skia2/src/sksl/SkSLCompiler.cpp

1591 lines
61 KiB
C++
Raw Normal View History

/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkSLCompiler.h"
#include "SkSLByteCodeGenerator.h"
#include "SkSLCFGGenerator.h"
#include "SkSLCPPCodeGenerator.h"
#include "SkSLGLSLCodeGenerator.h"
#include "SkSLHCodeGenerator.h"
#include "SkSLIRGenerator.h"
#include "SkSLMetalCodeGenerator.h"
#include "SkSLPipelineStageCodeGenerator.h"
#include "SkSLSPIRVCodeGenerator.h"
#include "ir/SkSLEnum.h"
#include "ir/SkSLExpression.h"
#include "ir/SkSLExpressionStatement.h"
#include "ir/SkSLFunctionCall.h"
#include "ir/SkSLIntLiteral.h"
#include "ir/SkSLModifiersDeclaration.h"
#include "ir/SkSLNop.h"
#include "ir/SkSLSymbolTable.h"
#include "ir/SkSLTernaryExpression.h"
#include "ir/SkSLUnresolvedFunction.h"
#include "ir/SkSLVarDeclarations.h"
#ifdef SK_ENABLE_SPIRV_VALIDATION
#include "spirv-tools/libspirv.hpp"
#endif
// include the built-in shader symbols as static strings
#define STRINGIFY(x) #x
static const char* SKSL_INCLUDE =
#include "sksl.inc"
;
static const char* SKSL_VERT_INCLUDE =
#include "sksl_vert.inc"
;
static const char* SKSL_FRAG_INCLUDE =
#include "sksl_frag.inc"
;
static const char* SKSL_GEOM_INCLUDE =
#include "sksl_geom.inc"
;
static const char* SKSL_FP_INCLUDE =
#include "sksl_enums.inc"
#include "sksl_fp.inc"
;
static const char* SKSL_GENERIC_INCLUDE =
#include "sksl_generic.inc"
;
namespace SkSL {
Compiler::Compiler(Flags flags)
: fFlags(flags)
, fContext(new Context())
, fErrorCount(0) {
auto types = std::shared_ptr<SymbolTable>(new SymbolTable(this));
auto symbols = std::shared_ptr<SymbolTable>(new SymbolTable(types, this));
fIRGenerator = new IRGenerator(fContext.get(), symbols, *this);
fTypes = types;
#define ADD_TYPE(t) types->addWithoutOwnership(fContext->f ## t ## _Type->fName, \
fContext->f ## t ## _Type.get())
ADD_TYPE(Void);
ADD_TYPE(Float);
ADD_TYPE(Float2);
ADD_TYPE(Float3);
ADD_TYPE(Float4);
ADD_TYPE(Half);
ADD_TYPE(Half2);
ADD_TYPE(Half3);
ADD_TYPE(Half4);
ADD_TYPE(Double);
ADD_TYPE(Double2);
ADD_TYPE(Double3);
ADD_TYPE(Double4);
ADD_TYPE(Int);
ADD_TYPE(Int2);
ADD_TYPE(Int3);
ADD_TYPE(Int4);
ADD_TYPE(UInt);
ADD_TYPE(UInt2);
ADD_TYPE(UInt3);
ADD_TYPE(UInt4);
ADD_TYPE(Short);
ADD_TYPE(Short2);
ADD_TYPE(Short3);
ADD_TYPE(Short4);
ADD_TYPE(UShort);
ADD_TYPE(UShort2);
ADD_TYPE(UShort3);
ADD_TYPE(UShort4);
ADD_TYPE(Byte);
ADD_TYPE(Byte2);
ADD_TYPE(Byte3);
ADD_TYPE(Byte4);
ADD_TYPE(UByte);
ADD_TYPE(UByte2);
ADD_TYPE(UByte3);
ADD_TYPE(UByte4);
ADD_TYPE(Bool);
ADD_TYPE(Bool2);
ADD_TYPE(Bool3);
ADD_TYPE(Bool4);
ADD_TYPE(Float2x2);
ADD_TYPE(Float2x3);
ADD_TYPE(Float2x4);
ADD_TYPE(Float3x2);
ADD_TYPE(Float3x3);
ADD_TYPE(Float3x4);
ADD_TYPE(Float4x2);
ADD_TYPE(Float4x3);
ADD_TYPE(Float4x4);
ADD_TYPE(Half2x2);
ADD_TYPE(Half2x3);
ADD_TYPE(Half2x4);
ADD_TYPE(Half3x2);
ADD_TYPE(Half3x3);
ADD_TYPE(Half3x4);
ADD_TYPE(Half4x2);
ADD_TYPE(Half4x3);
ADD_TYPE(Half4x4);
ADD_TYPE(Double2x2);
ADD_TYPE(Double2x3);
ADD_TYPE(Double2x4);
ADD_TYPE(Double3x2);
ADD_TYPE(Double3x3);
ADD_TYPE(Double3x4);
ADD_TYPE(Double4x2);
ADD_TYPE(Double4x3);
ADD_TYPE(Double4x4);
ADD_TYPE(GenType);
ADD_TYPE(GenHType);
ADD_TYPE(GenDType);
ADD_TYPE(GenIType);
ADD_TYPE(GenUType);
ADD_TYPE(GenBType);
ADD_TYPE(Mat);
ADD_TYPE(Vec);
ADD_TYPE(GVec);
ADD_TYPE(GVec2);
ADD_TYPE(GVec3);
ADD_TYPE(GVec4);
ADD_TYPE(HVec);
ADD_TYPE(DVec);
ADD_TYPE(IVec);
ADD_TYPE(UVec);
ADD_TYPE(SVec);
ADD_TYPE(USVec);
ADD_TYPE(ByteVec);
ADD_TYPE(UByteVec);
ADD_TYPE(BVec);
ADD_TYPE(Sampler1D);
ADD_TYPE(Sampler2D);
ADD_TYPE(Sampler3D);
ADD_TYPE(SamplerExternalOES);
ADD_TYPE(SamplerCube);
ADD_TYPE(Sampler2DRect);
ADD_TYPE(Sampler1DArray);
ADD_TYPE(Sampler2DArray);
ADD_TYPE(SamplerCubeArray);
ADD_TYPE(SamplerBuffer);
ADD_TYPE(Sampler2DMS);
ADD_TYPE(Sampler2DMSArray);
ADD_TYPE(ISampler2D);
ADD_TYPE(Image2D);
ADD_TYPE(IImage2D);
ADD_TYPE(SubpassInput);
ADD_TYPE(SubpassInputMS);
ADD_TYPE(GSampler1D);
ADD_TYPE(GSampler2D);
ADD_TYPE(GSampler3D);
ADD_TYPE(GSamplerCube);
ADD_TYPE(GSampler2DRect);
ADD_TYPE(GSampler1DArray);
ADD_TYPE(GSampler2DArray);
ADD_TYPE(GSamplerCubeArray);
ADD_TYPE(GSamplerBuffer);
ADD_TYPE(GSampler2DMS);
ADD_TYPE(GSampler2DMSArray);
ADD_TYPE(Sampler1DShadow);
ADD_TYPE(Sampler2DShadow);
ADD_TYPE(SamplerCubeShadow);
ADD_TYPE(Sampler2DRectShadow);
ADD_TYPE(Sampler1DArrayShadow);
ADD_TYPE(Sampler2DArrayShadow);
ADD_TYPE(SamplerCubeArrayShadow);
ADD_TYPE(GSampler2DArrayShadow);
ADD_TYPE(GSamplerCubeArrayShadow);
ADD_TYPE(FragmentProcessor);
ADD_TYPE(SkRasterPipeline);
StringFragment skCapsName("sk_Caps");
Variable* skCaps = new Variable(-1, Modifiers(), skCapsName,
*fContext->fSkCaps_Type, Variable::kGlobal_Storage);
fIRGenerator->fSymbolTable->add(skCapsName, std::unique_ptr<Symbol>(skCaps));
StringFragment skArgsName("sk_Args");
Variable* skArgs = new Variable(-1, Modifiers(), skArgsName,
*fContext->fSkArgs_Type, Variable::kGlobal_Storage);
fIRGenerator->fSymbolTable->add(skArgsName, std::unique_ptr<Symbol>(skArgs));
std::vector<std::unique_ptr<ProgramElement>> ignored;
fIRGenerator->convertProgram(Program::kFragment_Kind, SKSL_INCLUDE, strlen(SKSL_INCLUDE),
*fTypes, &ignored);
fIRGenerator->fSymbolTable->markAllFunctionsBuiltin();
if (fErrorCount) {
printf("Unexpected errors: %s\n", fErrorText.c_str());
}
SkASSERT(!fErrorCount);
Program::Settings settings;
fIRGenerator->start(&settings, nullptr);
fIRGenerator->convertProgram(Program::kFragment_Kind, SKSL_VERT_INCLUDE,
strlen(SKSL_VERT_INCLUDE), *fTypes, &fVertexInclude);
fIRGenerator->fSymbolTable->markAllFunctionsBuiltin();
fVertexSymbolTable = fIRGenerator->fSymbolTable;
fIRGenerator->start(&settings, nullptr);
fIRGenerator->convertProgram(Program::kVertex_Kind, SKSL_FRAG_INCLUDE,
strlen(SKSL_FRAG_INCLUDE), *fTypes, &fFragmentInclude);
fIRGenerator->fSymbolTable->markAllFunctionsBuiltin();
fFragmentSymbolTable = fIRGenerator->fSymbolTable;
fIRGenerator->start(&settings, nullptr);
fIRGenerator->convertProgram(Program::kGeometry_Kind, SKSL_GEOM_INCLUDE,
strlen(SKSL_GEOM_INCLUDE), *fTypes, &fGeometryInclude);
fIRGenerator->fSymbolTable->markAllFunctionsBuiltin();
fGeometrySymbolTable = fIRGenerator->fSymbolTable;
}
Compiler::~Compiler() {
delete fIRGenerator;
}
// add the definition created by assigning to the lvalue to the definition set
void Compiler::addDefinition(const Expression* lvalue, std::unique_ptr<Expression>* expr,
DefinitionMap* definitions) {
switch (lvalue->fKind) {
case Expression::kVariableReference_Kind: {
const Variable& var = ((VariableReference*) lvalue)->fVariable;
if (var.fStorage == Variable::kLocal_Storage) {
(*definitions)[&var] = expr;
}
break;
}
case Expression::kSwizzle_Kind:
// We consider the variable written to as long as at least some of its components have
// been written to. This will lead to some false negatives (we won't catch it if you
// write to foo.x and then read foo.y), but being stricter could lead to false positives
// (we write to foo.x, and then pass foo to a function which happens to only read foo.x,
// but since we pass foo as a whole it is flagged as an error) unless we perform a much
// more complicated whole-program analysis. This is probably good enough.
this->addDefinition(((Swizzle*) lvalue)->fBase.get(),
(std::unique_ptr<Expression>*) &fContext->fDefined_Expression,
definitions);
break;
case Expression::kIndex_Kind:
// see comments in Swizzle
this->addDefinition(((IndexExpression*) lvalue)->fBase.get(),
(std::unique_ptr<Expression>*) &fContext->fDefined_Expression,
definitions);
break;
case Expression::kFieldAccess_Kind:
// see comments in Swizzle
this->addDefinition(((FieldAccess*) lvalue)->fBase.get(),
(std::unique_ptr<Expression>*) &fContext->fDefined_Expression,
definitions);
break;
case Expression::kTernary_Kind:
// To simplify analysis, we just pretend that we write to both sides of the ternary.
// This allows for false positives (meaning we fail to detect that a variable might not
// have been assigned), but is preferable to false negatives.
this->addDefinition(((TernaryExpression*) lvalue)->fIfTrue.get(),
(std::unique_ptr<Expression>*) &fContext->fDefined_Expression,
definitions);
this->addDefinition(((TernaryExpression*) lvalue)->fIfFalse.get(),
(std::unique_ptr<Expression>*) &fContext->fDefined_Expression,
definitions);
break;
default:
// not an lvalue, can't happen
SkASSERT(false);
}
}
// add local variables defined by this node to the set
void Compiler::addDefinitions(const BasicBlock::Node& node,
DefinitionMap* definitions) {
switch (node.fKind) {
case BasicBlock::Node::kExpression_Kind: {
SkASSERT(node.expression());
const Expression* expr = (Expression*) node.expression()->get();
switch (expr->fKind) {
case Expression::kBinary_Kind: {
BinaryExpression* b = (BinaryExpression*) expr;
if (b->fOperator == Token::EQ) {
this->addDefinition(b->fLeft.get(), &b->fRight, definitions);
} else if (Compiler::IsAssignment(b->fOperator)) {
this->addDefinition(
b->fLeft.get(),
(std::unique_ptr<Expression>*) &fContext->fDefined_Expression,
definitions);
}
break;
}
case Expression::kFunctionCall_Kind: {
const FunctionCall& c = (const FunctionCall&) *expr;
for (size_t i = 0; i < c.fFunction.fParameters.size(); ++i) {
if (c.fFunction.fParameters[i]->fModifiers.fFlags & Modifiers::kOut_Flag) {
this->addDefinition(
c.fArguments[i].get(),
(std::unique_ptr<Expression>*) &fContext->fDefined_Expression,
definitions);
}
}
break;
}
case Expression::kPrefix_Kind: {
const PrefixExpression* p = (PrefixExpression*) expr;
if (p->fOperator == Token::MINUSMINUS || p->fOperator == Token::PLUSPLUS) {
this->addDefinition(
p->fOperand.get(),
(std::unique_ptr<Expression>*) &fContext->fDefined_Expression,
definitions);
}
break;
}
case Expression::kPostfix_Kind: {
const PostfixExpression* p = (PostfixExpression*) expr;
if (p->fOperator == Token::MINUSMINUS || p->fOperator == Token::PLUSPLUS) {
this->addDefinition(
p->fOperand.get(),
(std::unique_ptr<Expression>*) &fContext->fDefined_Expression,
definitions);
}
break;
}
case Expression::kVariableReference_Kind: {
const VariableReference* v = (VariableReference*) expr;
if (v->fRefKind != VariableReference::kRead_RefKind) {
this->addDefinition(
v,
(std::unique_ptr<Expression>*) &fContext->fDefined_Expression,
definitions);
}
}
default:
break;
}
break;
}
case BasicBlock::Node::kStatement_Kind: {
const Statement* stmt = (Statement*) node.statement()->get();
if (stmt->fKind == Statement::kVarDeclaration_Kind) {
VarDeclaration& vd = (VarDeclaration&) *stmt;
if (vd.fValue) {
(*definitions)[vd.fVar] = &vd.fValue;
}
}
break;
}
}
}
void Compiler::scanCFG(CFG* cfg, BlockId blockId, std::set<BlockId>* workList) {
BasicBlock& block = cfg->fBlocks[blockId];
// compute definitions after this block
DefinitionMap after = block.fBefore;
for (const BasicBlock::Node& n : block.fNodes) {
this->addDefinitions(n, &after);
}
// propagate definitions to exits
for (BlockId exitId : block.fExits) {
if (exitId == blockId) {
continue;
}
BasicBlock& exit = cfg->fBlocks[exitId];
for (const auto& pair : after) {
std::unique_ptr<Expression>* e1 = pair.second;
auto found = exit.fBefore.find(pair.first);
if (found == exit.fBefore.end()) {
// exit has no definition for it, just copy it
workList->insert(exitId);
exit.fBefore[pair.first] = e1;
} else {
// exit has a (possibly different) value already defined
std::unique_ptr<Expression>* e2 = exit.fBefore[pair.first];
if (e1 != e2) {
// definition has changed, merge and add exit block to worklist
workList->insert(exitId);
if (e1 && e2) {
exit.fBefore[pair.first] =
(std::unique_ptr<Expression>*) &fContext->fDefined_Expression;
} else {
exit.fBefore[pair.first] = nullptr;
}
}
}
}
}
}
// returns a map which maps all local variables in the function to null, indicating that their value
// is initially unknown
static DefinitionMap compute_start_state(const CFG& cfg) {
DefinitionMap result;
for (const auto& block : cfg.fBlocks) {
for (const auto& node : block.fNodes) {
if (node.fKind == BasicBlock::Node::kStatement_Kind) {
SkASSERT(node.statement());
const Statement* s = node.statement()->get();
if (s->fKind == Statement::kVarDeclarations_Kind) {
const VarDeclarationsStatement* vd = (const VarDeclarationsStatement*) s;
for (const auto& decl : vd->fDeclaration->fVars) {
if (decl->fKind == Statement::kVarDeclaration_Kind) {
result[((VarDeclaration&) *decl).fVar] = nullptr;
}
}
}
}
}
}
return result;
}
/**
* Returns true if assigning to this lvalue has no effect.
*/
static bool is_dead(const Expression& lvalue) {
switch (lvalue.fKind) {
case Expression::kVariableReference_Kind:
return ((VariableReference&) lvalue).fVariable.dead();
case Expression::kSwizzle_Kind:
return is_dead(*((Swizzle&) lvalue).fBase);
case Expression::kFieldAccess_Kind:
return is_dead(*((FieldAccess&) lvalue).fBase);
case Expression::kIndex_Kind: {
const IndexExpression& idx = (IndexExpression&) lvalue;
return is_dead(*idx.fBase) && !idx.fIndex->hasSideEffects();
}
case Expression::kTernary_Kind: {
const TernaryExpression& t = (TernaryExpression&) lvalue;
return !t.fTest->hasSideEffects() && is_dead(*t.fIfTrue) && is_dead(*t.fIfFalse);
}
default:
ABORT("invalid lvalue: %s\n", lvalue.description().c_str());
}
}
/**
* Returns true if this is an assignment which can be collapsed down to just the right hand side due
* to a dead target and lack of side effects on the left hand side.
*/
static bool dead_assignment(const BinaryExpression& b) {
if (!Compiler::IsAssignment(b.fOperator)) {
return false;
}
return is_dead(*b.fLeft);
}
void Compiler::computeDataFlow(CFG* cfg) {
cfg->fBlocks[cfg->fStart].fBefore = compute_start_state(*cfg);
std::set<BlockId> workList;
for (BlockId i = 0; i < cfg->fBlocks.size(); i++) {
workList.insert(i);
}
while (workList.size()) {
BlockId next = *workList.begin();
workList.erase(workList.begin());
this->scanCFG(cfg, next, &workList);
}
}
/**
* Attempts to replace the expression pointed to by iter with a new one (in both the CFG and the
* IR). If the expression can be cleanly removed, returns true and updates the iterator to point to
* the newly-inserted element. Otherwise updates only the IR and returns false (and the CFG will
* need to be regenerated).
*/
bool try_replace_expression(BasicBlock* b,
std::vector<BasicBlock::Node>::iterator* iter,
std::unique_ptr<Expression>* newExpression) {
std::unique_ptr<Expression>* target = (*iter)->expression();
if (!b->tryRemoveExpression(iter)) {
*target = std::move(*newExpression);
return false;
}
*target = std::move(*newExpression);
return b->tryInsertExpression(iter, target);
}
/**
* Returns true if the expression is a constant numeric literal with the specified value, or a
* constant vector with all elements equal to the specified value.
*/
bool is_constant(const Expression& expr, double value) {
switch (expr.fKind) {
case Expression::kIntLiteral_Kind:
return ((IntLiteral&) expr).fValue == value;
case Expression::kFloatLiteral_Kind:
return ((FloatLiteral&) expr).fValue == value;
case Expression::kConstructor_Kind: {
Constructor& c = (Constructor&) expr;
if (c.fType.kind() == Type::kVector_Kind && c.isConstant()) {
for (int i = 0; i < c.fType.columns(); ++i) {
if (!is_constant(*c.getVecComponent(i), value)) {
return false;
}
}
return true;
}
return false;
}
default:
return false;
}
}
/**
* Collapses the binary expression pointed to by iter down to just the right side (in both the IR
* and CFG structures).
*/
void delete_left(BasicBlock* b,
std::vector<BasicBlock::Node>::iterator* iter,
bool* outUpdated,
bool* outNeedsRescan) {
*outUpdated = true;
std::unique_ptr<Expression>* target = (*iter)->expression();
SkASSERT((*target)->fKind == Expression::kBinary_Kind);
BinaryExpression& bin = (BinaryExpression&) **target;
SkASSERT(!bin.fLeft->hasSideEffects());
bool result;
if (bin.fOperator == Token::EQ) {
result = b->tryRemoveLValueBefore(iter, bin.fLeft.get());
} else {
result = b->tryRemoveExpressionBefore(iter, bin.fLeft.get());
}
*target = std::move(bin.fRight);
if (!result) {
*outNeedsRescan = true;
return;
}
if (*iter == b->fNodes.begin()) {
*outNeedsRescan = true;
return;
}
--(*iter);
if ((*iter)->fKind != BasicBlock::Node::kExpression_Kind ||
(*iter)->expression() != &bin.fRight) {
*outNeedsRescan = true;
return;
}
*iter = b->fNodes.erase(*iter);
SkASSERT((*iter)->expression() == target);
}
/**
* Collapses the binary expression pointed to by iter down to just the left side (in both the IR and
* CFG structures).
*/
void delete_right(BasicBlock* b,
std::vector<BasicBlock::Node>::iterator* iter,
bool* outUpdated,
bool* outNeedsRescan) {
*outUpdated = true;
std::unique_ptr<Expression>* target = (*iter)->expression();
SkASSERT((*target)->fKind == Expression::kBinary_Kind);
BinaryExpression& bin = (BinaryExpression&) **target;
SkASSERT(!bin.fRight->hasSideEffects());
if (!b->tryRemoveExpressionBefore(iter, bin.fRight.get())) {
*target = std::move(bin.fLeft);
*outNeedsRescan = true;
return;
}
*target = std::move(bin.fLeft);
if (*iter == b->fNodes.begin()) {
*outNeedsRescan = true;
return;
}
--(*iter);
if (((*iter)->fKind != BasicBlock::Node::kExpression_Kind ||
(*iter)->expression() != &bin.fLeft)) {
*outNeedsRescan = true;
return;
}
*iter = b->fNodes.erase(*iter);
SkASSERT((*iter)->expression() == target);
}
/**
* Constructs the specified type using a single argument.
*/
static std::unique_ptr<Expression> construct(const Type& type, std::unique_ptr<Expression> v) {
std::vector<std::unique_ptr<Expression>> args;
args.push_back(std::move(v));
auto result = std::unique_ptr<Expression>(new Constructor(-1, type, std::move(args)));
return result;
}
/**
* Used in the implementations of vectorize_left and vectorize_right. Given a vector type and an
* expression x, deletes the expression pointed to by iter and replaces it with <type>(x).
*/
static void vectorize(BasicBlock* b,
std::vector<BasicBlock::Node>::iterator* iter,
const Type& type,
std::unique_ptr<Expression>* otherExpression,
bool* outUpdated,
bool* outNeedsRescan) {
SkASSERT((*(*iter)->expression())->fKind == Expression::kBinary_Kind);
SkASSERT(type.kind() == Type::kVector_Kind);
SkASSERT((*otherExpression)->fType.kind() == Type::kScalar_Kind);
*outUpdated = true;
std::unique_ptr<Expression>* target = (*iter)->expression();
if (!b->tryRemoveExpression(iter)) {
*target = construct(type, std::move(*otherExpression));
*outNeedsRescan = true;
} else {
*target = construct(type, std::move(*otherExpression));
if (!b->tryInsertExpression(iter, target)) {
*outNeedsRescan = true;
}
}
}
/**
* Given a binary expression of the form x <op> vec<n>(y), deletes the right side and vectorizes the
* left to yield vec<n>(x).
*/
static void vectorize_left(BasicBlock* b,
std::vector<BasicBlock::Node>::iterator* iter,
bool* outUpdated,
bool* outNeedsRescan) {
BinaryExpression& bin = (BinaryExpression&) **(*iter)->expression();
vectorize(b, iter, bin.fRight->fType, &bin.fLeft, outUpdated, outNeedsRescan);
}
/**
* Given a binary expression of the form vec<n>(x) <op> y, deletes the left side and vectorizes the
* right to yield vec<n>(y).
*/
static void vectorize_right(BasicBlock* b,
std::vector<BasicBlock::Node>::iterator* iter,
bool* outUpdated,
bool* outNeedsRescan) {
BinaryExpression& bin = (BinaryExpression&) **(*iter)->expression();
vectorize(b, iter, bin.fLeft->fType, &bin.fRight, outUpdated, outNeedsRescan);
}
// Mark that an expression which we were writing to is no longer being written to
void clear_write(const Expression& expr) {
switch (expr.fKind) {
case Expression::kVariableReference_Kind: {
((VariableReference&) expr).setRefKind(VariableReference::kRead_RefKind);
break;
}
case Expression::kFieldAccess_Kind:
clear_write(*((FieldAccess&) expr).fBase);
break;
case Expression::kSwizzle_Kind:
clear_write(*((Swizzle&) expr).fBase);
break;
case Expression::kIndex_Kind:
clear_write(*((IndexExpression&) expr).fBase);
break;
default:
ABORT("shouldn't be writing to this kind of expression\n");
break;
}
}
void Compiler::simplifyExpression(DefinitionMap& definitions,
BasicBlock& b,
std::vector<BasicBlock::Node>::iterator* iter,
std::unordered_set<const Variable*>* undefinedVariables,
bool* outUpdated,
bool* outNeedsRescan) {
Expression* expr = (*iter)->expression()->get();
SkASSERT(expr);
if ((*iter)->fConstantPropagation) {
std::unique_ptr<Expression> optimized = expr->constantPropagate(*fIRGenerator, definitions);
if (optimized) {
*outUpdated = true;
if (!try_replace_expression(&b, iter, &optimized)) {
*outNeedsRescan = true;
return;
}
SkASSERT((*iter)->fKind == BasicBlock::Node::kExpression_Kind);
expr = (*iter)->expression()->get();
}
}
switch (expr->fKind) {
case Expression::kVariableReference_Kind: {
const VariableReference& ref = (VariableReference&) *expr;
const Variable& var = ref.fVariable;
if (ref.refKind() != VariableReference::kWrite_RefKind &&
ref.refKind() != VariableReference::kPointer_RefKind &&
var.fStorage == Variable::kLocal_Storage && !definitions[&var] &&
(*undefinedVariables).find(&var) == (*undefinedVariables).end()) {
(*undefinedVariables).insert(&var);
this->error(expr->fOffset,
"'" + var.fName + "' has not been assigned");
}
break;
}
case Expression::kTernary_Kind: {
TernaryExpression* t = (TernaryExpression*) expr;
if (t->fTest->fKind == Expression::kBoolLiteral_Kind) {
// ternary has a constant test, replace it with either the true or
// false branch
if (((BoolLiteral&) *t->fTest).fValue) {
(*iter)->setExpression(std::move(t->fIfTrue));
} else {
(*iter)->setExpression(std::move(t->fIfFalse));
}
*outUpdated = true;
*outNeedsRescan = true;
}
break;
}
case Expression::kBinary_Kind: {
BinaryExpression* bin = (BinaryExpression*) expr;
if (dead_assignment(*bin)) {
delete_left(&b, iter, outUpdated, outNeedsRescan);
break;
}
// collapse useless expressions like x * 1 or x + 0
if (((bin->fLeft->fType.kind() != Type::kScalar_Kind) &&
(bin->fLeft->fType.kind() != Type::kVector_Kind)) ||
((bin->fRight->fType.kind() != Type::kScalar_Kind) &&
(bin->fRight->fType.kind() != Type::kVector_Kind))) {
break;
}
switch (bin->fOperator) {
case Token::STAR:
if (is_constant(*bin->fLeft, 1)) {
if (bin->fLeft->fType.kind() == Type::kVector_Kind &&
bin->fRight->fType.kind() == Type::kScalar_Kind) {
// float4(1) * x -> float4(x)
vectorize_right(&b, iter, outUpdated, outNeedsRescan);
} else {
// 1 * x -> x
// 1 * float4(x) -> float4(x)
// float4(1) * float4(x) -> float4(x)
delete_left(&b, iter, outUpdated, outNeedsRescan);
}
}
else if (is_constant(*bin->fLeft, 0)) {
if (bin->fLeft->fType.kind() == Type::kScalar_Kind &&
bin->fRight->fType.kind() == Type::kVector_Kind &&
!bin->fRight->hasSideEffects()) {
// 0 * float4(x) -> float4(0)
vectorize_left(&b, iter, outUpdated, outNeedsRescan);
} else {
// 0 * x -> 0
// float4(0) * x -> float4(0)
// float4(0) * float4(x) -> float4(0)
if (!bin->fRight->hasSideEffects()) {
delete_right(&b, iter, outUpdated, outNeedsRescan);
}
}
}
else if (is_constant(*bin->fRight, 1)) {
if (bin->fLeft->fType.kind() == Type::kScalar_Kind &&
bin->fRight->fType.kind() == Type::kVector_Kind) {
// x * float4(1) -> float4(x)
vectorize_left(&b, iter, outUpdated, outNeedsRescan);
} else {
// x * 1 -> x
// float4(x) * 1 -> float4(x)
// float4(x) * float4(1) -> float4(x)
delete_right(&b, iter, outUpdated, outNeedsRescan);
}
}
else if (is_constant(*bin->fRight, 0)) {
if (bin->fLeft->fType.kind() == Type::kVector_Kind &&
bin->fRight->fType.kind() == Type::kScalar_Kind &&
!bin->fLeft->hasSideEffects()) {
// float4(x) * 0 -> float4(0)
vectorize_right(&b, iter, outUpdated, outNeedsRescan);
} else {
// x * 0 -> 0
// x * float4(0) -> float4(0)
// float4(x) * float4(0) -> float4(0)
if (!bin->fLeft->hasSideEffects()) {
delete_left(&b, iter, outUpdated, outNeedsRescan);
}
}
}
break;
case Token::PLUS:
if (is_constant(*bin->fLeft, 0)) {
if (bin->fLeft->fType.kind() == Type::kVector_Kind &&
bin->fRight->fType.kind() == Type::kScalar_Kind) {
// float4(0) + x -> float4(x)
vectorize_right(&b, iter, outUpdated, outNeedsRescan);
} else {
// 0 + x -> x
// 0 + float4(x) -> float4(x)
// float4(0) + float4(x) -> float4(x)
delete_left(&b, iter, outUpdated, outNeedsRescan);
}
} else if (is_constant(*bin->fRight, 0)) {
if (bin->fLeft->fType.kind() == Type::kScalar_Kind &&
bin->fRight->fType.kind() == Type::kVector_Kind) {
// x + float4(0) -> float4(x)
vectorize_left(&b, iter, outUpdated, outNeedsRescan);
} else {
// x + 0 -> x
// float4(x) + 0 -> float4(x)
// float4(x) + float4(0) -> float4(x)
delete_right(&b, iter, outUpdated, outNeedsRescan);
}
}
break;
case Token::MINUS:
if (is_constant(*bin->fRight, 0)) {
if (bin->fLeft->fType.kind() == Type::kScalar_Kind &&
bin->fRight->fType.kind() == Type::kVector_Kind) {
// x - float4(0) -> float4(x)
vectorize_left(&b, iter, outUpdated, outNeedsRescan);
} else {
// x - 0 -> x
// float4(x) - 0 -> float4(x)
// float4(x) - float4(0) -> float4(x)
delete_right(&b, iter, outUpdated, outNeedsRescan);
}
}
break;
case Token::SLASH:
if (is_constant(*bin->fRight, 1)) {
if (bin->fLeft->fType.kind() == Type::kScalar_Kind &&
bin->fRight->fType.kind() == Type::kVector_Kind) {
// x / float4(1) -> float4(x)
vectorize_left(&b, iter, outUpdated, outNeedsRescan);
} else {
// x / 1 -> x
// float4(x) / 1 -> float4(x)
// float4(x) / float4(1) -> float4(x)
delete_right(&b, iter, outUpdated, outNeedsRescan);
}
} else if (is_constant(*bin->fLeft, 0)) {
if (bin->fLeft->fType.kind() == Type::kScalar_Kind &&
bin->fRight->fType.kind() == Type::kVector_Kind &&
!bin->fRight->hasSideEffects()) {
// 0 / float4(x) -> float4(0)
vectorize_left(&b, iter, outUpdated, outNeedsRescan);
} else {
// 0 / x -> 0
// float4(0) / x -> float4(0)
// float4(0) / float4(x) -> float4(0)
if (!bin->fRight->hasSideEffects()) {
delete_right(&b, iter, outUpdated, outNeedsRescan);
}
}
}
break;
case Token::PLUSEQ:
if (is_constant(*bin->fRight, 0)) {
clear_write(*bin->fLeft);
delete_right(&b, iter, outUpdated, outNeedsRescan);
}
break;
case Token::MINUSEQ:
if (is_constant(*bin->fRight, 0)) {
clear_write(*bin->fLeft);
delete_right(&b, iter, outUpdated, outNeedsRescan);
}
break;
case Token::STAREQ:
if (is_constant(*bin->fRight, 1)) {
clear_write(*bin->fLeft);
delete_right(&b, iter, outUpdated, outNeedsRescan);
}
break;
case Token::SLASHEQ:
if (is_constant(*bin->fRight, 1)) {
clear_write(*bin->fLeft);
delete_right(&b, iter, outUpdated, outNeedsRescan);
}
break;
default:
break;
}
}
default:
break;
}
}
// returns true if this statement could potentially execute a break at the current level (we ignore
// nested loops and switches, since any breaks inside of them will merely break the loop / switch)
static bool contains_conditional_break(Statement& s, bool inConditional) {
switch (s.fKind) {
case Statement::kBlock_Kind:
for (const auto& sub : ((Block&) s).fStatements) {
if (contains_conditional_break(*sub, inConditional)) {
return true;
}
}
return false;
case Statement::kBreak_Kind:
return inConditional;
case Statement::kIf_Kind: {
const IfStatement& i = (IfStatement&) s;
return contains_conditional_break(*i.fIfTrue, true) ||
(i.fIfFalse && contains_conditional_break(*i.fIfFalse, true));
}
default:
return false;
}
}
// returns true if this statement definitely executes a break at the current level (we ignore
// nested loops and switches, since any breaks inside of them will merely break the loop / switch)
static bool contains_unconditional_break(Statement& s) {
switch (s.fKind) {
case Statement::kBlock_Kind:
for (const auto& sub : ((Block&) s).fStatements) {
if (contains_unconditional_break(*sub)) {
return true;
}
}
return false;
case Statement::kBreak_Kind:
return true;
default:
return false;
}
}
// Returns a block containing all of the statements that will be run if the given case matches
// (which, owing to the statements being owned by unique_ptrs, means the switch itself will be
// broken by this call and must then be discarded).
// Returns null (and leaves the switch unmodified) if no such simple reduction is possible, such as
// when break statements appear inside conditionals.
static std::unique_ptr<Statement> block_for_case(SwitchStatement* s, SwitchCase* c) {
bool capturing = false;
std::vector<std::unique_ptr<Statement>*> statementPtrs;
for (const auto& current : s->fCases) {
if (current.get() == c) {
capturing = true;
}
if (capturing) {
for (auto& stmt : current->fStatements) {
if (contains_conditional_break(*stmt, s->fKind == Statement::kIf_Kind)) {
return nullptr;
}
if (contains_unconditional_break(*stmt)) {
capturing = false;
break;
}
statementPtrs.push_back(&stmt);
}
if (!capturing) {
break;
}
}
}
std::vector<std::unique_ptr<Statement>> statements;
for (const auto& s : statementPtrs) {
statements.push_back(std::move(*s));
}
return std::unique_ptr<Statement>(new Block(-1, std::move(statements), s->fSymbols));
}
void Compiler::simplifyStatement(DefinitionMap& definitions,
BasicBlock& b,
std::vector<BasicBlock::Node>::iterator* iter,
std::unordered_set<const Variable*>* undefinedVariables,
bool* outUpdated,
bool* outNeedsRescan) {
Statement* stmt = (*iter)->statement()->get();
switch (stmt->fKind) {
case Statement::kVarDeclaration_Kind: {
const auto& varDecl = (VarDeclaration&) *stmt;
if (varDecl.fVar->dead() &&
(!varDecl.fValue ||
!varDecl.fValue->hasSideEffects())) {
if (varDecl.fValue) {
SkASSERT((*iter)->statement()->get() == stmt);
if (!b.tryRemoveExpressionBefore(iter, varDecl.fValue.get())) {
*outNeedsRescan = true;
}
}
(*iter)->setStatement(std::unique_ptr<Statement>(new Nop()));
*outUpdated = true;
}
break;
}
case Statement::kIf_Kind: {
IfStatement& i = (IfStatement&) *stmt;
if (i.fTest->fKind == Expression::kBoolLiteral_Kind) {
// constant if, collapse down to a single branch
if (((BoolLiteral&) *i.fTest).fValue) {
SkASSERT(i.fIfTrue);
(*iter)->setStatement(std::move(i.fIfTrue));
} else {
if (i.fIfFalse) {
(*iter)->setStatement(std::move(i.fIfFalse));
} else {
(*iter)->setStatement(std::unique_ptr<Statement>(new Nop()));
}
}
*outUpdated = true;
*outNeedsRescan = true;
break;
}
if (i.fIfFalse && i.fIfFalse->isEmpty()) {
// else block doesn't do anything, remove it
i.fIfFalse.reset();
*outUpdated = true;
*outNeedsRescan = true;
}
if (!i.fIfFalse && i.fIfTrue->isEmpty()) {
// if block doesn't do anything, no else block
if (i.fTest->hasSideEffects()) {
// test has side effects, keep it
(*iter)->setStatement(std::unique_ptr<Statement>(
new ExpressionStatement(std::move(i.fTest))));
} else {
// no if, no else, no test side effects, kill the whole if
// statement
(*iter)->setStatement(std::unique_ptr<Statement>(new Nop()));
}
*outUpdated = true;
*outNeedsRescan = true;
}
break;
}
case Statement::kSwitch_Kind: {
SwitchStatement& s = (SwitchStatement&) *stmt;
if (s.fValue->isConstant()) {
// switch is constant, replace it with the case that matches
bool found = false;
SwitchCase* defaultCase = nullptr;
for (const auto& c : s.fCases) {
if (!c->fValue) {
defaultCase = c.get();
continue;
}
SkASSERT(c->fValue->fKind == s.fValue->fKind);
found = c->fValue->compareConstant(*fContext, *s.fValue);
if (found) {
std::unique_ptr<Statement> newBlock = block_for_case(&s, c.get());
if (newBlock) {
(*iter)->setStatement(std::move(newBlock));
break;
} else {
if (s.fIsStatic && !(fFlags & kPermitInvalidStaticTests_Flag)) {
this->error(s.fOffset,
"static switch contains non-static conditional break");
s.fIsStatic = false;
}
return; // can't simplify
}
}
}
if (!found) {
// no matching case. use default if it exists, or kill the whole thing
if (defaultCase) {
std::unique_ptr<Statement> newBlock = block_for_case(&s, defaultCase);
if (newBlock) {
(*iter)->setStatement(std::move(newBlock));
} else {
if (s.fIsStatic && !(fFlags & kPermitInvalidStaticTests_Flag)) {
this->error(s.fOffset,
"static switch contains non-static conditional break");
s.fIsStatic = false;
}
return; // can't simplify
}
} else {
(*iter)->setStatement(std::unique_ptr<Statement>(new Nop()));
}
}
*outUpdated = true;
*outNeedsRescan = true;
}
break;
}
case Statement::kExpression_Kind: {
ExpressionStatement& e = (ExpressionStatement&) *stmt;
SkASSERT((*iter)->statement()->get() == &e);
if (!e.fExpression->hasSideEffects()) {
// Expression statement with no side effects, kill it
if (!b.tryRemoveExpressionBefore(iter, e.fExpression.get())) {
*outNeedsRescan = true;
}
SkASSERT((*iter)->statement()->get() == stmt);
(*iter)->setStatement(std::unique_ptr<Statement>(new Nop()));
*outUpdated = true;
}
break;
}
default:
break;
}
}
void Compiler::scanCFG(FunctionDefinition& f) {
CFG cfg = CFGGenerator().getCFG(f);
this->computeDataFlow(&cfg);
// check for unreachable code
for (size_t i = 0; i < cfg.fBlocks.size(); i++) {
if (i != cfg.fStart && !cfg.fBlocks[i].fEntrances.size() &&
cfg.fBlocks[i].fNodes.size()) {
int offset;
switch (cfg.fBlocks[i].fNodes[0].fKind) {
case BasicBlock::Node::kStatement_Kind:
offset = (*cfg.fBlocks[i].fNodes[0].statement())->fOffset;
break;
case BasicBlock::Node::kExpression_Kind:
offset = (*cfg.fBlocks[i].fNodes[0].expression())->fOffset;
break;
}
this->error(offset, String("unreachable"));
}
}
if (fErrorCount) {
return;
}
// check for dead code & undefined variables, perform constant propagation
std::unordered_set<const Variable*> undefinedVariables;
bool updated;
bool needsRescan = false;
do {
if (needsRescan) {
cfg = CFGGenerator().getCFG(f);
this->computeDataFlow(&cfg);
needsRescan = false;
}
updated = false;
for (BasicBlock& b : cfg.fBlocks) {
DefinitionMap definitions = b.fBefore;
for (auto iter = b.fNodes.begin(); iter != b.fNodes.end() && !needsRescan; ++iter) {
if (iter->fKind == BasicBlock::Node::kExpression_Kind) {
this->simplifyExpression(definitions, b, &iter, &undefinedVariables, &updated,
&needsRescan);
} else {
this->simplifyStatement(definitions, b, &iter, &undefinedVariables, &updated,
&needsRescan);
}
if (needsRescan) {
break;
}
this->addDefinitions(*iter, &definitions);
}
}
} while (updated);
SkASSERT(!needsRescan);
// verify static ifs & switches, clean up dead variable decls
for (BasicBlock& b : cfg.fBlocks) {
DefinitionMap definitions = b.fBefore;
for (auto iter = b.fNodes.begin(); iter != b.fNodes.end() && !needsRescan;) {
if (iter->fKind == BasicBlock::Node::kStatement_Kind) {
const Statement& s = **iter->statement();
switch (s.fKind) {
case Statement::kIf_Kind:
if (((const IfStatement&) s).fIsStatic &&
!(fFlags & kPermitInvalidStaticTests_Flag)) {
this->error(s.fOffset, "static if has non-static test");
}
++iter;
break;
case Statement::kSwitch_Kind:
if (((const SwitchStatement&) s).fIsStatic &&
!(fFlags & kPermitInvalidStaticTests_Flag)) {
this->error(s.fOffset, "static switch has non-static test");
}
++iter;
break;
case Statement::kVarDeclarations_Kind: {
VarDeclarations& decls = *((VarDeclarationsStatement&) s).fDeclaration;
for (auto varIter = decls.fVars.begin(); varIter != decls.fVars.end();) {
if ((*varIter)->fKind == Statement::kNop_Kind) {
varIter = decls.fVars.erase(varIter);
} else {
++varIter;
}
}
if (!decls.fVars.size()) {
iter = b.fNodes.erase(iter);
} else {
++iter;
}
break;
}
default:
++iter;
break;
}
} else {
++iter;
}
}
}
// check for missing return
if (f.fDeclaration.fReturnType != *fContext->fVoid_Type) {
if (cfg.fBlocks[cfg.fExit].fEntrances.size()) {
this->error(f.fOffset, String("function can exit without returning a value"));
}
}
}
std::unique_ptr<Program> Compiler::convertProgram(Program::Kind kind, String text,
const Program::Settings& settings) {
fErrorText = "";
fErrorCount = 0;
std::vector<std::unique_ptr<ProgramElement>>* inherited;
std::vector<std::unique_ptr<ProgramElement>> elements;
switch (kind) {
case Program::kVertex_Kind:
inherited = &fVertexInclude;
fIRGenerator->fSymbolTable = fVertexSymbolTable;
fIRGenerator->start(&settings, inherited);
break;
case Program::kFragment_Kind:
inherited = &fFragmentInclude;
fIRGenerator->fSymbolTable = fFragmentSymbolTable;
fIRGenerator->start(&settings, inherited);
break;
case Program::kGeometry_Kind:
inherited = &fGeometryInclude;
fIRGenerator->fSymbolTable = fGeometrySymbolTable;
fIRGenerator->start(&settings, inherited);
break;
case Program::kFragmentProcessor_Kind:
inherited = nullptr;
fIRGenerator->start(&settings, nullptr);
fIRGenerator->convertProgram(kind, SKSL_FP_INCLUDE, strlen(SKSL_FP_INCLUDE), *fTypes,
&elements);
fIRGenerator->fSymbolTable->markAllFunctionsBuiltin();
break;
case Program::kPipelineStage_Kind: // fall through
case Program::kGeneric_Kind:
inherited = nullptr;
fIRGenerator->start(&settings, nullptr);
fIRGenerator->convertProgram(kind, SKSL_GENERIC_INCLUDE,
strlen(SKSL_GENERIC_INCLUDE), *fTypes, &elements);
fIRGenerator->fSymbolTable->markAllFunctionsBuiltin();
break;
}
for (auto& element : elements) {
if (element->fKind == ProgramElement::kEnum_Kind) {
((Enum&) *element).fBuiltin = true;
}
}
std::unique_ptr<String> textPtr(new String(std::move(text)));
fSource = textPtr.get();
fIRGenerator->convertProgram(kind, textPtr->c_str(), textPtr->size(), *fTypes, &elements);
auto result = std::unique_ptr<Program>(new Program(kind,
std::move(textPtr),
settings,
fContext,
inherited,
std::move(elements),
fIRGenerator->fSymbolTable,
fIRGenerator->fInputs));
if (fErrorCount) {
return nullptr;
}
return result;
}
bool Compiler::optimize(Program& program) {
SkASSERT(!fErrorCount);
if (!program.fIsOptimized) {
program.fIsOptimized = true;
fIRGenerator->fKind = program.fKind;
fIRGenerator->fSettings = &program.fSettings;
for (auto& element : program) {
if (element.fKind == ProgramElement::kFunction_Kind) {
this->scanCFG((FunctionDefinition&) element);
}
}
if (program.fKind != Program::kFragmentProcessor_Kind) {
for (auto iter = program.fElements.begin(); iter != program.fElements.end();) {
if ((*iter)->fKind == ProgramElement::kVar_Kind) {
VarDeclarations& vars = (VarDeclarations&) **iter;
for (auto varIter = vars.fVars.begin(); varIter != vars.fVars.end();) {
const Variable& var = *((VarDeclaration&) **varIter).fVar;
if (var.dead()) {
varIter = vars.fVars.erase(varIter);
} else {
++varIter;
}
}
if (vars.fVars.size() == 0) {
iter = program.fElements.erase(iter);
continue;
}
}
++iter;
}
}
}
return fErrorCount == 0;
}
std::unique_ptr<Program> Compiler::specialize(
Program& program,
const std::unordered_map<SkSL::String, SkSL::Program::Settings::Value>& inputs) {
std::vector<std::unique_ptr<ProgramElement>> elements;
for (const auto& e : program) {
elements.push_back(e.clone());
}
Program::Settings settings;
settings.fCaps = program.fSettings.fCaps;
for (auto iter = inputs.begin(); iter != inputs.end(); ++iter) {
settings.fArgs.insert(*iter);
}
std::unique_ptr<Program> result(new Program(program.fKind,
nullptr,
settings,
program.fContext,
program.fInheritedElements,
std::move(elements),
program.fSymbols,
program.fInputs));
return result;
}
bool Compiler::toSPIRV(Program& program, OutputStream& out) {
if (!this->optimize(program)) {
return false;
}
#ifdef SK_ENABLE_SPIRV_VALIDATION
StringStream buffer;
fSource = program.fSource.get();
SPIRVCodeGenerator cg(fContext.get(), &program, this, &buffer);
bool result = cg.generateCode();
fSource = nullptr;
if (result) {
spvtools::SpirvTools tools(SPV_ENV_VULKAN_1_0);
const String& data = buffer.str();
SkASSERT(0 == data.size() % 4);
auto dumpmsg = [](spv_message_level_t, const char*, const spv_position_t&, const char* m) {
SkDebugf("SPIR-V validation error: %s\n", m);
};
tools.SetMessageConsumer(dumpmsg);
// Verify that the SPIR-V we produced is valid. If this SkASSERT fails, check the logs prior
// to the failure to see the validation errors.
SkAssertResult(tools.Validate((const uint32_t*) data.c_str(), data.size() / 4));
out.write(data.c_str(), data.size());
}
#else
fSource = program.fSource.get();
SPIRVCodeGenerator cg(fContext.get(), &program, this, &out);
bool result = cg.generateCode();
fSource = nullptr;
#endif
return result;
}
bool Compiler::toSPIRV(Program& program, String* out) {
StringStream buffer;
bool result = this->toSPIRV(program, buffer);
if (result) {
*out = buffer.str();
}
return result;
}
bool Compiler::toGLSL(Program& program, OutputStream& out) {
if (!this->optimize(program)) {
return false;
}
fSource = program.fSource.get();
GLSLCodeGenerator cg(fContext.get(), &program, this, &out);
bool result = cg.generateCode();
fSource = nullptr;
return result;
}
bool Compiler::toGLSL(Program& program, String* out) {
StringStream buffer;
bool result = this->toGLSL(program, buffer);
if (result) {
*out = buffer.str();
}
return result;
}
bool Compiler::toMetal(Program& program, OutputStream& out) {
if (!this->optimize(program)) {
return false;
}
MetalCodeGenerator cg(fContext.get(), &program, this, &out);
bool result = cg.generateCode();
return result;
}
bool Compiler::toMetal(Program& program, String* out) {
if (!this->optimize(program)) {
return false;
}
StringStream buffer;
bool result = this->toMetal(program, buffer);
if (result) {
*out = buffer.str();
}
return result;
}
bool Compiler::toCPP(Program& program, String name, OutputStream& out) {
if (!this->optimize(program)) {
return false;
}
fSource = program.fSource.get();
CPPCodeGenerator cg(fContext.get(), &program, this, name, &out);
bool result = cg.generateCode();
fSource = nullptr;
return result;
}
bool Compiler::toH(Program& program, String name, OutputStream& out) {
if (!this->optimize(program)) {
return false;
}
fSource = program.fSource.get();
HCodeGenerator cg(fContext.get(), &program, this, name, &out);
bool result = cg.generateCode();
fSource = nullptr;
return result;
}
bool Compiler::toPipelineStage(const Program& program, String* out,
std::vector<FormatArg>* outFormatArgs) {
SkASSERT(program.fIsOptimized);
fSource = program.fSource.get();
StringStream buffer;
PipelineStageCodeGenerator cg(fContext.get(), &program, this, &buffer, outFormatArgs);
bool result = cg.generateCode();
fSource = nullptr;
if (result) {
*out = buffer.str();
}
return result;
}
std::unique_ptr<ByteCode> Compiler::toByteCode(Program& program) {
if (!this->optimize(program)) {
return nullptr;
}
std::unique_ptr<ByteCode> result(new ByteCode());
ByteCodeGenerator cg(fContext.get(), &program, this, result.get());
if (cg.generateCode()) {
return result;
}
return nullptr;
}
const char* Compiler::OperatorName(Token::Kind kind) {
switch (kind) {
case Token::PLUS: return "+";
case Token::MINUS: return "-";
case Token::STAR: return "*";
case Token::SLASH: return "/";
case Token::PERCENT: return "%";
case Token::SHL: return "<<";
case Token::SHR: return ">>";
case Token::LOGICALNOT: return "!";
case Token::LOGICALAND: return "&&";
case Token::LOGICALOR: return "||";
case Token::LOGICALXOR: return "^^";
case Token::BITWISENOT: return "~";
case Token::BITWISEAND: return "&";
case Token::BITWISEOR: return "|";
case Token::BITWISEXOR: return "^";
case Token::EQ: return "=";
case Token::EQEQ: return "==";
case Token::NEQ: return "!=";
case Token::LT: return "<";
case Token::GT: return ">";
case Token::LTEQ: return "<=";
case Token::GTEQ: return ">=";
case Token::PLUSEQ: return "+=";
case Token::MINUSEQ: return "-=";
case Token::STAREQ: return "*=";
case Token::SLASHEQ: return "/=";
case Token::PERCENTEQ: return "%=";
case Token::SHLEQ: return "<<=";
case Token::SHREQ: return ">>=";
case Token::LOGICALANDEQ: return "&&=";
case Token::LOGICALOREQ: return "||=";
case Token::LOGICALXOREQ: return "^^=";
case Token::BITWISEANDEQ: return "&=";
case Token::BITWISEOREQ: return "|=";
case Token::BITWISEXOREQ: return "^=";
case Token::PLUSPLUS: return "++";
case Token::MINUSMINUS: return "--";
case Token::COMMA: return ",";
default:
ABORT("unsupported operator: %d\n", kind);
}
}
bool Compiler::IsAssignment(Token::Kind op) {
switch (op) {
case Token::EQ: // fall through
case Token::PLUSEQ: // fall through
case Token::MINUSEQ: // fall through
case Token::STAREQ: // fall through
case Token::SLASHEQ: // fall through
case Token::PERCENTEQ: // fall through
case Token::SHLEQ: // fall through
case Token::SHREQ: // fall through
case Token::BITWISEOREQ: // fall through
case Token::BITWISEXOREQ: // fall through
case Token::BITWISEANDEQ: // fall through
case Token::LOGICALOREQ: // fall through
case Token::LOGICALXOREQ: // fall through
case Token::LOGICALANDEQ:
return true;
default:
return false;
}
}
Position Compiler::position(int offset) {
SkASSERT(fSource);
int line = 1;
int column = 1;
for (int i = 0; i < offset; i++) {
if ((*fSource)[i] == '\n') {
++line;
column = 1;
}
else {
++column;
}
}
return Position(line, column);
}
void Compiler::error(int offset, String msg) {
fErrorCount++;
Position pos = this->position(offset);
fErrorText += "error: " + to_string(pos.fLine) + ": " + msg.c_str() + "\n";
}
String Compiler::errorText() {
this->writeErrorCount();
fErrorCount = 0;
String result = fErrorText;
return result;
}
void Compiler::writeErrorCount() {
if (fErrorCount) {
fErrorText += to_string(fErrorCount) + " error";
if (fErrorCount > 1) {
fErrorText += "s";
}
fErrorText += "\n";
}
}
} // namespace