening ones are illegal*/
roundtrip = uprv_uca_getRawFromImplicit(current);
if (roundtrip != i) {
log_err("No roundtrip %08X\n", i);
}
if (last != 0) {
for (j = last + 1; j < current; ++j) {
roundtrip = uprv_uca_getRawFromImplicit(j);
/* raise an error if it *doesn't* find an error*/
if (roundtrip != -1) {
log_err("Fails to recognize illegal %08X\n", j);
}
}
}
/* now do other consistency checks*/
lastBottom = last & bottomByte;
currentBottom = current & bottomByte;
lastTop = last & topByte;
currentTop = current & topByte;
/* print out some values for spot-checking*/
if (lastTop != currentTop || i == 0x10000 || i == 0x110000) {
showImplicit(i-3);
showImplicit(i-2);
showImplicit(i-1);
showImplicit(i);
showImplicit(i+1);
showImplicit(i+2);
}
last = current;
if(uprv_uca_getCodePointFromRaw(uprv_uca_getRawFromCodePoint(i)) != i) {
log_err("No raw <-> code point roundtrip for 0x%08X\n", i);
}
}
showImplicit(TST_UCOL_MAX_INPUT-2);
showImplicit(TST_UCOL_MAX_INPUT-1);
showImplicit(TST_UCOL_MAX_INPUT);
ucol_close(coll);
}
/**
* Iterate through the given iterator, checking to see that all the strings
* in the expected array are present.
* @param expected array of strings we expect to see, or NULL
* @param expectedCount number of elements of expected, or 0
*/
static int32_t checkUEnumeration(const char* msg,
UEnumeration* iter,
const char** expected,
int32_t expectedCount) {
UErrorCode ec = U_ZERO_ERROR;
int32_t i = 0, n, j, bit;
int32_t seenMask = 0;
U_ASSERT(expectedCount >= 0 && expectedCount < 31); /* [sic] 31 not 32 */
n = uenum_count(iter, &ec);
if (!assertSuccess("count", &ec)) return -1;
log_verbose("%s = [", msg);
for (;; ++i) {
const char* s = uenum_next(iter, NULL, &ec);
if (!assertSuccess("snext", &ec) || s == NULL) break;
if (i != 0) log_verbose(",");
log_verbose("%s", s);
/* check expected list */
for (j=0, bit=1; j<expectedCount; ++j, bit<<=1) {
if ((seenMask&bit) == 0 &&
uprv_strcmp(s, expected[j]) == 0) {
seenMask |= bit;
break;
}
}
}
log_verbose("] (%d)\n", i);
assertTrue("count verified", i==n);
/* did we see all expected strings? */
for (j=0, bit=1; j<expectedCount; ++j, bit<<=1) {
if ((seenMask&bit)!=0) {
log_verbose("Ok: \"%s\" seen\n", expected[j]);
} else {
log_err("FAIL: \"%s\" not seen\n", expected[j]);
}
}
return n;
}
/**
* Test new API added for separate collation tree.
*/
static void TestSeparateTrees(void) {
UErrorCode ec = U_ZERO_ERROR;
UEnumeration *e = NULL;
int32_t n = -1;
UBool isAvailable;
char loc[256];
static const char* AVAIL[] = { "en", "de" };
static const char* KW[] = { "collation" };
static const char* KWVAL[] = { "phonebook", "stroke" };
#if !UCONFIG_NO_SERVICE
e = ucol_openAvailableLocales(&ec);
if (e != NULL) {
assertSuccess("ucol_openAvailableLocales", &ec);
assertTrue("ucol_openAvailableLocales!=0", e!=0);
n = checkUEnumeration("ucol_openAvailableLocales", e, AVAIL, LEN(AVAIL));
/* Don't need to check n because we check list */
uenum_close(e);
} else {
log_data_err("Error calling ucol_openAvailableLocales() -> %s (Are you missing data?)\n", u_errorName(ec));
}
#endif
e = ucol_getKeywords(&ec);
if (e != NULL) {
assertSuccess("ucol_getKeywords", &ec);
assertTrue("ucol_getKeywords!=0", e!=0);
n = checkUEnumeration("ucol_getKeywords", e, KW, LEN(KW));
/* Don't need to check n because we check list */
uenum_close(e);
} else {
log_data_err("Error calling ucol_getKeywords() -> %s (Are you missing data?)\n", u_errorName(ec));
}
e = ucol_getKeywordValues(KW[0], &ec);
if (e != NULL) {
assertSuccess("ucol_getKeywordValues", &ec);
assertTrue("ucol_getKeywordValues!=0", e!=0);
n = checkUEnumeration("ucol_getKeywordValues", e, KWVAL, LEN(KWVAL));
/* Don't need to check n because we check list */
uenum_close(e);
} else {
log_data_err("Error calling ucol_getKeywordValues() -> %s (Are you missing data?)\n", u_errorName(ec));
}
/* Try setting a warning before calling ucol_getKeywordValues */
ec = U_USING_FALLBACK_WARNING;
e = ucol_getKeywordValues(KW[0], &ec);
if (assertSuccess("ucol_getKeywordValues [with warning code set]", &ec)) {
assertTrue("ucol_getKeywordValues!=0 [with warning code set]", e!=0);
n = checkUEnumeration("ucol_getKeywordValues [with warning code set]", e, KWVAL, LEN(KWVAL));
/* Don't need to check n because we check list */
uenum_close(e);
}
/*
U_DRAFT int32_t U_EXPORT2
ucol_getFunctionalEquivalent(char* result, int32_t resultCapacity,
const char* locale, UBool* isAvailable,
UErrorCode* status);
}
*/
n = ucol_getFunctionalEquivalent(loc, sizeof(loc), "collation", "fr",
&isAvailable, &ec);
if (assertSuccess("getFunctionalEquivalent", &ec)) {
assertEquals("getFunctionalEquivalent(fr)", "fr", loc);
assertTrue("getFunctionalEquivalent(fr).isAvailable==TRUE",
isAvailable == TRUE);
}
n = ucol_getFunctionalEquivalent(loc, sizeof(loc), "collation", "fr_FR",
&isAvailable, &ec);
if (assertSuccess("getFunctionalEquivalent", &ec)) {
assertEquals("getFunctionalEquivalent(fr_FR)", "fr", loc);
assertTrue("getFunctionalEquivalent(fr_FR).isAvailable==TRUE",
isAvailable == TRUE);
}
}
/* supercedes TestJ784 */
static void TestBeforePinyin(void) {
const static char rules[] = {
"&[before 2]A<<\\u0101<<<\\u0100<<\\u00E1<<<\\u00C1<<\\u01CE<<<\\u01CD<<\\u00E0<<<\\u00C0"
"&[before 2]e<<\\u0113<<<\\u0112<<\\u00E9<<<\\u00C9<<\\u011B<<<\\u011A<<\\u00E8<<<\\u00C8"
"&[before 2]i<<\\u012B<<<\\u012A<<\\u00ED<<<\\u00CD<<\\u01D0<<<\\u01CF<<\\u00EC<<<\\u00CC"
"&[before 2]o<<\\u014D<<<\\u014C<<\\u00F3<<<\\u00D3<<\\u01D2<<<\\u01D1<<\\u00F2<<<\\u00D2"
"&[before 2]u<<\\u016B<<<\\u016A<<\\u00FA<<<\\u00DA<<\\u01D4<<<\\u01D3<<\\u00F9<<<\\u00D9"
"&U<<\\u01D6<<<\\u01D5<<\\u01D8<<<\\u01D7<<\\u01DA<<<\\u01D9<<\\u01DC<<<\\u01DB<<\\u00FC"
};
const static char *test[] = {
"l\\u0101",
"la",
"l\\u0101n",
"lan ",
"l\\u0113",
"le",
"l\\u0113n",
"len"
};
const static char *test2[] = {
"x\\u0101",
"x\\u0100",
"X\\u0101",
"X\\u0100",
"x\\u00E1",
"x\\u00C1",
"X\\u00E1",
"X\\u00C1",
"x\\u01CE",
"x\\u01CD",
"X\\u01CE",
"X\\u01CD",
"x\\u00E0",
"x\\u00C0",
"X\\u00E0",
"X\\u00C0",
"xa",
"xA",
"Xa",
"XA",
"x\\u0101x",
"x\\u0100x",
"x\\u00E1x",
"x\\u00C1x",
"x\\u01CEx",
"x\\u01CDx",
"x\\u00E0x",
"x\\u00C0x",
"xax",
"xAx"
};
genericRulesStarter(rules, test, sizeof(test)/sizeof(test[0]));
genericLocaleStarter("zh", test, sizeof(test)/sizeof(test[0]));
genericRulesStarter(rules, test2, sizeof(test2)/sizeof(test2[0]));
genericLocaleStarter("zh", test2, sizeof(test2)/sizeof(test2[0]));
}
static void TestBeforeTightening(void) {
static const struct {
const char *rules;
UErrorCode expectedStatus;
} tests[] = {
{ "&[before 1]a<x", U_ZERO_ERROR },
{ "&[before 1]a<<x", U_INVALID_FORMAT_ERROR },
{ "&[before 1]a<<<x", U_INVALID_FORMAT_ERROR },
{ "&[before 1]a=x", U_INVALID_FORMAT_ERROR },
{ "&[before 2]a<x",U_INVALID_FORMAT_ERROR },
{ "&[before 2]a<<x",U_ZERO_ERROR },
{ "&[before 2]a<<<x",U_INVALID_FORMAT_ERROR },
{ "&[before 2]a=x",U_INVALID_FORMAT_ERROR },
{ "&[before 3]a<x",U_INVALID_FORMAT_ERROR },
{ "&[before 3]a<<x",U_INVALID_FORMAT_ERROR },
{ "&[before 3]a<<<x",U_ZERO_ERROR },
{ "&[before 3]a=x",U_INVALID_FORMAT_ERROR },
{ "&[before I]a = x",U_INVALID_FORMAT_ERROR }
};
int32_t i = 0;
UErrorCode status = U_ZERO_ERROR;
UChar rlz[RULE_BUFFER_LEN] = { 0 };
uint32_t rlen = 0;
UCollator *coll = NULL;
for(i = 0; i < sizeof(tests)/sizeof(tests[0]); i++) {
rlen = u_unescape(tests[i].rules, rlz, RULE_BUFFER_LEN);
coll = ucol_openRules(rlz, rlen, UCOL_DEFAULT, UCOL_DEFAULT,NULL, &status);
if(status != tests[i].expectedStatus) {
log_err_status(status, "Opening a collator with rules %s returned error code %s, expected %s\n",
tests[i].rules, u_errorName(status), u_errorName(tests[i].expectedStatus));
}
ucol_close(coll);
status = U_ZERO_ERROR;
}
}
#if 0
&m < a
&[before 1] a < x <<< X << q <<< Q < z
assert: m <<< M < x <<< X << q <<< Q < z < a < n
&m < a
&[before 2] a << x <<< X << q <<< Q < z
assert: m <<< M < x <<< X << q <<< Q << a < z < n
&m < a
&[before 3] a <<< x <<< X << q <<< Q < z
assert: m <<< M < x <<< X <<< a << q <<< Q < z < n
&m << a
&[before 1] a < x <<< X << q <<< Q < z
assert: x <<< X << q <<< Q < z < m <<< M << a < n
&m << a
&[before 2] a << x <<< X << q <<< Q < z
assert: m <<< M << x <<< X << q <<< Q << a < z < n
&m << a
&[before 3] a <<< x <<< X << q <<< Q < z
assert: m <<< M << x <<< X <<< a << q <<< Q < z < n
&m <<< a
&[before 1] a < x <<< X << q <<< Q < z
assert: x <<< X << q <<< Q < z < n < m <<< a <<< M
&m <<< a
&[before 2] a << x <<< X << q <<< Q < z
assert: x <<< X << q <<< Q << m <<< a <<< M < z < n
&m <<< a
&[before 3] a <<< x <<< X << q <<< Q < z
assert: m <<< x <<< X <<< a <<< M << q <<< Q < z < n
&[before 1] s < x <<< X << q <<< Q < z
assert: r <<< R < x <<< X << q <<< Q < z < s < n
&[before 2] s << x <<< X << q <<< Q < z
assert: r <<< R < x <<< X << q <<< Q << s < z < n
&[before 3] s <<< x <<< X << q <<< Q < z
assert: r <<< R < x <<< X <<< s << q <<< Q < z < n
&[before 1] \u24DC < x <<< X << q <<< Q < z
assert: x <<< X << q <<< Q < z < n < m <<< \u24DC <<< M
&[before 2] \u24DC << x <<< X << q <<< Q < z
assert: x <<< X << q <<< Q << m <<< \u24DC <<< M < z < n
&[before 3] \u24DC <<< x <<< X << q <<< Q < z
assert: m <<< x <<< X <<< \u24DC <<< M << q <<< Q < z < n
#endif
#if 0
/* requires features not yet supported */
static void TestMoreBefore(void) {
static const struct {
const char* rules;
const char* order[16];
int32_t size;
} tests[] = {
{ "&m < a &[before 1] a < x <<< X << q <<< Q < z",
{ "m","M","x","X","q","Q","z","a","n" }, 9},
{ "&m < a &[before 2] a << x <<< X << q <<< Q < z",
{ "m","M","x","X","q","Q","a","z","n" }, 9},
{ "&m < a &[before 3] a <<< x <<< X << q <<< Q < z",
{ "m","M","x","X","a","q","Q","z","n" }, 9},
{ "&m << a &[before 1] a < x <<< X << q <<< Q < z",
{ "x","X","q","Q","z","m","M","a","n" }, 9},
{ "&m << a &[before 2] a << x <<< X << q <<< Q < z",
{ "m","M","x","X","q","Q","a","z","n" }, 9},
{ "&m << a &[before 3] a <<< x <<< X << q <<< Q < z",
{ "m","M","x","X","a","q","Q","z","n" }, 9},
{ "&m <<< a &[before 1] a < x <<< X << q <<< Q < z",
{ "x","X","q","Q","z","n","m","a","M" }, 9},
{ "&m <<< a &[before 2] a << x <<< X << q <<< Q < z",
{ "x","X","q","Q","m","a","M","z","n" }, 9},
{ "&m <<< a &[before 3] a <<< x <<< X << q <<< Q < z",
{ "m","x","X","a","M","q","Q","z","n" }, 9},
{ "&[before 1] s < x <<< X << q <<< Q < z",
{ "r","R","x","X","q","Q","z","s","n" }, 9},
{ "&[before 2] s << x <<< X << q <<< Q < z",
{ "r","R","x","X","q","Q","s","z","n" }, 9},
{ "&[before 3] s <<< x <<< X << q <<< Q < z",
{ "r","R","x","X","s","q","Q","z","n" }, 9},
{ "&[before 1] \\u24DC < x <<< X << q <<< Q < z",
{ "x","X","q","Q","z","n","m","\\u24DC","M" }, 9},
{ "&[before 2] \\u24DC << x <<< X << q <<< Q < z",
{ "x","X","q","Q","m","\\u24DC","M","z","n" }, 9},
{ "&[before 3] \\u24DC <<< x <<< X << q <<< Q < z",
{ "m","x","X","\\u24DC","M","q","Q","z","n" }, 9}
};
int32_t i = 0;
for(i = 0; i < sizeof(tests)/sizeof(tests[0]); i++) {
genericRulesStarter(tests[i].rules, tests[i].order, tests[i].size);
}
}
#endif
static void TestTailorNULL( void ) {
const static char* rule = "&a <<< '\\u0000'";
UErrorCode status = U_ZERO_ERROR;
UChar rlz[RULE_BUFFER_LEN] = { 0 };
uint32_t rlen = 0;
UChar a = 1, null = 0;
UCollationResult res = UCOL_EQUAL;
UCollator *coll = NULL;
rlen = u_unescape(rule, rlz, RULE_BUFFER_LEN);
coll = ucol_openRules(rlz, rlen, UCOL_DEFAULT, UCOL_DEFAULT,NULL, &status);
if(U_FAILURE(status)) {
log_err_status(status, "Could not open default collator! -> %s\n", u_errorName(status));
} else {
res = ucol_strcoll(coll, &a, 1, &null, 1);
if(res != UCOL_LESS) {
log_err("NULL was not tailored properly!\n");
}
}
ucol_close(coll);
}
static void
TestUpperFirstQuaternary(void)
{
const char* tests[] = { "B", "b", "Bb", "bB" };
UColAttribute att[] = { UCOL_STRENGTH, UCOL_CASE_FIRST };
UColAttributeValue attVals[] = { UCOL_QUATERNARY, UCOL_UPPER_FIRST };
genericLocaleStarterWithOptions("root", tests, sizeof(tests)/sizeof(tests[0]), att, attVals, sizeof(att)/sizeof(att[0]));
}
static void
TestJ4960(void)
{
const char* tests[] = { "\\u00e2T", "aT" };
UColAttribute att[] = { UCOL_STRENGTH, UCOL_CASE_LEVEL };
UColAttributeValue attVals[] = { UCOL_PRIMARY, UCOL_ON };
const char* tests2[] = { "a", "A" };
const char* rule = "&[first tertiary ignorable]=A=a";
UColAttribute att2[] = { UCOL_CASE_LEVEL };
UColAttributeValue attVals2[] = { UCOL_ON };
/* Test whether we correctly ignore primary ignorables on case level when */
/* we have only primary & case level */
genericLocaleStarterWithOptionsAndResult("root", tests, sizeof(tests)/sizeof(tests[0]), att, attVals, sizeof(att)/sizeof(att[0]), UCOL_EQUAL);
/* Test whether ICU4J will make case level for sortkeys that have primary strength */
/* and case level */
genericLocaleStarterWithOptions("root", tests2, sizeof(tests2)/sizeof(tests2[0]), att, attVals, sizeof(att)/sizeof(att[0]));
/* Test whether completely ignorable letters have case level info (they shouldn't) */
genericRulesStarterWithOptionsAndResult(rule, tests2, sizeof(tests2)/sizeof(tests2[0]), att2, attVals2, sizeof(att2)/sizeof(att2[0]), UCOL_EQUAL);
}
static void
TestJ5223(void)
{
static const char *test = "this is a test string";
UChar ustr[256];
int32_t ustr_length = u_unescape(test, ustr, 256);
unsigned char sortkey[256];
int32_t sortkey_length;
UErrorCode status = U_ZERO_ERROR;
static UCollator *coll = NULL;
coll = ucol_open("root", &status);
if(U_FAILURE(status)) {
log_err_status(status, "Couldn't open UCA -> %s\n", u_errorName(status));
return;
}
ucol_setStrength(coll, UCOL_PRIMARY);
ucol_setAttribute(coll, UCOL_STRENGTH, UCOL_PRIMARY, &status);
ucol_setAttribute(coll, UCOL_NORMALIZATION_MODE, UCOL_ON, &status);
if (U_FAILURE(status)) {
log_err("Failed setting atributes\n");
return;
}
sortkey_length = ucol_getSortKey(coll, ustr, ustr_length, NULL, 0);
if (sortkey_length > 256) return;
/* we mark the position where the null byte should be written in advance */
sortkey[sortkey_length-1] = 0xAA;
/* we set the buffer size one byte higher than needed */
sortkey_length = ucol_getSortKey(coll, ustr, ustr_length, sortkey,
sortkey_length+1);
/* no error occurs (for me) */
if (sortkey[sortkey_length-1] == 0xAA) {
log_err("Hit bug at first try\n");
}
/* we mark the position where the null byte should be written again */
sortkey[sortkey_length-1] = 0xAA;
/* this time we set the buffer size to the exact amount needed */
sortkey_length = ucol_getSortKey(coll, ustr, ustr_length, sortkey,
sortkey_length);
/* now the trailing null byte is not written */
if (sortkey[sortkey_length-1] == 0xAA) {
log_err("Hit bug at second try\n");
}
ucol_close(coll);
}
/* Regression test for Thai partial sort key problem */
static void
TestJ5232(void)
{
const static char *test[] = {
"\\u0e40\\u0e01\\u0e47\\u0e1a\\u0e40\\u0e25\\u0e47\\u0e21",
"\\u0e40\\u0e01\\u0e47\\u0e1a\\u0e40\\u0e25\\u0e48\\u0e21"
};
genericLocaleStarter("th", test, sizeof(test)/sizeof(test[0]));
}
static void
TestJ5367(void)
{
const static char *test[] = { "a", "y" };
const char* rules = "&Ny << Y &[first secondary ignorable] <<< a";
genericRulesStarter(rules, test, sizeof(test)/sizeof(test[0]));
}
static void
TestVI5913(void)
{
UErrorCode status = U_ZERO_ERROR;
int32_t i, j;
UCollator *coll =NULL;
uint8_t resColl[100], expColl[100];
int32_t rLen, tLen, ruleLen, sLen, kLen;
UChar rule[256]={0x26, 0x62, 0x3c, 0x1FF3, 0}; /* &a<0x1FF3-omega with Ypogegrammeni*/
UChar rule2[256]={0x26, 0x7a, 0x3c, 0x0161, 0}; /* &z<s with caron*/
UChar rule3[256]={0x26, 0x7a, 0x3c, 0x0061, 0x00ea, 0}; /* &z<a+e with circumflex.*/
static const UChar tData[][20]={
{0x1EAC, 0},
{0x0041, 0x0323, 0x0302, 0},
{0x1EA0, 0x0302, 0},
{0x00C2, 0x0323, 0},
{0x1ED8, 0}, /* O with dot and circumflex */
{0x1ECC, 0x0302, 0},
{0x1EB7, 0},
{0x1EA1, 0x0306, 0},
};
static const UChar tailorData[][20]={
{0x1FA2, 0}, /* Omega with 3 combining marks */
{0x03C9, 0x0313, 0x0300, 0x0345, 0},
{0x1FF3, 0x0313, 0x0300, 0},
{0x1F60, 0x0300, 0x0345, 0},
{0x1F62, 0x0345, 0},
{0x1FA0, 0x0300, 0},
};
static const UChar tailorData2[][20]={
{0x1E63, 0x030C, 0}, /* s with dot below + caron */
{0x0073, 0x0323, 0x030C, 0},
{0x0073, 0x030C, 0x0323, 0},
};
static const UChar tailorData3[][20]={
{0x007a, 0}, /* z */
{0x0061, 0x0065, 0}, /* a + e */
{0x0061, 0x00ea, 0}, /* a + e with circumflex */
{0x0061, 0x1EC7, 0}, /* a+ e with dot below and circumflex */
{0x0061, 0x1EB9, 0x0302, 0}, /* a + e with dot below + combining circumflex */
{0x0061, 0x00EA, 0x0323, 0}, /* a + e with circumflex + combining dot below */
{0x00EA, 0x0323, 0}, /* e with circumflex + combining dot below */
{0x00EA, 0}, /* e with circumflex */
};
/* Test Vietnamese sort. */
coll = ucol_open("vi", &status);
if(U_FAILURE(status)) {
log_err_status(status, "Couldn't open collator -> %s\n", u_errorName(status));
return;
}
log_verbose("\n\nVI collation:");
if ( !ucol_equal(coll, tData[0], u_strlen(tData[0]), tData[2], u_strlen(tData[2])) ) {
log_err("\\u1EAC not equals to \\u1EA0+\\u0302\n");
}
if ( !ucol_equal(coll, tData[0], u_strlen(tData[0]), tData[3], u_strlen(tData[3])) ) {
log_err("\\u1EAC not equals to \\u00c2+\\u0323\n");
}
if ( !ucol_equal(coll, tData[5], u_strlen(tData[5]), tData[4], u_strlen(tData[4])) ) {
log_err("\\u1ED8 not equals to \\u1ECC+\\u0302\n");
}
if ( !ucol_equal(coll, tData[7], u_strlen(tData[7]), tData[6], u_strlen(tData[6])) ) {
log_err("\\u1EB7 not equals to \\u1EA1+\\u0306\n");
}
for (j=0; j<8; j++) {
tLen = u_strlen(tData[j]);
log_verbose("\n Data :%s \tlen: %d key: ", tData[j], tLen);
rLen = ucol_getSortKey(coll, tData[j], tLen, resColl, 100);
for(i = 0; i<rLen; i++) {
log_verbose(" %02X", resColl[i]);
}
}
ucol_close(coll);
/* Test Romanian sort. */
coll = ucol_open("ro", &status);
log_verbose("\n\nRO collation:");
if ( !ucol_equal(coll, tData[0], u_strlen(tData[0]), tData[1], u_strlen(tData[1])) ) {
log_err("\\u1EAC not equals to \\u1EA0+\\u0302\n");
}
if ( !ucol_equal(coll, tData[4], u_strlen(tData[4]), tData[5], u_strlen(tData[5])) ) {
log_err("\\u1EAC not equals to \\u00c2+\\u0323\n");
}
if ( !ucol_equal(coll, tData[6], u_strlen(tData[6]), tData[7], u_strlen(tData[7])) ) {
log_err("\\u1EB7 not equals to \\u1EA1+\\u0306\n");
}
for (j=4; j<8; j++) {
tLen = u_strlen(tData[j]);
log_verbose("\n Data :%s \tlen: %d key: ", tData[j], tLen);
rLen = ucol_getSortKey(coll, tData[j], tLen, resColl, 100);
for(i = 0; i<rLen; i++) {
log_verbose(" %02X", resColl[i]);
}
}
ucol_close(coll);
/* Test the precomposed Greek character with 3 combining marks. */
log_verbose("\n\nTailoring test: Greek character with 3 combining marks");
ruleLen = u_strlen(rule);
coll = ucol_openRules(rule, ruleLen, UCOL_OFF, UCOL_TERTIARY, NULL,&status);
if (U_FAILURE(status)) {
log_err("ucol_openRules failed with %s\n", u_errorName(status));
return;
}
sLen = u_strlen(tailorData[0]);
for (j=1; j<6; j++) {
tLen = u_strlen(tailorData[j]);
if ( !ucol_equal(coll, tailorData[0], sLen, tailorData[j], tLen)) {
log_err("\n \\u1FA2 not equals to data[%d]:%s\n", j, tailorData[j]);
}
}
/* Test getSortKey. */
tLen = u_strlen(tailorData[0]);
kLen=ucol_getSortKey(coll, tailorData[0], tLen, expColl, 100);
for (j=0; j<6; j++) {
tLen = u_strlen(tailorData[j]);
rLen = ucol_getSortKey(coll, tailorData[j], tLen, resColl, 100);
if ( kLen!=rLen || uprv_memcmp(expColl, resColl, rLen*sizeof(uint8_t))!=0 ) {
log_err("\n Data[%d] :%s \tlen: %d key: ", j, tailorData[j], tLen);
for(i = 0; i<rLen; i++) {
log_err(" %02X", resColl[i]);
}
}
}
ucol_close(coll);
log_verbose("\n\nTailoring test for s with caron:");
ruleLen = u_strlen(rule2);
coll = ucol_openRules(rule2, ruleLen, UCOL_OFF, UCOL_TERTIARY, NULL,&status);
tLen = u_strlen(tailorData2[0]);
kLen=ucol_getSortKey(coll, tailorData2[0], tLen, expColl, 100);
for (j=1; j<3; j++) {
tLen = u_strlen(tailorData2[j]);
rLen = ucol_getSortKey(coll, tailorData2[j], tLen, resColl, 100);
if ( kLen!=rLen || uprv_memcmp(expColl, resColl, rLen*sizeof(uint8_t))!=0 ) {
log_err("\n After tailoring Data[%d] :%s \tlen: %d key: ", j, tailorData[j], tLen);
for(i = 0; i<rLen; i++) {
log_err(" %02X", resColl[i]);
}
}
}
ucol_close(coll);
log_verbose("\n\nTailoring test for &z< ae with circumflex:");
ruleLen = u_strlen(rule3);
coll = ucol_openRules(rule3, ruleLen, UCOL_OFF, UCOL_TERTIARY, NULL,&status);
tLen = u_strlen(tailorData3[3]);
kLen=ucol_getSortKey(coll, tailorData3[3], tLen, expColl, 100);
for (j=4; j<6; j++) {
tLen = u_strlen(tailorData3[j]);
rLen = ucol_getSortKey(coll, tailorData3[j], tLen, resColl, 100);
if ( kLen!=rLen || uprv_memcmp(expColl, resColl, rLen*sizeof(uint8_t))!=0 ) {
log_err("\n After tailoring Data[%d] :%s \tlen: %d key: ", j, tailorData[j], tLen);
for(i = 0; i<rLen; i++) {
log_err(" %02X", resColl[i]);
}
}
log_verbose("\n Test Data[%d] :%s \tlen: %d key: ", j, tailorData[j], tLen);
for(i = 0; i<rLen; i++) {
log_verbose(" %02X", resColl[i]);
}
}
ucol_close(coll);
}
static void
TestTailor6179(void)
{
UErrorCode status = U_ZERO_ERROR;
int32_t i;
UCollator *coll =NULL;
uint8_t resColl[100];
int32_t rLen, tLen, ruleLen;
/* &[last primary ignorable]<< a &[first primary ignorable]<<b */
UChar rule1[256]={0x26,0x5B,0x6C,0x61,0x73,0x74,0x20,0x70,0x72,0x69,0x6D,0x61,0x72,0x79,
0x20,0x69,0x67,0x6E,0x6F,0x72,0x61,0x62,0x6C,0x65,0x5D,0x3C,0x3C,0x20,0x61,0x20,
0x26,0x5B,0x66,0x69,0x72,0x73,0x74,0x20,0x70,0x72,0x69,0x6D,0x61,0x72,0x79,0x20,
0x69,0x67,0x6E,0x6F,0x72,0x61,0x62,0x6C,0x65,0x5D,0x3C,0x3C,0x62,0x20, 0};
/* &[last secondary ignorable]<<< a &[first secondary ignorable]<<<b */
UChar rule2[256]={0x26,0x5B,0x6C,0x61,0x73,0x74,0x20,0x73,0x65,0x63,0x6F,0x6E,0x64,0x61,
0x72,0x79,0x20,0x69,0x67,0x6E,0x6F,0x72,0x61,0x62,0x6C,0x65,0x5D,0x3C,0x3C,0x3C,
0x61,0x20,0x26,0x5B,0x66,0x69,0x72,0x73,0x74,0x20,0x73,0x65,0x63,0x6F,0x6E,
0x64,0x61,0x72,0x79,0x20,0x69,0x67,0x6E,0x6F,0x72,0x61,0x62,0x6C,0x65,0x5D,0x3C,
0x3C,0x3C,0x20,0x62,0};
UChar tData1[][20]={
{0x61, 0},
{0x62, 0},
{ 0xFDD0,0x009E, 0}
};
UChar tData2[][20]={
{0x61, 0},
{0x62, 0},
{ 0xFDD0,0x009E, 0}
};
/*
* These values from FractionalUCA.txt will change,
* and need to be updated here.
*/
uint8_t firstPrimaryIgnCE[6]={1, 87, 1, 5, 1, 0};
uint8_t lastPrimaryIgnCE[6]={1, 0xE3, 0xC9, 1, 5, 0};
uint8_t firstSecondaryIgnCE[6]={1, 1, 0x3f, 0x03, 0};
uint8_t lastSecondaryIgnCE[6]={1, 1, 0x3f, 0x03, 0};
/* Test [Last Primary ignorable] */
log_verbose("\n\nTailoring test: &[last primary ignorable]<<a &[first primary ignorable]<<b ");
ruleLen = u_strlen(rule1);
coll = ucol_openRules(rule1, ruleLen, UCOL_OFF, UCOL_TERTIARY, NULL,&status);
if (U_FAILURE(status)) {
log_err_status(status, "Tailoring test: &[last primary ignorable] failed! -> %s\n", u_errorName(status));
return;
}
tLen = u_strlen(tData1[0]);
rLen = ucol_getSortKey(coll, tData1[0], tLen, resColl, 100);
if (uprv_memcmp(resColl, lastPrimaryIgnCE, uprv_min(rLen,6)) < 0) {
log_err("\n Data[%d] :%s \tlen: %d key: ", 0, tData1[0], rLen);
for(i = 0; i<rLen; i++) {
log_err(" %02X", resColl[i]);
}
}
tLen = u_strlen(tData1[1]);
rLen = ucol_getSortKey(coll, tData1[1], tLen, resColl, 100);
if (uprv_memcmp(resColl, firstPrimaryIgnCE, uprv_min(rLen, 6)) < 0) {
log_err("\n Data[%d] :%s \tlen: %d key: ", 1, tData1[1], rLen);
for(i = 0; i<rLen; i++) {
log_err(" %02X", resColl[i]);
}
}
ucol_close(coll);
/* Test [Last Secondary ignorable] */
log_verbose("\n\nTailoring test: &[last secondary ignorable]<<<a &[first secondary ignorable]<<<b ");
ruleLen = u_strlen(rule1);
coll = ucol_openRules(rule2, ruleLen, UCOL_OFF, UCOL_TERTIARY, NULL,&status);
if (U_FAILURE(status)) {
log_err("Tailoring test: &[last primary ignorable] failed!");
return;
}
tLen = u_strlen(tData2[0]);
rLen = ucol_getSortKey(coll, tData2[0], tLen, resColl, 100);
log_verbose("\n Data[%d] :%s \tlen: %d key: ", 0, tData2[0], rLen);
for(i = 0; i<rLen; i++) {
log_verbose(" %02X", resColl[i]);
}
if (uprv_memcmp(resColl, lastSecondaryIgnCE, uprv_min(rLen, 3)) < 0) {
log_err("\n Data[%d] :%s \tlen: %d key: ", 0, tData2[0], rLen);
for(i = 0; i<rLen; i++) {
log_err(" %02X", resColl[i]);
}
}
tLen = u_strlen(tData2[1]);
rLen = ucol_getSortKey(coll, tData2[1], tLen, resColl, 100);
log_verbose("\n Data[%d] :%s \tlen: %d key: ", 1, tData2[1], rLen);
for(i = 0; i<rLen; i++) {
log_verbose(" %02X", resColl[i]);
}
if (uprv_memcmp(resColl, firstSecondaryIgnCE, uprv_min(rLen, 4)) < 0) {
log_err("\n Data[%d] :%s \tlen: %d key: ", 1, tData2[1], rLen);
for(i = 0; i<rLen; i++) {
log_err(" %02X", resColl[i]);
}
}
ucol_close(coll);
}
static void
TestUCAPrecontext(void)
{
UErrorCode status = U_ZERO_ERROR;
int32_t i, j;
UCollator *coll =NULL;
uint8_t resColl[100], prevColl[100];
int32_t rLen, tLen, ruleLen;
UChar rule1[256]= {0x26, 0xb7, 0x3c, 0x61, 0}; /* & middle-dot < a */
UChar rule2[256]= {0x26, 0x4C, 0xb7, 0x3c, 0x3c, 0x61, 0};
/* & l middle-dot << a a is an expansion. */
UChar tData1[][20]={
{ 0xb7, 0}, /* standalone middle dot(0xb7) */
{ 0x387, 0}, /* standalone middle dot(0x387) */
{ 0x61, 0}, /* a */
{ 0x6C, 0}, /* l */
{ 0x4C, 0x0332, 0}, /* l with [first primary ignorable] */
{ 0x6C, 0xb7, 0}, /* l with middle dot(0xb7) */
{ 0x6C, 0x387, 0}, /* l with middle dot(0x387) */
{ 0x4C, 0xb7, 0}, /* L with middle dot(0xb7) */
{ 0x4C, 0x387, 0}, /* L with middle dot(0x387) */
{ 0x6C, 0x61, 0x387, 0}, /* la with middle dot(0x387) */
{ 0x4C, 0x61, 0xb7, 0}, /* La with middle dot(0xb7) */
};
log_verbose("\n\nEN collation:");
coll = ucol_open("en", &status);
if (U_FAILURE(status)) {
log_err_status(status, "Tailoring test: &z <<a|- failed! -> %s\n", u_errorName(status));
return;
}
for (j=0; j<11; j++) {
tLen = u_strlen(tData1[j]);
rLen = ucol_getSortKey(coll, tData1[j], tLen, resColl, 100);
if ((j>0) && (strcmp((char *)resColl, (char *)prevColl)<0)) {
log_err("\n Expecting greater key than previous test case: Data[%d] :%s.",
j, tData1[j]);
}
log_verbose("\n Data[%d] :%s \tlen: %d key: ", j, tData1[j], rLen);
for(i = 0; i<rLen; i++) {
log_verbose(" %02X", resColl[i]);
}
uprv_memcpy(prevColl, resColl, sizeof(uint8_t)*(rLen+1));
}
ucol_close(coll);
log_verbose("\n\nJA collation:");
coll = ucol_open("ja", &status);
if (U_FAILURE(status)) {
log_err("Tailoring test: &z <<a|- failed!");
return;
}
for (j=0; j<11; j++) {
tLen = u_strlen(tData1[j]);
rLen = ucol_getSortKey(coll, tData1[j], tLen, resColl, 100);
if ((j>0) && (strcmp((char *)resColl, (char *)prevColl)<0)) {
log_err("\n Expecting greater key than previous test case: Data[%d] :%s.",
j, tData1[j]);
}
log_verbose("\n Data[%d] :%s \tlen: %d key: ", j, tData1[j], rLen);
for(i = 0; i<rLen; i++) {
log_verbose(" %02X", resColl[i]);
}
uprv_memcpy(prevColl, resColl, sizeof(uint8_t)*(rLen+1));
}
ucol_close(coll);
log_verbose("\n\nTailoring test: & middle dot < a ");
ruleLen = u_strlen(rule1);
coll = ucol_openRules(rule1, ruleLen, UCOL_OFF, UCOL_TERTIARY, NULL,&status);
if (U_FAILURE(status)) {
log_err("Tailoring test: & middle dot < a failed!");
return;
}
for (j=0; j<11; j++) {
tLen = u_strlen(tData1[j]);
rLen = ucol_getSortKey(coll, tData1[j], tLen, resColl, 100);
if ((j>0) && (strcmp((char *)resColl, (char *)prevColl)<0)) {
log_err("\n Expecting greater key than previous test case: Data[%d] :%s.",
j, tData1[j]);
}
log_verbose("\n Data[%d] :%s \tlen: %d key: ", j, tData1[j], rLen);
for(i = 0; i<rLen; i++) {
log_verbose(" %02X", resColl[i]);
}
uprv_memcpy(prevColl, resColl, sizeof(uint8_t)*(rLen+1));
}
ucol_close(coll);
log_verbose("\n\nTailoring test: & l middle-dot << a ");
ruleLen = u_strlen(rule2);
coll = ucol_openRules(rule2, ruleLen, UCOL_OFF, UCOL_TERTIARY, NULL,&status);
if (U_FAILURE(status)) {
log_err("Tailoring test: & l middle-dot << a failed!");
return;
}
for (j=0; j<11; j++) {
tLen = u_strlen(tData1[j]);
rLen = ucol_getSortKey(coll, tData1[j], tLen, resColl, 100);
if ((j>0) && (j!=3) && (strcmp((char *)resColl, (char *)prevColl)<0)) {
log_err("\n Expecting greater key than previous test case: Data[%d] :%s.",
j, tData1[j]);
}
if ((j==3)&&(strcmp((char *)resColl, (char *)prevColl)>0)) {
log_err("\n Expecting smaller key than previous test case: Data[%d] :%s.",
j, tData1[j]);
}
log_verbose("\n Data[%d] :%s \tlen: %d key: ", j, tData1[j], rLen);
for(i = 0; i<rLen; i++) {
log_verbose(" %02X", resColl[i]);
}
uprv_memcpy(prevColl, resColl, sizeof(uint8_t)*(rLen+1));
}
ucol_close(coll);
}
static void
TestOutOfBuffer5468(void)
{
static const char *test = "\\u4e00";
UChar ustr[256];
int32_t ustr_length = u_unescape(test, ustr, 256);
unsigned char shortKeyBuf[1];
int32_t sortkey_length;
UErrorCode status = U_ZERO_ERROR;
static UCollator *coll = NULL;
coll = ucol_open("root", &status);
if(U_FAILURE(status)) {
log_err_status(status, "Couldn't open UCA -> %s\n", u_errorName(status));
return;
}
ucol_setStrength(coll, UCOL_PRIMARY);
ucol_setAttribute(coll, UCOL_STRENGTH, UCOL_PRIMARY, &status);
ucol_setAttribute(coll, UCOL_NORMALIZATION_MODE, UCOL_ON, &status);
if (U_FAILURE(status)) {
log_err("Failed setting atributes\n");
return;
}
sortkey_length = ucol_getSortKey(coll, ustr, ustr_length, shortKeyBuf, sizeof(shortKeyBuf));
if (sortkey_length != 4) {
log_err("expecting length of sortKey is 4 got:%d ", sortkey_length);
}
log_verbose("length of sortKey is %d", sortkey_length);
ucol_close(coll);
}
#define TSKC_DATA_SIZE 5
#define TSKC_BUF_SIZE 50
static void
TestSortKeyConsistency(void)
{
UErrorCode icuRC = U_ZERO_ERROR;
UCollator* ucol;
UChar data[] = { 0xFFFD, 0x0006, 0x0006, 0x0006, 0xFFFD};
uint8_t bufFull[TSKC_DATA_SIZE][TSKC_BUF_SIZE];
uint8_t bufPart[TSKC_DATA_SIZE][TSKC_BUF_SIZE];
int32_t i, j, i2;
ucol = ucol_openFromShortString("LEN_S4", FALSE, NULL, &icuRC);
if (U_FAILURE(icuRC))
{
log_err_status(icuRC, "ucol_openFromShortString failed -> %s\n", u_errorName(icuRC));
return;
}
for (i = 0; i < TSKC_DATA_SIZE; i++)
{
UCharIterator uiter;
uint32_t state[2] = { 0, 0 };
int32_t dataLen = i+1;
for (j=0; j<TSKC_BUF_SIZE; j++)
bufFull[i][j] = bufPart[i][j] = 0;
/* Full sort key */
ucol_getSortKey(ucol, data, dataLen, bufFull[i], TSKC_BUF_SIZE);
/* Partial sort key */
uiter_setString(&uiter, data, dataLen);
ucol_nextSortKeyPart(ucol, &uiter, state, bufPart[i], TSKC_BUF_SIZE, &icuRC);
if (U_FAILURE(icuRC))
{
log_err("ucol_nextSortKeyPart failed\n");
ucol_close(ucol);
return;
}
for (i2=0; i2<i; i2++)
{
UBool fullMatch = TRUE;
UBool partMatch = TRUE;
for (j=0; j<TSKC_BUF_SIZE; j++)
{
fullMatch = fullMatch && (bufFull[i][j] != bufFull[i2][j]);
partMatch = partMatch && (bufPart[i][j] != bufPart[i2][j]);
}
if (fullMatch != partMatch) {
log_err(fullMatch ? "full key was consistent, but partial key changed\n"
: "partial key was consistent, but full key changed\n");
ucol_close(ucol);
return;
}
}
}
/*=============================================*/
ucol_close(ucol);
}
/* ticket: 6101 */
static void TestCroatianSortKey(void) {
const char* collString = "LHR_AN_CX_EX_FX_HX_NX_S3";
UErrorCode status = U_ZERO_ERROR;
UCollator *ucol;
UCharIterator iter;
static const UChar text[] = { 0x0044, 0xD81A };
size_t length = sizeof(text)/sizeof(*text);
uint8_t textSortKey[32];
size_t lenSortKey = 32;
size_t actualSortKeyLen;
uint32_t uStateInfo[2] = { 0, 0 };
ucol = ucol_openFromShortString(collString, FALSE, NULL, &status);
if (U_FAILURE(status)) {
log_err_status(status, "ucol_openFromShortString error in Craotian test. -> %s\n", u_errorName(status));
return;
}
uiter_setString(&iter, text, length);
actualSortKeyLen = ucol_nextSortKeyPart(
ucol, &iter, (uint32_t*)uStateInfo,
textSortKey, lenSortKey, &status
);
if (actualSortKeyLen == lenSortKey) {
log_err("ucol_nextSortKeyPart did not give correct result in Croatian test.\n");
}
ucol_close(ucol);
}
/* ticket: 6140 */
/* This test ensures that codepoints such as 0x3099 are flagged correctly by the collator since
* they are both Hiragana and Katakana
*/
#define SORTKEYLEN 50
static void TestHiragana(void) {
UErrorCode status = U_ZERO_ERROR;
UCollator* ucol;
UCollationResult strcollresult;
UChar data1[] = { 0x3058, 0x30B8 }; /* Hiragana and Katakana letter Zi */
UChar data2[] = { 0x3057, 0x3099, 0x30B7, 0x3099 };
int32_t data1Len = sizeof(data1)/sizeof(*data1);
int32_t data2Len = sizeof(data2)/sizeof(*data2);
int32_t i, j;
uint8_t sortKey1[SORTKEYLEN];
uint8_t sortKey2[SORTKEYLEN];
UCharIterator uiter1;
UCharIterator uiter2;
uint32_t state1[2] = { 0, 0 };
uint32_t state2[2] = { 0, 0 };
int32_t keySize1;
int32_t keySize2;
ucol = ucol_openFromShortString("LJA_AN_CX_EX_FX_HO_NX_S4", FALSE, NULL,
&status);
if (U_FAILURE(status)) {
log_err_status(status, "Error status: %s; Unable to open collator from short string.\n", u_errorName(status));
return;
}
/* Start of full sort keys */
/* Full sort key1 */
keySize1 = ucol_getSortKey(ucol, data1, data1Len, sortKey1, SORTKEYLEN);
/* Full sort key2 */
keySize2 = ucol_getSortKey(ucol, data2, data2Len, sortKey2, SORTKEYLEN);
if (keySize1 == keySize2) {
for (i = 0; i < keySize1; i++) {
if (sortKey1[i] != sortKey2[i]) {
log_err("Full sort keys are different. Should be equal.");
}
}
} else {
log_err("Full sort keys sizes doesn't match: %d %d", keySize1, keySize2);
}
/* End of full sort keys */
/* Start of partial sort keys */
/* Partial sort key1 */
uiter_setString(&uiter1, data1, data1Len);
keySize1 = ucol_nextSortKeyPart(ucol, &uiter1, state1, sortKey1, SORTKEYLEN, &status);
/* Partial sort key2 */
uiter_setString(&uiter2, data2, data2Len);
keySize2 = ucol_nextSortKeyPart(ucol, &uiter2, state2, sortKey2, SORTKEYLEN, &status);
if (U_SUCCESS(status) && keySize1 == keySize2) {
for (j = 0; j < keySize1; j++) {
if (sortKey1[j] != sortKey2[j]) {
log_err("Partial sort keys are different. Should be equal");
}
}
} else {
log_err("Error Status: %s or Partial sort keys sizes doesn't match: %d %d", u_errorName(status), keySize1, keySize2);
}
/* End of partial sort keys */
/* Start of strcoll */
/* Use ucol_strcoll() to determine ordering */
strcollresult = ucol_strcoll(ucol, data1, data1Len, data2, data2Len);
if (strcollresult != UCOL_EQUAL) {
log_err("Result from ucol_strcoll() should be UCOL_EQUAL.");
}
ucol_close(ucol);
}
#define TEST(x) addTest(root, &x, "tscoll/cmsccoll/" # x)
void addMiscCollTest(TestNode** root)
{
TEST(TestRuleOptions);
TEST(TestBeforePrefixFailure);
TEST(TestContractionClosure);
TEST(TestPrefixCompose);
TEST(TestStrCollIdenticalPrefix);
TEST(TestPrefix);
TEST(TestNewJapanese);
/*TEST(TestLimitations);*/
TEST(TestNonChars);
TEST(TestExtremeCompression);
TEST(TestSurrogates);
TEST(TestVariableTopSetting);
TEST(TestBocsuCoverage);
TEST(TestCyrillicTailoring);
TEST(TestCase);
TEST(IncompleteCntTest);
TEST(BlackBirdTest);
TEST(FunkyATest);
TEST(BillFairmanTest);
TEST(RamsRulesTest);
TEST(IsTailoredTest);
TEST(TestCollations);
TEST(TestChMove);
TEST(TestImplicitTailoring);
TEST(TestFCDProblem);
TEST(TestEmptyRule);
/*TEST(TestJ784);*/ /* 'zh' locale has changed - now it is getting tested by TestBeforePinyin */
TEST(TestJ815);
/*TEST(TestJ831);*/ /* we changed lv locale */
TEST(TestBefore);
TEST(TestRedundantRules);
TEST(TestExpansionSyntax);
TEST(TestHangulTailoring);
TEST(TestUCARules);
TEST(TestIncrementalNormalize);
TEST(TestComposeDecompose);
TEST(TestCompressOverlap);
TEST(TestContraction);
TEST(TestExpansion);
/*TEST(PrintMarkDavis);*/ /* this test doesn't test - just prints sortkeys */
/*TEST(TestGetCaseBit);*/ /*this one requires internal things to be exported */
TEST(TestOptimize);
TEST(TestSuppressContractions);
TEST(Alexis2);
TEST(TestHebrewUCA);
TEST(TestPartialSortKeyTermination);
TEST(TestSettings);
TEST(TestEquals);
TEST(TestJ2726);
TEST(NullRule);
TEST(TestNumericCollation);
TEST(TestTibetanConformance);
TEST(TestPinyinProblem);
TEST(TestImplicitGeneration);
TEST(TestSeparateTrees);
TEST(TestBeforePinyin);
TEST(TestBeforeTightening);
/*TEST(TestMoreBefore);*/
TEST(TestTailorNULL);
TEST(TestUpperFirstQuaternary);
TEST(TestJ4960);
TEST(TestJ5223);
TEST(TestJ5232);
TEST(TestJ5367);
TEST(TestHiragana);
TEST(TestSortKeyConsistency);
TEST(TestVI5913); /* VI, RO tailored rules */
TEST(TestCroatianSortKey);
TEST(TestTailor6179);
TEST(TestUCAPrecontext);
TEST(TestOutOfBuffer5468);
}
#endif /* #if !UCONFIG_NO_COLLATION */