skia2/tests/PathOpsAngleTest.cpp

533 lines
22 KiB
C++
Raw Normal View History

/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "PathOpsTestCommon.h"
#include "SkIntersections.h"
#include "SkOpContour.h"
#include "SkOpSegment.h"
#include "SkRandom.h"
#include "SkTSort.h"
#include "Test.h"
static bool gDisableAngleTests = true;
static float next(float f)
{
int fBits = SkFloatAs2sCompliment(f);
++fBits;
float fNext = Sk2sComplimentAsFloat(fBits);
return fNext;
}
static float prev(float f)
{
int fBits = SkFloatAs2sCompliment(f);
--fBits;
float fNext = Sk2sComplimentAsFloat(fBits);
return fNext;
}
DEF_TEST(PathOpsAngleFindCrossEpsilon, reporter) {
if (gDisableAngleTests) {
return;
}
SkRandom ran;
int maxEpsilon = 0;
for (int index = 0; index < 10000000; ++index) {
SkDLine line = {{{0, 0}, {ran.nextRangeF(0.0001f, 1000), ran.nextRangeF(0.0001f, 1000)}}};
for (int inner = 0; inner < 10; ++inner) {
float t = ran.nextRangeF(0.0001f, 1);
SkDPoint dPt = line.ptAtT(t);
SkPoint pt = dPt.asSkPoint();
float xs[3] = { prev(pt.fX), pt.fX, next(pt.fX) };
float ys[3] = { prev(pt.fY), pt.fY, next(pt.fY) };
for (int xIdx = 0; xIdx < 3; ++xIdx) {
for (int yIdx = 0; yIdx < 3; ++yIdx) {
SkPoint test = { xs[xIdx], ys[yIdx] };
float p1 = SkDoubleToScalar(line[1].fX * test.fY);
float p2 = SkDoubleToScalar(line[1].fY * test.fX);
int p1Bits = SkFloatAs2sCompliment(p1);
int p2Bits = SkFloatAs2sCompliment(p2);
int epsilon = SkTAbs(p1Bits - p2Bits);
if (maxEpsilon < epsilon) {
SkDebugf("line={{0, 0}, {%1.7g, %1.7g}} t=%1.7g pt={%1.7g, %1.7g}"
" epsilon=%d\n",
line[1].fX, line[1].fY, t, test.fX, test.fY, epsilon);
maxEpsilon = epsilon;
}
}
}
}
}
}
DEF_TEST(PathOpsAngleFindQuadEpsilon, reporter) {
if (gDisableAngleTests) {
return;
}
SkRandom ran;
int maxEpsilon = 0;
double maxAngle = 0;
for (int index = 0; index < 100000; ++index) {
SkDLine line = {{{0, 0}, {ran.nextRangeF(0.0001f, 1000), ran.nextRangeF(0.0001f, 1000)}}};
float t = ran.nextRangeF(0.0001f, 1);
SkDPoint dPt = line.ptAtT(t);
float t2 = ran.nextRangeF(0.0001f, 1);
SkDPoint qPt = line.ptAtT(t2);
float t3 = ran.nextRangeF(0.0001f, 1);
SkDPoint qPt2 = line.ptAtT(t3);
qPt.fX += qPt2.fY;
qPt.fY -= qPt2.fX;
QuadPts q = {{line[0], dPt, qPt}};
SkDQuad quad;
quad.debugSet(q.fPts);
// binary search for maximum movement of quad[1] towards test that still has 1 intersection
double moveT = 0.5f;
double deltaT = moveT / 2;
SkDPoint last;
do {
last = quad[1];
quad[1].fX = dPt.fX - line[1].fY * moveT;
quad[1].fY = dPt.fY + line[1].fX * moveT;
SkIntersections i;
i.intersect(quad, line);
REPORTER_ASSERT(reporter, i.used() > 0);
if (i.used() == 1) {
moveT += deltaT;
} else {
moveT -= deltaT;
}
deltaT /= 2;
} while (last.asSkPoint() != quad[1].asSkPoint());
float p1 = SkDoubleToScalar(line[1].fX * last.fY);
float p2 = SkDoubleToScalar(line[1].fY * last.fX);
int p1Bits = SkFloatAs2sCompliment(p1);
int p2Bits = SkFloatAs2sCompliment(p2);
int epsilon = SkTAbs(p1Bits - p2Bits);
if (maxEpsilon < epsilon) {
SkDebugf("line={{0, 0}, {%1.7g, %1.7g}} t=%1.7g/%1.7g/%1.7g moveT=%1.7g"
" pt={%1.7g, %1.7g} epsilon=%d\n",
line[1].fX, line[1].fY, t, t2, t3, moveT, last.fX, last.fY, epsilon);
maxEpsilon = epsilon;
}
double a1 = atan2(line[1].fY, line[1].fX);
double a2 = atan2(last.fY, last.fX);
double angle = fabs(a1 - a2);
if (maxAngle < angle) {
SkDebugf("line={{0, 0}, {%1.7g, %1.7g}} t=%1.7g/%1.7g/%1.7g moveT=%1.7g"
" pt={%1.7g, %1.7g} angle=%1.7g\n",
line[1].fX, line[1].fY, t, t2, t3, moveT, last.fX, last.fY, angle);
maxAngle = angle;
}
}
}
static int find_slop(double x, double y, double rx, double ry) {
int slopBits = 0;
bool less1, less2;
double absX = fabs(x);
double absY = fabs(y);
double length = absX < absY ? absX / 2 + absY : absX + absY / 2;
int exponent;
(void) frexp(length, &exponent);
double epsilon = ldexp(FLT_EPSILON, exponent);
do {
// get the length as the larger plus half the smaller (both same signs)
// find the ulps of the length
// compute the offsets from there
double xSlop = epsilon * slopBits;
double ySlop = x * y < 0 ? -xSlop : xSlop; // OPTIMIZATION: use copysign / _copysign ?
double x1 = x - xSlop;
double y1 = y + ySlop;
double x_ry1 = x1 * ry;
double rx_y1 = rx * y1;
less1 = x_ry1 < rx_y1;
double x2 = x + xSlop;
double y2 = y - ySlop;
double x_ry2 = x2 * ry;
double rx_y2 = rx * y2;
less2 = x_ry2 < rx_y2;
} while (less1 == less2 && ++slopBits);
return slopBits;
}
// from http://stackoverflow.com/questions/1427422/cheap-algorithm-to-find-measure-of-angle-between-vectors
static double diamond_angle(double y, double x)
{
if (y >= 0)
return (x >= 0 ? y/(x+y) : 1-x/(-x+y));
else
return (x < 0 ? 2-y/(-x-y) : 3+x/(x-y));
}
static const double slopTests[][4] = {
// x y rx ry
{-0.058554756452593892, -0.18804585843827226, -0.018568569646021160, -0.059615294434479438},
{-0.0013717412948608398, 0.0041152238845825195, -0.00045837944195925573, 0.0013753175735478074},
{-2.1033774145221198, -1.4046019261273715e-008, -0.70062688352066704, -1.2706324683777995e-008},
};
DEF_TEST(PathOpsAngleFindSlop, reporter) {
if (gDisableAngleTests) {
return;
}
for (int index = 0; index < (int) SK_ARRAY_COUNT(slopTests); ++index) {
const double* slopTest = slopTests[index];
double x = slopTest[0];
double y = slopTest[1];
double rx = slopTest[2];
double ry = slopTest[3];
SkDebugf("%s xy %d=%d\n", __FUNCTION__, index, find_slop(x, y, rx, ry));
SkDebugf("%s rxy %d=%d\n", __FUNCTION__, index, find_slop(rx, ry, x, y));
double angle = diamond_angle(y, x);
double rAngle = diamond_angle(ry, rx);
double diff = fabs(angle - rAngle);
SkDebugf("%s diamond xy=%1.9g rxy=%1.9g diff=%1.9g factor=%d\n", __FUNCTION__,
angle, rAngle, diff, (int) (diff / FLT_EPSILON));
}
}
class PathOpsAngleTester {
public:
static int After(SkOpAngle& lh, SkOpAngle& rh) {
return lh.after(&rh);
}
pathops coincidence and security rewrite Most changes stem from working on an examples bracketed by #if DEBUG_UNDER_DEVELOPMENT // tiger These exposed many problems with coincident curves, as well as errors throughout the code. Fixing these errors also fixed a number of fuzzer-inspired bug reports. * Line/Curve Intersections Check to see if the end of the line nearly intersects the curve. This was a FIXME in the old code. * Performance Use a central chunk allocator. Plumb the allocator into the global variable state so that it can be shared. (Note that 'SkGlobalState' is allocated on the stack and is visible to children functions but not other threads.) * Refactor Let SkOpAngle grow up from a structure to a class. Let SkCoincidentSpans grow up from a structure to a class. Rename enum Alias to AliasMatch. * Coincidence Rewrite Add more debugging to coincidence detection. Parallel debugging routines have read-only logic to report the current coincidence state so that steps through the logic can expose whether things got better or worse. More functions can error-out and cause the pathops engine to non-destructively exit. * Accuracy Remove code that adjusted point locations. Instead, offset the curve part so that sorted curves all use the same origin. Reduce the size (and influence) of magic numbers. * Testing The debug suite with verify and the full release suite ./out/Debug/pathops_unittest -v -V ./out/Release/pathops_unittest -v -V -x expose one error. That error is captured as cubics_d3. This error exists in the checked in code as well. BUG=skia: GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2128633003 BUG=skia: GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2128633003 Review-Url: https://codereview.chromium.org/2128633003
2016-07-18 17:01:36 +00:00
static int AllOnOneSide(SkOpAngle& lh, SkOpAngle& rh) {
return lh.allOnOneSide(&rh);
}
static int ConvexHullOverlaps(SkOpAngle& lh, SkOpAngle& rh) {
return lh.convexHullOverlaps(&rh);
}
static int Orderable(SkOpAngle& lh, SkOpAngle& rh) {
return lh.orderable(&rh);
}
static int EndsIntersect(SkOpAngle& lh, SkOpAngle& rh) {
return lh.endsIntersect(&rh);
}
static void SetNext(SkOpAngle& lh, SkOpAngle& rh) {
lh.fNext = &rh;
}
};
class PathOpsSegmentTester {
public:
static void DebugReset(SkOpSegment* segment) {
segment->debugReset();
}
};
struct CircleData {
const CubicPts fPts;
const int fPtCount;
SkPoint fShortPts[4];
};
static CircleData circleDataSet[] = {
{ {{{313.0155029296875, 207.90290832519531}, {320.05078125, 227.58743286132812}}}, 2, {} },
{ {{{313.0155029296875, 207.90290832519531}, {313.98246891063195, 219.33615203830394},
{320.05078125, 227.58743286132812}}}, 3, {} },
};
static const int circleDataSetSize = (int) SK_ARRAY_COUNT(circleDataSet);
DEF_TEST(PathOpsAngleCircle, reporter) {
char storage[4096];
SkArenaAlloc allocator(storage);
SkOpContourHead contour;
pathops coincidence and security rewrite Most changes stem from working on an examples bracketed by #if DEBUG_UNDER_DEVELOPMENT // tiger These exposed many problems with coincident curves, as well as errors throughout the code. Fixing these errors also fixed a number of fuzzer-inspired bug reports. * Line/Curve Intersections Check to see if the end of the line nearly intersects the curve. This was a FIXME in the old code. * Performance Use a central chunk allocator. Plumb the allocator into the global variable state so that it can be shared. (Note that 'SkGlobalState' is allocated on the stack and is visible to children functions but not other threads.) * Refactor Let SkOpAngle grow up from a structure to a class. Let SkCoincidentSpans grow up from a structure to a class. Rename enum Alias to AliasMatch. * Coincidence Rewrite Add more debugging to coincidence detection. Parallel debugging routines have read-only logic to report the current coincidence state so that steps through the logic can expose whether things got better or worse. More functions can error-out and cause the pathops engine to non-destructively exit. * Accuracy Remove code that adjusted point locations. Instead, offset the curve part so that sorted curves all use the same origin. Reduce the size (and influence) of magic numbers. * Testing The debug suite with verify and the full release suite ./out/Debug/pathops_unittest -v -V ./out/Release/pathops_unittest -v -V -x expose one error. That error is captured as cubics_d3. This error exists in the checked in code as well. BUG=skia: GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2128633003 BUG=skia: GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2128633003 Review-Url: https://codereview.chromium.org/2128633003
2016-07-18 17:01:36 +00:00
SkOpGlobalState state(&contour, &allocator SkDEBUGPARAMS(false) SkDEBUGPARAMS(nullptr));
contour.init(&state, false, false);
for (int index = 0; index < circleDataSetSize; ++index) {
CircleData& data = circleDataSet[index];
for (int idx2 = 0; idx2 < data.fPtCount; ++idx2) {
data.fShortPts[idx2] = data.fPts.fPts[idx2].asSkPoint();
}
switch (data.fPtCount) {
case 2:
pathops coincidence and security rewrite Most changes stem from working on an examples bracketed by #if DEBUG_UNDER_DEVELOPMENT // tiger These exposed many problems with coincident curves, as well as errors throughout the code. Fixing these errors also fixed a number of fuzzer-inspired bug reports. * Line/Curve Intersections Check to see if the end of the line nearly intersects the curve. This was a FIXME in the old code. * Performance Use a central chunk allocator. Plumb the allocator into the global variable state so that it can be shared. (Note that 'SkGlobalState' is allocated on the stack and is visible to children functions but not other threads.) * Refactor Let SkOpAngle grow up from a structure to a class. Let SkCoincidentSpans grow up from a structure to a class. Rename enum Alias to AliasMatch. * Coincidence Rewrite Add more debugging to coincidence detection. Parallel debugging routines have read-only logic to report the current coincidence state so that steps through the logic can expose whether things got better or worse. More functions can error-out and cause the pathops engine to non-destructively exit. * Accuracy Remove code that adjusted point locations. Instead, offset the curve part so that sorted curves all use the same origin. Reduce the size (and influence) of magic numbers. * Testing The debug suite with verify and the full release suite ./out/Debug/pathops_unittest -v -V ./out/Release/pathops_unittest -v -V -x expose one error. That error is captured as cubics_d3. This error exists in the checked in code as well. BUG=skia: GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2128633003 BUG=skia: GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2128633003 Review-Url: https://codereview.chromium.org/2128633003
2016-07-18 17:01:36 +00:00
contour.addLine(data.fShortPts);
break;
case 3:
pathops coincidence and security rewrite Most changes stem from working on an examples bracketed by #if DEBUG_UNDER_DEVELOPMENT // tiger These exposed many problems with coincident curves, as well as errors throughout the code. Fixing these errors also fixed a number of fuzzer-inspired bug reports. * Line/Curve Intersections Check to see if the end of the line nearly intersects the curve. This was a FIXME in the old code. * Performance Use a central chunk allocator. Plumb the allocator into the global variable state so that it can be shared. (Note that 'SkGlobalState' is allocated on the stack and is visible to children functions but not other threads.) * Refactor Let SkOpAngle grow up from a structure to a class. Let SkCoincidentSpans grow up from a structure to a class. Rename enum Alias to AliasMatch. * Coincidence Rewrite Add more debugging to coincidence detection. Parallel debugging routines have read-only logic to report the current coincidence state so that steps through the logic can expose whether things got better or worse. More functions can error-out and cause the pathops engine to non-destructively exit. * Accuracy Remove code that adjusted point locations. Instead, offset the curve part so that sorted curves all use the same origin. Reduce the size (and influence) of magic numbers. * Testing The debug suite with verify and the full release suite ./out/Debug/pathops_unittest -v -V ./out/Release/pathops_unittest -v -V -x expose one error. That error is captured as cubics_d3. This error exists in the checked in code as well. BUG=skia: GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2128633003 BUG=skia: GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2128633003 Review-Url: https://codereview.chromium.org/2128633003
2016-07-18 17:01:36 +00:00
contour.addQuad(data.fShortPts);
break;
case 4:
pathops coincidence and security rewrite Most changes stem from working on an examples bracketed by #if DEBUG_UNDER_DEVELOPMENT // tiger These exposed many problems with coincident curves, as well as errors throughout the code. Fixing these errors also fixed a number of fuzzer-inspired bug reports. * Line/Curve Intersections Check to see if the end of the line nearly intersects the curve. This was a FIXME in the old code. * Performance Use a central chunk allocator. Plumb the allocator into the global variable state so that it can be shared. (Note that 'SkGlobalState' is allocated on the stack and is visible to children functions but not other threads.) * Refactor Let SkOpAngle grow up from a structure to a class. Let SkCoincidentSpans grow up from a structure to a class. Rename enum Alias to AliasMatch. * Coincidence Rewrite Add more debugging to coincidence detection. Parallel debugging routines have read-only logic to report the current coincidence state so that steps through the logic can expose whether things got better or worse. More functions can error-out and cause the pathops engine to non-destructively exit. * Accuracy Remove code that adjusted point locations. Instead, offset the curve part so that sorted curves all use the same origin. Reduce the size (and influence) of magic numbers. * Testing The debug suite with verify and the full release suite ./out/Debug/pathops_unittest -v -V ./out/Release/pathops_unittest -v -V -x expose one error. That error is captured as cubics_d3. This error exists in the checked in code as well. BUG=skia: GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2128633003 BUG=skia: GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2128633003 Review-Url: https://codereview.chromium.org/2128633003
2016-07-18 17:01:36 +00:00
contour.addCubic(data.fShortPts);
break;
}
}
SkOpSegment* first = contour.first();
pathops coincidence and security rewrite Most changes stem from working on an examples bracketed by #if DEBUG_UNDER_DEVELOPMENT // tiger These exposed many problems with coincident curves, as well as errors throughout the code. Fixing these errors also fixed a number of fuzzer-inspired bug reports. * Line/Curve Intersections Check to see if the end of the line nearly intersects the curve. This was a FIXME in the old code. * Performance Use a central chunk allocator. Plumb the allocator into the global variable state so that it can be shared. (Note that 'SkGlobalState' is allocated on the stack and is visible to children functions but not other threads.) * Refactor Let SkOpAngle grow up from a structure to a class. Let SkCoincidentSpans grow up from a structure to a class. Rename enum Alias to AliasMatch. * Coincidence Rewrite Add more debugging to coincidence detection. Parallel debugging routines have read-only logic to report the current coincidence state so that steps through the logic can expose whether things got better or worse. More functions can error-out and cause the pathops engine to non-destructively exit. * Accuracy Remove code that adjusted point locations. Instead, offset the curve part so that sorted curves all use the same origin. Reduce the size (and influence) of magic numbers. * Testing The debug suite with verify and the full release suite ./out/Debug/pathops_unittest -v -V ./out/Release/pathops_unittest -v -V -x expose one error. That error is captured as cubics_d3. This error exists in the checked in code as well. BUG=skia: GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2128633003 BUG=skia: GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2128633003 Review-Url: https://codereview.chromium.org/2128633003
2016-07-18 17:01:36 +00:00
first->debugAddAngle(0, 1);
SkOpSegment* next = first->next();
pathops coincidence and security rewrite Most changes stem from working on an examples bracketed by #if DEBUG_UNDER_DEVELOPMENT // tiger These exposed many problems with coincident curves, as well as errors throughout the code. Fixing these errors also fixed a number of fuzzer-inspired bug reports. * Line/Curve Intersections Check to see if the end of the line nearly intersects the curve. This was a FIXME in the old code. * Performance Use a central chunk allocator. Plumb the allocator into the global variable state so that it can be shared. (Note that 'SkGlobalState' is allocated on the stack and is visible to children functions but not other threads.) * Refactor Let SkOpAngle grow up from a structure to a class. Let SkCoincidentSpans grow up from a structure to a class. Rename enum Alias to AliasMatch. * Coincidence Rewrite Add more debugging to coincidence detection. Parallel debugging routines have read-only logic to report the current coincidence state so that steps through the logic can expose whether things got better or worse. More functions can error-out and cause the pathops engine to non-destructively exit. * Accuracy Remove code that adjusted point locations. Instead, offset the curve part so that sorted curves all use the same origin. Reduce the size (and influence) of magic numbers. * Testing The debug suite with verify and the full release suite ./out/Debug/pathops_unittest -v -V ./out/Release/pathops_unittest -v -V -x expose one error. That error is captured as cubics_d3. This error exists in the checked in code as well. BUG=skia: GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2128633003 BUG=skia: GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2128633003 Review-Url: https://codereview.chromium.org/2128633003
2016-07-18 17:01:36 +00:00
next->debugAddAngle(0, 1);
PathOpsAngleTester::Orderable(*first->debugLastAngle(), *next->debugLastAngle());
}
struct IntersectData {
const CubicPts fPts;
const int fPtCount;
double fTStart;
double fTEnd;
SkPoint fShortPts[4];
};
static IntersectData intersectDataSet1[] = {
{ {{{322.935669,231.030273}, {312.832214,220.393295}, {312.832214,203.454178}}}, 3,
0.865309956, 0.154740299, {} },
{ {{{322.12738,233.397751}, {295.718353,159.505829}}}, 2,
0.345028807, 0.0786326511, {} },
{ {{{322.935669,231.030273}, {312.832214,220.393295}, {312.832214,203.454178}}}, 3,
0.865309956, 1, {} },
{ {{{322.12738,233.397751}, {295.718353,159.505829}}}, 2,
0.345028807, 1, {} },
};
static IntersectData intersectDataSet2[] = {
{ {{{364.390686,157.898193}, {375.281769,136.674606}, {396.039917,136.674606}}}, 3,
0.578520747, 1, {} },
{ {{{364.390686,157.898193}, {375.281769,136.674606}, {396.039917,136.674606}}}, 3,
0.578520747, 0.536512973, {} },
{ {{{366.608826,151.196014}, {378.803101,136.674606}, {398.164948,136.674606}}}, 3,
0.490456543, 1, {} },
};
static IntersectData intersectDataSet3[] = {
{ {{{2.000000,0.000000}, {1.33333333,0.66666667}}}, 2, 1, 0, {} },
{ {{{1.33333333,0.66666667}, {0.000000,2.000000}}}, 2, 0, 0.25, {} },
{ {{{2.000000,2.000000}, {1.33333333,0.66666667}}}, 2, 1, 0, {} },
};
static IntersectData intersectDataSet4[] = {
{ {{{1.3333333,0.6666667}, {0.000,2.000}}}, 2, 0.250000006, 0, {} },
{ {{{1.000,0.000}, {1.000,1.000}}}, 2, 1, 0, {} },
{ {{{1.000,1.000}, {0.000,0.000}}}, 2, 0, 1, {} },
};
static IntersectData intersectDataSet5[] = {
{ {{{0.000,0.000}, {1.000,0.000}, {1.000,1.000}}}, 3, 1, 0.666666667, {} },
{ {{{0.000,0.000}, {2.000,1.000}, {0.000,2.000}}}, 3, 0.5, 1, {} },
{ {{{0.000,0.000}, {2.000,1.000}, {0.000,2.000}}}, 3, 0.5, 0, {} },
};
static IntersectData intersectDataSet6[] = { // pathops_visualizer.htm:3658
{ {{{0.000,1.000}, {3.000,4.000}, {1.000,0.000}, {3.000,0.000}}}, 4, 0.0925339054, 0, {} }, // pathops_visualizer.htm:3616
{ {{{0.000,1.000}, {0.000,3.000}, {1.000,0.000}, {4.000,3.000}}}, 4, 0.453872386, 0, {} }, // pathops_visualizer.htm:3616
{ {{{0.000,1.000}, {3.000,4.000}, {1.000,0.000}, {3.000,0.000}}}, 4, 0.0925339054, 0.417096368, {} }, // pathops_visualizer.htm:3616
};
static IntersectData intersectDataSet7[] = { // pathops_visualizer.htm:3748
{ {{{2.000,1.000}, {0.000,1.000}}}, 2, 0.5, 0, {} }, // pathops_visualizer.htm:3706
{ {{{2.000,0.000}, {0.000,2.000}}}, 2, 0.5, 1, {} }, // pathops_visualizer.htm:3706
{ {{{0.000,1.000}, {0.000,2.000}, {2.000,0.000}, {2.000,1.000}}}, 4, 0.5, 1, {} }, // pathops_visualizer.htm:3706
}; //
static IntersectData intersectDataSet8[] = { // pathops_visualizer.htm:4194
{ {{{0.000,1.000}, {2.000,3.000}, {5.000,1.000}, {4.000,3.000}}}, 4, 0.311007457, 0.285714286, {} }, // pathops_visualizer.htm:4152
{ {{{1.000,5.000}, {3.000,4.000}, {1.000,0.000}, {3.000,2.000}}}, 4, 0.589885081, 0.999982974, {} }, // pathops_visualizer.htm:4152
{ {{{1.000,5.000}, {3.000,4.000}, {1.000,0.000}, {3.000,2.000}}}, 4, 0.589885081, 0.576935809, {} }, // pathops_visualizer.htm:4152
}; //
static IntersectData intersectDataSet9[] = { // pathops_visualizer.htm:4142
{ {{{0.000,1.000}, {2.000,3.000}, {5.000,1.000}, {4.000,3.000}}}, 4, 0.476627072, 0.311007457, {} }, // pathops_visualizer.htm:4100
{ {{{1.000,5.000}, {3.000,4.000}, {1.000,0.000}, {3.000,2.000}}}, 4, 0.999982974, 1, {} }, // pathops_visualizer.htm:4100
{ {{{0.000,1.000}, {2.000,3.000}, {5.000,1.000}, {4.000,3.000}}}, 4, 0.476627072, 1, {} }, // pathops_visualizer.htm:4100
}; //
static IntersectData intersectDataSet10[] = { // pathops_visualizer.htm:4186
{ {{{0.000,1.000}, {1.000,6.000}, {1.000,0.000}, {1.000,0.000}}}, 4, 0.788195121, 0.726275769, {} }, // pathops_visualizer.htm:4144
{ {{{0.000,1.000}, {0.000,1.000}, {1.000,0.000}, {6.000,1.000}}}, 4, 0.473378977, 1, {} }, // pathops_visualizer.htm:4144
{ {{{0.000,1.000}, {1.000,6.000}, {1.000,0.000}, {1.000,0.000}}}, 4, 0.788195121, 1, {} }, // pathops_visualizer.htm:4144
}; //
static IntersectData intersectDataSet11[] = { // pathops_visualizer.htm:4704
{ {{{979.305,561.000}, {1036.695,291.000}}}, 2, 0.888888874, 0.11111108, {} }, // pathops_visualizer.htm:4662
{ {{{1006.695,291.000}, {1023.264,291.000}, {1033.840,304.431}, {1030.318,321.000}}}, 4, 1, 0, {} }, // pathops_visualizer.htm:4662
{ {{{979.305,561.000}, {1036.695,291.000}}}, 2, 0.888888874, 1, {} }, // pathops_visualizer.htm:4662
}; //
static IntersectData intersectDataSet12[] = { // pathops_visualizer.htm:5481
{ {{{67.000,912.000}, {67.000,913.000}}}, 2, 1, 0, {} }, // pathops_visualizer.htm:5439
{ {{{67.000,913.000}, {67.000,917.389}, {67.224,921.726}, {67.662,926.000}}}, 4, 0, 1, {} }, // pathops_visualizer.htm:5439
{ {{{194.000,1041.000}, {123.860,1041.000}, {67.000,983.692}, {67.000,913.000}}}, 4, 1, 0, {} }, // pathops_visualizer.htm:5439
}; //
static IntersectData intersectDataSet13[] = { // pathops_visualizer.htm:5735
{ {{{6.000,0.000}, {0.000,4.000}}}, 2, 0.625, 0.25, {} }, // pathops_visualizer.htm:5693
{ {{{0.000,1.000}, {0.000,6.000}, {4.000,0.000}, {6.000,1.000}}}, 4, 0.5, 0.833333333, {} }, // pathops_visualizer.htm:5693
{ {{{0.000,1.000}, {0.000,6.000}, {4.000,0.000}, {6.000,1.000}}}, 4, 0.5, 0.379043969, {} }, // pathops_visualizer.htm:5693
}; //
static IntersectData intersectDataSet14[] = { // pathops_visualizer.htm:5875
{ {{{0.000,1.000}, {4.000,6.000}, {2.000,1.000}, {2.000,0.000}}}, 4, 0.0756502183, 0.0594570973, {} }, // pathops_visualizer.htm:5833
{ {{{1.000,2.000}, {0.000,2.000}, {1.000,0.000}, {6.000,4.000}}}, 4, 0.0756502184, 0, {} }, // pathops_visualizer.htm:5833
{ {{{0.000,1.000}, {4.000,6.000}, {2.000,1.000}, {2.000,0.000}}}, 4, 0.0756502183, 0.531917258, {} }, // pathops_visualizer.htm:5833
}; //
static IntersectData intersectDataSet15[] = { // pathops_visualizer.htm:6580
{ {{{490.435,879.407}, {405.593,909.436}}}, 2, 0.500554405, 1, {} }, // pathops_visualizer.htm:6538
{ {{{447.967,894.438}, {448.007,894.424}, {448.014,894.422}}}, 3, 0, 1, {} }, // pathops_visualizer.htm:6538
{ {{{490.435,879.407}, {405.593,909.436}}}, 2, 0.500554405, 0.500000273, {} }, // pathops_visualizer.htm:6538
}; //
static IntersectData intersectDataSet16[] = { // pathops_visualizer.htm:7419
{ {{{1.000,4.000}, {4.000,5.000}, {3.000,2.000}, {6.000,3.000}}}, 4, 0.5, 0, {} }, // pathops_visualizer.htm:7377
{ {{{2.000,3.000}, {3.000,6.000}, {4.000,1.000}, {5.000,4.000}}}, 4, 0.5, 0.112701665, {} }, // pathops_visualizer.htm:7377
{ {{{5.000,4.000}, {2.000,3.000}}}, 2, 0.5, 0, {} }, // pathops_visualizer.htm:7377
}; //
// from skpi_gino_com_16
static IntersectData intersectDataSet17[] = {
{ /*seg=7*/ {{{270.974121f, 770.025879f}, {234.948273f, 734}, {184, 734}}}
, 3, 0.74590454, 0.547660352, {} },
{ /*seg=8*/ {{{185, 734}, {252.93103f, 734}, {308, 789.06897f}, {308, 857}}}
, 4, 0.12052623, 0, {} },
{ /*seg=7*/ {{{270.974121f, 770.025879f}, {234.948273f, 734}, {184, 734}}}
, 3, 0.74590454, 1, {} },
};
static IntersectData intersectDataSet18[] = {
{ /*seg=7*/ {{{270.974121f, 770.025879f}, {234.948273f, 734}, {184, 734}}}
, 3, 0.74590454, 1, {} },
{ /*seg=8*/ {{{185, 734}, {252.93103f, 734}, {308, 789.06897f}, {308, 857}}}
, 4, 0.12052623, 0.217351928, {} },
{ /*seg=7*/ {{{270.974121f, 770.025879f}, {234.948273f, 734}, {184, 734}}}
, 3, 0.74590454, 0.547660352, {} },
};
static IntersectData intersectDataSet19[] = {
{ /*seg=1*/ {{{0, 1}, {3, 5}, {2, 1}, {3, 1}}}
, 4, 0.135148995, 0.134791946, {} },
{ /*seg=3*/ {{{1, 2}, {1, 2.15061641f}, {1, 2.21049166f}, {1.01366711f, 2.21379328f}}}
, 4, 0.956740456, 0.894913214, {} },
{ /*seg=1*/ {{{0, 1}, {3, 5}, {2, 1}, {3, 1}}}
, 4, 0.135148995, 0.551812363, {} },
};
#define I(x) intersectDataSet##x
static IntersectData* intersectDataSets[] = {
I(1), I(2), I(3), I(4), I(5), I(6), I(7), I(8), I(9), I(10),
I(11), I(12), I(13), I(14), I(15), I(16), I(17), I(18), I(19),
};
#undef I
#define I(x) (int) SK_ARRAY_COUNT(intersectDataSet##x)
static const int intersectDataSetSizes[] = {
I(1), I(2), I(3), I(4), I(5), I(6), I(7), I(8), I(9), I(10),
I(11), I(12), I(13), I(14), I(15), I(16), I(17), I(18), I(19),
};
#undef I
static const int intersectDataSetsSize = (int) SK_ARRAY_COUNT(intersectDataSetSizes);
struct FourPoints {
SkPoint pts[4];
};
DEF_TEST(PathOpsAngleAfter, reporter) {
char storage[4096];
SkArenaAlloc allocator(storage);
SkOpContourHead contour;
pathops coincidence and security rewrite Most changes stem from working on an examples bracketed by #if DEBUG_UNDER_DEVELOPMENT // tiger These exposed many problems with coincident curves, as well as errors throughout the code. Fixing these errors also fixed a number of fuzzer-inspired bug reports. * Line/Curve Intersections Check to see if the end of the line nearly intersects the curve. This was a FIXME in the old code. * Performance Use a central chunk allocator. Plumb the allocator into the global variable state so that it can be shared. (Note that 'SkGlobalState' is allocated on the stack and is visible to children functions but not other threads.) * Refactor Let SkOpAngle grow up from a structure to a class. Let SkCoincidentSpans grow up from a structure to a class. Rename enum Alias to AliasMatch. * Coincidence Rewrite Add more debugging to coincidence detection. Parallel debugging routines have read-only logic to report the current coincidence state so that steps through the logic can expose whether things got better or worse. More functions can error-out and cause the pathops engine to non-destructively exit. * Accuracy Remove code that adjusted point locations. Instead, offset the curve part so that sorted curves all use the same origin. Reduce the size (and influence) of magic numbers. * Testing The debug suite with verify and the full release suite ./out/Debug/pathops_unittest -v -V ./out/Release/pathops_unittest -v -V -x expose one error. That error is captured as cubics_d3. This error exists in the checked in code as well. BUG=skia: GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2128633003 BUG=skia: GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2128633003 Review-Url: https://codereview.chromium.org/2128633003
2016-07-18 17:01:36 +00:00
SkOpGlobalState state(&contour, &allocator SkDEBUGPARAMS(false) SkDEBUGPARAMS(nullptr));
contour.init(&state, false, false);
for (int index = intersectDataSetsSize - 1; index >= 0; --index) {
IntersectData* dataArray = intersectDataSets[index];
const int dataSize = intersectDataSetSizes[index];
for (int index2 = 0; index2 < dataSize - 2; ++index2) {
allocator.reset();
contour.reset();
for (int index3 = 0; index3 < 3; ++index3) {
IntersectData& data = dataArray[index2 + index3];
SkPoint* temp = (SkPoint*) allocator.make<FourPoints>();
for (int idx2 = 0; idx2 < data.fPtCount; ++idx2) {
temp[idx2] = data.fPts.fPts[idx2].asSkPoint();
}
switch (data.fPtCount) {
case 2: {
pathops coincidence and security rewrite Most changes stem from working on an examples bracketed by #if DEBUG_UNDER_DEVELOPMENT // tiger These exposed many problems with coincident curves, as well as errors throughout the code. Fixing these errors also fixed a number of fuzzer-inspired bug reports. * Line/Curve Intersections Check to see if the end of the line nearly intersects the curve. This was a FIXME in the old code. * Performance Use a central chunk allocator. Plumb the allocator into the global variable state so that it can be shared. (Note that 'SkGlobalState' is allocated on the stack and is visible to children functions but not other threads.) * Refactor Let SkOpAngle grow up from a structure to a class. Let SkCoincidentSpans grow up from a structure to a class. Rename enum Alias to AliasMatch. * Coincidence Rewrite Add more debugging to coincidence detection. Parallel debugging routines have read-only logic to report the current coincidence state so that steps through the logic can expose whether things got better or worse. More functions can error-out and cause the pathops engine to non-destructively exit. * Accuracy Remove code that adjusted point locations. Instead, offset the curve part so that sorted curves all use the same origin. Reduce the size (and influence) of magic numbers. * Testing The debug suite with verify and the full release suite ./out/Debug/pathops_unittest -v -V ./out/Release/pathops_unittest -v -V -x expose one error. That error is captured as cubics_d3. This error exists in the checked in code as well. BUG=skia: GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2128633003 BUG=skia: GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2128633003 Review-Url: https://codereview.chromium.org/2128633003
2016-07-18 17:01:36 +00:00
contour.addLine(temp);
} break;
case 3: {
pathops coincidence and security rewrite Most changes stem from working on an examples bracketed by #if DEBUG_UNDER_DEVELOPMENT // tiger These exposed many problems with coincident curves, as well as errors throughout the code. Fixing these errors also fixed a number of fuzzer-inspired bug reports. * Line/Curve Intersections Check to see if the end of the line nearly intersects the curve. This was a FIXME in the old code. * Performance Use a central chunk allocator. Plumb the allocator into the global variable state so that it can be shared. (Note that 'SkGlobalState' is allocated on the stack and is visible to children functions but not other threads.) * Refactor Let SkOpAngle grow up from a structure to a class. Let SkCoincidentSpans grow up from a structure to a class. Rename enum Alias to AliasMatch. * Coincidence Rewrite Add more debugging to coincidence detection. Parallel debugging routines have read-only logic to report the current coincidence state so that steps through the logic can expose whether things got better or worse. More functions can error-out and cause the pathops engine to non-destructively exit. * Accuracy Remove code that adjusted point locations. Instead, offset the curve part so that sorted curves all use the same origin. Reduce the size (and influence) of magic numbers. * Testing The debug suite with verify and the full release suite ./out/Debug/pathops_unittest -v -V ./out/Release/pathops_unittest -v -V -x expose one error. That error is captured as cubics_d3. This error exists in the checked in code as well. BUG=skia: GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2128633003 BUG=skia: GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2128633003 Review-Url: https://codereview.chromium.org/2128633003
2016-07-18 17:01:36 +00:00
contour.addQuad(temp);
} break;
case 4: {
pathops coincidence and security rewrite Most changes stem from working on an examples bracketed by #if DEBUG_UNDER_DEVELOPMENT // tiger These exposed many problems with coincident curves, as well as errors throughout the code. Fixing these errors also fixed a number of fuzzer-inspired bug reports. * Line/Curve Intersections Check to see if the end of the line nearly intersects the curve. This was a FIXME in the old code. * Performance Use a central chunk allocator. Plumb the allocator into the global variable state so that it can be shared. (Note that 'SkGlobalState' is allocated on the stack and is visible to children functions but not other threads.) * Refactor Let SkOpAngle grow up from a structure to a class. Let SkCoincidentSpans grow up from a structure to a class. Rename enum Alias to AliasMatch. * Coincidence Rewrite Add more debugging to coincidence detection. Parallel debugging routines have read-only logic to report the current coincidence state so that steps through the logic can expose whether things got better or worse. More functions can error-out and cause the pathops engine to non-destructively exit. * Accuracy Remove code that adjusted point locations. Instead, offset the curve part so that sorted curves all use the same origin. Reduce the size (and influence) of magic numbers. * Testing The debug suite with verify and the full release suite ./out/Debug/pathops_unittest -v -V ./out/Release/pathops_unittest -v -V -x expose one error. That error is captured as cubics_d3. This error exists in the checked in code as well. BUG=skia: GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2128633003 BUG=skia: GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2128633003 Review-Url: https://codereview.chromium.org/2128633003
2016-07-18 17:01:36 +00:00
contour.addCubic(temp);
} break;
}
}
SkOpSegment* seg1 = contour.first();
pathops coincidence and security rewrite Most changes stem from working on an examples bracketed by #if DEBUG_UNDER_DEVELOPMENT // tiger These exposed many problems with coincident curves, as well as errors throughout the code. Fixing these errors also fixed a number of fuzzer-inspired bug reports. * Line/Curve Intersections Check to see if the end of the line nearly intersects the curve. This was a FIXME in the old code. * Performance Use a central chunk allocator. Plumb the allocator into the global variable state so that it can be shared. (Note that 'SkGlobalState' is allocated on the stack and is visible to children functions but not other threads.) * Refactor Let SkOpAngle grow up from a structure to a class. Let SkCoincidentSpans grow up from a structure to a class. Rename enum Alias to AliasMatch. * Coincidence Rewrite Add more debugging to coincidence detection. Parallel debugging routines have read-only logic to report the current coincidence state so that steps through the logic can expose whether things got better or worse. More functions can error-out and cause the pathops engine to non-destructively exit. * Accuracy Remove code that adjusted point locations. Instead, offset the curve part so that sorted curves all use the same origin. Reduce the size (and influence) of magic numbers. * Testing The debug suite with verify and the full release suite ./out/Debug/pathops_unittest -v -V ./out/Release/pathops_unittest -v -V -x expose one error. That error is captured as cubics_d3. This error exists in the checked in code as well. BUG=skia: GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2128633003 BUG=skia: GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2128633003 Review-Url: https://codereview.chromium.org/2128633003
2016-07-18 17:01:36 +00:00
seg1->debugAddAngle(dataArray[index2 + 0].fTStart, dataArray[index2 + 0].fTEnd);
SkOpSegment* seg2 = seg1->next();
pathops coincidence and security rewrite Most changes stem from working on an examples bracketed by #if DEBUG_UNDER_DEVELOPMENT // tiger These exposed many problems with coincident curves, as well as errors throughout the code. Fixing these errors also fixed a number of fuzzer-inspired bug reports. * Line/Curve Intersections Check to see if the end of the line nearly intersects the curve. This was a FIXME in the old code. * Performance Use a central chunk allocator. Plumb the allocator into the global variable state so that it can be shared. (Note that 'SkGlobalState' is allocated on the stack and is visible to children functions but not other threads.) * Refactor Let SkOpAngle grow up from a structure to a class. Let SkCoincidentSpans grow up from a structure to a class. Rename enum Alias to AliasMatch. * Coincidence Rewrite Add more debugging to coincidence detection. Parallel debugging routines have read-only logic to report the current coincidence state so that steps through the logic can expose whether things got better or worse. More functions can error-out and cause the pathops engine to non-destructively exit. * Accuracy Remove code that adjusted point locations. Instead, offset the curve part so that sorted curves all use the same origin. Reduce the size (and influence) of magic numbers. * Testing The debug suite with verify and the full release suite ./out/Debug/pathops_unittest -v -V ./out/Release/pathops_unittest -v -V -x expose one error. That error is captured as cubics_d3. This error exists in the checked in code as well. BUG=skia: GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2128633003 BUG=skia: GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2128633003 Review-Url: https://codereview.chromium.org/2128633003
2016-07-18 17:01:36 +00:00
seg2->debugAddAngle(dataArray[index2 + 1].fTStart, dataArray[index2 + 1].fTEnd);
SkOpSegment* seg3 = seg2->next();
pathops coincidence and security rewrite Most changes stem from working on an examples bracketed by #if DEBUG_UNDER_DEVELOPMENT // tiger These exposed many problems with coincident curves, as well as errors throughout the code. Fixing these errors also fixed a number of fuzzer-inspired bug reports. * Line/Curve Intersections Check to see if the end of the line nearly intersects the curve. This was a FIXME in the old code. * Performance Use a central chunk allocator. Plumb the allocator into the global variable state so that it can be shared. (Note that 'SkGlobalState' is allocated on the stack and is visible to children functions but not other threads.) * Refactor Let SkOpAngle grow up from a structure to a class. Let SkCoincidentSpans grow up from a structure to a class. Rename enum Alias to AliasMatch. * Coincidence Rewrite Add more debugging to coincidence detection. Parallel debugging routines have read-only logic to report the current coincidence state so that steps through the logic can expose whether things got better or worse. More functions can error-out and cause the pathops engine to non-destructively exit. * Accuracy Remove code that adjusted point locations. Instead, offset the curve part so that sorted curves all use the same origin. Reduce the size (and influence) of magic numbers. * Testing The debug suite with verify and the full release suite ./out/Debug/pathops_unittest -v -V ./out/Release/pathops_unittest -v -V -x expose one error. That error is captured as cubics_d3. This error exists in the checked in code as well. BUG=skia: GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2128633003 BUG=skia: GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2128633003 Review-Url: https://codereview.chromium.org/2128633003
2016-07-18 17:01:36 +00:00
seg3->debugAddAngle(dataArray[index2 + 2].fTStart, dataArray[index2 + 2].fTEnd);
SkOpAngle& angle1 = *seg1->debugLastAngle();
SkOpAngle& angle2 = *seg2->debugLastAngle();
SkOpAngle& angle3 = *seg3->debugLastAngle();
PathOpsAngleTester::SetNext(angle1, angle3);
// These data sets are seeded when the set itself fails, so likely the dataset does not
// match the expected result. The tests above return 1 when first added, but
// return 0 after the bug is fixed.
SkDEBUGCODE(int result =) PathOpsAngleTester::After(angle2, angle1);
SkASSERT(result == 0 || result == 1);
}
}
}
pathops coincidence and security rewrite Most changes stem from working on an examples bracketed by #if DEBUG_UNDER_DEVELOPMENT // tiger These exposed many problems with coincident curves, as well as errors throughout the code. Fixing these errors also fixed a number of fuzzer-inspired bug reports. * Line/Curve Intersections Check to see if the end of the line nearly intersects the curve. This was a FIXME in the old code. * Performance Use a central chunk allocator. Plumb the allocator into the global variable state so that it can be shared. (Note that 'SkGlobalState' is allocated on the stack and is visible to children functions but not other threads.) * Refactor Let SkOpAngle grow up from a structure to a class. Let SkCoincidentSpans grow up from a structure to a class. Rename enum Alias to AliasMatch. * Coincidence Rewrite Add more debugging to coincidence detection. Parallel debugging routines have read-only logic to report the current coincidence state so that steps through the logic can expose whether things got better or worse. More functions can error-out and cause the pathops engine to non-destructively exit. * Accuracy Remove code that adjusted point locations. Instead, offset the curve part so that sorted curves all use the same origin. Reduce the size (and influence) of magic numbers. * Testing The debug suite with verify and the full release suite ./out/Debug/pathops_unittest -v -V ./out/Release/pathops_unittest -v -V -x expose one error. That error is captured as cubics_d3. This error exists in the checked in code as well. BUG=skia: GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2128633003 BUG=skia: GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2128633003 Review-Url: https://codereview.chromium.org/2128633003
2016-07-18 17:01:36 +00:00
void SkOpSegment::debugAddAngle(double startT, double endT) {
SkOpPtT* startPtT = startT == 0 ? fHead.ptT() : startT == 1 ? fTail.ptT()
: this->addT(startT);
SkOpPtT* endPtT = endT == 0 ? fHead.ptT() : endT == 1 ? fTail.ptT()
: this->addT(endT);
SkOpAngle* angle = this->globalState()->allocator()->make<SkOpAngle>();
SkOpSpanBase* startSpan = &fHead;
while (startSpan->ptT() != startPtT) {
startSpan = startSpan->upCast()->next();
}
SkOpSpanBase* endSpan = &fHead;
while (endSpan->ptT() != endPtT) {
endSpan = endSpan->upCast()->next();
}
angle->set(startSpan, endSpan);
if (startT < endT) {
startSpan->upCast()->setToAngle(angle);
endSpan->setFromAngle(angle);
} else {
endSpan->upCast()->setToAngle(angle);
startSpan->setFromAngle(angle);
}
}
pathops coincidence and security rewrite Most changes stem from working on an examples bracketed by #if DEBUG_UNDER_DEVELOPMENT // tiger These exposed many problems with coincident curves, as well as errors throughout the code. Fixing these errors also fixed a number of fuzzer-inspired bug reports. * Line/Curve Intersections Check to see if the end of the line nearly intersects the curve. This was a FIXME in the old code. * Performance Use a central chunk allocator. Plumb the allocator into the global variable state so that it can be shared. (Note that 'SkGlobalState' is allocated on the stack and is visible to children functions but not other threads.) * Refactor Let SkOpAngle grow up from a structure to a class. Let SkCoincidentSpans grow up from a structure to a class. Rename enum Alias to AliasMatch. * Coincidence Rewrite Add more debugging to coincidence detection. Parallel debugging routines have read-only logic to report the current coincidence state so that steps through the logic can expose whether things got better or worse. More functions can error-out and cause the pathops engine to non-destructively exit. * Accuracy Remove code that adjusted point locations. Instead, offset the curve part so that sorted curves all use the same origin. Reduce the size (and influence) of magic numbers. * Testing The debug suite with verify and the full release suite ./out/Debug/pathops_unittest -v -V ./out/Release/pathops_unittest -v -V -x expose one error. That error is captured as cubics_d3. This error exists in the checked in code as well. BUG=skia: GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2128633003 BUG=skia: GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2128633003 Review-Url: https://codereview.chromium.org/2128633003
2016-07-18 17:01:36 +00:00
DEF_TEST(PathOpsAngleAllOnOneSide, reporter) {
char storage[4096];
SkArenaAlloc allocator(storage);
pathops coincidence and security rewrite Most changes stem from working on an examples bracketed by #if DEBUG_UNDER_DEVELOPMENT // tiger These exposed many problems with coincident curves, as well as errors throughout the code. Fixing these errors also fixed a number of fuzzer-inspired bug reports. * Line/Curve Intersections Check to see if the end of the line nearly intersects the curve. This was a FIXME in the old code. * Performance Use a central chunk allocator. Plumb the allocator into the global variable state so that it can be shared. (Note that 'SkGlobalState' is allocated on the stack and is visible to children functions but not other threads.) * Refactor Let SkOpAngle grow up from a structure to a class. Let SkCoincidentSpans grow up from a structure to a class. Rename enum Alias to AliasMatch. * Coincidence Rewrite Add more debugging to coincidence detection. Parallel debugging routines have read-only logic to report the current coincidence state so that steps through the logic can expose whether things got better or worse. More functions can error-out and cause the pathops engine to non-destructively exit. * Accuracy Remove code that adjusted point locations. Instead, offset the curve part so that sorted curves all use the same origin. Reduce the size (and influence) of magic numbers. * Testing The debug suite with verify and the full release suite ./out/Debug/pathops_unittest -v -V ./out/Release/pathops_unittest -v -V -x expose one error. That error is captured as cubics_d3. This error exists in the checked in code as well. BUG=skia: GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2128633003 BUG=skia: GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2128633003 Review-Url: https://codereview.chromium.org/2128633003
2016-07-18 17:01:36 +00:00
SkOpContourHead contour;
SkOpGlobalState state(&contour, &allocator SkDEBUGPARAMS(false) SkDEBUGPARAMS(nullptr));
contour.init(&state, false, false);
SkPoint conicPts[3] = {{494.37100219726562f, 224.66200256347656f},
{494.37360910682298f, 224.6729026561527f},
{494.37600708007813f, 224.68400573730469f}};
SkPoint linePts[2] = {{494.371002f, 224.662003f}, {494.375000f, 224.675995f}};
for (int i = 10; i >= 0; --i) {
SkPoint modLinePts[2] = { linePts[0], linePts[1] };
modLinePts[1].fX += i * .1f;
contour.addLine(modLinePts);
contour.addQuad(conicPts);
// contour.addConic(conicPts, 0.999935746f, &allocator);
SkOpSegment* first = contour.first();
first->debugAddAngle(0, 1);
SkOpSegment* next = first->next();
next->debugAddAngle(0, 1);
/* int result = */
PathOpsAngleTester::AllOnOneSide(*first->debugLastAngle(), *next->debugLastAngle());
// SkDebugf("i=%d result=%d\n", i , result);
// SkDebugf("");
}
}