skia2/tests/ImageFilterTest.cpp

744 lines
30 KiB
C++
Raw Normal View History

/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkBitmap.h"
#include "SkBitmapDevice.h"
#include "SkBitmapSource.h"
#include "SkBlurImageFilter.h"
#include "SkCanvas.h"
#include "SkColorFilterImageFilter.h"
#include "SkColorMatrixFilter.h"
#include "SkDeviceImageFilterProxy.h"
2014-01-03 21:48:22 +00:00
#include "SkDisplacementMapEffect.h"
#include "SkDropShadowImageFilter.h"
#include "SkFlattenableBuffers.h"
#include "SkFlattenableSerialization.h"
#include "SkGradientShader.h"
#include "SkLightingImageFilter.h"
#include "SkMatrixConvolutionImageFilter.h"
#include "SkMatrixImageFilter.h"
2014-01-03 21:48:22 +00:00
#include "SkMergeImageFilter.h"
#include "SkMorphologyImageFilter.h"
#include "SkOffsetImageFilter.h"
#include "SkPicture.h"
#include "SkPictureImageFilter.h"
#include "SkPictureRecorder.h"
#include "SkRect.h"
2014-01-03 21:48:22 +00:00
#include "SkTileImageFilter.h"
#include "SkXfermodeImageFilter.h"
#include "Test.h"
#if SK_SUPPORT_GPU
#include "GrContextFactory.h"
#include "SkGpuDevice.h"
#endif
static const int kBitmapSize = 4;
namespace {
class MatrixTestImageFilter : public SkImageFilter {
public:
MatrixTestImageFilter(skiatest::Reporter* reporter, const SkMatrix& expectedMatrix)
: SkImageFilter(0), fReporter(reporter), fExpectedMatrix(expectedMatrix) {
}
virtual bool onFilterImage(Proxy*, const SkBitmap& src, const Context& ctx,
SkBitmap* result, SkIPoint* offset) const SK_OVERRIDE {
REPORTER_ASSERT(fReporter, ctx.ctm() == fExpectedMatrix);
return true;
}
SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(MatrixTestImageFilter)
protected:
explicit MatrixTestImageFilter(SkReadBuffer& buffer) : SkImageFilter(0) {
fReporter = static_cast<skiatest::Reporter*>(buffer.readFunctionPtr());
buffer.readMatrix(&fExpectedMatrix);
}
virtual void flatten(SkWriteBuffer& buffer) const SK_OVERRIDE {
buffer.writeFunctionPtr(fReporter);
buffer.writeMatrix(fExpectedMatrix);
}
private:
skiatest::Reporter* fReporter;
SkMatrix fExpectedMatrix;
};
}
static void make_small_bitmap(SkBitmap& bitmap) {
bitmap.allocN32Pixels(kBitmapSize, kBitmapSize);
SkCanvas canvas(bitmap);
canvas.clear(0x00000000);
SkPaint darkPaint;
darkPaint.setColor(0xFF804020);
SkPaint lightPaint;
lightPaint.setColor(0xFF244484);
const int i = kBitmapSize / 4;
for (int y = 0; y < kBitmapSize; y += i) {
for (int x = 0; x < kBitmapSize; x += i) {
canvas.save();
canvas.translate(SkIntToScalar(x), SkIntToScalar(y));
canvas.drawRect(SkRect::MakeXYWH(0, 0,
SkIntToScalar(i),
SkIntToScalar(i)), darkPaint);
canvas.drawRect(SkRect::MakeXYWH(SkIntToScalar(i),
0,
SkIntToScalar(i),
SkIntToScalar(i)), lightPaint);
canvas.drawRect(SkRect::MakeXYWH(0,
SkIntToScalar(i),
SkIntToScalar(i),
SkIntToScalar(i)), lightPaint);
canvas.drawRect(SkRect::MakeXYWH(SkIntToScalar(i),
SkIntToScalar(i),
SkIntToScalar(i),
SkIntToScalar(i)), darkPaint);
canvas.restore();
}
}
}
static SkImageFilter* make_scale(float amount, SkImageFilter* input = NULL) {
SkScalar s = amount;
SkScalar matrix[20] = { s, 0, 0, 0, 0,
0, s, 0, 0, 0,
0, 0, s, 0, 0,
0, 0, 0, s, 0 };
SkAutoTUnref<SkColorFilter> filter(SkColorMatrixFilter::Create(matrix));
return SkColorFilterImageFilter::Create(filter, input);
}
static SkImageFilter* make_grayscale(SkImageFilter* input = NULL, const SkImageFilter::CropRect* cropRect = NULL) {
SkScalar matrix[20];
memset(matrix, 0, 20 * sizeof(SkScalar));
matrix[0] = matrix[5] = matrix[10] = 0.2126f;
matrix[1] = matrix[6] = matrix[11] = 0.7152f;
matrix[2] = matrix[7] = matrix[12] = 0.0722f;
matrix[18] = 1.0f;
SkAutoTUnref<SkColorFilter> filter(SkColorMatrixFilter::Create(matrix));
return SkColorFilterImageFilter::Create(filter, input, cropRect);
}
DEF_TEST(ImageFilter, reporter) {
{
// Check that two non-clipping color matrices concatenate into a single filter.
SkAutoTUnref<SkImageFilter> halfBrightness(make_scale(0.5f));
SkAutoTUnref<SkImageFilter> quarterBrightness(make_scale(0.5f, halfBrightness));
REPORTER_ASSERT(reporter, NULL == quarterBrightness->getInput(0));
}
{
// Check that a clipping color matrix followed by a grayscale does not concatenate into a single filter.
SkAutoTUnref<SkImageFilter> doubleBrightness(make_scale(2.0f));
SkAutoTUnref<SkImageFilter> halfBrightness(make_scale(0.5f, doubleBrightness));
REPORTER_ASSERT(reporter, NULL != halfBrightness->getInput(0));
}
{
// Check that a color filter image filter without a crop rect can be
// expressed as a color filter.
SkAutoTUnref<SkImageFilter> gray(make_grayscale());
REPORTER_ASSERT(reporter, true == gray->asColorFilter(NULL));
}
{
// Check that a color filter image filter with a crop rect cannot
// be expressed as a color filter.
SkImageFilter::CropRect cropRect(SkRect::MakeXYWH(0, 0, 100, 100));
SkAutoTUnref<SkImageFilter> grayWithCrop(make_grayscale(NULL, &cropRect));
REPORTER_ASSERT(reporter, false == grayWithCrop->asColorFilter(NULL));
}
{
// Tests pass by not asserting
SkBitmap bitmap, result;
make_small_bitmap(bitmap);
result.allocN32Pixels(kBitmapSize, kBitmapSize);
{
// This tests for :
// 1 ) location at (0,0,1)
SkPoint3 location(0, 0, SK_Scalar1);
// 2 ) location and target at same value
SkPoint3 target(location.fX, location.fY, location.fZ);
// 3 ) large negative specular exponent value
SkScalar specularExponent = -1000;
SkAutoTUnref<SkImageFilter> bmSrc(SkBitmapSource::Create(bitmap));
SkPaint paint;
paint.setImageFilter(SkLightingImageFilter::CreateSpotLitSpecular(
location, target, specularExponent, 180,
0xFFFFFFFF, SK_Scalar1, SK_Scalar1, SK_Scalar1,
bmSrc))->unref();
SkCanvas canvas(result);
SkRect r = SkRect::MakeWH(SkIntToScalar(kBitmapSize),
SkIntToScalar(kBitmapSize));
canvas.drawRect(r, paint);
}
}
}
2014-01-03 21:48:22 +00:00
static void test_crop_rects(SkBaseDevice* device, skiatest::Reporter* reporter) {
// Check that all filters offset to their absolute crop rect,
// unaffected by the input crop rect.
// Tests pass by not asserting.
SkBitmap bitmap;
bitmap.allocN32Pixels(100, 100);
bitmap.eraseARGB(0, 0, 0, 0);
SkDeviceImageFilterProxy proxy(device);
SkImageFilter::CropRect inputCropRect(SkRect::MakeXYWH(8, 13, 80, 80));
SkImageFilter::CropRect cropRect(SkRect::MakeXYWH(20, 30, 60, 60));
SkAutoTUnref<SkImageFilter> input(make_grayscale(NULL, &inputCropRect));
SkAutoTUnref<SkColorFilter> cf(SkColorFilter::CreateModeFilter(SK_ColorRED, SkXfermode::kSrcIn_Mode));
SkPoint3 location(0, 0, SK_Scalar1);
SkPoint3 target(SK_Scalar1, SK_Scalar1, SK_Scalar1);
SkScalar kernel[9] = {
SkIntToScalar( 1), SkIntToScalar( 1), SkIntToScalar( 1),
SkIntToScalar( 1), SkIntToScalar(-7), SkIntToScalar( 1),
SkIntToScalar( 1), SkIntToScalar( 1), SkIntToScalar( 1),
};
SkISize kernelSize = SkISize::Make(3, 3);
SkScalar gain = SK_Scalar1, bias = 0;
SkImageFilter* filters[] = {
SkColorFilterImageFilter::Create(cf.get(), input.get(), &cropRect),
SkDisplacementMapEffect::Create(SkDisplacementMapEffect::kR_ChannelSelectorType,
SkDisplacementMapEffect::kB_ChannelSelectorType,
40.0f, input.get(), input.get(), &cropRect),
SkBlurImageFilter::Create(SK_Scalar1, SK_Scalar1, input.get(), &cropRect),
SkDropShadowImageFilter::Create(SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_ColorGREEN, input.get(), &cropRect),
SkLightingImageFilter::CreatePointLitDiffuse(location, SK_ColorGREEN, 0, 0, input.get(), &cropRect),
SkLightingImageFilter::CreatePointLitSpecular(location, SK_ColorGREEN, 0, 0, 0, input.get(), &cropRect),
SkMatrixConvolutionImageFilter::Create(kernelSize, kernel, gain, bias, SkIPoint::Make(1, 1), SkMatrixConvolutionImageFilter::kRepeat_TileMode, false, input.get(), &cropRect),
SkMergeImageFilter::Create(input.get(), input.get(), SkXfermode::kSrcOver_Mode, &cropRect),
SkOffsetImageFilter::Create(SK_Scalar1, SK_Scalar1, input.get(), &cropRect),
SkOffsetImageFilter::Create(SK_Scalar1, SK_Scalar1, input.get(), &cropRect),
SkDilateImageFilter::Create(3, 2, input.get(), &cropRect),
SkErodeImageFilter::Create(2, 3, input.get(), &cropRect),
SkTileImageFilter::Create(inputCropRect.rect(), cropRect.rect(), input.get()),
SkXfermodeImageFilter::Create(SkXfermode::Create(SkXfermode::kSrcOver_Mode), input.get(), input.get(), &cropRect),
};
for (size_t i = 0; i < SK_ARRAY_COUNT(filters); ++i) {
SkImageFilter* filter = filters[i];
SkBitmap result;
SkIPoint offset;
SkString str;
str.printf("filter %d", static_cast<int>(i));
SkAutoTUnref<SkImageFilter::Cache> cache(SkImageFilter::Cache::Create(2));
SkImageFilter::Context ctx(SkMatrix::I(), SkIRect::MakeLargest(), cache.get());
REPORTER_ASSERT_MESSAGE(reporter, filter->filterImage(&proxy, bitmap, ctx,
&result, &offset), str.c_str());
REPORTER_ASSERT_MESSAGE(reporter, offset.fX == 20 && offset.fY == 30, str.c_str());
}
2014-01-03 21:48:22 +00:00
for (size_t i = 0; i < SK_ARRAY_COUNT(filters); ++i) {
SkSafeUnref(filters[i]);
2014-01-03 21:48:22 +00:00
}
}
static SkBitmap make_gradient_circle(int width, int height) {
SkBitmap bitmap;
SkScalar x = SkIntToScalar(width / 2);
SkScalar y = SkIntToScalar(height / 2);
SkScalar radius = SkMinScalar(x, y) * 0.8f;
bitmap.allocN32Pixels(width, height);
SkCanvas canvas(bitmap);
canvas.clear(0x00000000);
SkColor colors[2];
colors[0] = SK_ColorWHITE;
colors[1] = SK_ColorBLACK;
SkAutoTUnref<SkShader> shader(
SkGradientShader::CreateRadial(SkPoint::Make(x, y), radius, colors, NULL, 2,
SkShader::kClamp_TileMode)
);
SkPaint paint;
paint.setShader(shader);
canvas.drawCircle(x, y, radius, paint);
return bitmap;
}
DEF_TEST(ImageFilterDrawTiled, reporter) {
// Check that all filters when drawn tiled (with subsequent clip rects) exactly
// match the same filters drawn with a single full-canvas bitmap draw.
// Tests pass by not asserting.
SkAutoTUnref<SkColorFilter> cf(SkColorFilter::CreateModeFilter(SK_ColorRED, SkXfermode::kSrcIn_Mode));
SkPoint3 location(0, 0, SK_Scalar1);
SkPoint3 target(SK_Scalar1, SK_Scalar1, SK_Scalar1);
SkScalar kernel[9] = {
SkIntToScalar( 1), SkIntToScalar( 1), SkIntToScalar( 1),
SkIntToScalar( 1), SkIntToScalar(-7), SkIntToScalar( 1),
SkIntToScalar( 1), SkIntToScalar( 1), SkIntToScalar( 1),
};
SkISize kernelSize = SkISize::Make(3, 3);
SkScalar gain = SK_Scalar1, bias = 0;
SkScalar five = SkIntToScalar(5);
SkAutoTUnref<SkImageFilter> gradient_source(SkBitmapSource::Create(make_gradient_circle(64, 64)));
SkAutoTUnref<SkImageFilter> blur(SkBlurImageFilter::Create(five, five));
SkMatrix matrix;
matrix.setTranslate(SK_Scalar1, SK_Scalar1);
matrix.postRotate(SkIntToScalar(45), SK_Scalar1, SK_Scalar1);
SkRTreeFactory factory;
SkPictureRecorder recorder;
SkCanvas* recordingCanvas = recorder.beginRecording(64, 64, &factory, 0);
SkPaint greenPaint;
greenPaint.setColor(SK_ColorGREEN);
recordingCanvas->drawRect(SkRect::Make(SkIRect::MakeXYWH(10, 10, 30, 20)), greenPaint);
SkAutoTUnref<SkPicture> picture(recorder.endRecording());
SkAutoTUnref<SkImageFilter> pictureFilter(SkPictureImageFilter::Create(picture.get()));
struct {
const char* fName;
SkImageFilter* fFilter;
} filters[] = {
{ "color filter", SkColorFilterImageFilter::Create(cf.get()) },
{ "displacement map", SkDisplacementMapEffect::Create(
SkDisplacementMapEffect::kR_ChannelSelectorType,
SkDisplacementMapEffect::kB_ChannelSelectorType,
20.0f, gradient_source.get()) },
{ "blur", SkBlurImageFilter::Create(SK_Scalar1, SK_Scalar1) },
{ "drop shadow", SkDropShadowImageFilter::Create(
SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_ColorGREEN) },
{ "diffuse lighting", SkLightingImageFilter::CreatePointLitDiffuse(
location, SK_ColorGREEN, 0, 0) },
{ "specular lighting",
SkLightingImageFilter::CreatePointLitSpecular(location, SK_ColorGREEN, 0, 0, 0) },
{ "matrix convolution",
SkMatrixConvolutionImageFilter::Create(
kernelSize, kernel, gain, bias, SkIPoint::Make(1, 1),
SkMatrixConvolutionImageFilter::kRepeat_TileMode, false) },
{ "merge", SkMergeImageFilter::Create(NULL, NULL, SkXfermode::kSrcOver_Mode) },
{ "offset", SkOffsetImageFilter::Create(SK_Scalar1, SK_Scalar1) },
{ "dilate", SkDilateImageFilter::Create(3, 2) },
{ "erode", SkErodeImageFilter::Create(2, 3) },
{ "tile", SkTileImageFilter::Create(SkRect::MakeXYWH(0, 0, 50, 50),
SkRect::MakeXYWH(0, 0, 100, 100), NULL) },
{ "matrix", SkMatrixImageFilter::Create(matrix, SkPaint::kLow_FilterLevel) },
{ "blur and offset", SkOffsetImageFilter::Create(five, five, blur.get()) },
{ "picture and blur", SkBlurImageFilter::Create(five, five, pictureFilter.get()) },
};
SkBitmap untiledResult, tiledResult;
int width = 64, height = 64;
untiledResult.allocN32Pixels(width, height);
tiledResult.allocN32Pixels(width, height);
SkCanvas tiledCanvas(tiledResult);
SkCanvas untiledCanvas(untiledResult);
int tileSize = 8;
for (int scale = 1; scale <= 2; ++scale) {
for (size_t i = 0; i < SK_ARRAY_COUNT(filters); ++i) {
tiledCanvas.clear(0);
untiledCanvas.clear(0);
SkPaint paint;
paint.setImageFilter(filters[i].fFilter);
paint.setTextSize(SkIntToScalar(height));
paint.setColor(SK_ColorWHITE);
SkString str;
const char* text = "ABC";
SkScalar ypos = SkIntToScalar(height);
untiledCanvas.save();
untiledCanvas.scale(SkIntToScalar(scale), SkIntToScalar(scale));
untiledCanvas.drawText(text, strlen(text), 0, ypos, paint);
untiledCanvas.restore();
for (int y = 0; y < height; y += tileSize) {
for (int x = 0; x < width; x += tileSize) {
tiledCanvas.save();
tiledCanvas.clipRect(SkRect::Make(SkIRect::MakeXYWH(x, y, tileSize, tileSize)));
tiledCanvas.scale(SkIntToScalar(scale), SkIntToScalar(scale));
tiledCanvas.drawText(text, strlen(text), 0, ypos, paint);
tiledCanvas.restore();
}
}
untiledCanvas.flush();
tiledCanvas.flush();
for (int y = 0; y < height; y++) {
int diffs = memcmp(untiledResult.getAddr32(0, y), tiledResult.getAddr32(0, y), untiledResult.rowBytes());
REPORTER_ASSERT_MESSAGE(reporter, !diffs, filters[i].fName);
if (diffs) {
break;
}
}
}
}
for (size_t i = 0; i < SK_ARRAY_COUNT(filters); ++i) {
SkSafeUnref(filters[i].fFilter);
}
}
DEF_TEST(ImageFilterMatrixConvolution, reporter) {
// Check that a 1x3 filter does not cause a spurious assert.
SkScalar kernel[3] = {
SkIntToScalar( 1), SkIntToScalar( 1), SkIntToScalar( 1),
};
SkISize kernelSize = SkISize::Make(1, 3);
SkScalar gain = SK_Scalar1, bias = 0;
SkIPoint kernelOffset = SkIPoint::Make(0, 0);
SkAutoTUnref<SkImageFilter> filter(
SkMatrixConvolutionImageFilter::Create(
kernelSize, kernel, gain, bias, kernelOffset,
SkMatrixConvolutionImageFilter::kRepeat_TileMode, false));
SkBitmap result;
int width = 16, height = 16;
result.allocN32Pixels(width, height);
SkCanvas canvas(result);
canvas.clear(0);
SkPaint paint;
paint.setImageFilter(filter);
SkRect rect = SkRect::Make(SkIRect::MakeWH(width, height));
canvas.drawRect(rect, paint);
}
DEF_TEST(ImageFilterMatrixConvolutionBorder, reporter) {
// Check that a filter with borders outside the target bounds
// does not crash.
SkScalar kernel[3] = {
0, 0, 0,
};
SkISize kernelSize = SkISize::Make(3, 1);
SkScalar gain = SK_Scalar1, bias = 0;
SkIPoint kernelOffset = SkIPoint::Make(2, 0);
SkAutoTUnref<SkImageFilter> filter(
SkMatrixConvolutionImageFilter::Create(
kernelSize, kernel, gain, bias, kernelOffset,
SkMatrixConvolutionImageFilter::kClamp_TileMode, true));
SkBitmap result;
int width = 10, height = 10;
result.allocN32Pixels(width, height);
SkCanvas canvas(result);
canvas.clear(0);
SkPaint filterPaint;
filterPaint.setImageFilter(filter);
SkRect bounds = SkRect::MakeWH(1, 10);
SkRect rect = SkRect::Make(SkIRect::MakeWH(width, height));
SkPaint rectPaint;
canvas.saveLayer(&bounds, &filterPaint);
canvas.drawRect(rect, rectPaint);
canvas.restore();
}
DEF_TEST(ImageFilterCropRect, reporter) {
SkBitmap temp;
temp.allocN32Pixels(100, 100);
SkBitmapDevice device(temp);
test_crop_rects(&device, reporter);
}
DEF_TEST(ImageFilterMatrix, reporter) {
SkBitmap temp;
temp.allocN32Pixels(100, 100);
SkBitmapDevice device(temp);
SkCanvas canvas(&device);
canvas.scale(SkIntToScalar(2), SkIntToScalar(2));
SkMatrix expectedMatrix = canvas.getTotalMatrix();
SkRTreeFactory factory;
SkPictureRecorder recorder;
SkCanvas* recordingCanvas = recorder.beginRecording(100, 100, &factory, 0);
SkPaint paint;
SkAutoTUnref<MatrixTestImageFilter> imageFilter(
new MatrixTestImageFilter(reporter, expectedMatrix));
paint.setImageFilter(imageFilter.get());
recordingCanvas->saveLayer(NULL, &paint);
SkPaint solidPaint;
solidPaint.setColor(0xFFFFFFFF);
recordingCanvas->save();
recordingCanvas->scale(SkIntToScalar(10), SkIntToScalar(10));
recordingCanvas->drawRect(SkRect::Make(SkIRect::MakeWH(100, 100)), solidPaint);
recordingCanvas->restore(); // scale
recordingCanvas->restore(); // saveLayer
SkAutoTUnref<SkPicture> picture(recorder.endRecording());
canvas.drawPicture(picture);
}
DEF_TEST(ImageFilterPictureImageFilter, reporter) {
SkRTreeFactory factory;
SkPictureRecorder recorder;
SkCanvas* recordingCanvas = recorder.beginRecording(1, 1, &factory, 0);
// Create an SkPicture which simply draws a green 1x1 rectangle.
SkPaint greenPaint;
greenPaint.setColor(SK_ColorGREEN);
recordingCanvas->drawRect(SkRect::Make(SkIRect::MakeWH(1, 1)), greenPaint);
SkAutoTUnref<SkPicture> picture(recorder.endRecording());
// Wrap that SkPicture in an SkPictureImageFilter.
SkAutoTUnref<SkImageFilter> imageFilter(
SkPictureImageFilter::Create(picture.get()));
// Check that SkPictureImageFilter successfully serializes its contained
// SkPicture when not in cross-process mode.
SkPaint paint;
paint.setImageFilter(imageFilter.get());
SkPictureRecorder outerRecorder;
SkCanvas* outerCanvas = outerRecorder.beginRecording(1, 1, &factory, 0);
SkPaint redPaintWithFilter;
redPaintWithFilter.setColor(SK_ColorRED);
redPaintWithFilter.setImageFilter(imageFilter.get());
outerCanvas->drawRect(SkRect::Make(SkIRect::MakeWH(1, 1)), redPaintWithFilter);
SkAutoTUnref<SkPicture> outerPicture(outerRecorder.endRecording());
SkBitmap bitmap;
bitmap.allocN32Pixels(1, 1);
SkBitmapDevice device(bitmap);
SkCanvas canvas(&device);
// The result here should be green, since the filter replaces the primitive's red interior.
canvas.clear(0x0);
canvas.drawPicture(outerPicture);
uint32_t pixel = *bitmap.getAddr32(0, 0);
REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN);
// Check that, for now, SkPictureImageFilter does not serialize or
// deserialize its contained picture when the filter is serialized
// cross-process. Do this by "laundering" it through SkValidatingReadBuffer.
SkAutoTUnref<SkData> data(SkValidatingSerializeFlattenable(imageFilter.get()));
SkAutoTUnref<SkFlattenable> flattenable(SkValidatingDeserializeFlattenable(
data->data(), data->size(), SkImageFilter::GetFlattenableType()));
SkImageFilter* unflattenedFilter = static_cast<SkImageFilter*>(flattenable.get());
redPaintWithFilter.setImageFilter(unflattenedFilter);
SkPictureRecorder crossProcessRecorder;
SkCanvas* crossProcessCanvas = crossProcessRecorder.beginRecording(1, 1, &factory, 0);
crossProcessCanvas->drawRect(SkRect::Make(SkIRect::MakeWH(1, 1)), redPaintWithFilter);
SkAutoTUnref<SkPicture> crossProcessPicture(crossProcessRecorder.endRecording());
canvas.clear(0x0);
canvas.drawPicture(crossProcessPicture);
pixel = *bitmap.getAddr32(0, 0);
// The result here should not be green, since the filter draws nothing.
REPORTER_ASSERT(reporter, pixel != SK_ColorGREEN);
}
DEF_TEST(ImageFilterEmptySaveLayer, reporter) {
// Even when there's an empty saveLayer()/restore(), ensure that an image
// filter or color filter which affects transparent black still draws.
SkBitmap bitmap;
bitmap.allocN32Pixels(10, 10);
SkBitmapDevice device(bitmap);
SkCanvas canvas(&device);
SkRTreeFactory factory;
SkPictureRecorder recorder;
SkAutoTUnref<SkColorFilter> green(
SkColorFilter::CreateModeFilter(SK_ColorGREEN, SkXfermode::kSrc_Mode));
SkAutoTUnref<SkColorFilterImageFilter> imageFilter(
SkColorFilterImageFilter::Create(green.get()));
SkPaint imageFilterPaint;
imageFilterPaint.setImageFilter(imageFilter.get());
SkPaint colorFilterPaint;
colorFilterPaint.setColorFilter(green.get());
SkRect bounds = SkRect::MakeWH(10, 10);
SkCanvas* recordingCanvas = recorder.beginRecording(10, 10, &factory, 0);
recordingCanvas->saveLayer(&bounds, &imageFilterPaint);
recordingCanvas->restore();
SkAutoTUnref<SkPicture> picture(recorder.endRecording());
canvas.clear(0);
canvas.drawPicture(picture);
uint32_t pixel = *bitmap.getAddr32(0, 0);
REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN);
recordingCanvas = recorder.beginRecording(10, 10, &factory, 0);
recordingCanvas->saveLayer(NULL, &imageFilterPaint);
recordingCanvas->restore();
SkAutoTUnref<SkPicture> picture2(recorder.endRecording());
canvas.clear(0);
canvas.drawPicture(picture2);
pixel = *bitmap.getAddr32(0, 0);
REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN);
recordingCanvas = recorder.beginRecording(10, 10, &factory, 0);
recordingCanvas->saveLayer(&bounds, &colorFilterPaint);
recordingCanvas->restore();
SkAutoTUnref<SkPicture> picture3(recorder.endRecording());
canvas.clear(0);
canvas.drawPicture(picture3);
pixel = *bitmap.getAddr32(0, 0);
REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN);
}
static void test_huge_blur(SkBaseDevice* device, skiatest::Reporter* reporter) {
SkCanvas canvas(device);
SkBitmap bitmap;
bitmap.allocN32Pixels(100, 100);
bitmap.eraseARGB(0, 0, 0, 0);
// Check that a blur with an insane radius does not crash or assert.
SkAutoTUnref<SkImageFilter> blur(SkBlurImageFilter::Create(SkIntToScalar(1<<30), SkIntToScalar(1<<30)));
SkPaint paint;
paint.setImageFilter(blur);
canvas.drawSprite(bitmap, 0, 0, &paint);
}
DEF_TEST(HugeBlurImageFilter, reporter) {
SkBitmap temp;
temp.allocN32Pixels(100, 100);
SkBitmapDevice device(temp);
test_huge_blur(&device, reporter);
}
static void test_xfermode_cropped_input(SkBaseDevice* device, skiatest::Reporter* reporter) {
SkCanvas canvas(device);
canvas.clear(0);
SkBitmap bitmap;
bitmap.allocN32Pixels(1, 1);
bitmap.eraseARGB(255, 255, 255, 255);
SkAutoTUnref<SkColorFilter> green(
SkColorFilter::CreateModeFilter(SK_ColorGREEN, SkXfermode::kSrcIn_Mode));
SkAutoTUnref<SkColorFilterImageFilter> greenFilter(
SkColorFilterImageFilter::Create(green.get()));
SkImageFilter::CropRect cropRect(SkRect::MakeEmpty());
SkAutoTUnref<SkColorFilterImageFilter> croppedOut(
SkColorFilterImageFilter::Create(green.get(), NULL, &cropRect));
// Check that an xfermode image filter whose input has been cropped out still draws the other
// input. Also check that drawing with both inputs cropped out doesn't cause a GPU warning.
SkXfermode* mode = SkXfermode::Create(SkXfermode::kSrcOver_Mode);
SkAutoTUnref<SkImageFilter> xfermodeNoFg(
SkXfermodeImageFilter::Create(mode, greenFilter, croppedOut));
SkAutoTUnref<SkImageFilter> xfermodeNoBg(
SkXfermodeImageFilter::Create(mode, croppedOut, greenFilter));
SkAutoTUnref<SkImageFilter> xfermodeNoFgNoBg(
SkXfermodeImageFilter::Create(mode, croppedOut, croppedOut));
SkPaint paint;
paint.setImageFilter(xfermodeNoFg);
canvas.drawSprite(bitmap, 0, 0, &paint);
uint32_t pixel;
SkImageInfo info = SkImageInfo::MakeN32Premul(1, 1);
canvas.readPixels(info, &pixel, 4, 0, 0);
REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN);
paint.setImageFilter(xfermodeNoBg);
canvas.drawSprite(bitmap, 0, 0, &paint);
canvas.readPixels(info, &pixel, 4, 0, 0);
REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN);
paint.setImageFilter(xfermodeNoFgNoBg);
canvas.drawSprite(bitmap, 0, 0, &paint);
canvas.readPixels(info, &pixel, 4, 0, 0);
REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN);
}
DEF_TEST(ImageFilterNestedSaveLayer, reporter) {
SkBitmap temp;
temp.allocN32Pixels(50, 50);
SkBitmapDevice device(temp);
SkCanvas canvas(&device);
canvas.clear(0x0);
SkBitmap bitmap;
bitmap.allocN32Pixels(10, 10);
bitmap.eraseColor(SK_ColorGREEN);
SkMatrix matrix;
matrix.setScale(SkIntToScalar(2), SkIntToScalar(2));
matrix.postTranslate(SkIntToScalar(-20), SkIntToScalar(-20));
SkAutoTUnref<SkImageFilter> matrixFilter(
SkMatrixImageFilter::Create(matrix, SkPaint::kLow_FilterLevel));
// Test that saveLayer() with a filter nested inside another saveLayer() applies the
// correct offset to the filter matrix.
SkRect bounds1 = SkRect::MakeXYWH(10, 10, 30, 30);
canvas.saveLayer(&bounds1, NULL);
SkPaint filterPaint;
filterPaint.setImageFilter(matrixFilter);
SkRect bounds2 = SkRect::MakeXYWH(20, 20, 10, 10);
canvas.saveLayer(&bounds2, &filterPaint);
SkPaint greenPaint;
greenPaint.setColor(SK_ColorGREEN);
canvas.drawRect(bounds2, greenPaint);
canvas.restore();
canvas.restore();
SkPaint strokePaint;
strokePaint.setStyle(SkPaint::kStroke_Style);
strokePaint.setColor(SK_ColorRED);
SkImageInfo info = SkImageInfo::MakeN32Premul(1, 1);
uint32_t pixel;
canvas.readPixels(info, &pixel, 4, 25, 25);
REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN);
// Test that drawSprite() with a filter nested inside a saveLayer() applies the
// correct offset to the filter matrix.
canvas.clear(0x0);
canvas.readPixels(info, &pixel, 4, 25, 25);
canvas.saveLayer(&bounds1, NULL);
canvas.drawSprite(bitmap, 20, 20, &filterPaint);
canvas.restore();
canvas.readPixels(info, &pixel, 4, 25, 25);
REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN);
}
DEF_TEST(XfermodeImageFilterCroppedInput, reporter) {
SkBitmap temp;
temp.allocN32Pixels(100, 100);
SkBitmapDevice device(temp);
test_xfermode_cropped_input(&device, reporter);
}
#if SK_SUPPORT_GPU
DEF_GPUTEST(ImageFilterCropRectGPU, reporter, factory) {
GrContext* context = factory->get(static_cast<GrContextFactory::GLContextType>(0));
SkAutoTUnref<SkGpuDevice> device(SkGpuDevice::Create(context,
SkImageInfo::MakeN32Premul(100, 100),
0));
test_crop_rects(device, reporter);
}
DEF_GPUTEST(HugeBlurImageFilterGPU, reporter, factory) {
GrContext* context = factory->get(static_cast<GrContextFactory::GLContextType>(0));
SkAutoTUnref<SkGpuDevice> device(SkGpuDevice::Create(context,
SkImageInfo::MakeN32Premul(100, 100),
0));
test_huge_blur(device, reporter);
}
DEF_GPUTEST(XfermodeImageFilterCroppedInputGPU, reporter, factory) {
GrContext* context = factory->get(static_cast<GrContextFactory::GLContextType>(0));
SkAutoTUnref<SkGpuDevice> device(SkGpuDevice::Create(context,
SkImageInfo::MakeN32Premul(1, 1),
0));
test_xfermode_cropped_input(device, reporter);
}
#endif