skia2/src/core/SkTHash.h

207 lines
6.5 KiB
C
Raw Normal View History

#ifndef SkTHash_DEFINED
#define SkTHash_DEFINED
#include "SkTypes.h"
#include "SkTemplates.h"
// Before trying to use SkTHashTable, look below to see if SkTHashMap or SkTHashSet works for you.
// They're easier to use, usually perform the same, and have fewer sharp edges.
// T and K are treated as ordinary copyable C++ types.
// Traits must have:
// - static K GetKey(T)
// - static uint32_t Hash(K)
// If the key is large and stored inside T, you may want to make K a const&.
// Similarly, if T is large you might want it to be a pointer.
template <typename T, typename K, typename Traits = T>
class SkTHashTable : SkNoncopyable {
public:
SkTHashTable() : fCount(0), fCapacity(0) {}
// How many entries are in the table?
int count() const { return fCount; }
// !!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!
// set(), find() and foreach() all allow mutable access to table entries.
// If you change an entry so that it no longer has the same key, all hell
// will break loose. Do not do that!
//
// Please prefer to use SkTHashMap or SkTHashSet, which do not have this danger.
// The pointers returned by set() and find() are valid only until the next call to set().
// The pointers you receive in foreach() are only valid for its duration.
// Copy val into the hash table, returning a pointer to the copy now in the table.
// If there already is an entry in the table with the same key, we overwrite it.
T* set(T val) {
if (4 * fCount >= 3 * fCapacity) {
this->resize(fCapacity > 0 ? fCapacity * 2 : 4);
}
return this->uncheckedSet(val);
}
// If there is an entry in the table with this key, return a pointer to it. If not, NULL.
T* find(K key) const {
uint32_t hash = Hash(key);
int index = hash & (fCapacity-1);
for (int n = 0; n < fCapacity; n++) {
Slot& s = fSlots[index];
if (s.empty()) {
return NULL;
}
if (hash == s.hash && key == Traits::GetKey(s.val)) {
return &s.val;
}
index = this->next(index, n);
}
SkASSERT(fCapacity == 0);
return NULL;
}
// Call fn on every entry in the table. You may mutate the entries, but be very careful.
template <typename Arg>
void foreach(void(*fn)(T*, Arg), Arg arg) {
for (int i = 0; i < fCapacity; i++) {
Slot& s = fSlots[i];
if (!s.empty()) {
fn(&s.val, arg);
}
}
}
private:
T* uncheckedSet(T val) {
K key = Traits::GetKey(val);
uint32_t hash = Hash(key);
int index = hash & (fCapacity-1);
for (int n = 0; n < fCapacity; n++) {
Slot& s = fSlots[index];
if (s.empty()) {
// New entry.
s.val = val;
s.hash = hash;
fCount++;
return &s.val;
}
if (hash == s.hash && key == Traits::GetKey(s.val)) {
// Overwrite previous entry.
s.val = val;
return &s.val;
}
index = this->next(index, n);
}
SkASSERT(false);
return NULL;
}
void resize(int capacity) {
int oldCapacity = fCapacity;
SkDEBUGCODE(int oldCount = fCount);
fCount = 0;
fCapacity = capacity;
SkAutoTArray<Slot> oldSlots(capacity);
oldSlots.swap(fSlots);
for (int i = 0; i < oldCapacity; i++) {
const Slot& s = oldSlots[i];
if (!s.empty()) {
this->uncheckedSet(s.val);
}
}
SkASSERT(fCount == oldCount);
}
int next(int index, int n) const {
// A valid strategy explores all slots in [0, fCapacity) as n walks from 0 to fCapacity-1.
// Both of these strategies are valid:
//return (index + 0 + 1) & (fCapacity-1); // Linear probing.
return (index + n + 1) & (fCapacity-1); // Quadratic probing.
}
static uint32_t Hash(K key) {
uint32_t hash = Traits::Hash(key);
return hash == 0 ? 1 : hash; // We reserve hash == 0 to mark empty slots.
}
struct Slot {
Slot() : hash(0) {}
bool empty() const { return hash == 0; }
T val;
uint32_t hash;
};
int fCount, fCapacity;
SkAutoTArray<Slot> fSlots;
};
// Maps K->V. A more user-friendly wrapper around SkTHashTable, suitable for most use cases.
// K and V are treated as ordinary copyable C++ types, with no assumed relationship between the two.
template <typename K, typename V, uint32_t(*HashK)(K)>
class SkTHashMap : SkNoncopyable {
public:
SkTHashMap() {}
// How many key/value pairs are in the table?
int count() const { return fTable.count(); }
// N.B. The pointers returned by set() and find() are valid only until the next call to set().
// Set key to val in the table, replacing any previous value with the same key.
// We copy both key and val, and return a pointer to the value copy now in the table.
V* set(K key, V val) {
Pair in = { key, val };
Pair* out = fTable.set(in);
return &out->val;
}
// If there is key/value entry in the table with this key, return a pointer to the value.
// If not, return NULL.
V* find(K key) const {
if (Pair* p = fTable.find(key)) {
return &p->val;
}
return NULL;
}
// Call fn on every key/value pair in the table. You may mutate the value but not the key.
void foreach(void(*fn)(K, V*)) { fTable.foreach(ForEach, fn); }
private:
struct Pair {
K key;
V val;
static K GetKey(Pair p) { return p.key; }
static uint32_t Hash(K key) { return HashK(key); }
};
static void ForEach(Pair* p, void (*fn)(K, V*)) { fn(p->key, &p->val); }
SkTHashTable<Pair, K> fTable;
};
// A set of T. T is treated as an ordiary copyable C++ type.
template <typename T, uint32_t(*HashT)(T)>
class SkTHashSet : SkNoncopyable {
public:
SkTHashSet() {}
// How many items are in the set?
int count() const { return fTable.count(); }
// Copy an item into the set.
void add(T item) { fTable.set(item); }
// Is this item in the set?
bool contains(T item) const { return SkToBool(fTable.find(item)); }
private:
struct Traits {
static T GetKey(T item) { return item; }
static uint32_t Hash(T item) { return HashT(item); }
};
SkTHashTable<T, T, Traits> fTable;
};
#endif//SkTHash_DEFINED