207 lines
6.5 KiB
C
207 lines
6.5 KiB
C
|
#ifndef SkTHash_DEFINED
|
||
|
#define SkTHash_DEFINED
|
||
|
|
||
|
#include "SkTypes.h"
|
||
|
#include "SkTemplates.h"
|
||
|
|
||
|
// Before trying to use SkTHashTable, look below to see if SkTHashMap or SkTHashSet works for you.
|
||
|
// They're easier to use, usually perform the same, and have fewer sharp edges.
|
||
|
|
||
|
// T and K are treated as ordinary copyable C++ types.
|
||
|
// Traits must have:
|
||
|
// - static K GetKey(T)
|
||
|
// - static uint32_t Hash(K)
|
||
|
// If the key is large and stored inside T, you may want to make K a const&.
|
||
|
// Similarly, if T is large you might want it to be a pointer.
|
||
|
template <typename T, typename K, typename Traits = T>
|
||
|
class SkTHashTable : SkNoncopyable {
|
||
|
public:
|
||
|
SkTHashTable() : fCount(0), fCapacity(0) {}
|
||
|
|
||
|
// How many entries are in the table?
|
||
|
int count() const { return fCount; }
|
||
|
|
||
|
// !!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!
|
||
|
// set(), find() and foreach() all allow mutable access to table entries.
|
||
|
// If you change an entry so that it no longer has the same key, all hell
|
||
|
// will break loose. Do not do that!
|
||
|
//
|
||
|
// Please prefer to use SkTHashMap or SkTHashSet, which do not have this danger.
|
||
|
|
||
|
// The pointers returned by set() and find() are valid only until the next call to set().
|
||
|
// The pointers you receive in foreach() are only valid for its duration.
|
||
|
|
||
|
// Copy val into the hash table, returning a pointer to the copy now in the table.
|
||
|
// If there already is an entry in the table with the same key, we overwrite it.
|
||
|
T* set(T val) {
|
||
|
if (4 * fCount >= 3 * fCapacity) {
|
||
|
this->resize(fCapacity > 0 ? fCapacity * 2 : 4);
|
||
|
}
|
||
|
return this->uncheckedSet(val);
|
||
|
}
|
||
|
|
||
|
// If there is an entry in the table with this key, return a pointer to it. If not, NULL.
|
||
|
T* find(K key) const {
|
||
|
uint32_t hash = Hash(key);
|
||
|
int index = hash & (fCapacity-1);
|
||
|
for (int n = 0; n < fCapacity; n++) {
|
||
|
Slot& s = fSlots[index];
|
||
|
if (s.empty()) {
|
||
|
return NULL;
|
||
|
}
|
||
|
if (hash == s.hash && key == Traits::GetKey(s.val)) {
|
||
|
return &s.val;
|
||
|
}
|
||
|
index = this->next(index, n);
|
||
|
}
|
||
|
SkASSERT(fCapacity == 0);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
// Call fn on every entry in the table. You may mutate the entries, but be very careful.
|
||
|
template <typename Arg>
|
||
|
void foreach(void(*fn)(T*, Arg), Arg arg) {
|
||
|
for (int i = 0; i < fCapacity; i++) {
|
||
|
Slot& s = fSlots[i];
|
||
|
if (!s.empty()) {
|
||
|
fn(&s.val, arg);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
T* uncheckedSet(T val) {
|
||
|
K key = Traits::GetKey(val);
|
||
|
uint32_t hash = Hash(key);
|
||
|
int index = hash & (fCapacity-1);
|
||
|
for (int n = 0; n < fCapacity; n++) {
|
||
|
Slot& s = fSlots[index];
|
||
|
if (s.empty()) {
|
||
|
// New entry.
|
||
|
s.val = val;
|
||
|
s.hash = hash;
|
||
|
fCount++;
|
||
|
return &s.val;
|
||
|
}
|
||
|
if (hash == s.hash && key == Traits::GetKey(s.val)) {
|
||
|
// Overwrite previous entry.
|
||
|
s.val = val;
|
||
|
return &s.val;
|
||
|
}
|
||
|
index = this->next(index, n);
|
||
|
}
|
||
|
SkASSERT(false);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
void resize(int capacity) {
|
||
|
int oldCapacity = fCapacity;
|
||
|
SkDEBUGCODE(int oldCount = fCount);
|
||
|
|
||
|
fCount = 0;
|
||
|
fCapacity = capacity;
|
||
|
SkAutoTArray<Slot> oldSlots(capacity);
|
||
|
oldSlots.swap(fSlots);
|
||
|
|
||
|
for (int i = 0; i < oldCapacity; i++) {
|
||
|
const Slot& s = oldSlots[i];
|
||
|
if (!s.empty()) {
|
||
|
this->uncheckedSet(s.val);
|
||
|
}
|
||
|
}
|
||
|
SkASSERT(fCount == oldCount);
|
||
|
}
|
||
|
|
||
|
int next(int index, int n) const {
|
||
|
// A valid strategy explores all slots in [0, fCapacity) as n walks from 0 to fCapacity-1.
|
||
|
// Both of these strategies are valid:
|
||
|
//return (index + 0 + 1) & (fCapacity-1); // Linear probing.
|
||
|
return (index + n + 1) & (fCapacity-1); // Quadratic probing.
|
||
|
}
|
||
|
|
||
|
static uint32_t Hash(K key) {
|
||
|
uint32_t hash = Traits::Hash(key);
|
||
|
return hash == 0 ? 1 : hash; // We reserve hash == 0 to mark empty slots.
|
||
|
}
|
||
|
|
||
|
struct Slot {
|
||
|
Slot() : hash(0) {}
|
||
|
bool empty() const { return hash == 0; }
|
||
|
|
||
|
T val;
|
||
|
uint32_t hash;
|
||
|
};
|
||
|
|
||
|
int fCount, fCapacity;
|
||
|
SkAutoTArray<Slot> fSlots;
|
||
|
};
|
||
|
|
||
|
// Maps K->V. A more user-friendly wrapper around SkTHashTable, suitable for most use cases.
|
||
|
// K and V are treated as ordinary copyable C++ types, with no assumed relationship between the two.
|
||
|
template <typename K, typename V, uint32_t(*HashK)(K)>
|
||
|
class SkTHashMap : SkNoncopyable {
|
||
|
public:
|
||
|
SkTHashMap() {}
|
||
|
|
||
|
// How many key/value pairs are in the table?
|
||
|
int count() const { return fTable.count(); }
|
||
|
|
||
|
// N.B. The pointers returned by set() and find() are valid only until the next call to set().
|
||
|
|
||
|
// Set key to val in the table, replacing any previous value with the same key.
|
||
|
// We copy both key and val, and return a pointer to the value copy now in the table.
|
||
|
V* set(K key, V val) {
|
||
|
Pair in = { key, val };
|
||
|
Pair* out = fTable.set(in);
|
||
|
return &out->val;
|
||
|
}
|
||
|
|
||
|
// If there is key/value entry in the table with this key, return a pointer to the value.
|
||
|
// If not, return NULL.
|
||
|
V* find(K key) const {
|
||
|
if (Pair* p = fTable.find(key)) {
|
||
|
return &p->val;
|
||
|
}
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
// Call fn on every key/value pair in the table. You may mutate the value but not the key.
|
||
|
void foreach(void(*fn)(K, V*)) { fTable.foreach(ForEach, fn); }
|
||
|
|
||
|
private:
|
||
|
struct Pair {
|
||
|
K key;
|
||
|
V val;
|
||
|
static K GetKey(Pair p) { return p.key; }
|
||
|
static uint32_t Hash(K key) { return HashK(key); }
|
||
|
};
|
||
|
static void ForEach(Pair* p, void (*fn)(K, V*)) { fn(p->key, &p->val); }
|
||
|
|
||
|
SkTHashTable<Pair, K> fTable;
|
||
|
};
|
||
|
|
||
|
// A set of T. T is treated as an ordiary copyable C++ type.
|
||
|
template <typename T, uint32_t(*HashT)(T)>
|
||
|
class SkTHashSet : SkNoncopyable {
|
||
|
public:
|
||
|
SkTHashSet() {}
|
||
|
|
||
|
// How many items are in the set?
|
||
|
int count() const { return fTable.count(); }
|
||
|
|
||
|
// Copy an item into the set.
|
||
|
void add(T item) { fTable.set(item); }
|
||
|
|
||
|
// Is this item in the set?
|
||
|
bool contains(T item) const { return SkToBool(fTable.find(item)); }
|
||
|
|
||
|
private:
|
||
|
struct Traits {
|
||
|
static T GetKey(T item) { return item; }
|
||
|
static uint32_t Hash(T item) { return HashT(item); }
|
||
|
};
|
||
|
SkTHashTable<T, T, Traits> fTable;
|
||
|
};
|
||
|
|
||
|
#endif//SkTHash_DEFINED
|