skia2/gm/asyncrescaleandread.cpp

291 lines
13 KiB
C++
Raw Normal View History

/*
* Copyright 2019 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "gm/gm.h"
#include "include/core/SkCanvas.h"
#include "include/core/SkColor.h"
#include "include/core/SkPaint.h"
#include "include/core/SkRect.h"
#include "include/core/SkSurface.h"
#include "include/core/SkYUVAIndex.h"
#include "include/gpu/GrContext.h"
#include "src/core/SkAutoPixmapStorage.h"
#include "src/core/SkConvertPixels.h"
#include "src/core/SkScopeExit.h"
#include "src/gpu/GrContextPriv.h"
#include "src/gpu/GrGpu.h"
#include "tools/Resources.h"
#include "tools/ToolUtils.h"
// Draws the image to a surface, does a asyncRescaleAndReadPixels of the image, and then sticks
// the result in a raster image.
static sk_sp<SkImage> do_read_and_scale(SkSurface* surface, const SkIRect& srcRect,
const SkImageInfo& ii, SkSurface::RescaleGamma rescaleGamma,
SkFilterQuality quality) {
SkBitmap bmp;
bmp.allocPixels(ii);
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc);
struct Context {
SkPixmap fPixmap;
bool fCalled = false;
bool fSucceeded = false;
} context;
SkAssertResult(bmp.peekPixels(&context.fPixmap));
auto callback = [](void* c, const void* data, size_t rowBytes) {
auto context = reinterpret_cast<Context*>(c);
context->fCalled = true;
if (!data) {
context->fPixmap.reset();
return;
}
context->fSucceeded = true;
SkRectMemcpy(context->fPixmap.writable_addr(), context->fPixmap.rowBytes(), data, rowBytes,
context->fPixmap.info().minRowBytes(), context->fPixmap.height());
};
surface->asyncRescaleAndReadPixels(ii, srcRect, rescaleGamma, quality, callback, &context);
while (!context.fCalled) {
// Only GPU should actually be asynchronous.
SkASSERT(surface->getCanvas()->getGrContext());
surface->getCanvas()->getGrContext()->checkAsyncWorkCompletion();
}
return context.fSucceeded ? SkImage::MakeFromBitmap(bmp) : nullptr;
}
static sk_sp<SkImage> do_read_and_scale_yuv(SkSurface* surface, SkYUVColorSpace yuvCS,
const SkIRect& srcRect, int dstW, int dstH,
SkSurface::RescaleGamma rescaleGamma,
SkFilterQuality quality, SkScopeExit* cleanup) {
SkASSERT(!(dstW & 0b1) && !(dstH & 0b1));
struct Context {
Context(int w, int h) {
SkImageInfo yII = SkImageInfo::Make(w, h, kGray_8_SkColorType, kPremul_SkAlphaType);
SkImageInfo uvII = SkImageInfo::Make(w / 2, h / 2, kGray_8_SkColorType,
kPremul_SkAlphaType);
fYData.alloc(yII);
fUData.alloc(uvII);
fVData.alloc(uvII);
}
SkAutoPixmapStorage fYData;
SkAutoPixmapStorage fUData;
SkAutoPixmapStorage fVData;
bool fCalled = false;
bool fSucceeded = false;
} context(dstW, dstH);
auto callback = [](void* c, const void* data[3], size_t rowBytes[3]) {
auto context = reinterpret_cast<Context*>(c);
context->fCalled = true;
if (!data) {
return;
}
context->fSucceeded = true;
SkRectMemcpy(context->fYData.writable_addr(), context->fYData.rowBytes(), data[0],
rowBytes[0], context->fYData.width(), context->fYData.height());
SkRectMemcpy(context->fUData.writable_addr(), context->fUData.rowBytes(), data[1],
rowBytes[1], context->fUData.width(), context->fUData.height());
SkRectMemcpy(context->fVData.writable_addr(), context->fVData.rowBytes(), data[2],
rowBytes[2], context->fVData.width(), context->fVData.height());
};
surface->asyncRescaleAndReadPixelsYUV420(yuvCS, SkColorSpace::MakeSRGB(), srcRect, dstW, dstH,
rescaleGamma, quality, callback, &context);
while (!context.fCalled) {
// Only GPU should actually be asynchronous.
SkASSERT(surface->getCanvas()->getGrContext());
surface->getCanvas()->getGrContext()->checkAsyncWorkCompletion();
}
if (!context.fSucceeded) {
return nullptr;
}
auto* gr = surface->getCanvas()->getGrContext();
GrBackendTexture backendTextures[3];
backendTextures[0] = gr->priv().createBackendTexture(&context.fYData, 1,
GrRenderable::kNo, GrProtected::kNo);
backendTextures[1] = gr->priv().createBackendTexture(&context.fUData, 1,
GrRenderable::kNo, GrProtected::kNo);
backendTextures[2] = gr->priv().createBackendTexture(&context.fVData, 1,
GrRenderable::kNo, GrProtected::kNo);
SkYUVAIndex indices[4] = {
{ 0, SkColorChannel::kR},
{ 1, SkColorChannel::kR},
{ 2, SkColorChannel::kR},
{-1, SkColorChannel::kR}
};
*cleanup = {[gr, backendTextures] {
GrFlushInfo flushInfo;
flushInfo.fFlags = kSyncCpu_GrFlushFlag;
gr->flush(flushInfo);
gr->deleteBackendTexture(backendTextures[0]);
gr->deleteBackendTexture(backendTextures[1]);
gr->deleteBackendTexture(backendTextures[2]);
}};
return SkImage::MakeFromYUVATextures(gr, yuvCS, backendTextures, indices, {dstW, dstH},
kTopLeft_GrSurfaceOrigin, SkColorSpace::MakeSRGB());
}
// Draws a grid of rescales. The columns are none, low, and high filter quality. The rows are
// rescale in src gamma and rescale in linear gamma.
static skiagm::DrawResult do_rescale_grid(SkCanvas* canvas, SkSurface* surface,
const SkIRect& srcRect, int newW, int newH, bool doYUV420,
SkString* errorMsg, int pad = 0) {
if (doYUV420) {
if (!canvas->getGrContext() || !canvas->getGrContext()->priv().asDirectContext()) {
errorMsg->printf("YUV420 only supported on direct GPU for now.");
return skiagm::DrawResult::kSkip;
}
}
if (canvas->imageInfo().colorType() == kUnknown_SkColorType) {
*errorMsg = "Not supported on recording/vector backends.";
return skiagm::DrawResult::kSkip;
}
const auto ii = canvas->imageInfo().makeWH(newW, newH);
SkYUVColorSpace yuvColorSpace = kRec601_SkYUVColorSpace;
canvas->save();
for (auto gamma : {SkSurface::RescaleGamma::kSrc, SkSurface::RescaleGamma::kLinear}) {
canvas->save();
for (auto quality : {kNone_SkFilterQuality, kLow_SkFilterQuality, kHigh_SkFilterQuality}) {
SkScopeExit cleanup;
sk_sp<SkImage> result;
if (doYUV420) {
result = do_read_and_scale_yuv(surface, yuvColorSpace, srcRect, newW, newH, gamma,
quality, &cleanup);
if (!result) {
errorMsg->printf("YUV420 async call failed. Allowed for now.");
return skiagm::DrawResult::kSkip;
}
int nextCS = static_cast<int>(yuvColorSpace + 1) % (kLastEnum_SkYUVColorSpace + 1);
yuvColorSpace = static_cast<SkYUVColorSpace>(nextCS);
} else {
result = do_read_and_scale(surface, srcRect, ii, gamma, quality);
if (!result) {
errorMsg->printf("async read call failed.");
return skiagm::DrawResult::kFail;
}
}
canvas->drawImage(result, 0, 0);
canvas->translate(newW + pad, 0);
}
canvas->restore();
canvas->translate(0, newH + pad);
}
canvas->restore();
return skiagm::DrawResult::kOk;
}
static skiagm::DrawResult do_rescale_image_grid(SkCanvas* canvas, const char* imageFile,
const SkIRect& srcRect, int newW, int newH,
bool doYUV420, SkString* errorMsg) {
auto image = GetResourceAsImage(imageFile);
if (!image) {
errorMsg->printf("Could not load image file %s.", imageFile);
return skiagm::DrawResult::kFail;
}
if (canvas->imageInfo().colorType() == kUnknown_SkColorType) {
*errorMsg = "Not supported on recording/vector backends.";
return skiagm::DrawResult::kSkip;
}
// Turn the image into a surface in order to call the read and rescale API
auto surfInfo = image->imageInfo().makeWH(image->width(), image->height());
auto surface = canvas->makeSurface(surfInfo);
if (!surface && surfInfo.colorType() == kBGRA_8888_SkColorType) {
surfInfo = surfInfo.makeColorType(kRGBA_8888_SkColorType);
surface = canvas->makeSurface(surfInfo);
}
if (!surface) {
*errorMsg = "Could not create surface for image.";
// When testing abandoned GrContext we expect surface creation to fail.
if (canvas->getGrContext() && canvas->getGrContext()->abandoned()) {
return skiagm::DrawResult::kSkip;
}
return skiagm::DrawResult::kFail;
}
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc);
surface->getCanvas()->drawImage(image, 0, 0, &paint);
return do_rescale_grid(canvas, surface.get(), srcRect, newW, newH, doYUV420, errorMsg);
}
#define DEF_RESCALE_AND_READ_GM(IMAGE_FILE, TAG, SRC_RECT, W, H) \
DEF_SIMPLE_GM_CAN_FAIL(async_rescale_and_read_##TAG, canvas, errorMsg, 3 * W, 2 * H) { \
ToolUtils::draw_checkerboard(canvas, SK_ColorDKGRAY, SK_ColorLTGRAY, 25); \
return do_rescale_image_grid(canvas, #IMAGE_FILE, SRC_RECT, W, H, false, errorMsg); \
}
#define DEF_RESCALE_AND_READ_YUV_GM(IMAGE_FILE, TAG, SRC_RECT, W, H) \
DEF_SIMPLE_GM_CAN_FAIL(async_rescale_and_read_yuv420_##TAG, canvas, errorMsg, 3 * W, 2 * H) { \
ToolUtils::draw_checkerboard(canvas, SK_ColorDKGRAY, SK_ColorLTGRAY, 25); \
return do_rescale_image_grid(canvas, #IMAGE_FILE, SRC_RECT, W, H, true, errorMsg); \
}
DEF_RESCALE_AND_READ_YUV_GM(images/yellow_rose.webp, rose, SkIRect::MakeXYWH(50, 5, 200, 150),
410, 376)
DEF_RESCALE_AND_READ_GM(images/yellow_rose.webp, rose, SkIRect::MakeXYWH(100, 20, 100, 100),
410, 410)
DEF_RESCALE_AND_READ_GM(images/dog.jpg, dog_down, SkIRect::MakeXYWH(0, 10, 180, 150), 45, 45)
DEF_RESCALE_AND_READ_GM(images/dog.jpg, dog_up, SkIRect::MakeWH(180, 180), 800, 400)
DEF_RESCALE_AND_READ_GM(images/text.png, text_down, SkIRect::MakeWH(637, 105), (int)(0.7 * 637),
(int)(0.7 * 105))
DEF_RESCALE_AND_READ_GM(images/text.png, text_up, SkIRect::MakeWH(637, 105), (int)(1.2 * 637),
(int)(1.2 * 105))
DEF_RESCALE_AND_READ_GM(images/text.png, text_up_large, SkIRect::MakeXYWH(300, 0, 300, 105),
(int)(2.4 * 300), (int)(2.4 * 105))
DEF_SIMPLE_GM_CAN_FAIL(async_rescale_and_read_no_bleed, canvas, errorMsg, 60, 60) {
if (canvas->imageInfo().colorType() == kUnknown_SkColorType) {
*errorMsg = "Not supported on recording/vector backends.";
return skiagm::DrawResult::kSkip;
}
static constexpr int kBorder = 5;
static constexpr int kInner = 5;
const auto srcRect = SkIRect::MakeXYWH(kBorder, kBorder, kInner, kInner);
auto surfaceII =
SkImageInfo::Make(kInner + 2 * kBorder, kInner + 2 * kBorder, kRGBA_8888_SkColorType,
kPremul_SkAlphaType, SkColorSpace::MakeSRGB());
auto surface = canvas->makeSurface(surfaceII);
if (!surface) {
*errorMsg = "Could not create surface for image.";
// When testing abandoned GrContext we expect surface creation to fail.
if (canvas->getGrContext() && canvas->getGrContext()->abandoned()) {
return skiagm::DrawResult::kSkip;
}
return skiagm::DrawResult::kFail;
}
surface->getCanvas()->clear(SK_ColorRED);
surface->getCanvas()->save();
surface->getCanvas()->clipRect(SkRect::Make(srcRect), SkClipOp::kIntersect, false);
surface->getCanvas()->clear(SK_ColorBLUE);
surface->getCanvas()->restore();
static constexpr int kPad = 2;
canvas->translate(kPad, kPad);
skiagm::DrawResult result;
auto downW = static_cast<int>(kInner / 2);
auto downH = static_cast<int>(kInner / 2);
result = do_rescale_grid(canvas, surface.get(), srcRect, downW, downH, false, errorMsg, kPad);
if (result != skiagm::DrawResult::kOk) {
return result;
}
canvas->translate(0, 2 * downH);
auto upW = static_cast<int>(kInner * 3.5);
auto upH = static_cast<int>(kInner * 4.6);
result = do_rescale_grid(canvas, surface.get(), srcRect, upW, upH, false, errorMsg, kPad);
if (result != skiagm::DrawResult::kOk) {
return result;
}
return skiagm::DrawResult::kOk;
}